JP2013196607A - Flow rate controller and flow rate testing device using the same - Google Patents

Flow rate controller and flow rate testing device using the same Download PDF

Info

Publication number
JP2013196607A
JP2013196607A JP2012065759A JP2012065759A JP2013196607A JP 2013196607 A JP2013196607 A JP 2013196607A JP 2012065759 A JP2012065759 A JP 2012065759A JP 2012065759 A JP2012065759 A JP 2012065759A JP 2013196607 A JP2013196607 A JP 2013196607A
Authority
JP
Japan
Prior art keywords
flow rate
servo valve
detector
detecting
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012065759A
Other languages
Japanese (ja)
Other versions
JP6006950B2 (en
Inventor
Takayuki Ono
隆幸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaba System Machinery Co Ltd
Original Assignee
Kayaba System Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba System Machinery Co Ltd filed Critical Kayaba System Machinery Co Ltd
Priority to JP2012065759A priority Critical patent/JP6006950B2/en
Publication of JP2013196607A publication Critical patent/JP2013196607A/en
Application granted granted Critical
Publication of JP6006950B2 publication Critical patent/JP6006950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize highly accurate flow rate control even when a flow rate change is large.SOLUTION: A flow rate controller includes: a servo valve 5 for discharging a working fluid supplied from fluid pressure supply sources 2 and 4 while controlling a flow rate; an entrance pressure detector 11 for detecting the entrance pressure of the servo valve 5; an exit pressure detector 12 for detecting the exit pressure of the servo valve 5; a displacement detector 13 for detecting the spool displacement of the servo valve 5; and a controller 102 for computing the discharge flow rate of the servo valve 5 on the basis of detection results of the entrance pressure detector 11, the exit pressure detector 12 and the displacement detector 13, and outputting an aperture command to the servo valve 5 so that the computed flow rate becomes a predetermined set flow rate.

Description

本発明は、流量制御装置、及びそれを用いた流量試験装置に関するものである。   The present invention relates to a flow rate control device and a flow rate test device using the same.

流量計の計測結果に基づいて流量制御弁の開度を制御して流量制御を行うことが知られている(例えば、特許文献1参照)。   It is known to perform flow control by controlling the opening of a flow control valve based on the measurement result of a flow meter (see, for example, Patent Document 1).

特開2009−103109号公報JP 2009-103109 A

しかしながら、流量変化が大きい場合には、流量計の計測値は応答性が悪いため、流量計の計測結果に基づいて流量制御するには限界があった。   However, when the flow rate change is large, the measurement value of the flow meter has poor responsiveness, so there is a limit to the flow rate control based on the measurement result of the flow meter.

本発明は上記の問題点に鑑みてなされたものであり、流量変化が大きい場合であっても、精度の高い流量制御を実現することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to realize highly accurate flow rate control even when the flow rate change is large.

本発明に係る流量制御装置は、作動流体を供給する流体圧供給源と、前記流体圧供給源から供給される作動流体を流量制御を行いながら吐出するサーボバルブと、前記サーボバルブの入口圧力を検出する入口圧力検出器と、前記サーボバルブの出口圧力を検出する出口圧力検出器と、前記サーボバルブのスプール変位を検出する変位検出器と、前記入口圧力検出器、前記出口圧力検出器、及び前記変位検出器の検出結果に基づいて前記サーボバルブの吐出流量を演算し、当該演算流量が予め定められた設定流量となるように前記サーボバルブに開度指令を出力するコントローラと、を備えることを特徴とする。   The flow control device according to the present invention includes a fluid pressure supply source that supplies a working fluid, a servo valve that discharges the working fluid supplied from the fluid pressure supply source while performing flow control, and an inlet pressure of the servo valve. An inlet pressure detector for detecting, an outlet pressure detector for detecting an outlet pressure of the servo valve, a displacement detector for detecting a spool displacement of the servo valve, the inlet pressure detector, the outlet pressure detector, and A controller that calculates a discharge flow rate of the servo valve based on a detection result of the displacement detector and outputs an opening degree command to the servo valve so that the calculated flow rate becomes a predetermined set flow rate. It is characterized by.

