JPH109996A - Control apparatus for flow rate - Google Patents

Control apparatus for flow rate

Info

Publication number
JPH109996A
JPH109996A JP18157296A JP18157296A JPH109996A JP H109996 A JPH109996 A JP H109996A JP 18157296 A JP18157296 A JP 18157296A JP 18157296 A JP18157296 A JP 18157296A JP H109996 A JPH109996 A JP H109996A
Authority
JP
Japan
Prior art keywords
pressure
flow
rate
nozzle
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18157296A
Other languages
Japanese (ja)
Inventor
Tomoko Takamatsu
知子 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18157296A priority Critical patent/JPH109996A/en
Publication of JPH109996A publication Critical patent/JPH109996A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a control apparatus by which a flow rate close to a target flow-rate value is obtained by a method in which the target flow-rate amount of the air which flows out from a nozzle is input in advance to a target-flow-rate-amount setting means, a pressure and a flow rate are calculated by a pressure calculation means and a flow-rate calculation means, an actual process amount which is detected by a sensor is compared and computed and the valve travel of every control valve is calculated so as to be output to a valve-travel instruction means. SOLUTION: A flow-rate regulating valve 10 is controlled in such a way that the flow rate of the air which flows into a heater 11 from an air storage device 8 becomes a value which is calculated in advance by a flow-rate calculation means 31. After that, pressure regulating valves 13, 15 are controlled in such a way that an air flow becomes a value in which an exit pressure 18, at the heater 11, detected by pressure sensors 12, 16 and an upstream pressure 19 at a measuring-part nozzle 17 are calculated by a pressure calculation means 2. When the process amount of the upstream pressure 19 at the measuring-part nozzle 17 follows a calculated value, the nozzle-air-outflow amount of the measuring-part nozzle 17 becomes a flow rate which is close to a target value. That is to say, an air target value from the nozzle 17 is calculated by using a calculation expression, and the pressure calculation means 2, the flow-rate calculation means 3 and a valve-travel instruction means 5 are controlled on the basis of the set value of a target-flow-rate setting means 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流量制御装置に係
り、特に航空機等の空気力学の研究に使用される風洞設
備に適用される流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device, and more particularly to a flow control device applied to wind tunnel equipment used for aerodynamic research of an aircraft or the like.

【0002】[0002]

【従来の技術】従来の開回路吹出し式の風洞は、図4に
示すように流れ方向上流側より空気気蓄器19、加熱器
20、調圧弁21及びノズル23が連設され、前記調圧
弁21の調圧制御は調圧弁21出口側のノズル23上流
側の圧力を検知する圧力センサ22により行われてい
た。
2. Description of the Related Art As shown in FIG. 4, a conventional open circuit blow-out type wind tunnel has an air storage 19, a heater 20, a pressure regulating valve 21 and a nozzle 23 connected from the upstream side in the flow direction. The pressure regulation control of 21 has been performed by the pressure sensor 22 which detects the pressure on the upstream side of the nozzle 23 on the outlet side of the pressure regulation valve 21.

【0003】[0003]

