JPH0836420A - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPH0836420A
JPH0836420A JP17401594A JP17401594A JPH0836420A JP H0836420 A JPH0836420 A JP H0836420A JP 17401594 A JP17401594 A JP 17401594A JP 17401594 A JP17401594 A JP 17401594A JP H0836420 A JPH0836420 A JP H0836420A
Authority
JP
Japan
Prior art keywords
flow rate
servo valve
opening
difference
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17401594A
Other languages
Japanese (ja)
Inventor
Takeshi Araya
猛 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information Systems Ltd
Original Assignee
Hitachi Information Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information Systems Ltd filed Critical Hitachi Information Systems Ltd
Priority to JP17401594A priority Critical patent/JPH0836420A/en
Publication of JPH0836420A publication Critical patent/JPH0836420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To provide a flow rate controller which accurately performs correction even in the case of the occurrence of the error of table information, the secular change or the variance of the degree of opening of a valve, or the like. CONSTITUTION:A CPU 17 selects the degree of opening of a servo valve 3 based on detected pressure of pressure sensors 7 and 8. In this case, the servo valve 3 is controlled by the selected degree of opening in the case of no difference between the actual flow rate of flow to the load side and a target flow rate F1; but if there is a difference between this actual flow rate ana the target crow rate F1, the selected degree of opening of the servo valve 3 is corrected so as to absorb this difference and the servo valve 3 is controlled by the corrected degree of opening. Consequently, the flow rate is accurately controlled independently of the error or the variance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は所望の流量が得られるよ
うに制御する流量制御装置に係り、特に、所望量の空気
やガスをガス燃焼炉内に規定量流入させるガスタービン
等の空気,燃料制御装置、或いは空気圧力を自動制御す
る圧力制御装置等に利用するのに好適な流量制御装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control device for controlling a flow rate so that a desired flow rate can be obtained. The present invention relates to a flow control device suitable for use as a fuel control device, a pressure control device for automatically controlling air pressure, or the like.

【0002】[0002]

【従来の技術】この種の流量制御装置の従来技術とし
て、特開昭59−225411号公報に示される技術の
ものがある。この従来技術では、コントローラが流量設
定信号と移動パターン設定信号に基づきドライバを介し
デジタル弁を作動することによって流量を制御し、その
際、コントローラがデジタル弁の前後の差圧に応じ、該
デジタル弁の開度を補正することにより、流量を補正す
るように構成している。
2. Description of the Related Art As a conventional technique of this type of flow rate control device, there is a technique disclosed in Japanese Patent Laid-Open No. 59-225411. In this conventional technique, a controller controls a flow rate by operating a digital valve via a driver based on a flow rate setting signal and a movement pattern setting signal, in which case the controller responds to the differential pressure across the digital valve according to the differential pressure across the digital valve. The flow rate is corrected by correcting the opening degree of.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来技術
は、上述した如く、コントローラがデジタル弁の前後の
差圧に応じデジタル弁の開度を演算し補正するように構
成している。しかしながら、この制御構成は、コントロ
ーラのソフトウエハによるオープンループ制御のみであ
るため、制御指令信号が瞬時に出力され応答時間が短い
ものの、テーブル情報自体の誤差、デジタル弁の開度の
経時的変化やばらつき、さらにはその他の外乱等による
誤差を生じた場合、これを補正することについて配慮さ
れていない問題がある。
By the way, as described above, the prior art is configured so that the controller calculates and corrects the opening of the digital valve according to the differential pressure across the digital valve. However, since this control configuration is only open loop control by the soft wafer of the controller, the control command signal is output instantaneously and the response time is short, but the error in the table information itself, the change over time in the opening of the digital valve, and the change over time. There is a problem that correction is not taken into consideration when an error caused by variations or other disturbances occurs.

【0004】本発明の目的は、上記従来技術の問題点に
鑑み、テーブル情報の誤差,弁の開度の経時的変化やば
らつき等が発生しても、的確に補正することができる流
量制御装置を提供することにある。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a flow rate control device capable of accurately correcting even if an error in table information, a change in valve opening with time, a variation or the like occurs. To provide.