本発明によれば、サーボバルブの吐出流量は入口圧力検出器、出口圧力検出器、及び変位検出器の検出結果に基づいて演算されるため、流量変化が大きい場合であっても、演算される吐出流量は応答性の良いものとなる。サーボバルブによる流量制御は演算流量をフィードバック信号として行われるため、精度の高い流量制御を実現することができる。   According to the present invention, since the discharge flow rate of the servo valve is calculated based on the detection results of the inlet pressure detector, the outlet pressure detector, and the displacement detector, it is calculated even when the flow rate change is large. The discharge flow rate has good responsiveness. Since the flow rate control by the servo valve is performed using the calculated flow rate as a feedback signal, highly accurate flow rate control can be realized.

本発明の第1実施形態に係る流量試験装置のシステム系統図であり、実線が油圧系統を示し、点線が信号の流れを示す。1 is a system diagram of a flow rate test apparatus according to a first embodiment of the present invention, where a solid line indicates a hydraulic system and a dotted line indicates a signal flow. FIG. モニタに表示された演算流量と実流量の変化を示す図である。It is a figure which shows the change of the calculation flow volume and actual flow volume which were displayed on the monitor. 本発明の第2実施形態に係る流量試験装置のシステム系統図であり、実線が油圧系統を示し、点線が信号の流れを示す。FIG. 4 is a system diagram of a flow rate test apparatus according to a second embodiment of the present invention, where a solid line indicates a hydraulic system and a dotted line indicates a signal flow.

以下、図面を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1実施形態>
図1及び図2を参照して、本発明の第1実施形態に係る流量試験装置100について説明する。
<First Embodiment>
With reference to FIG.1 and FIG.2, the flow test apparatus 100 which concerns on 1st Embodiment of this invention is demonstrated.

流量試験装置100は、供試体1に対して瞬間的に大流量の液体を供給し、供試体1の疲労や耐久性等の性能を試験する装置である。供試体1は、バルブ、配管、配管用継手、フレキシブルホース等であり、流量変化が大きい環境下で使用される部品である。液体は、本実施形態では油であるが、水等であってもよい。   The flow rate test apparatus 100 is an apparatus that instantaneously supplies a large flow rate of liquid to the specimen 1 and tests performances such as fatigue and durability of the specimen 1. The specimen 1 is a valve, piping, a joint for piping, a flexible hose, or the like, and is a component used in an environment where the flow rate change is large. The liquid is oil in the present embodiment, but may be water or the like.

図1に示すように、流量試験装置100は、試験機本体101と、試験機本体101の動作を制御するコントローラ102と、を備える。図1では、油圧系統を実線で示し、信号の流れを点線で示す。   As shown in FIG. 1, the flow rate test apparatus 100 includes a tester main body 101 and a controller 102 that controls the operation of the tester main body 101. In FIG. 1, the hydraulic system is indicated by a solid line, and the signal flow is indicated by a dotted line.

試験機本体101は、作動油(作動流体)が貯留されたタンク8と、タンク8の作動油を吸い込んで供給する油圧ポンプ2と、油圧ポンプ2と供試体1を接続する供給通路3と、供給通路3に接続され油圧ポンプ2から吐出された作動油が畜圧される畜圧器としてのアキュムレータ4と、アキュムレータ4に畜圧された作動油を流量制御を行いながら供試体1に対して吐出するサーボバルブ5と、供試体1とタンク8を接続する戻り通路6と、を備える。油圧ポンプ2及びアキュムレータ4が、請求項1の「流体圧供給源」に該当する。   The testing machine main body 101 includes a tank 8 in which hydraulic oil (working fluid) is stored, a hydraulic pump 2 that sucks and supplies the hydraulic oil in the tank 8, a supply passage 3 that connects the hydraulic pump 2 and the specimen 1, The accumulator 4 is connected to the supply passage 3 and the hydraulic fluid discharged from the hydraulic pump 2 is pressured, and the hydraulic fluid pressured by the accumulator 4 is discharged to the specimen 1 while controlling the flow rate. And a return passage 6 for connecting the specimen 1 and the tank 8 to each other. The hydraulic pump 2 and the accumulator 4 correspond to the “fluid pressure supply source” in claim 1.

