JP2001249064A - Exhaust gas diluting device - Google Patents

Exhaust gas diluting device

Info

Publication number
JP2001249064A
JP2001249064A JP2000058586A JP2000058586A JP2001249064A JP 2001249064 A JP2001249064 A JP 2001249064A JP 2000058586 A JP2000058586 A JP 2000058586A JP 2000058586 A JP2000058586 A JP 2000058586A JP 2001249064 A JP2001249064 A JP 2001249064A
Authority
JP
Japan
Prior art keywords
exhaust gas
dilution
air
tunnel
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000058586A
Other languages
Japanese (ja)
Other versions
JP3670924B2 (en
Inventor
Yutaka Yamagishi
豊 山岸
Satoshi Otsuki
聡 大槻
Hitoshi Yamazaki
均 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2000058586A priority Critical patent/JP3670924B2/en
Publication of JP2001249064A publication Critical patent/JP2001249064A/en
Application granted granted Critical
Publication of JP3670924B2 publication Critical patent/JP3670924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To substantially improve accuracy in measuring PM by forming a specific mode of exhaust gas introduction to protrude the end part of an exhaust gas introducing tube to the downstream side of an orifice and suppressing the adhesion of PM to the wall surfaces of a diluting tunnel to a minimum. SOLUTION: An orifice plate 33 in which the orifice 32 for throttling introduced air is formed and the exhaust gas introducing tube 34 for discharging exhaust gases into a tunnel 4 on the more downstream side than an air introducing part are arranged in the diluting tunnel 4 of which the upstream side an air introducing tube 5 for diluting exhaust gases is connected. The end part (a) of the exhaust gas introducing tube 34 is protruded to the downstream side of the orifice 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンからの排
ガスの一部を希釈用ガスによって希釈するようにした部
分採取による部分希釈方式のガス希釈システムにおける
排ガス希釈装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas diluting device in a partial dilution type gas dilution system in which a part of exhaust gas from an engine is partially diluted by a diluting gas.

【0002】[0002]

【従来の技術】自動車のディーゼルエンジンなどから排
出されるガス中に含まれるすすなどの微粒子状物質(P
articulate Matter、PMと略称す
る)の測定に必要なガス希釈システムとして、近年、排
ガスを全量採取しこれを全量希釈する従来からのフルダ
イリューションシステムに代わって、流量制御および排
ガスの部分採取を行うところの部分希釈方式の小規模な
希釈システムが採用されてきている。この部分採取によ
る部分希釈方式のガス希釈システムは、希釈後の排ガス
を一定流量に維持しながら、排ガスを希釈するための希
釈用ガス(例えば空気)の流量を制御することにより、
これらの流量の差として得られる排ガスの採取流量を制
御するシステムである。
2. Description of the Related Art Fine particulate matter (P) such as soot contained in gas discharged from a diesel engine of an automobile or the like is used.
In recent years, as a gas dilution system required for measurement of articulate matter (PM), flow rate control and partial sampling of exhaust gas have been performed in place of the conventional full dilution system that collects and dilutes the entire amount of exhaust gas. A small-scale dilution system of a partial dilution system to be performed has been adopted. The gas dilution system of the partial dilution method based on the partial sampling controls the flow rate of a dilution gas (for example, air) for diluting the exhaust gas while maintaining the exhaust gas after dilution at a constant flow rate.
This is a system for controlling the flow rate of exhaust gas obtained as the difference between these flow rates.

【0003】このシステムに用いられる排ガス希釈装置
として、図6及び図7に示すように、上流側に排ガス希
釈用の空気導入管5が接続される断面円形の希釈トンネ
ル4内に、中央に導入空気を絞るためのオリフィス孔3
2が形成された円形のオリフィス板33と、空気導入部
よりも下流側のトンネル4内に排ガスを排出する断面円
形の排ガス導入管34とを同芯状に配設し、かつ、図6
に示す排ガス希釈装置では、排ガス導入管34の端部a
を、オリフィス孔32よりもやゝ上流側に控えさせるよ
うに位置設定し、図7に示す排ガス希釈装置では、排ガ
ス導入管34の端部aを、オリフィス板33の下流側の
面部Sとほゞ面一にするように位置設定したものがあ
る。
As shown in FIGS. 6 and 7, an exhaust gas diluting device used in this system is introduced into a dilution tunnel 4 having a circular cross section to which an air introduction pipe 5 for diluting exhaust gas is connected on the upstream side. Orifice hole 3 for squeezing air
6, a circular orifice plate 33 in which the exhaust gas 2 is formed, and an exhaust gas introduction pipe 34 having a circular cross section for discharging exhaust gas into the tunnel 4 downstream of the air introduction portion are arranged concentrically.
In the exhaust gas dilution device shown in FIG.
The exhaust gas diluting device shown in FIG. 7 is configured such that the end a of the exhaust gas introduction pipe 34 is substantially flush with the downstream surface S of the orifice plate 33.が あ る Some are set so that they are flush.