【発明が解決しようとする課題】即ち、前記従来技術に
おいてはノズル23上流圧のみで、ノズル23空気流出
量を制御していた。この理由は従来の開回路吹出し式の
風洞は、測定部ノズルの時間的変化する空気流出量を、
高精度かつ応答性良く制御する必要性が問われていなか
ったため、ノズル上流圧のみの制御で充分であった。し
かしながら風洞の流量制御が高度化するに連れ、ノズル
上流圧のみの制御で、時間的に変化する空気流量を制御
しようと、目標の空気流出量に精度よく追従することが
できず、応答性の悪い制御となる。また、応答性をよく
すると、測定部ノズル上流の立ち上がり時の圧力がオー
バーシュートしてしまうという問題が生じる。そこで本
発明は、応答性を犠牲とする事なく目標の空気流出量に
精度よく追従する流量制御装置、特に風洞設備に適用さ
れる流量制御装置を提供する事を目的とする。
That is, in the above prior art, the air outflow amount of the nozzle 23 is controlled only by the upstream pressure of the nozzle 23. The reason for this is that the conventional open-circuit blow-out type wind tunnel has a
Since the necessity of controlling with high precision and high responsiveness was not asked, control of only the nozzle upstream pressure was sufficient. However, as the flow control in the wind tunnel has become more sophisticated, it has been impossible to accurately follow the target air outflow amount in an attempt to control the time-varying air flow rate by controlling only the nozzle upstream pressure. Bad control. In addition, when the response is improved, there is a problem that the pressure at the time of rising at the upstream of the measurement section nozzle overshoots. Therefore, an object of the present invention is to provide a flow control device that accurately follows a target air outflow amount without sacrificing responsiveness, and in particular, to provide a flow control device applied to wind tunnel equipment.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる技術的
課題を達成するために、図1に示すように、目標流出量
を入力設定するための目標流量設定手段1と、その設定
値から圧力及び流量を計算する圧力計算手段2及び流量
計算手段3と、その計算結果と工学値変換されたセンサ
4入力値から弁開度を計算し、弁開指令信号及び表示部
6への開度表示信号を弁7に出力する弁開度指示手段5
とで構成した流量制御装置を提案する。
In order to achieve the above technical object, the present invention provides a target flow rate setting means 1 for inputting and setting a target flow rate as shown in FIG. The pressure calculating means 2 and the flow rate calculating means 3 for calculating the pressure and the flow rate, and the valve opening is calculated from the calculation result and the input value of the sensor 4 converted into the engineering value, and the valve opening command signal and the opening to the display section 6 are calculated. Valve opening degree indicating means 5 for outputting a display signal to valve 7
We propose a flow control device composed of

【0005】かかる発明によれば、予めノズルから流出
する空気目標流量を目標流量設定手段へ入力すること
で、圧力計算手段2と流量計算手段3で制御されるべき
圧力及び流量を計算しておく。次にそれらの計算結果
と、センサ4が検知する実際のプロセス量を比較演算す
ることにより各制御弁の弁開度を計算し、各制御弁が動
作すれば目標流量値に近い流量を得ることができる。
尚、前記工学値変換とはセンサが検知する電気信号(例
えばアナログ信号)を計算装置で計算するために例えば
デジタル値に変換する事を指す。プロセス量とは、実際
にセンサが検知する圧力流量を指す。これは予め計算し
ておく制御されるべき圧力及び流量の値と区別するため
に記載した。
According to this invention, the pressure and flow rate to be controlled by the pressure calculation means 2 and the flow rate calculation means 3 are calculated by inputting the target flow rate of air flowing out of the nozzle to the target flow rate setting means in advance. . Next, the calculated result is compared with the actual process amount detected by the sensor 4 to calculate the valve opening of each control valve, and when each control valve is operated, a flow rate close to the target flow value is obtained. Can be.
Note that the engineering value conversion refers to converting an electrical signal (for example, an analog signal) detected by the sensor into, for example, a digital value for calculation by a calculation device. The process amount indicates a pressure flow rate actually detected by the sensor. This is provided to distinguish it from the precomputed pressure and flow values to be controlled.