また、試験機本体101は、供給通路3におけるサーボバルブ5の上流側に設けられサーボバルブ5の入口圧力を検出する入口圧力検出器としての入口圧力計11と、供給通路3におけるサーボバルブ5の下流側に設けられサーボバルブの出口圧力を検出する出口圧力検出器としての出口圧力計12と、戻り通路6に設けられサーボバルブ5の吐出流量を検出する流量検出器としての流量計14と、を備える。流量計14には、精度と耐久性に優れるコリオリ式流量計が用いられる。流量計14によって検出された実流量Qrは、図2に示すようにモニタ21に出力されて表示される。   The testing machine main body 101 includes an inlet pressure gauge 11 as an inlet pressure detector that is provided on the upstream side of the servo valve 5 in the supply passage 3 and detects the inlet pressure of the servo valve 5, and the servo valve 5 in the supply passage 3. An outlet pressure gauge 12 provided on the downstream side as an outlet pressure detector for detecting the outlet pressure of the servo valve, a flow meter 14 provided in the return passage 6 as a flow rate detector for detecting the discharge flow rate of the servo valve 5; Is provided. As the flow meter 14, a Coriolis flow meter having excellent accuracy and durability is used. The actual flow rate Qr detected by the flow meter 14 is output and displayed on the monitor 21 as shown in FIG.

サーボバルブ5は、コントローラ102からの指令信号によって変位するスプールを有し、吐出流量が予め定められた設定流量となるようにスプールの開度が制御される。サーボバルブ5にはスプール変位を検出する変位検出器としての変位計13が設けられる。   The servo valve 5 has a spool that is displaced by a command signal from the controller 102, and the spool opening degree is controlled so that the discharge flow rate becomes a predetermined set flow rate. The servo valve 5 is provided with a displacement meter 13 as a displacement detector for detecting the spool displacement.

供試体1は、2つの取付ポート7a,7b間にクイックカプラー等を介して交換可能に取り付けられる。試験機本体101は、サーボバルブ5を通じて供試体1に対して瞬間的に大流量の作動油を供給し、急激な流量変化による供試体1への影響を試験する装置である。流量変化は、例えば、50L/minから1200L/minまで0.1秒で立ち上がる変化である。このような急激な流量変化を、流量計14の計測結果をフィードバック信号として流量制御したとしても、流量計14による計測値は応答性が悪くかつ安定しないため(図2参照)、流量制御の精度には限界があった。   The specimen 1 is attached between the two attachment ports 7a and 7b in a replaceable manner via a quick coupler or the like. The test machine main body 101 is an apparatus that instantaneously supplies a large flow rate of hydraulic fluid to the specimen 1 through the servo valve 5 and tests the influence on the specimen 1 due to a rapid flow rate change. The flow rate change is, for example, a change that rises from 50 L / min to 1200 L / min in 0.1 seconds. Even if such a rapid change in flow rate is controlled by using the measurement result of the flow meter 14 as a feedback signal, the measured value by the flow meter 14 is poorly responsive and unstable (see FIG. 2). There were limits.

この対策として、本実施形態では、サーボバルブ5による流量制御のフィードバック信号として、入口圧力計11、出口圧力計12、及び変位計13の検出結果に基づいて演算される演算流量が用いられる。以下では、コントローラ102によるサーボバルブ5の制御について説明する。   As a countermeasure, in this embodiment, a calculated flow rate calculated based on the detection results of the inlet pressure gauge 11, the outlet pressure gauge 12, and the displacement gauge 13 is used as a feedback signal for flow rate control by the servo valve 5. Hereinafter, control of the servo valve 5 by the controller 102 will be described.