【0004】かゝる構成の排ガス希釈装置によれば、希
釈用の空気Aは、オリフィス孔32によって絞られて、
オリフィス孔32を急速に通過し、オリフィス板33の
下流側のトンネル4内で一気に拡散する。一方、排ガス
導入管34によってサンプリングされた排ガスGは、オ
リフィス孔32によって絞られた希釈用空気Aの中央部
に排出されて、トンネル4内で一気に拡散される空気A
と混合される。
According to the exhaust gas diluting device having such a configuration, the air A for dilution is restricted by the orifice hole 32,
It rapidly passes through the orifice hole 32 and diffuses at once in the tunnel 4 downstream of the orifice plate 33. On the other hand, the exhaust gas G sampled by the exhaust gas introduction pipe 34 is discharged to the central portion of the dilution air A narrowed by the orifice hole 32, and is diffused at once in the tunnel 4.
Mixed with.

【0005】[0005]

【発明が解決しようとする課題】ところで、排ガス導入
管34から排出される上記のPMは、性状的に粘性を有
することから、希釈用の空気Aと十分に混合しない状態
では、トンネル4の壁面Wに付着し易く、上記構成の排
ガス希釈装置において、実際にトンネル4の壁面Wを目
視したところ、PMが付着していることが確認されたの
であり、このPM損失は、下流側のフィルタで捕集され
るPM生成にバラツキを生じる結果となり、PMの測定
制度の低下に繋がる点で問題がある。
The above-mentioned PM discharged from the exhaust gas introduction pipe 34 is viscous in nature, and therefore, when not sufficiently mixed with the dilution air A, the PM 4 has a wall surface. When the wall surface W of the tunnel 4 was actually visually observed in the exhaust gas diluting device having the above-described configuration, it was confirmed that PM had adhered. This PM loss was reduced by the filter on the downstream side. There is a problem in that a variation occurs in the generation of the collected PM, which leads to a decrease in the PM measurement accuracy.

【0006】本発明者らは、上記構成の排ガス希釈装置
では、空気Aと排ガスGとの混合が構成的に不十分であ
って、トンネル壁面Wに対するPMの原因が、オリフィ
ス孔32によって絞られた希釈用空気Aに対する排ガス
Gの導入形態にあるものと推測したのである。
In the exhaust gas diluting device having the above structure, the present inventors have found that the mixing of the air A and the exhaust gas G is structurally insufficient, and the cause of PM on the tunnel wall W is narrowed by the orifice hole 32. It was presumed that the exhaust gas G was introduced into the dilution air A.

【0007】即ち、図6に示す排ガス希釈装置では、オ
リフィス孔32によって絞られた空気Aの中央に排出さ
れた排ガスGは、極度に縮径されたガス流rとなり、図
7に示す排ガス希釈装置においても、オリフィス孔32
によって絞られた空気Aが排ガス導入管34の端部aを
通過した際に、排ガスGを縮径させるように作用するこ
とで、排ガスGは極度に縮径されたガス流rとなり、や
がては空気Aが拡散するに伴って空気Aと排ガスGとが
混合されるのであるが、このように排ガスGが一旦、極
度に縮径されてから拡散することが、空気Aと排ガスG
との混合不良の原因であると推測したのである。
That is, in the exhaust gas diluting apparatus shown in FIG. 6, the exhaust gas G discharged to the center of the air A constricted by the orifice hole 32 becomes a gas flow r of extremely reduced diameter, and the exhaust gas diluting gas shown in FIG. Also in the device, the orifice hole 32
When the air A narrowed by the gas passes through the end a of the exhaust gas introduction pipe 34, the exhaust gas G acts to reduce the diameter of the exhaust gas G, so that the exhaust gas G becomes an extremely reduced gas flow r. As the air A diffuses, the air A and the exhaust gas G are mixed. In this way, the exhaust gas G is once extremely reduced in diameter and then diffused.
It was speculated that this was the cause of poor mixing.

