JPH03137419A - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPH03137419A
JPH03137419A JP27539089A JP27539089A JPH03137419A JP H03137419 A JPH03137419 A JP H03137419A JP 27539089 A JP27539089 A JP 27539089A JP 27539089 A JP27539089 A JP 27539089A JP H03137419 A JPH03137419 A JP H03137419A
Authority
JP
Japan
Prior art keywords
value
flow rate
error
sensor
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27539089A
Other languages
Japanese (ja)
Other versions
JPH0726861B2 (en
Inventor
Tetsuo Akiyama
秋山 鉄夫
Koji Nakagaki
弘司 中垣
Takeshi Nakayasu
中安 斌
Hideaki Narahara
秀昭 楢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP27539089A priority Critical patent/JPH0726861B2/en
Publication of JPH03137419A publication Critical patent/JPH03137419A/en
Publication of JPH0726861B2 publication Critical patent/JPH0726861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To make the title device highly accurate in measuring a flow rate in a full flow zone while allowing the use of general-purpose pressure sensors, which are easily obtainable, by a method wherein said device is provided with an arithmetic and control unit which corrects a value actually measured by each sensor on the basis of an error approximate value, computes the calculated value of a flow rate from the value obtained by this correction and outputs a signal of the calculated value. CONSTITUTION:In a case where an approximate value for each of sensors 3, 6, 7, which is calculated by applying an error approximation formula, becomes larger than a predetermined value, an arithmetic and control unit 8 produces an alarm signal or corrects the value actually measured by each of said sensors on the basis of the approximate value, and the calculated value of a flow rate is computed every moment from the value obtained by this correction, whereupon a signal of the calculated value is outputted. In addition, the arithmetic and control unit 8 has a control function for controlling a flow rate, or for controlling a pressure difference or an opening degree of a variable throttle means 5 to a predetermined value, and sends an opening degree control signal to a variable throttle driving means 4 to regulate the opening degree of the variable throttle means 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば加熱炉に供給する燃料、或は空気の管
路に適用する流量計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flow rate measuring device that is applied to, for example, a fuel or air pipe line to be supplied to a heating furnace.

(従来の技術) 従来、この種の流量計測には、第7図に示すように、計
測対象である流体管路11に設けたオリフィス、ベンチ
ュリ等の固定絞り機構12と、この固定絞り機構12の
前後の圧力差を測定する差圧計や差圧変換器等の差圧セ
ンサ13と、差圧センサ13からの信号に基づいて流量
を算出し、出力する演算制御器14とを組合わせた装置
を単独で用いるのが通常である。
(Prior Art) Conventionally, as shown in FIG. 7, this type of flow rate measurement requires a fixed throttle mechanism 12 such as an orifice or venturi provided in a fluid pipe 11 to be measured, and a fixed throttle mechanism 12. A device that combines a differential pressure sensor 13 such as a differential pressure gauge or a differential pressure converter that measures the pressure difference before and after the differential pressure sensor 13, and an arithmetic controller 14 that calculates and outputs the flow rate based on the signal from the differential pressure sensor 13. Usually used alone.

(発明が解決しようとする課題) 周知のように、固定絞り機構12の差圧は流量の自乗に
比例し、流量の低下につれて急激に低下するので、差圧
センサ13に関する誤差による流量計測誤差は第8図(
差圧センサのゼロドリフトが±1%の場合)のように流
量の低下につれて急激に増大するという問題がある。
(Problem to be Solved by the Invention) As is well known, the differential pressure of the fixed throttle mechanism 12 is proportional to the square of the flow rate and decreases rapidly as the flow rate decreases. Figure 8 (
There is a problem that the zero drift of the differential pressure sensor increases rapidly as the flow rate decreases, as in the case where the zero drift is ±1%.

一方、第9図は低流量領域における誤差を回避するよう
にした流量計測装置を示し、計測対象である流体管路2
1に設けた可変絞り機構22と、可変絞り機構22の前
後の差圧を検出する差圧センサ23と、可変絞り機構2
2に取付けた開度センサ24.可変絞り駆動機構25と
、上記各センサからの信号に基づいて流量を算出し、出
力する演算制御器26とから形成しである。なお、第9
図に示す例では、上記算出した流量に基づいて可変絞り
駆動機構25を介して可変絞り機構22の制御を行うよ
うになっている。
On the other hand, FIG. 9 shows a flow rate measuring device designed to avoid errors in the low flow rate region, and shows a fluid pipe line 2 to be measured.
1, a differential pressure sensor 23 that detects the differential pressure before and after the variable diaphragm mechanism 22, and a variable diaphragm mechanism 22 provided in the variable diaphragm mechanism 2.
Opening sensor 24 attached to 2. It consists of a variable diaphragm drive mechanism 25 and an arithmetic controller 26 that calculates and outputs the flow rate based on the signals from each of the sensors. In addition, the 9th
In the example shown in the figure, the variable diaphragm mechanism 22 is controlled via the variable diaphragm drive mechanism 25 based on the calculated flow rate.