【0005】[0005]

【課題を解決するための手段】本発明では、配管を通る
流体の供給量を制御するサーボ弁と、流体の前記サーボ
弁より上流側及び下流側の圧力を夫々検出する検出器
と、夫々の検出器からの検出圧に基づきサーボ弁の開度
を制御する手段とを有する流量制御装置において、流体
の前記サーボ弁を通過した下流側の流量を計測する計測
手段と、夫々の検出器からの検出圧の差圧を求めると共
に、その差圧に応じサーボ弁の開度を選定する選定手段
と、測定手段によって計測された流量と目標流量との差
を求め、該求めた差と前記選定されたサーボ弁の開度と
に基づいてサーボ弁の開度を補正する補正手段とを有す
ることを特徴とするものである。
According to the present invention, a servo valve for controlling the amount of fluid supplied through a pipe, a detector for detecting the pressure of the fluid upstream and a pressure downstream of the servo valve, respectively, and In a flow rate control device having a means for controlling the opening degree of a servo valve based on the detected pressure from the detector, a measuring means for measuring the flow rate of the fluid on the downstream side that has passed through the servo valve, and a detector from each detector. The differential pressure between the detected pressures is determined, and the opening of the servo valve is selected according to the differential pressure, and the difference between the flow rate measured by the measuring means and the target flow rate is determined. And a correction means for correcting the opening of the servo valve based on the opening of the servo valve.

【0006】[0006]

【作用】本発明では、上述の如く、流体の前記サーボ弁
を通過した下流側の流量を計測する計測手段と、夫々の
検出器からの検出圧の差圧を求めると共に、その差圧に
応じサーボ弁の開度を選定する選定手段と、測定手段に
よって計測された流量と目標流量との差を求め、該求め
た差と前記選定されたサーボ弁の開度とに基づいてサー
ボ弁の開度を補正する補正手段とを有し、選定手段が双
方の圧力センサからの検出圧に基づいてサーボ弁に対す
る開度を選定するが、その際、補正手段は実際に負荷側
に流れる流量と目標流量とに差がある場合には、その差
を吸収するよう前記選定したサーボ弁の開度を補正し、
補正した開度でサーボ弁を制御することとなる。その結
果、予めメモリされた差圧とサーボ弁の開度との関係か
らなるテーブル情報自体に誤差があった場合は勿論の
他、サーボ弁の開度の経時的変化やばらつきがあって
も、それを吸収するようサーボ弁の開度を補正するの
で、上記誤差やばらつきに拘ることなくサーボ弁を制御
することができ、流量制御を的確に行うことができる。
According to the present invention, as described above, the measuring means for measuring the flow rate of the fluid on the downstream side after passing through the servo valve and the differential pressure between the detected pressures from the respective detectors are obtained, and the differential pressure is determined according to the differential pressure. Selection means for selecting the opening of the servo valve and a difference between the flow rate measured by the measuring means and the target flow rate are obtained, and the opening of the servo valve is performed based on the obtained difference and the opening of the selected servo valve. Correction means for correcting the degree, and the selection means selects the opening degree for the servo valve based on the pressures detected by both pressure sensors. If there is a difference in flow rate, correct the opening of the selected servo valve to absorb the difference,
The servo valve will be controlled with the corrected opening. As a result, in addition to the case where there is an error in the table information itself, which is the relationship between the differential pressure stored in advance and the opening of the servo valve, even if there is a temporal change or variation in the opening of the servo valve, Since the opening of the servo valve is corrected so as to absorb it, the servo valve can be controlled regardless of the above-mentioned error and variations, and the flow rate can be controlled accurately.

【0007】[0007]