【0008】[0008]

【課題を解決するための手段】本発明の排ガス希釈装置
は、上記の推測に基づいて成されたものであって、上流
側に排ガス希釈用の空気導入管が接続される希釈トンネ
ル内に、導入空気を絞るためのオリフィス孔が形成され
たオリフィス板と、空気導入部よりも下流側のトンネル
内に排ガスを排出する排ガス導入管とを配設すると共
に、排ガス導入管の端部をオリフィス孔の下流側に突出
させた点に特徴があり(請求項1)、好適には、排ガス
導入管端部の突出量を調整可能に構成することである
(請求項2)。
The exhaust gas diluting apparatus of the present invention is based on the above presumption, and is provided in a dilution tunnel in which an air introducing pipe for exhaust gas dilution is connected on the upstream side. An orifice plate with an orifice hole for restricting the introduced air and an exhaust gas introduction pipe for discharging exhaust gas in a tunnel downstream of the air introduction section are provided, and the end of the exhaust gas introduction pipe is connected to the orifice hole. It is characterized in that it protrudes to the downstream side of the exhaust gas (Claim 1), and is preferably configured so that the amount of protrusion of the end of the exhaust gas introduction pipe can be adjusted (Claim 2).

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1はガス希釈システムの一例を
示すもので、この図1において、図中のEは例えば自動
車に搭載されるディーゼルエンジン、1はこれに連なる
排気管である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a gas dilution system. In FIG. 1, E in the figure is, for example, a diesel engine mounted on an automobile, and 1 is an exhaust pipe connected thereto.

【0010】2は排気管1に挿入接続され、排気管1中
を流れる排ガスGをサンプリングするための排ガス採取
管で、サンリング排ガスGを空気Aによって希釈する排
ガス希釈装置3の希釈トンネル4に接続されている。
Reference numeral 2 denotes an exhaust gas sampling pipe which is inserted and connected to the exhaust pipe 1 for sampling the exhaust gas G flowing through the exhaust pipe 1, and is connected to a dilution tunnel 4 of an exhaust gas diluting device 3 for diluting the sun ring exhaust gas G with air A. It is connected.

【0011】5は希釈トンネル4の上流側に接続される
希釈用空気Aの導入管で、図2に示すような希釈用ガス
流量制御装置6が設けられている。
Reference numeral 5 denotes an inlet pipe for the dilution air A which is connected to the upstream side of the dilution tunnel 4, and is provided with a dilution gas flow control device 6 as shown in FIG.

【0012】この図2において、図中の7は流路8に設
けられる例えば回転数制御によって吸引能力を変えるこ
とができるルーツブロアポンプで、インバータ(周波数
変換器)9によって制御される。10は測定精度の高い
差圧流量計としてのベンチュリ流量計で、その近傍には
流路8を流れる空気の圧力を検出する圧力センサ11、
差圧センサ12および温度センサ13が設けられてい
る。14は前記センサ10〜13の検出出力に基づいて
流路8を流れる空気Aの流量(実流量)を演算する流量
演算ユニットである。15は流量演算ユニットにおいて
得られた空気の実流量と予め設定される流量とを比較
し、所定の制御信号をインバータ9に出力する比較制御
回路である。
In FIG. 2, reference numeral 7 denotes a roots blower pump provided in the flow passage 8 and capable of changing the suction capacity by, for example, controlling the number of revolutions, and is controlled by an inverter (frequency converter) 9. Reference numeral 10 denotes a Venturi flow meter as a differential pressure flow meter having high measurement accuracy, and a pressure sensor 11 for detecting a pressure of air flowing through the flow path 8 near the Venturi flow meter.
A differential pressure sensor 12 and a temperature sensor 13 are provided. Reference numeral 14 denotes a flow rate calculation unit that calculates the flow rate (actual flow rate) of the air A flowing through the flow path 8 based on the detection outputs of the sensors 10 to 13. Reference numeral 15 denotes a comparison control circuit that compares the actual flow rate of air obtained by the flow rate calculation unit with a preset flow rate and outputs a predetermined control signal to the inverter 9.