そして、この装置における流量計測誤差は、主として差
圧センサ23に関する誤差、および可変絞り機構22の
開度に関する誤差によるものであり、第1O図(差圧セ
ンサのゼロドリフトが±1%、開度に関するゼロドリフ
トが±0.5%の場合)のように、高流量領域において
は固定絞り機構12による流量計測法の流量計測誤差よ
りも可変絞り機構22による流量計測誤差の方が大きく
なるという問題がある。
The flow rate measurement error in this device is mainly due to the error related to the differential pressure sensor 23 and the error related to the opening degree of the variable throttle mechanism 22. The problem is that in high flow areas, the flow rate measurement error due to the variable throttle mechanism 22 is larger than the flow rate measurement error of the flow rate measurement method using the fixed throttle mechanism 12, as in the case where the zero drift is ±0.5%. There is.

一般に、差圧センサに関する誤差、および可変絞り機構
の開度に関する誤差の変動は常時生じており、これらの
センサに関する誤差による流量計測制御精度の低下に伴
なう燃料原単位の悪化や製品品質の低下等の損失を回避
するには、各センサに関する誤差の修正、いわゆる校正
を頻繁に行う必要がある。従来、これらの校正は装置の
稼動を停止し、基準器等を用いて作業者が行わざるを得
ないものであり、校正頻度の増大は稼動の停止による生
産の機会損失や校正作業労力等の増大となる。
In general, errors related to differential pressure sensors and errors related to the opening degree of variable throttle mechanisms constantly fluctuate, and errors related to these sensors can cause deterioration in fuel consumption and product quality due to a decrease in flow rate measurement control accuracy. In order to avoid losses such as degradation, it is necessary to frequently correct errors related to each sensor, so-called calibration. Conventionally, these calibrations had to be performed by an operator using a reference device, etc. after stopping the operation of the equipment.Increasing the frequency of calibration would result in loss of production opportunities due to the stoppage of operation, and labor for calibration work. It will increase.

したがって、従来、多くの場合、両者の経済的妥協点で
操業されている。
Therefore, conventionally, in many cases, they are operated at an economic compromise between the two.

本発明は、斯る従来の問題点を課題としてなされたもの
で、稼動中に高頻度で自動的に校正を行う、つまり各セ
ンサに関する誤差を自動的に補正することによって、入
手容易な汎用の圧力センサを用いながら全流量領域にお
いて高精度で、簡易な流量計測装置を提供しようとする
ものである。
The present invention has been made to solve the problems of the conventional technology, and it is possible to automatically calibrate the sensor frequently during operation, that is, to automatically correct errors related to each sensor. The present invention aims to provide a simple flow rate measuring device that uses a pressure sensor and is highly accurate over the entire flow rate range.