【0006】[0006]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施例を例示的に詳しく説明する。但しこの実施例
に記載されている構成部品の寸法、材質、形状、その相
対的配置等は特に特定的な記載がないかぎりは、この発
明の範囲をそれに限定する趣旨ではなく、単なる説明例
にすぎない。図2に本発明の実施形態における流量制御
装置を取り入れた風洞設備構成図を示す。図2において
空気流れ方向上流側より空気気蓄器8、流量調整弁(流
調弁)10、加熱器11その出口側の圧力を検知可能に
配設した第1の圧力センサ12、該第1の圧力センサ1
2の検知位置の下流側管路を二股に分岐し、第一の分岐
管路30に、前記第1の圧力センサ12により調圧され
る第一の調圧弁13を介して大気放出用ノズル14が連
設されている。一方第二の分岐管路31には、第2の圧
力センサ16により調圧される第二の調圧弁15を介し
て測定部ノズル17が連設されており、そして前記調圧
弁15の調圧制御を行うための圧力センサ16は調圧弁
15出口側のノズル17上流側の圧力を検知するよう配
設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. FIG. 2 shows a configuration diagram of a wind tunnel facility incorporating the flow control device according to the embodiment of the present invention. In FIG. 2, a first pressure sensor 12 disposed so as to be able to detect the pressure at the outlet side of the air storage unit 8, the flow control valve (flow control valve) 10, and the heater 11 from the upstream side in the air flow direction; Pressure sensor 1
2 is branched into two branches at the downstream side of the detection position, and the nozzle 14 for discharging air to the first branch line 30 through the first pressure regulating valve 13 regulated by the first pressure sensor 12. Are connected. On the other hand, a measuring part nozzle 17 is connected to the second branch pipe line 31 via a second pressure regulating valve 15 regulated by a second pressure sensor 16, and the pressure regulation of the pressure regulating valve 15 is performed. A pressure sensor 16 for performing control is provided so as to detect a pressure on the upstream side of the nozzle 17 on the outlet side of the pressure regulating valve 15.

【0007】図3はかかる実施形態を制御するための制
御ブロック図で、目標流出量を入力設定するための目標
流量設定手段1と、その設定値から圧力及び流量を計算
する圧力計算手段2及び流量計算手段3と表示部6とを
具えた点は図1と同様であるが、センサ4は前記したよ
うに第1及び第2の圧力センサ12、16が含まれる。
弁開度指示手段5には前記流調弁10、第一の調圧弁1
3及び第二の調圧弁15に対応する弁開度指示回路10
A、13A、15Aが設けられ、該弁開度指示回路10
Aにおいては流量計算手段3の計算結果から弁開度を計
算し、弁開指令信号及び表示部6への開度表示信号を出
力する。弁開度指示回路13A、15Aにおいては圧力
計算手段2の計算結果と対応する圧力センサ13、15
をデジタル変換された圧力検出値から弁開度を計算し、
弁開指令信号及び表示部6への開度表示信号を出力す
る。尚例示的に流調弁10のcv値範囲は0〜350、
第一の調圧弁13のcv値範囲は0〜1300及び第二
の調圧弁15のcv値範囲は0〜650である。又大気
放出用ノズル14のスロート面積は29.5×10-4
2、測定部ノズル17のスロート面積は0.0531m2
に設定される。
FIG. 3 is a control block diagram for controlling such an embodiment. Target flow rate setting means 1 for inputting and setting a target flow rate, pressure calculating means 2 for calculating pressure and flow rate from the set values, and The point that the flow rate calculation means 3 and the display unit 6 are provided is the same as that of FIG. 1, but the sensor 4 includes the first and second pressure sensors 12 and 16 as described above.
The flow control valve 10 and the first pressure control valve 1
Valve opening indicating circuit 10 corresponding to third and second pressure regulating valves 15
A, 13A and 15A are provided, and the valve opening degree indicating circuit 10 is provided.
In A, the valve opening is calculated from the calculation result of the flow rate calculating means 3 and a valve opening command signal and an opening display signal to the display unit 6 are output. In the valve opening degree indicating circuits 13A and 15A, the pressure sensors 13 and 15 corresponding to the calculation results of the pressure calculating means 2 are provided.
Is calculated from the digitally converted pressure detection value,
It outputs a valve opening command signal and an opening degree display signal to the display unit 6. Note that, for example, the cv value range of the flow control valve 10 is 0 to 350,
The cv value range of the first pressure regulating valve 13 is 0 to 1300, and the cv value range of the second pressure regulating valve 15 is 0 to 650. The throat area of the air discharge nozzle 14 is 29.5 × 10 -4 m.
2. Throat area of measuring part nozzle 17 is 0.0531m 2
Is set to