【0013】図1に戻って、図中の16は希釈トンネル
4の下流側に接続され、希釈されたサンプルガスSが流
れるガス流路で、この流路16の下流側は二つの流路1
7,18に分岐し、それぞれの流路17,18にサンプ
ルガス中に含まれるPMを捕集するためのフィルタ1
9,20および絞り量(圧損)を可変できるコントロー
ルバルブ21,22を設けて、一方の流路17は計測用
の排ガスを流すためのサンプルガス流路に、また、他方
の流路18は非計測用の排ガスを流すためのバイパス流
路にそれぞれ構成されている。
Returning to FIG. 1, reference numeral 16 denotes a gas flow path connected to the downstream side of the dilution tunnel 4 and through which the diluted sample gas S flows.
And a filter 1 for collecting PM contained in the sample gas in respective flow paths 17 and 18.
9 and 20 and control valves 21 and 22 that can change the throttle amount (pressure loss) are provided. One flow path 17 is a sample gas flow path for flowing exhaust gas for measurement, and the other flow path 18 is a non-flow path. Each of the bypass passages is configured to flow exhaust gas for measurement.

【0014】23は前記サンプルガス流路17、バイパ
ス流路18の下流側に設けられる流路切換え手段として
の三方電磁弁で、そのポート23aがサンプルガス流路
17に、ポート23bがバイパス流路18にそれぞれ接
続されるとともに、ポート23cは三方電磁弁23の下
流側のガス流路24に接続されている。
Reference numeral 23 denotes a three-way solenoid valve provided as a flow path switching means provided on the downstream side of the sample gas flow path 17 and the bypass flow path 18. The port 23a is in the sample gas flow path 17, and the port 23b is in the bypass flow path. The port 23 c is connected to a gas flow path 24 on the downstream side of the three-way solenoid valve 23.

【0015】そして、前記ガス流路24には、回転数制
御によって吸引能力を変えることができる吸引ポンプ、
例えばルーツブロアポンプ25と、測定精度の高い差圧
流量計、例えばベンチュリ流量計26とがこの順に設け
られている。そして、27はガス流路24を流れるガス
の圧力を検出する圧力センサ、28は差圧センサ、29
は温度センサである。
The gas flow path 24 has a suction pump whose suction capacity can be changed by controlling the number of rotations.
For example, a roots blower pump 25 and a differential pressure flow meter with high measurement accuracy, for example, a Venturi flow meter 26 are provided in this order. 27 is a pressure sensor for detecting the pressure of the gas flowing through the gas passage 24, 28 is a differential pressure sensor, 29
Is a temperature sensor.

【0016】また、30はルーツブロアポンプ25を制
御するインバータ(周波数変換器)であり、31は装置
全体を制御する流量制御ユニットである。この流量制御
ユニット31は、コントロールバルブ21,22やイン
バータ30に指令を出力したり、前記センサ27〜29
からの検出出力が入力される。
Reference numeral 30 denotes an inverter (frequency converter) for controlling the Roots blower pump 25, and reference numeral 31 denotes a flow control unit for controlling the entire apparatus. The flow control unit 31 outputs a command to the control valves 21 and 22 and the inverter 30, and outputs a command to the sensors 27 to 29.
Is input.

【0017】而して、上記ガスサンプルシステムにおい
て、希釈用ガス流量制御装置6における比較制御回路1
5からインバータ9に指令値が出力され、この指令値に
基づいて流路8に設けたルーツブロアポンプ7が制御さ
れることにより、希釈トンネル4に対して所定流量の希
釈用空気が供給される一方、流量制御ユニット31に設
けたPIDコントローラ(図示していない)によって出
力される指令値をインバータ30に出力し、この指令に
基づいてインバータ30から出力される指令値に基づい
てルーツブロアポンプ25が制御されることにより、ガ
ス流路16、18、24を流れるサンプルガス流量Sが
常に所定の流量になるように制御され、これによって、
排ガスの採取流量が制御される。
In the gas sample system, the comparison control circuit 1 in the dilution gas flow control device 6 is used.
A command value is output from the inverter 5 to the inverter 9, and the roots blower pump 7 provided in the flow path 8 is controlled based on the command value, whereby a predetermined flow rate of dilution air is supplied to the dilution tunnel 4. A command value output by a PID controller (not shown) provided in the flow control unit 31 is output to the inverter 30, and the Roots blower pump 25 is controlled based on the command value output from the inverter 30 based on the command value. As a result, the sample gas flow rate S flowing through the gas flow paths 16, 18, and 24 is controlled so as to be always a predetermined flow rate.
The sampling flow rate of the exhaust gas is controlled.