【実施例】以下、本発明の実施例を図1及び図2により
説明する。図1は本発明による流量制御装置をガスター
ビン用空気流量制御装置に適用した一実施例を示す要部
の配管図である。図1に示す実施例の流量制御装置は、
配管1の一端に供給源2aが接続されると共に、配管1
の他端に負荷2bが接続され、その配管1の途中位置に
サーボ弁3が設けられ、供給源2aからの空気がサーボ
弁3を介し負荷2b側に供給される。このサーボ弁3は
三方弁で構成され、その一方の弁4の開度を調節するこ
とにより、負荷2b側に供給される空気量を調節するよ
うにしている。また、配管1においてサーボ弁3より上
流側及び下流側の位置には、内部を通る空気の圧力を検
出する圧力センサ7,8が設けられ、これら各圧力セン
サ7,8の出力部がA/D変換器13,16を介しCP
U17に接続されている。該CPU17は、圧力センサ
7がサーボ弁3より上流側の空気圧(P1)を検出する
一方、圧力センサ8がサーボ弁3より下流側の空気圧
(P2)を検出すると、その差圧P3(=P1−P2)を求
める。その際、CPU17には、予め差圧の大きさに基
づきサーボ弁3の開度情報がメモリされている。例え
ば、10リットル/毎分の流量を得ようとした場合、双
方の検出センサ7,8による検出差圧が1kg/cm2
のときに、サーボ弁3の開度が50%というようなデー
タがメモリされている。従って、CPU17は、前記求
めた差圧P3に応じサーボ弁3の開度を選定するように
している。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a piping diagram of essential parts showing an embodiment in which a flow rate control device according to the present invention is applied to an air flow rate control device for a gas turbine. The flow rate control device of the embodiment shown in FIG.
The supply source 2a is connected to one end of the pipe 1, and the pipe 1
Is connected to the other end of the load 2b, a servo valve 3 is provided at an intermediate position of the pipe 1, and air from the supply source 2a is supplied to the load 2b side via the servo valve 3. The servo valve 3 is a three-way valve, and the amount of air supplied to the load 2b side is adjusted by adjusting the opening degree of one valve 4 thereof. Further, pressure sensors 7 and 8 for detecting the pressure of air passing through the inside are provided at positions upstream and downstream of the servo valve 3 in the pipe 1, and the output portions of these pressure sensors 7 and 8 are A / CP via D converters 13 and 16
It is connected to U17. When the pressure sensor 7 detects the air pressure (P 1 ) on the upstream side of the servo valve 3, the CPU 17 detects the air pressure (P 2 ) on the downstream side of the servo valve 3, and the differential pressure P 3 (= P 1 −P 2 ) is calculated. At that time, the CPU 17 previously stores the opening information of the servo valve 3 based on the magnitude of the differential pressure. For example, when trying to obtain a flow rate of 10 liters / minute, the differential pressure detected by both detection sensors 7 and 8 is 1 kg / cm 2
At this time, data such that the opening degree of the servo valve 3 is 50% is stored. Therefore, the CPU 17 selects the opening degree of the servo valve 3 according to the obtained differential pressure P 3 .

【0008】しかして、CPU17とサーボ弁3との間
にD/A変換器14,加算回路9が夫々接続され、CP
U17が選定した開度信号10をD/A変換器14を介
し後述する加算回路9に出力する。また、配管1におい
てサーボ弁3より下流側にはサーボ弁3を通過した空気
の流量を計測するフローメータ6が設けられ、サーボア
ンプ5の入力部に対し、該フローメータ6の出力部と、
CPU17に接続されたD/A変換器15の出力部15
とが夫々接続されている。フローメータ6によって計測
された実際の計測信号12と、目標流量F1となるCP
U17からの目標流量信号11とがサーボアンプ5に入
力されると、サーボアンプ5は、実際の計測信号12と
目標流量信号11とを比較してその差を求め、求めた差
信号18を、サーボアンプ5に接続された加算回路9に
出力する。
However, the D / A converter 14 and the adder circuit 9 are connected between the CPU 17 and the servo valve 3, respectively, and CP
The opening signal 10 selected by U17 is output to the adding circuit 9 described later via the D / A converter 14. Further, a flow meter 6 for measuring the flow rate of the air passing through the servo valve 3 is provided downstream of the servo valve 3 in the pipe 1, and an output part of the flow meter 6 is provided to an input part of the servo amplifier 5,
Output unit 15 of D / A converter 15 connected to CPU 17
And are connected respectively. The actual measurement signal 12 measured by the flow meter 6 and the CP that is the target flow rate F1
When the target flow rate signal 11 from U17 is input to the servo amplifier 5, the servo amplifier 5 compares the actual measurement signal 12 and the target flow rate signal 11 to obtain the difference, and the obtained difference signal 18 is It outputs to the adder circuit 9 connected to the servo amplifier 5.