コントローラ102は、サーボバルブ5の動作の制御を行うCPUと、CPUの処理動作に必要な制御プログラムや設定値等が記憶されたROMと、入口圧力計11、出口圧力計12、変位計13、及び流量計14等の各種センサが検出した情報を一時的に記憶するRAMと、を備える。   The controller 102 includes a CPU that controls the operation of the servo valve 5, a ROM that stores control programs and setting values necessary for the processing operation of the CPU, an inlet pressure gauge 11, an outlet pressure gauge 12, a displacement gauge 13, And a RAM that temporarily stores information detected by various sensors such as the flow meter 14.

コントローラ102には、設定流量として50L/minから1200L/minまで0.1秒で立ち上がり、1200L/minに数秒保持した後、1200L/minから50L/minまで0.1秒で下げるパルス状に変化する流量波形が連続して発生するように予め定められている。   The controller 102 changes to a pulse shape that rises from 50 L / min to 1200 L / min in 0.1 seconds as the set flow rate, holds for 1200 seconds at 1200 L / min, and then decreases from 1200 L to 50 L / min in 0.1 seconds. The flow rate waveform to be generated is predetermined so as to be generated continuously.

図1に示すように、コントローラ102では、変位計13によって検出されたスプール変位から算出されたスプール開度L、入口圧力計11によって検出されたサーボバルブ供給圧力Ps、及び入口圧力計11と出口圧力計12によって検出された圧力の差である実測差圧ΔP1に基づいて、サーボバルブ5の吐出流量Qcが演算される。具体的には、以下の(1)式に基づいて吐出流量Qcが演算される。   As shown in FIG. 1, in the controller 102, the spool opening degree L calculated from the spool displacement detected by the displacement gauge 13, the servo valve supply pressure Ps detected by the inlet pressure gauge 11, and the inlet pressure gauge 11 and the outlet The discharge flow rate Qc of the servo valve 5 is calculated based on the actually measured differential pressure ΔP1 that is the pressure difference detected by the pressure gauge 12. Specifically, the discharge flow rate Qc is calculated based on the following equation (1).

Figure 2013196607
Figure 2013196607

上記(1)に基づいて演算された吐出流量Qc(演算流量)のデータはモニタ21へ出力され、モニタ21には、図2に示すようにリアルタイムで吐出流量Qcが表示される。なお、吐出流量Qcの演算周期は数msecである。   Data of the discharge flow rate Qc (calculated flow rate) calculated based on the above (1) is output to the monitor 21, and the monitor 21 displays the discharge flow rate Qc in real time as shown in FIG. The calculation cycle of the discharge flow rate Qc is several msec.

サーボアンプ22は、上記(1)に基づいて演算された吐出流量Qcが予め定められた設定流量となるようにサーボバルブ5に開度指令を出力する。このように、サーボアンプ22による流量制御は、上記(1)に基づいて演算された吐出流量Qcをフィードバック信号として行われる。サーボアンプ22による流量制御の演算周期は数msecである。   The servo amplifier 22 outputs an opening degree command to the servo valve 5 so that the discharge flow rate Qc calculated based on the above (1) becomes a predetermined set flow rate. Thus, the flow rate control by the servo amplifier 22 is performed using the discharge flow rate Qc calculated based on the above (1) as a feedback signal. The calculation cycle of the flow rate control by the servo amplifier 22 is several msec.

吐出流量Qcは、スプール開度L、サーボバルブ供給圧力Ps、及び実測差圧ΔP1をファクターとして上記(1)式によって演算される理論上の流量であり、リアルタイムで演算される。したがって、流量変化が大きい場合であっても、演算される吐出流量Qcは応答性の良いものとなり、安定したフィードバック信号が得られる。サーボアンプ22による流量制御は、その安定したフィードバック信号を用いて行われるため、精度の高いものとなる。   The discharge flow rate Qc is a theoretical flow rate calculated by the above equation (1) using the spool opening L, the servo valve supply pressure Ps, and the actually measured differential pressure ΔP1 as factors, and is calculated in real time. Therefore, even when the flow rate change is large, the calculated discharge flow rate Qc has good responsiveness, and a stable feedback signal can be obtained. Since the flow rate control by the servo amplifier 22 is performed using the stable feedback signal, the accuracy is high.