【0018】図3は排ガス希釈装置3を示し、この図3
において、図中の4が上記した希釈トンネルで、断面円
形を呈し、上流側に排ガス希釈用の空気導入管5が接続
されている。この希釈トンネル4の内部には、中央に導
入空気を絞るためのオリフィス孔32が形成された断面
円形のオリフィス板33と、空気導入部よりも下流側の
トンネル内に排ガスGを排出する円形の排ガス導入管3
4とが同芯状に配設されている。
FIG. 3 shows an exhaust gas diluting device 3.
In the figure, reference numeral 4 denotes a dilution tunnel described above, which has a circular cross section, and an air introduction pipe 5 for exhaust gas dilution is connected to the upstream side. Inside the dilution tunnel 4, an orifice plate 33 having a circular cross section in which an orifice hole 32 is formed at the center for narrowing the introduced air, and a circular orifice plate for discharging the exhaust gas G into the tunnel downstream of the air introduction part. Exhaust gas introduction pipe 3
4 are arranged concentrically.

【0019】排ガス導入管34は、この管34を軸線方
向に移動させる例えばネジ式の伸縮手段35を介して、
排ガス採取管2に接続されており、かつ、図4に示すよ
うに、オリフィス孔32と排ガス導入管34との間に環
状の空気流路Rを形成する状態で、この排ガス導入管3
4の端部aをオリフィス孔32の下流側に突出させてい
る。
The exhaust gas introduction pipe 34 is moved, for example, by a screw-type expansion / contraction means 35 for moving the pipe 34 in the axial direction.
This exhaust gas introduction pipe 3 is connected to the exhaust gas collection pipe 2 and forms an annular air flow path R between the orifice hole 32 and the exhaust gas introduction pipe 34 as shown in FIG.
4 has an end a protruding downstream of the orifice hole 32.

【0020】上記構成の排ガス希釈装置3によれば、排
ガス導入管34の端部aを、オリフィス板33の下流側
の面部Sから下流側に突出させたことで、図3に示すよ
うに、オリフィス孔32によって絞られて空気流路Rを
経た空気Aは、先ずは希釈トンネル4の壁面W側に一気
に拡散し、かつ、この空気Aは、排ガス導入管34の端
部aに至って、排ガス導入管34から排出される排ガス
Gを縮径させるように作用する。
According to the exhaust gas diluting device 3 having the above-described structure, the end a of the exhaust gas introducing pipe 34 is made to protrude downstream from the surface S on the downstream side of the orifice plate 33, as shown in FIG. The air A throttled by the orifice hole 32 and passing through the air flow path R first diffuses at a stroke to the wall surface W side of the dilution tunnel 4, and the air A reaches the end a of the exhaust gas introduction pipe 34, It functions to reduce the diameter of the exhaust gas G discharged from the introduction pipe 34.

【0021】しかし、この縮径の作用時点では、それま
でに空気Aが希釈トンネル4の壁面W側に一気に拡散し
て、空気流速が極端に低下していることから、この空気
Aの中央部に排出される排ガスGは、縮径の度合いが小
さなガス流rとなる。
However, at the time of the action of the diameter reduction, the air A has diffused to the wall surface W side of the dilution tunnel 4 at a stretch, and the air flow velocity has been extremely reduced. The exhaust gas G discharged to the gas flow r becomes a gas flow r having a small degree of diameter reduction.

【0022】上記の排ガス導入管端部aの突出量tは、
ネジ式伸縮手段35によって例えば1mmから10mm
の範囲にわたって調整可能である。
The protrusion amount t of the end a of the exhaust gas introduction pipe is
For example, from 1 mm to 10 mm by the screw type expansion / contraction means 35
Is adjustable over a range of