【0009】そして、加算回路9は、CPU17からの
開度信号10とサーボアンプ5からの差信号18とを加
算し、その加算した値を信号としてサーボ弁3に出力す
ることにより、サーボ弁3に対する開度を補正するよう
にしている。即ち、CPU17が圧力センサ7,8から
の検出差圧によってサーボ弁3の開度を求め、開度信号
10として加算回路9に出力するが、その際、フローメ
ータ6による実際の計測信号12と目標流量信号11と
に差が発生したとき、加算回路9は、その差信号18
(e2)とCPU17で求めた開度信号10(e1)と
を加算した信号19でサーボ弁3の開度を補正するよう
に構成している。従って、サーボ弁3より下流側を通過
する空気の流量を計測するフローメータ6と、該フロー
メータ6による計測信号12と目標流量信号11との差
を求めるサーボアンプ5と、CPU17からの開度信号
10とサーボアンプ6からの差信号18とに基づきサー
ボ弁3の開度を制御する加算回路9とを有して補正手段
を構成している。
Then, the adder circuit 9 adds the opening signal 10 from the CPU 17 and the difference signal 18 from the servo amplifier 5, and outputs the added value as a signal to the servo valve 3. The opening degree is corrected. That is, the CPU 17 obtains the opening degree of the servo valve 3 based on the differential pressure detected by the pressure sensors 7 and 8 and outputs it as the opening degree signal 10 to the adding circuit 9. At that time, the actual measurement signal 12 from the flow meter 6 is obtained. When a difference occurs with the target flow rate signal 11, the adding circuit 9 outputs the difference signal 18
A signal 19 obtained by adding (e2) and the opening signal 10 (e1) obtained by the CPU 17 is configured to correct the opening of the servo valve 3. Therefore, the flow meter 6 for measuring the flow rate of air passing downstream of the servo valve 3, the servo amplifier 5 for obtaining the difference between the measurement signal 12 by the flow meter 6 and the target flow rate signal 11, and the opening degree from the CPU 17 The correction means is configured by including the addition circuit 9 that controls the opening degree of the servo valve 3 based on the signal 10 and the difference signal 18 from the servo amplifier 6.