(課題を解決するための手段) 上記課題を解決するために、本発明は、計測対象である
流体管路に設けた固定絞り機構および可変絞り機構と、
この可変絞り機構に取付けた可変絞り駆動機構および開
度センサと、上記固定絞り機構および可変絞り機構のお
のおのの前後の差圧を検出する第1差圧センサ、第2差
圧センサと、上記固定絞り機構、第1差圧センサを含む
固定絞り系の第1差圧センサからの信号に基づく流量計
測値、および上記可変絞り機構、開度センサ、第2差圧
センサを含む可変絞り系の開度センサ、第2差圧センサ
からの信号に基づく流量計測値のおのおのを算出するた
めの演算式の差と、両演算式についての「誤差の波及の
一般式」に基づいた上記各センサに関する誤差による流
量計測誤差の近似式の差とを等しいと仮定した誤差近似
式に、適正な間隔の所要数の流量時における上記各セン
サの実測値を代入した連立方程式をたてて、上記各セン
サに関する誤差について解くことにより、誤差の近似値
を算出し、この誤差の近似値により上記各センサの実測
値の補正を行い、この補正後の値により流量計測値を算
出し、出力する演算制御器とから形成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a fixed throttle mechanism and a variable throttle mechanism provided in a fluid pipeline to be measured;
A variable diaphragm drive mechanism and an opening sensor attached to the variable diaphragm mechanism, a first differential pressure sensor and a second differential pressure sensor that detect the differential pressure before and after each of the fixed diaphragm mechanism and the variable diaphragm mechanism, and the fixed diaphragm mechanism and the opening sensor. A flow rate measurement value based on a signal from a first differential pressure sensor of a fixed throttle system including a throttle mechanism and a first differential pressure sensor, and an opening of a variable throttle system including the variable throttle mechanism, an opening sensor, and a second differential pressure sensor. The difference between the calculation formulas for calculating each of the flow rate measurement values based on the signals from the pressure sensor and the second differential pressure sensor, and the error related to each of the above sensors based on the "general formula for error propagation" for both calculation formulas. A simultaneous equation is created by substituting the actual measured values of each of the above sensors at the required number of flow rates at appropriate intervals into the error approximation equation assuming that the difference in the approximate equation of the flow rate measurement error is equal to the difference in the approximate equation of the flow rate measurement error. An arithmetic controller that calculates an approximate value of the error by solving for the error, corrects the actual measured value of each sensor mentioned above using the approximate value of the error, and calculates and outputs the flow rate measurement value based on the corrected value. Formed from.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る流量計測装置を示し、計測対象
である流体管路lに固定絞り機構2と、開度に対する流
量係数の関係か既知で、かつ開度センサ3、および可変
絞り駆動機構4を取付けた可変絞り機構5を設けるとと
もに、固定絞り機構2、および可変絞り機構5のおのお
のの前後の差圧を検出する第1.第2差圧センサ6.7
が設けである。
FIG. 1 shows a flow rate measuring device according to the present invention, which includes a fixed throttle mechanism 2, an opening sensor 3, and a variable throttle mechanism in which the relationship between the flow coefficient and the opening is known, in a fluid pipe line l to be measured. A variable diaphragm mechanism 5 to which a drive mechanism 4 is attached is provided, and a first diaphragm mechanism 5 for detecting the differential pressure before and after each of the fixed diaphragm mechanism 2 and the variable diaphragm mechanism 5 is provided. Second differential pressure sensor 6.7
is the provision.

また、第1.第2差圧センサ6.7からの信号、および
開度センサ3からの信号を入力する演算制御器8が設け
である。この演算制御器8は、マイクロプロセッサ等を
利用して形成したもので、予め記憶させた固定絞り機構
2の流量係数、および可変絞り機構5の開度に対する流
量係数の数式、またはテーブルの形で表わした関係と、
上記各センサ信号とに基づいて固定絞り機構2.第1差
圧センサ6を含む固定絞り系と可変絞り機構5.開度セ
ンサ3.第2差圧センサ7を含む可変絞り系とによる両
流全計測値を算出するための演算式の差と、両演算式に
ついての「誤差の波及の一般式−1に基づいた各センサ
に関する誤差による流量計測誤差の近似式の差とを等し
いと仮定した誤差近似式に、適正な間隔の所要数の流量
時における各センサの実測値を代入した連立方程式をた
てて、各センサに関する誤差について解くことにより、
その近似値を算出する。さらに、この演算制御器8は、
これらの近似値が所定の値より大きくなった場合に警報
信号を出し、および/またはその近似値による当該セン
サの実測値の補正を行い、この補正後の値により流量計
測値を時々刻々算出し、出力するものである。
Also, 1st. An arithmetic controller 8 is provided which inputs the signal from the second differential pressure sensor 6.7 and the signal from the opening sensor 3. This arithmetic controller 8 is formed using a microprocessor or the like, and stores the flow coefficient of the fixed throttle mechanism 2 and the flow coefficient for the opening of the variable throttle mechanism 5 stored in advance in the form of a mathematical formula or a table. The relationship expressed and
Fixed diaphragm mechanism 2. based on each of the above sensor signals. Fixed diaphragm system and variable diaphragm mechanism including the first differential pressure sensor 6 5. Opening sensor 3. The difference between the arithmetic expressions for calculating the total measured values of both streams with the variable throttle system including the second differential pressure sensor 7, and the error related to each sensor based on the general formula-1 of error propagation for both arithmetic expressions. A simultaneous equation is created by substituting the actual measured values of each sensor at the required number of flow rates at appropriate intervals into the error approximation formula, which assumes that the difference in the approximate formula for flow rate measurement error is equal to the difference in the approximate formula for flow rate measurement error. By solving
Calculate its approximate value. Furthermore, this arithmetic controller 8
If these approximate values become larger than a predetermined value, an alarm signal is issued and/or the actual measured value of the sensor is corrected by the approximate value, and the flow rate measurement value is calculated from moment to moment based on the corrected value. , is what is output.

なお、この演算制御器8は流量、または可変絞り機構5
の差圧、或は開度を所定の値にするための制御機能も備
え、開度制御信号を可変絞り駆動機構4に送り、可変絞
り機構5の開度操作を行う。
Note that this arithmetic controller 8 controls the flow rate or the variable throttle mechanism 5.
It also has a control function for setting the differential pressure or the opening degree to a predetermined value, and sends an opening degree control signal to the variable diaphragm drive mechanism 4 to control the opening degree of the variable diaphragm mechanism 5.