【0023】ここで、本発明と従来例とを比較するため
に、図6に示す排ガス希釈装置として、希釈トンネル4
の内径Dを30mm、トンネル終端までの混合希釈の寸
法Lを約600mm、オリフィス孔32の内径dを約1
6mm、排ガス導入管34の外径D1を約13mm、内
径d1を約11mm、端部aのオリフィス板33から上
流側への控え寸法L1を約2mmとしたものを用意し、
図7に示す排ガス希釈装置として、図6に示す排ガス希
釈装置の内、オリフィス孔32に排ガス導入管34を通
して、その端部aをオリフィス板33の下流側の面部S
とほゞ面一にしたものを用意した。
Here, in order to compare the present invention with a conventional example, an exhaust gas dilution apparatus shown in FIG.
Of the orifice hole 32 is about 1 mm, the diameter L of the mixed dilution up to the end of the tunnel is about 600 mm, and the inside diameter d of the orifice hole 32 is about 1 mm.
6 mm, the outer diameter D1 of the exhaust gas introduction pipe 34 was about 13 mm, the inner diameter d1 was about 11 mm, and the length L1 of the end a from the orifice plate 33 to the upstream side was about 2 mm.
As the exhaust gas diluting device shown in FIG. 7, of the exhaust gas diluting device shown in FIG.
I prepared something that was the same.

【0024】そして、本発明の構成にかゝる排ガス希釈
装置3として、寸法的には図7に示す排ガス希釈装置と
同じであるが、排ガス導入管34をオリフィス孔32に
貫通させて、その端部aをオリフィス孔の下流側に突出
させたものを用意して、それぞれ空気導入管5から約1
30l/minの空気Aを供給し、排ガス導入管34か
らは約5l/minの排ガスGを供給して、排ガス導入
管34の端部aの突出量tを1mm単位で10mmの範
囲にわたって位置調整し、フィルタ10によるPMの採
取量を調べたところ、従来の構成に比べて有意にPM採
取量が増加した。これは本発明の構成にかゝる排ガス希
釈装置3では、壁面Wに対するPMの付着が顕著に少な
くなったためと考える。
The exhaust gas diluting device 3 according to the configuration of the present invention is the same in dimensions as the exhaust gas diluting device shown in FIG. 7, but the exhaust gas introducing pipe 34 is passed through the orifice hole 32 and An end a is protruded to the downstream side of the orifice hole.
The air A of 30 l / min is supplied, and the exhaust gas G of about 5 l / min is supplied from the exhaust gas introduction pipe 34, and the protruding amount t of the end a of the exhaust gas introduction pipe 34 is adjusted in positions of 1 mm in a range of 10 mm. However, when the amount of PM collected by the filter 10 was examined, the amount of PM collected significantly increased as compared with the conventional configuration. It is considered that this is because in the exhaust gas dilution device 3 according to the configuration of the present invention, the adhesion of PM to the wall surface W was significantly reduced.

【0025】この理由は今のところ定かではなく、解明
が急がれるところであるが、排ガス導入管34の端部a
をオリフィス孔32の下流側に突出させる特異な排ガス
導入の形態をとって、排ガスGを極端に縮径させること
なく、空気A中に拡散させるようにしたことで、空気A
と排ガスGの混合が良好になったものと推測される。
The reason for this is not clear at the moment, and the elucidation is urgently needed.
The exhaust gas G is diffused into the air A without extremely reducing the diameter of the exhaust gas G by adopting a unique form of introducing the exhaust gas into the downstream side of the orifice hole 32.
It is presumed that the mixing of the gas and the exhaust gas G became good.

【0026】上記の実施の形態では、オリフィス孔32
の内周面を、断面形状でほゞ半円形に形成しているが、
図5(A)に示すように、単純な透孔のオリフィス孔3
2にしたり、図5(B),(C)に示すように、先拡が
りや先狭まりのテーパー孔のオリフィス孔32にした
り、図5(D)に示すように、断面形状で三角形のオリ
フィス孔32にしたりしてもよい。
In the above embodiment, the orifice hole 32
The inner peripheral surface is formed in a substantially semicircular cross-sectional shape,
As shown in FIG. 5 (A), a simple orifice hole 3
2, or as shown in FIGS. 5 (B) and 5 (C), or as a tapered orifice hole 32 having a tapered opening or a tapered hole as shown in FIG. 5 (D), or as shown in FIG. It may be 32.

【0027】また、排ガス導入管34の端部aを、単純
な切り落とし端面としているが、図5(A)に示すよう
に、ほゞ半円形の面取り端部aにしたり、図5(B)に
示すように、先拡がりのテーパー面の端部aにしたりし
てもよい。
Although the end a of the exhaust gas introducing pipe 34 is a simple cut-off end face, as shown in FIG. 5A, a substantially semi-circular chamfered end a or FIG. As shown in (1), the end may be at the end a of the tapered surface that expands.