【0010】実施例の流量制御装置は、上記の如き構成
よりなるので、次にその動作について述べる。CPU1
7に対し目標流量F1が指令されると、該CPU17
は、サーボ弁3より上流側及び下流側に設けられた圧力
センサ7,8の検出圧を、A/D変換器13を介して取
込み、両者の差圧P3(P1−P2)を求め、該求めた
差圧P3の大きさに応じた開度を選定し、該開度信号1
0をA/D変換器14を介し加算回路9に出力する。一
方、フローメータ6がサーボ弁3を通過した空気の流量
を計測し、その計測信号12と、CPU17によりD/
A変換器15を介し出力された目標流量信号11とがサ
ーボアンプ5に出力されると、該サーボアンプ5は、そ
の差を求めると共に、該差信号18を加算回路9に出力
する。加算回路9は、CPU17からの開度信号10
と、サーボアンプ5からの差信号18とを加算し、その
加算した信号19によりサーボ弁3の開度を制御する。
即ち、CPU17が圧力センサ7,8からの検出圧に基
づいてサーボ弁3に対する開度を選定するが、その際、
加算回路9は、実際に負荷側に流れる流量と目標流量F
1とに差がない場合には前記選定した開度でサーボ弁3
を制御することとなり、また実際に負荷側に流れる流量
と目標流量F1とに差がある場合には、その差を吸収す
るよう前記選定したサーボ弁3の開度を補正し、補正し
た開度でサーボ弁3を制御する。その結果、CPU17
に予めメモリされた差圧とサーボ弁の開度との関係から
なるテーブル情報自体に誤差があった場合は勿論の他、
サーボ弁3の開度の経時的変化やばらつきがあっても、
それを吸収するようサーボ弁3の開度を補正しかつ制御
するので、上記誤差やばらつきに拘ることなくサーボ弁
3を制御することができ、流量制御を的確に行うことが
できる。しかも、配管1を流れる空気が周囲温度によっ
て変化し、その温度変化等によってサーボ弁3の開度が
ばらついてもそれに拘ることもなく、同様に制御でき
る。
Since the flow rate control device of the embodiment has the above-mentioned structure, its operation will be described below. CPU1
When the target flow rate F1 is instructed to the CPU 7, the CPU 17
Takes in the detection pressures of the pressure sensors 7 and 8 provided on the upstream side and the downstream side of the servo valve 3 via the A / D converter 13, obtains the pressure difference P3 (P1-P2) between the two, and The opening degree is selected according to the magnitude of the obtained differential pressure P3, and the opening degree signal 1
0 is output to the adder circuit 9 via the A / D converter 14. On the other hand, the flow meter 6 measures the flow rate of the air that has passed through the servo valve 3, and the measured signal 12 and D /
When the target flow rate signal 11 output via the A converter 15 is output to the servo amplifier 5, the servo amplifier 5 calculates the difference and outputs the difference signal 18 to the adder circuit 9. The addition circuit 9 uses the opening signal 10 from the CPU 17.
And the difference signal 18 from the servo amplifier 5 are added, and the added signal 19 controls the opening of the servo valve 3.
That is, the CPU 17 selects the opening for the servo valve 3 based on the pressure detected by the pressure sensors 7 and 8. At that time,
The adder circuit 9 calculates the flow rate actually flowing to the load side and the target flow rate F.
If there is no difference with 1, the servo valve 3 with the selected opening
If there is a difference between the flow rate actually flowing to the load side and the target flow rate F1, the opening of the selected servo valve 3 is corrected to absorb the difference, and the corrected opening is corrected. The servo valve 3 is controlled by. As a result, the CPU 17
In addition to the case where there is an error in the table information itself, which is the relationship between the differential pressure and the opening degree of the servo valve stored in advance,
Even if the opening of the servo valve 3 changes or varies with time,
Since the opening of the servo valve 3 is corrected and controlled so as to absorb it, the servo valve 3 can be controlled regardless of the above-mentioned error and variations, and the flow rate can be controlled accurately. Moreover, even if the air flowing through the pipe 1 changes due to the ambient temperature and the opening of the servo valve 3 varies due to the temperature change or the like, the same control can be performed without being concerned with it.

【0011】図2は本発明による流量制御装置の他の実
施例を示している。この場合は、CPU17が圧力セン
サ7,8からの検出によって差圧を求め、その差圧に応
じサーボ弁3の開度を選定する一方、フローメータ6に
より負荷側に流れる実際の流量を計測すると、その流量
信号12がA/D変換器19を介しCPU17に取り込
まれる。このとき、CPU17は、目標流量F1のデー
タとフローメータ6による流量信号12のデータを比較
して差を求め、該差と前記選定したサーボ弁3の開度デ
ータとを加算し、加算したデータ20でサーボ弁3の開
度を制御するようにしている。従って、この実施例で
は、CPU17が圧力センサ7,8からの検出圧の差圧
に応じサーボ弁3の開度データを選定する選定部17A
と、フローメータ6による計測流量データと目標流量デ
ータとの差を求め、求めた差と前記選定した開度データ
に基づきサーボ弁3の開度を補正する補正部17Bとを
有している。
FIG. 2 shows another embodiment of the flow rate control device according to the present invention. In this case, the CPU 17 obtains the differential pressure by the detection from the pressure sensors 7 and 8, and selects the opening degree of the servo valve 3 according to the differential pressure, while measuring the actual flow rate flowing to the load side by the flow meter 6. The flow rate signal 12 is taken into the CPU 17 via the A / D converter 19. At this time, the CPU 17 compares the data of the target flow rate F1 and the data of the flow rate signal 12 from the flow meter 6 to obtain a difference, adds the difference and the opening data of the selected servo valve 3, and adds the data. The opening of the servo valve 3 is controlled by 20. Therefore, in this embodiment, the CPU 17 selects the opening data of the servo valve 3 according to the pressure difference between the pressures detected by the pressure sensors 7 and 8 and the selection unit 17A.
And a correction unit 17B that calculates the difference between the flow rate data measured by the flow meter 6 and the target flow rate data, and corrects the opening degree of the servo valve 3 based on the calculated difference and the selected opening degree data.