以上の第1実施形態によれば、以下に示す効果を奏する。   According to the above 1st Embodiment, there exists an effect shown below.

サーボバルブ5の吐出流量は、スプール開度L、サーボバルブ供給圧力Ps、及び実測差圧ΔP1をファクターとして演算されるため、流量変化が大きい場合であっても、演算される吐出流量は応答性の良いものとなる。サーボバルブによる流量制御はその演算された吐出流量をフィードバック信号として行われるため、精度の高い流量制御を実現することができる。   Since the discharge flow rate of the servo valve 5 is calculated using the spool opening L, the servo valve supply pressure Ps, and the actually measured differential pressure ΔP1 as factors, the calculated discharge flow rate is responsive even when the flow rate change is large. Will be good. Since the flow rate control by the servo valve is performed using the calculated discharge flow rate as a feedback signal, highly accurate flow rate control can be realized.

また、一般的に流量計で流量を計測する際には流体の流れを層流にする必要があるが、本実施形態では、流量を上記3つのファクターを用いて演算によって計測するものであるため、乱流の影響を受けない。したがって、流体の流れが乱流であっても精度の高い流量制御を実現することができる。   In general, when measuring a flow rate with a flow meter, the flow of the fluid needs to be laminar, but in this embodiment, the flow rate is measured by calculation using the above three factors. Unaffected by turbulence. Therefore, highly accurate flow rate control can be realized even when the fluid flow is turbulent.

<第2実施形態>
次に、図2及び図3を参照して、本発明の第2実施形態に係る流量試験装置200について説明する。以下では、上記第1実施形態と異なる点のみを説明し、第1実施形態と同一の構成には同一の符号を付して説明を省略する。
Second Embodiment
Next, with reference to FIG.2 and FIG.3, the flow test apparatus 200 which concerns on 2nd Embodiment of this invention is demonstrated. Hereinafter, only differences from the first embodiment will be described, and the same components as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

流量試験装置200は、サーボアンプ22からサーボバルブ5へ出力される開度指令が、流量計14の検出結果に基づいて補正される点で、上記第1実施形態と相違する。以下に、その補正について説明する。   The flow rate test apparatus 200 is different from the first embodiment in that the opening degree command output from the servo amplifier 22 to the servo valve 5 is corrected based on the detection result of the flow meter 14. The correction will be described below.

上記(1)式によって演算される吐出流量Qcは理論上の流量であり、実測された流量ではない。一方、流量計14によって検出される実流量Qrは、流量変化中は応答性が良くないため精度が低いが、一定流量域では精度が高い。特に、流量計14に用いられるコリオリ式流量計は、応答性が良くかつ機械的な消耗が少ないのが特徴であり、流量変化が繰り返される環境でも精度と耐久性に優れる。   The discharge flow rate Qc calculated by the above equation (1) is a theoretical flow rate, not an actually measured flow rate. On the other hand, the actual flow rate Qr detected by the flow meter 14 is low in accuracy because the response is not good during the flow rate change, but is high in a constant flow rate range. In particular, the Coriolis type flow meter used for the flow meter 14 is characterized by good response and low mechanical wear, and is excellent in accuracy and durability even in an environment where the flow rate change is repeated.