【0028】更に、図5(C)に示すように、排ガス導
入管34の端部側bをラッパ状に拡径させてもよく、逆
に図5(D)に示すように、排ガス導入管34の端部側
bを先狭まりに縮径させてもよいのであり、かつ、これ
らオリフィス孔32の内周面の形状と排ガス導入管34
の端部aの形状とを任意に組み合わせ可能であることは
言うまでもない。
Further, as shown in FIG. 5C, the end b of the exhaust gas introduction pipe 34 may be enlarged in a trumpet shape. Conversely, as shown in FIG. The end b of the orifice 34 may be narrowed and the inner peripheral surface of the orifice hole 32 and the exhaust gas introduction pipe 34 may be reduced.
It is needless to say that the shape of the end a can be arbitrarily combined.

【0029】[0029]

【発明の効果】以上説明したように、請求項1記載の排
ガス希釈装置によれば、排ガス導入管の端部をオリフィ
ス孔の下流側に突出させる特異な排ガス導入の形態をと
ったことで、希釈トンネル内での空気と排ガスの混合が
良好に行われるようになり、これによってトンネルの壁
面に対するPMの付着すなわちPM損失を最小限に抑え
ることが可能となり、延いては下流側のフィルタで捕集
されるPM生成のバラツキが極めて小さくなることか
ら、PMの測定制度の大幅に向上できる効果がある。
As described above, according to the exhaust gas diluting device according to the first aspect, a unique exhaust gas introduction mode is adopted in which the end of the exhaust gas introduction pipe projects to the downstream side of the orifice hole. Good mixing of the air and exhaust gas in the dilution tunnel is achieved, which makes it possible to minimize the adhesion of PM to the wall of the tunnel, that is, the PM loss, and furthermore, to capture the PM by a downstream filter. Since the variation in the generation of collected PM is extremely small, there is an effect that the measurement accuracy of PM can be greatly improved.

【0030】そして、希釈用空気の流量を調整させて、
サンプル排ガスの希釈比率を変化させる測定する場合に
は、請求項2記載の通り、排ガス導入管端部の突出量を
調整可能に構成して、希釈比率に応じた最適の突出量に
設定可能である。
Then, by adjusting the flow rate of the dilution air,
When the measurement is performed by changing the dilution ratio of the sample exhaust gas, the protrusion amount of the end portion of the exhaust gas introduction pipe can be adjusted as described in claim 2, and the protrusion amount can be set to the optimum protrusion amount according to the dilution ratio. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス希釈システムの一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a gas dilution system.

【図2】希釈用ガス流量制御装置の構成図である。FIG. 2 is a configuration diagram of a dilution gas flow control device.

【図3】排ガス希釈装置の断面図である。FIG. 3 is a sectional view of an exhaust gas dilution device.

【図4】空気と排ガスの流れ状況を示す説明図である。FIG. 4 is an explanatory diagram showing a flow state of air and exhaust gas.

【図5】(A)〜(D)は別の実施の形態によるオリフ
ィス孔の内面形状と排ガス導入管の端部形状とを示す断
面図である。
FIGS. 5A to 5D are cross-sectional views showing an inner surface shape of an orifice hole and an end shape of an exhaust gas introduction pipe according to another embodiment.

【図6】従来例の排ガス希釈装置を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional exhaust gas dilution device.

【図7】別の実施の形態による従来例の排ガス希釈装置
を示す断面図である。
FIG. 7 is a cross-sectional view showing a conventional exhaust gas dilution device according to another embodiment.

【符号の説明】[Explanation of symbols]

4…希釈トンネル、5…空気導入管、32…オリフィス
孔、33…オリフィス板、34…排ガス導入管、a…端
部。
4 ... dilution tunnel, 5 ... air introduction pipe, 32 ... orifice hole, 33 ... orifice plate, 34 ... exhaust gas introduction pipe, a ... end.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G004 AA01 BA00 DA21 3G091 AA18 BA31  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 3G004 AA01 BA00 DA21 3G091 AA18 BA31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上流側に排ガス希釈用の空気導入管が接
続される希釈トンネル内に、導入空気を絞るためのオリ
フィス孔が形成されたオリフィス板と、空気導入部より
も下流側のトンネル内に排ガスを排出する排ガス導入管
とを配設すると共に、排ガス導入管の端部をオリフィス
孔の下流側に突出させて成ることを特徴とする排ガス希
釈装置。
1. An orifice plate having an orifice hole for restricting introduced air in a dilution tunnel to which an air introduction pipe for exhaust gas dilution is connected on the upstream side, and in a tunnel downstream of an air introduction section. An exhaust gas introduction pipe for discharging exhaust gas, and an end of the exhaust gas introduction pipe protruding downstream of the orifice hole.
【請求項2】 排ガス導入管端部の突出量を調整可能に
構成して成る請求項1記載の排ガス希釈装置。
2. The exhaust gas diluting apparatus according to claim 1, wherein the amount of protrusion of the exhaust gas introduction pipe end is adjustable.
JP2000058586A 2000-03-03 2000-03-03 Exhaust gas dilution device Expired - Lifetime JP3670924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058586A JP3670924B2 (en) 2000-03-03 2000-03-03 Exhaust gas dilution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058586A JP3670924B2 (en) 2000-03-03 2000-03-03 Exhaust gas dilution device