【0012】この実施例によれば、基本的には図1に示
す前記一実施例と同様の作用効果がある。これに加え、
本例では、CPU17が全ての演算処理を行い、その結
果に基づいてサーボ弁3を制御するので、前記一実施例
に比較すると、サーボアンプ5,加算回路9のハードウ
エアを用いることが不要になり、そのため、ハードウエ
アが経年変化することによる誤差,或いはそれにばらつ
きがあることに起因する誤差をいっそう解消することが
できるばかりでなく、それだけスペースを省略化できる
と共に、廉価にすることもできる。しかもCPU17が
ソフトウエハ上でのみ制御するので、前記一実施例に比
較し、制御上の信頼性を上げることもできる。なお、何
れの実施例とも、空気を取り扱う流量制御装置を例示し
たが、空気以外の流体を用いるものに適用しても、同様
の作用効果を得ることができるのは勿論である。
According to this embodiment, there are basically the same operational effects as those of the one embodiment shown in FIG. In addition to this,
In this example, the CPU 17 performs all the arithmetic processing and controls the servo valve 3 based on the result, so that it is not necessary to use the hardware of the servo amplifier 5 and the addition circuit 9 as compared with the one embodiment. Therefore, not only the error due to aging of the hardware or the error due to the variation thereof can be further eliminated, but also the space can be saved and the cost can be reduced. Moreover, since the CPU 17 controls only on the soft wafer, it is possible to improve the reliability of control as compared with the one embodiment. In addition, although the flow rate control device that handles air is illustrated in each of the embodiments, it is needless to say that the same operational effect can be obtained even when applied to a device that uses a fluid other than air.

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、流
体の前記サーボ弁を通過した下流側の流量を計測する計
測手段と、夫々の検出器からの検出圧の差圧を求めると
共に、その差圧に応じサーボ弁の開度を選定する選定手
段と、測定手段によって計測された流量と目標流量との
差を求め、該求めた差と前記選定されたサーボ弁の開度
とに基づいてサーボ弁の開度を補正する補正手段とを有
し、選定手段が双方の圧力センサからの検出圧に基づい
てサーボ弁に対する開度を選定した際、実際に負荷側に
流れる流量と目標流量とに差がある場合、補正手段によ
りその差を吸収するよう前記選定したサーボ弁の開度を
補正し、補正した開度でサーボ弁を制御するように構成
したので、予めメモリされた差圧とサーボ弁の開度との
関係からなるテーブル情報自体に誤差があった場合は勿
論の他、サーボ弁の開度の経時的変化やばらつきがあっ
ても、これらに拘ることなくサーボ弁を制御でき、流量
制御を的確に行うことができる結果、長期的な高信頼性
を維持することができる効果がある。
As described above, according to the present invention, the measuring means for measuring the flow rate of the fluid passing through the servo valve on the downstream side and the differential pressure between the detected pressures from the respective detectors are obtained. , A selecting means for selecting the opening of the servo valve according to the differential pressure, and a difference between the flow rate measured by the measuring means and the target flow rate, and the calculated difference and the selected opening of the servo valve. When the selection means selects the opening for the servo valve based on the pressure detected by both pressure sensors, the flow rate actually flowing to the load side and the target When there is a difference in flow rate, the opening of the selected servo valve is corrected by the correction means so as to absorb the difference, and the servo valve is controlled by the corrected opening. The table consisting of the relationship between pressure and servo valve opening. Not only when there is an error in the rule information itself, but also when there is a temporal change or variation in the opening of the servo valve, the servo valve can be controlled regardless of these and the flow rate can be accurately controlled. As a result, there is an effect that long-term high reliability can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による流量制御装置をガスタービン用空
気流量制御装置に適用した一実施例を示す要部の配管
図。
FIG. 1 is a piping diagram of essential parts showing an embodiment in which a flow rate control device according to the present invention is applied to an air flow rate control device for a gas turbine.

【図2】本発明による流量制御装置の他の実施例を示す
配管図。
FIG. 2 is a piping diagram showing another embodiment of the flow rate control device according to the present invention.