そこで、(1)式によって演算される吐出流量Qcの正確性を担保するため、一定流量域で流量計14にて検出された実流量Qrが設定流量(本実施形態では1200L/min)となるように、サーボアンプ22からサーボバルブ5に出力される開度指令が補正される。具体的には、設定流量に対する実流量Qrの偏差を演算し、その偏差が無くなるような開度補正信号を演算してサーボアンプ22へ出力する。サーボアンプ22は、上記(1)に基づいて演算された吐出流量Qcをフィードバック信号として吐出流量Qcが予め定められた設定流量となるようなサーボバルブ5の開度指令を演算すると共に、その演算された開度指令を開度補正信号によって補正し、その補正された開度指令をサーボバルブ5へ出力する。   Therefore, in order to ensure the accuracy of the discharge flow rate Qc calculated by the equation (1), the actual flow rate Qr detected by the flow meter 14 in the constant flow rate region becomes the set flow rate (1200 L / min in this embodiment). Thus, the opening degree command output from the servo amplifier 22 to the servo valve 5 is corrected. Specifically, the deviation of the actual flow rate Qr with respect to the set flow rate is calculated, and an opening correction signal that eliminates the deviation is calculated and output to the servo amplifier 22. The servo amplifier 22 calculates the opening degree command of the servo valve 5 so that the discharge flow rate Qc becomes a predetermined set flow rate using the discharge flow rate Qc calculated based on the above (1) as a feedback signal. The corrected opening degree command is corrected by the opening degree correction signal, and the corrected opening degree command is output to the servo valve 5.

開度指令の補正は、流量計14によって検出された実流量Qrが安定した時点(図2では4〜5秒の間)で行うのが望ましい。   The correction of the opening degree command is desirably performed when the actual flow rate Qr detected by the flow meter 14 is stabilized (between 4 and 5 seconds in FIG. 2).

また、開度指令の補正はリアルタイムでは行わず、前回のパルス状流量波形を発生させた際に演算した開度補正信号によって開度指令を補正してパルス状流量波形を発生させるようにしてもよい。このように補正すれば、パルス状流量波形を発生させる毎に、流量制御の精度が向上する。   In addition, the correction of the opening command is not performed in real time, but the opening command is corrected by the opening correction signal calculated when the previous pulsed flow waveform was generated to generate the pulsed flow waveform. Good. By correcting in this way, the accuracy of the flow rate control is improved every time the pulsed flow rate waveform is generated.

以上の第2実施形態によれば、以下に示す効果を奏する。   According to the above 2nd Embodiment, there exists an effect shown below.

サーボアンプ22からサーボバルブ5へ出力される開度指令が流量計14にて検出された実流量Qrに基づいて補正されるため、より精度の高い流量制御を実現することができる。   Since the opening degree command output from the servo amplifier 22 to the servo valve 5 is corrected based on the actual flow rate Qr detected by the flow meter 14, more accurate flow rate control can be realized.

本発明は上記の実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

上記実施形態では、サーボバルブ5を流量試験装置100に用いる場合について説明した。しかし、サーボバルブ5は、流量変化が大きい流量制御を行う流量制御装置に用いることができ、その用途は限定されない。   In the above embodiment, the case where the servo valve 5 is used in the flow rate test apparatus 100 has been described. However, the servo valve 5 can be used in a flow rate control device that performs flow rate control with a large flow rate change, and its application is not limited.

また、上記実施形態では、流体圧供給源として油圧ポンプ2及びアキュムレータ4を用いる場合を例示した。上記実施形態では、大きな流量変化を実現するためにアキュムレータ4を用いるようにした。しかし、流量変化の大きさによってはアキュムレータ4は不要であり、油圧ポンプ2のみで流体圧供給源を構成することが可能である。   Moreover, in the said embodiment, the case where the hydraulic pump 2 and the accumulator 4 were used as a fluid pressure supply source was illustrated. In the above embodiment, the accumulator 4 is used to realize a large flow rate change. However, depending on the magnitude of the flow rate change, the accumulator 4 is not necessary, and the fluid pressure supply source can be configured only by the hydraulic pump 2.

本発明は、供試体の疲労や耐久性等の性能を試験する流量試験装置として利用することができる。   The present invention can be used as a flow test device for testing performance such as fatigue and durability of a specimen.