【0008】次にかかる実施例に基づく動作を説明す
る。前記したように空気気蓄器8から加熱器11へ流入
する空気流量を予め流量計算手段3で計算した値となる
ように、流量調整弁10が制御されて加熱器11側に送
られ、該加熱器11で加熱された後、その空気流は、圧
力センサ13、15により検知された加熱器11出口圧
力18と測定部ノズル17の上流圧19を圧力計算手段
で計算した値となるように調圧弁13、15を制御す
る。尚、弁開度の調整範囲は0〜100%である。測定
部ノズル17の上流圧9のプロセス量が計算値に追従す
れば、測定部ノズル17のノズル空気流出量mpは、次
式1)で計算されるため、目標値に近い流量を得ること
ができる。 mp=(A・φ・Pp)/(R・T01/2………1) A:測定部ノズルスロート面積 φ:定数 Pp:測定部ノズル17のノズル上流圧 R:空気ガス定数 T0:空気温度
Next, the operation based on the embodiment will be described. As described above, the flow regulating valve 10 is controlled and sent to the heater 11 side so that the flow rate of the air flowing from the air storage 8 to the heater 11 becomes a value calculated by the flow rate calculating means 3 in advance. After being heated by the heater 11, the air flow becomes a value calculated by the pressure calculating means based on the outlet pressure 18 of the heater 11 and the upstream pressure 19 of the measuring unit nozzle 17 detected by the pressure sensors 13 and 15. The pressure control valves 13 and 15 are controlled. The adjustment range of the valve opening is 0 to 100%. If the process amount of the upstream pressure 9 of the measurement unit nozzle 17 follows the calculated value, the nozzle air outflow amount mp of the measurement unit nozzle 17 is calculated by the following equation 1), so that a flow rate close to the target value can be obtained. it can. mp = (A · φ · Pp) / (R · T 0 ) 1/2 ... 1) A: Area of nozzle throat of measurement section φ: Constant Pp: Nozzle upstream pressure of measurement section nozzle 17 R: Air gas constant T 0 : Air temperature

【0009】次に表1に、測定部ノズル17から流出す
る空気目標値(測定部空気量入力値m)から、測定部ノ
ズル17の上流圧力目標値PPs、加熱器11出口圧力
目標値Pcs、加熱器11の空気流入量の目標値FAS
計算する式を示す。この式に基づいて目標流量設定手段
1の設定値から圧力及び流量を計算する圧力計算手段2
及び流量計算手段3及び弁開度指示手段5が制御され
る。
[0009] Next, Table 1 shows a target upstream pressure value PPs of the measurement nozzle 17, a target pressure Pcs at the outlet of the heater 11, a target air value flowing out of the measurement nozzle 17 (input value m of the measurement air amount), and An equation for calculating a target value F AS of the air inflow amount of the heater 11 is shown. Pressure calculation means 2 for calculating pressure and flow rate from the set values of target flow rate setting means 1 based on this equation
And the flow rate calculating means 3 and the valve opening degree indicating means 5 are controlled.

【0010】[0010]

【表1】 [Table 1]

【0011】次に図2乃至図3の実施形態を用いて、測
定部ノズル17から流出する時間的に変化する空気目標
値から表1の計算式によって計算した各制御箇所での目
標値で制御した結果、測定部ノズル17の上流圧9は、
図5のように目標値に追従することができ、その結果、
前述の計算式により、目標のノズル空気流出量を得るこ
とができることが確認された。
Next, using the embodiment of FIGS. 2 and 3, control is performed with target values at respective control points calculated from the time-varying air target values flowing out of the measurement section nozzle 17 by the calculation formula in Table 1. As a result, the upstream pressure 9 of the measuring section nozzle 17 becomes
It is possible to follow the target value as shown in FIG. 5, and as a result,
It has been confirmed that the target nozzle air outflow amount can be obtained by the above-described calculation formula.