【符号の説明】[Explanation of symbols]

1…配管、3…サーボ弁、5…サーボアンプ、6…フロ
ーメータ、7…上流側の圧力センサ、8…下流側の圧力
センサ、9…加算回路、17…CPU、17A…選定
部、17B…補正部。
1 ... Piping, 3 ... Servo valve, 5 ... Servo amplifier, 6 ... Flow meter, 7 ... Upstream pressure sensor, 8 ... Downstream pressure sensor, 9 ... Addition circuit, 17 ... CPU, 17A ... Selection unit, 17B ... correction section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配管を通る流体の供給量を制御するサー
ボ弁と、流体の前記サーボ弁より上流側及び下流側の圧
力を夫々検出する検出器と、夫々の検出器からの検出圧
に基づきサーボ弁の開度を制御する手段とを有する流量
制御装置において、流体の前記サーボ弁を通過した下流
側の流量を計測する計測手段と、夫々の検出器からの検
出圧の差圧を求めると共に、その差圧に応じサーボ弁の
開度を選定する選定手段と、測定手段によって計測され
た流量と目標流量との差を求め、該求めた差と前記選定
されたサーボ弁の開度とに基づいてサーボ弁の開度を補
正する補正手段とを有することを特徴とする流量制御装
置。
1. A servo valve for controlling a supply amount of a fluid passing through a pipe, a detector for detecting a pressure of a fluid upstream and a pressure of a downstream side of the servo valve, respectively, and a pressure detected by each detector. In a flow rate control device having a means for controlling the opening degree of a servo valve, a measuring means for measuring a flow rate of a fluid on the downstream side which has passed through the servo valve, and a differential pressure between detection pressures from respective detectors are obtained. , A selecting means for selecting the opening of the servo valve according to the differential pressure, and a difference between the flow rate measured by the measuring means and the target flow rate, and the calculated difference and the selected opening of the servo valve. And a correction means for correcting the opening of the servo valve based on the flow control device.
JP17401594A 1994-07-26 1994-07-26 Flow rate controller Pending JPH0836420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17401594A JPH0836420A (en) 1994-07-26 1994-07-26 Flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17401594A JPH0836420A (en) 1994-07-26 1994-07-26 Flow rate controller

Publications (1)

Publication Number Publication Date
JPH0836420A true JPH0836420A (en) 1996-02-06

Family

ID=15971154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17401594A Pending JPH0836420A (en) 1994-07-26 1994-07-26 Flow rate controller

Country Status (1)

Country Link
JP (1) JPH0836420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186543A (en) * 2001-11-23 2003-07-04 Siemens Ag Position adjustment method for operation valve
JP2013196607A (en) * 2012-03-22 2013-09-30 Kayaba System Machinery Kk Flow rate controller and flow rate testing device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186543A (en) * 2001-11-23 2003-07-04 Siemens Ag Position adjustment method for operation valve
JP2013196607A (en) * 2012-03-22 2013-09-30 Kayaba System Machinery Kk Flow rate controller and flow rate testing device using the same

Similar Documents

Publication Publication Date Title
US9417108B2 (en) Mass flow meter with self-diagnostic function and mass flow controller using the same
US7881829B2 (en) Mass flow controller
JPH11259140A (en) Flow rate controller
JPH0836420A (en) Flow rate controller
US8056579B2 (en) Mass flow controller
JP3726261B2 (en) Thermal flow meter
JP2004280689A (en) Mass flow controller
JP3637270B2 (en) Mass flow controller
JPH087109B2 (en) Pressure control device for blow-out wind tunnel
JPH109996A (en) Control apparatus for flow rate
JPH06194203A (en) Mass flow controller with abnormality diagnosis function and its diagnosis method
JP2798184B2 (en) Flow sensor and fluidic flow meter with flow sensor
JP2988960B2 (en) Boiler air supply device
JPH05134764A (en) Mass flow controller
JP2644742B2 (en) Composite transmitter
JPH0342706A (en) Detection device for abnormality of gas flow rate controller
JP2694294B2 (en) Mass flow meter and mass flow controller
JPH04235611A (en) Mass flow controller
JPH0199108A (en) Control device
JPS63235800A (en) Mass flow controller
JPH08189872A (en) Pressure measuring device for gas meter and correcting method for it
JPH05233069A (en) Mass flow controller
JPH0517685Y2 (en)
JPS61157912A (en) Mass flow controller
JPH02304604A (en) Flow rate controller