Publications (2)

Publication Number Publication Date
JP2001249064A true JP2001249064A (en) 2001-09-14
JP3670924B2 JP3670924B2 (en) 2005-07-13

Family

ID=18579165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058586A Expired - Lifetime JP3670924B2 (en) 2000-03-03 2000-03-03 Exhaust gas dilution device

Country Status (1)

Country Link
JP (1) JP3670924B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742407B2 (en) 2001-03-23 2004-06-01 Avl North America Inc. Particulate sampling probe and dilution tunnel
JP2009510448A (en) * 2005-09-29 2009-03-12 株式会社堀場製作所 Engine exhaust dilution sampler
KR101320218B1 (en) * 2005-06-09 2013-10-21 가부시키가이샤 호리바 세이샤쿠쇼 Exhaust gas dilution device
EP3179227A1 (en) 2015-12-10 2017-06-14 Horiba, Ltd. Exhaust gas dilution device and exhaust gas measuring system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742407B2 (en) 2001-03-23 2004-06-01 Avl North America Inc. Particulate sampling probe and dilution tunnel
US6857327B2 (en) 2001-03-23 2005-02-22 Avl North America Inc. Particulate sampling probe and dilution tunnel
KR101320218B1 (en) * 2005-06-09 2013-10-21 가부시키가이샤 호리바 세이샤쿠쇼 Exhaust gas dilution device
JP2009510448A (en) * 2005-09-29 2009-03-12 株式会社堀場製作所 Engine exhaust dilution sampler
EP3179227A1 (en) 2015-12-10 2017-06-14 Horiba, Ltd. Exhaust gas dilution device and exhaust gas measuring system using the same

Also Published As

Publication number Publication date
JP3670924B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US7201071B2 (en) Wide range continuous diluter
JP4072159B2 (en) Apparatus and method for calibration of a mass flow sensor
JP2001249064A (en) Exhaust gas diluting device
EP0973080B1 (en) Gas flow rate control apparatus
US4755357A (en) Sampling device for a gas analyzer
JP3604059B2 (en) Partial dilution type gas dilution system
JP2003075308A (en) Mini constant flow rate sampling apparatus
JP7216192B2 (en) Gas mixing device for linearizing or calibrating gas analyzers
JP3426048B2 (en) Exhaust gas diverter using movable Venturi tube
JP2526299Y2 (en) Exhaust gas splitter
JPH05312695A (en) Particulate collector by means of dilute tunneling
JPH04143632A (en) Apparatus for distributing and collecting exhaust gas
JP3604060B2 (en) Gas flow controller for dilution
JPH08254487A (en) Exhaust gas measuring device
JP3030355B2 (en) Multi-tube type diversion tunnel and its control method
JP3708189B2 (en) Variable cross-section venturi exhaust shunt
JP3968085B2 (en) Partial dilution type gas dilution system for measuring exhaust gas and partial dilution type gas dilution system for measuring particulate matter in exhaust gas
JPH0843275A (en) Apparatus measuring for components of exhaust gas
JP2002168664A (en) Method and apparatus for inspecting flow rate
JP2006153716A (en) Exhaust gas analyzer and soot measuring method
JPH11264788A (en) Diluted gas flow rate control device
JPH0695060B2 (en) Device for measuring particulate matter in exhaust gas
JP3650921B2 (en) Dilution gas flow controller
JP2530194Y2 (en) Exhaust gas splitter
JP4008424B2 (en) Gas sample system for measuring exhaust gas with partial dilution and gas sample system for measuring particulate matter in exhaust gas with partial dilution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Ref document number: 3670924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term