【0012】[0012]

【発明の効果】以上記載した如く、従来技術の項で示し
た従来の制御方式では、2倍以上の応答時間となり、又
応答性を良くすると、立ち上がり時に、圧力のオーバー
シュートが生じるが、かかる欠点は本発明によって制御
的に向上されたといえる。又前記実施形態で示したよう
に、本発明の流量制御装置を風洞設備に導入すること
で、測定部での空気流出量を、高精度かつ応答性よく得
ることができる。
As described above, in the conventional control method described in the section of the prior art, the response time is twice or more, and when the response is improved, the pressure overshoot occurs at the time of start-up. The disadvantages can be said to be controllably improved by the present invention. In addition, as shown in the above embodiment, by introducing the flow control device of the present invention into wind tunnel equipment, it is possible to obtain the air outflow amount at the measuring section with high accuracy and high responsiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本実施形態に係る流量制御装置の構
成図である。
FIG. 1 is a configuration diagram of a flow control device according to a basic embodiment of the present invention.

【図2】図2は、本発明の流量制御装置を適用した風洞
設備の構成図である。
FIG. 2 is a configuration diagram of a wind tunnel facility to which the flow control device of the present invention is applied.

【図3】図2の装置に組込まれる本発明の実施形態に係
る流量制御装置の構成図である。
FIG. 3 is a configuration diagram of a flow rate control device according to an embodiment of the present invention incorporated in the device of FIG. 2;

【図4】従来の風洞設備の構成図。FIG. 4 is a configuration diagram of a conventional wind tunnel facility.

【図5】図3の制御装置を用いた制御結果を示すグラフ
図である。
FIG. 5 is a graph illustrating a control result using the control device of FIG. 3;

【符号の説明】[Explanation of symbols]

8 空気気蓄器 9 測定部ノズル上流圧 10 流調弁 11 加熱器 12 第1の圧力センサ 14 大気放出用ノズル 15 調圧弁 16 圧力センサ 17 測定部ノズル REFERENCE SIGNS LIST 8 Air storage device 9 Measurement section nozzle upstream pressure 10 Flow control valve 11 Heater 12 First pressure sensor 14 Atmospheric discharge nozzle 15 Pressure control valve 16 Pressure sensor 17 Measurement section nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 目標流出量を入力設定するための目標流
量設定手段と、 その設定値から圧力及び流量を計算する圧力と流量の計
算手段と、 その計算手段に基づく計算結果と例えばデジタル変換等
の工学値変換されたセンサ入力値から弁開度を計算し、
弁開指令信号及び表示部への開度表示信号を出力する弁
開度指示手段と、 で構成した事を特徴とする流量制御装置。
1. A target flow rate setting means for inputting and setting a target outflow amount, a pressure and flow rate calculating means for calculating a pressure and a flow rate from the set values, a calculation result based on the calculation means and a digital conversion, for example. Calculate the valve opening from the sensor input value converted into the engineering value of
And a valve opening instruction means for outputting a valve opening command signal and an opening display signal to a display unit.
JP18157296A 1996-06-21 1996-06-21 Control apparatus for flow rate Withdrawn JPH109996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18157296A JPH109996A (en) 1996-06-21 1996-06-21 Control apparatus for flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18157296A JPH109996A (en) 1996-06-21 1996-06-21 Control apparatus for flow rate

Publications (1)

Publication Number Publication Date
JPH109996A true JPH109996A (en) 1998-01-16

Family

ID=16103155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18157296A Withdrawn JPH109996A (en) 1996-06-21 1996-06-21 Control apparatus for flow rate

Country Status (1)