100,200 流量試験装置
101 試験機本体
102 コントローラ
1 供試体
2 油圧ポンプ(流体圧供給源)
4 アキュムレータ(流体圧供給源)
5 サーボバルブ
11 入口圧力計(入口圧力検出器)
12 出口圧力計(出口圧力検出器)
13 変位計(変位検出器)
14 流量計(流量検出器)
21 モニタ
22 サーボアンプ
100, 200 Flow test device 101 Test machine main body 102 Controller 1 Specimen 2 Hydraulic pump (fluid pressure supply source)
4 Accumulator (fluid pressure supply source)
5 Servo valve 11 Inlet pressure gauge (Inlet pressure detector)
12 Outlet pressure gauge (Outlet pressure detector)
13 Displacement meter (displacement detector)
14 Flowmeter (Flow detector)
21 Monitor 22 Servo amplifier

Claims (3)

作動流体を供給する流体圧供給源と、
前記流体圧供給源から供給される作動流体を流量制御を行いながら吐出するサーボバルブと、
前記サーボバルブの入口圧力を検出する入口圧力検出器と、
前記サーボバルブの出口圧力を検出する出口圧力検出器と、
前記サーボバルブのスプール変位を検出する変位検出器と、
前記入口圧力検出器、前記出口圧力検出器、及び前記変位検出器の検出結果に基づいて前記サーボバルブの吐出流量を演算し、当該演算流量が予め定められた設定流量となるように前記サーボバルブに開度指令を出力するコントローラと、
を備えることを特徴とする流量制御装置。
A fluid pressure source for supplying the working fluid;
A servo valve that discharges the working fluid supplied from the fluid pressure supply source while controlling the flow rate;
An inlet pressure detector for detecting the inlet pressure of the servo valve;
An outlet pressure detector for detecting an outlet pressure of the servo valve;
A displacement detector for detecting a spool displacement of the servo valve;
Based on the detection results of the inlet pressure detector, the outlet pressure detector, and the displacement detector, a discharge flow rate of the servo valve is calculated, and the servo valve is set so that the calculated flow rate becomes a predetermined set flow rate. A controller that outputs an opening command to
A flow rate control device comprising:
請求項1に記載の流量制御装置を備え、前記サーボバルブにて流量制御を行いながら供試体に対して作動流体を吐出して前記供試体の性能試験を行う流量試験装置であって、
前記サーボバルブの吐出流量を検出する流量検出器を備え、
前記コントローラは、前記流量検出器にて検出された実流量が前記設定流量となるように前記開度指令を補正することを特徴とする流量試験装置。
A flow rate test apparatus comprising the flow rate control apparatus according to claim 1, wherein a performance test of the specimen is performed by discharging a working fluid to the specimen while performing flow control with the servo valve.
A flow detector for detecting the discharge flow rate of the servo valve;
The flow rate test apparatus, wherein the controller corrects the opening degree command so that an actual flow rate detected by the flow rate detector becomes the set flow rate.
前記設定流量は、パルス状に変化する流量波形であり、
前記補正は、パルス状に変化する流量波形のうち一定流量域で行われることを特徴とする請求項2に記載の流量試験装置。
The set flow rate is a flow waveform that changes in a pulse shape,
The flow rate test apparatus according to claim 2, wherein the correction is performed in a constant flow rate range of a flow rate waveform that changes in a pulse shape.
JP2012065759A 2012-03-22 2012-03-22 Flow test equipment Active JP6006950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065759A JP6006950B2 (en) 2012-03-22 2012-03-22 Flow test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065759A JP6006950B2 (en) 2012-03-22 2012-03-22 Flow test equipment

Publications (2)

Publication Number Publication Date
JP2013196607A true JP2013196607A (en) 2013-09-30
JP6006950B2 JP6006950B2 (en) 2016-10-12

Family

ID=49395410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065759A Active JP6006950B2 (en) 2012-03-22 2012-03-22 Flow test equipment

Country Status (1)

Country Link
JP (1) JP6006950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064022A (en) * 2018-10-19 2020-04-23 カヤバ システム マシナリー株式会社 Pressure test machine
CN117686042A (en) * 2024-02-02 2024-03-12 成都秦川物联网科技股份有限公司 Valve control linkage method, system and equipment for ultrasonic water meter of Internet of things

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236939A (en) * 1987-03-25 1988-10-03 Cosmo Keiki:Kk Automatic pressure governing device
JPH0447416A (en) * 1990-06-13 1992-02-17 Daido Steel Co Ltd Flow rate control method
JPH0836420A (en) * 1994-07-26 1996-02-06 Hitachi Shonan Denshi Co Ltd Flow rate controller
JPH08335118A (en) * 1995-06-06 1996-12-17 Hitachi Metals Ltd Flow rate control method
JPH09133103A (en) * 1995-11-09 1997-05-20 Kayaba Ind Co Ltd Hydraulic control device
JPH09217898A (en) * 1996-02-08 1997-08-19 Hitachi Metals Ltd Flow control method
JPH11259140A (en) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd Flow rate controller
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236939A (en) * 1987-03-25 1988-10-03 Cosmo Keiki:Kk Automatic pressure governing device
JPH0447416A (en) * 1990-06-13 1992-02-17 Daido Steel Co Ltd Flow rate control method
JPH0836420A (en) * 1994-07-26 1996-02-06 Hitachi Shonan Denshi Co Ltd Flow rate controller
JPH08335118A (en) * 1995-06-06 1996-12-17 Hitachi Metals Ltd Flow rate control method
JPH09133103A (en) * 1995-11-09 1997-05-20 Kayaba Ind Co Ltd Hydraulic control device
JPH09217898A (en) * 1996-02-08 1997-08-19 Hitachi Metals Ltd Flow control method
JPH11259140A (en) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd Flow rate controller
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064022A (en) * 2018-10-19 2020-04-23 カヤバ システム マシナリー株式会社 Pressure test machine
JP7169156B2 (en) 2018-10-19 2022-11-10 Kyb株式会社 pressure tester
CN117686042A (en) * 2024-02-02 2024-03-12 成都秦川物联网科技股份有限公司 Valve control linkage method, system and equipment for ultrasonic water meter of Internet of things
CN117686042B (en) * 2024-02-02 2024-05-24 成都秦川物联网科技股份有限公司 Valve control linkage method, system and equipment for ultrasonic water meter of Internet of things

Also Published As

Publication number Publication date
JP6006950B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
KR101717546B1 (en) System for and method of monitoring flow through mass flow controllers in real time
US9086308B2 (en) Method for operating a coriolis mass flow rate meter and coriolis mass flow rate meter
EP2163872A1 (en) Pressure sensor, differential pressure flowmeter, and flow rate controller
CN108679448B (en) Microfluid flow online adjusting device and detection method
DE13785198T1 (en) Temperature control for ultrasonic flowmeters
US7878074B1 (en) Eccentric load sensing device used to sense differential pressures
WO2008058872A3 (en) Device for measuring the total pressure of a flow and method using said device
KR20140019792A (en) Treatment liquid flow rate meter
JP2010518368A (en) Method and apparatus for continuously measuring dynamic fluid consumption
JP5620184B2 (en) Leak inspection apparatus and leak inspection method
US20200355528A1 (en) Vortex flowmeter including pressure pulsation amplitude analysis
CN109238686A (en) Detector for safety valve and safety valve detection method
KR20180054748A (en) Flow measuring gas supply, flow meter, and flow measurement method
JP6006950B2 (en) Flow test equipment
RU2019115360A (en) IMPROVEMENTS IN FLUID CONTROL
CN108088883B (en) Detection device for checking gas guide element
EP3130895B1 (en) Flow sensor device and method related thereto
JP2008169904A (en) Flow amount detecting system for flow control valve
WO2009110214A1 (en) Flow measuring device
KR102101426B1 (en) Pressure-type flow rate control device and flow rate control method using thereof
EP2869037B1 (en) Flow rate measurement device
JP5231842B2 (en) Flowmeter
KR101842160B1 (en) Flow rate control apparatus and method
JP6318505B2 (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP6818200B2 (en) Abnormal part detection device of control valve system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6006950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350