Country Link
JP (1) JPH109996A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365306A (en) * 2013-06-28 2013-10-23 中国空气动力研究与发展中心高速空气动力研究所 Compressed air flow regulating device and compressed air flow regulating method used for high-speed wind tunnel special test
WO2015064035A1 (en) * 2013-10-31 2015-05-07 株式会社フジキン Pressure-type flow rate control device
WO2015111391A1 (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
CN105157946A (en) * 2015-06-05 2015-12-16 中国航天空气动力技术研究院 Pressure regulating system capable of providing multiple paths of high-pressure airflow
CN106679925A (en) * 2016-12-15 2017-05-17 中国航空工业集团公司沈阳空气动力研究所 High-precision control device and control method for micro-mass jet flow rate
CN106979852A (en) * 2017-03-24 2017-07-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of flow field control method for being applied to bury weapon-bay high wind tunnel testing in full-scale
JP2018098208A (en) * 2016-12-15 2018-06-21 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Improved gas flow control
CN115979571A (en) * 2023-03-20 2023-04-18 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for thickness of micro-scale air film on wall surface of aircraft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365306A (en) * 2013-06-28 2013-10-23 中国空气动力研究与发展中心高速空气动力研究所 Compressed air flow regulating device and compressed air flow regulating method used for high-speed wind tunnel special test
WO2015064035A1 (en) * 2013-10-31 2015-05-07 株式会社フジキン Pressure-type flow rate control device
WO2015111391A1 (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
JP2015138338A (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure type flow rate control apparatus, and preventing method for overshooting of the same upon starting flow rate control
CN105157946A (en) * 2015-06-05 2015-12-16 中国航天空气动力技术研究院 Pressure regulating system capable of providing multiple paths of high-pressure airflow
CN106679925A (en) * 2016-12-15 2017-05-17 中国航空工业集团公司沈阳空气动力研究所 High-precision control device and control method for micro-mass jet flow rate
JP2018098208A (en) * 2016-12-15 2018-06-21 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Improved gas flow control
CN106979852A (en) * 2017-03-24 2017-07-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of flow field control method for being applied to bury weapon-bay high wind tunnel testing in full-scale
CN115979571A (en) * 2023-03-20 2023-04-18 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for thickness of micro-scale air film on wall surface of aircraft
CN115979571B (en) * 2023-03-20 2023-06-02 中国人民解放军国防科技大学 Wind tunnel experiment measurement method and device for micro-scale air film thickness of wall surface of aircraft

Similar Documents

Publication Publication Date Title
JP3522544B2 (en) Variable fluid type flow controller
US8112182B2 (en) Mass flow rate-controlling apparatus
KR100684539B1 (en) Method for controlling a gas flow within a digital mass flow controller, digital mass flow controller, method and system for generating a digitally enhanced flow rate signal
US4687020A (en) Fluid mass flow controller
KR20010052885A (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US6138708A (en) Mass flow controller having automatic pressure compensator
US8265795B2 (en) Mass flow controller
JPWO2008069227A1 (en) Flow rate controller verification method
JP2003504750A (en) System and method for a variable gain proportional integral (PI) controller
JPH109996A (en) Control apparatus for flow rate
JPH07210253A (en) System for control of actuator of flow-rate control valve
JPH09330128A (en) Mass-flow controller
JP3893115B2 (en) Mass flow controller
JP3024952B2 (en) Blow-out wind tunnel controller
JPH087109B2 (en) Pressure control device for blow-out wind tunnel
JPH04339218A (en) Thermal flowmeter
JPH09222344A (en) Mass flow controller
JP2004212099A (en) Method of controlling pressure flow using relationship of q=q(p, t), and method of measuring relationship of q=q(p, t)
JPH0199108A (en) Control device
JP4137612B2 (en) Measuring method of correspondence between Reynolds number and runoff coefficient
JPH04235611A (en) Mass flow controller
JPH04313107A (en) Mass flow controller
TW201809942A (en) Pressure type flow rate control device, and flow rate calculating method and flow rate control method for same
JPH06214657A (en) Mass flow controller with abnormality diagnostic function and abnormality diagnostic method therefor
JPH05134764A (en) Mass flow controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902