そこで、まず各センサに関する誤差の近似値を算出する
方法について詳述する。
Therefore, first, a method for calculating approximate values of errors regarding each sensor will be described in detail.

固定絞り機構2の流量係数をA、その差圧の実測値、つ
まり第1差圧センサ6および差圧に関わる誤差を含む差
圧値をPaとすると、その流量計測値Qaは次の(1)
式で表される。
Assuming that the flow coefficient of the fixed throttle mechanism 2 is A, and the actual measured value of the differential pressure, that is, the differential pressure value including errors related to the first differential pressure sensor 6 and the differential pressure, is Pa, the measured flow rate Qa is as follows (1 )
Expressed by the formula.

Qa=A J7′a          −(1)可変
絞り機構5の流量係数を開度の関数f(s)、その開度
の実測値、つまり開度センサ3および開度に関わる誤差
を含む開度値を81その差圧の実測値、つまり第2差圧
センサ7、および差圧測定に関わる誤差を含む差圧値を
pbとすると、その流量計測値Qbは次の(2)式で表
される。
Qa=A J7'a - (1) The flow coefficient of the variable throttle mechanism 5 is the opening function f(s), the actual measured value of the opening, that is, the opening value including the error related to the opening sensor 3 and the opening. 81 If the actual measured value of the differential pressure, that is, the differential pressure value including the error related to the second differential pressure sensor 7 and the differential pressure measurement, is pb, then the flow rate measurement value Qb is expressed by the following equation (2). .

Q b= f(s)F7丁          ・(2
)この二つの流量計測値は各センサに関する誤差により
、偶然の一致を除いて一般的に差を生じる。
Q b= f(s)F7 cho・(2
) The two flow measurements will generally differ, except by chance, due to errors associated with each sensor.

ここで、この(1)式の右辺と(2)式の右辺との差に
ついて、周知の「誤差の波及の一般式」に基づく近似式
を求めると次の(3)式となる。
Here, regarding the difference between the right-hand side of equation (1) and the right-hand side of equation (2), an approximate equation based on the well-known "general equation for error propagation" is obtained as the following equation (3).

(θ(r (s ) FTl) /θS)δS+(θ(
f(s)FTl)/θPb)δpb(θ(ALTl)/
θPa)δPa =(θf(S)/θSr下δ5 lf(s)/(2、FTl))δpb (A/(2fTτ))δPa     −(3)この(
3)式は上記の(2)式の右辺から(1)式の右辺を減
じた差の近似式であるので、両者を等しいと仮定した次
の(4)式を、各センサに関する誤差の近似値を算出す
るための基本式とし、誤差近似式と仮称する。
(θ(r (s) FTl) /θS)δS+(θ(
f(s)FTl)/θPb)δpb(θ(ALTl)/
θPa) δPa = (θf(S)/θSr lower δ5 lf(s)/(2, FTl)) δpb (A/(2fTτ)) δPa − (3) This (
Equation 3) is an approximation of the difference obtained by subtracting the right-hand side of Equation (1) from the right-hand side of Equation (2) above, so the following Equation (4), assuming that both are equal, is used to approximate the error for each sensor. This is the basic formula for calculating the value, and is tentatively called the error approximation formula.

(θf(S)/θ5)ffiδS + (f(S)/ 2 fl下))δPb(A / 2
 (7”’a ))δPa=r(sMT’下−ArF”
a        −(4)この(4)式において可変
絞り機構5の流量係数の開度の関数f(s)および固定
絞り機構2の流量係数Aは既知であるので、(4)式に
適正な間隔、例えば最大流量の5%毎の、所要数、つま
り未知数の個数であるセンサ数と同数(本実施例では三
つ)の流量時における各センサによる実測値を代入した
所要数の式をたてて連立1次方程式とし、各センサに関
する誤差(δS、δPb、δPa)を未知数として、周
知の方法、例えばガウスの消去法により、各センサに関
する誤差の近似値を求める。
(θf(S)/θ5)ffiδS + (f(S)/2 fl lower))δPb(A/2
(7”'a)) δPa=r(sMT'bottom-ArF"
a - (4) In this equation (4), the function f(s) of the opening degree of the flow coefficient of the variable throttle mechanism 5 and the flow coefficient A of the fixed throttle mechanism 2 are known, so the appropriate interval can be calculated in the equation (4). For example, for each 5% of the maximum flow rate, create an equation for the required number of sensors by substituting the actual values measured by each sensor at the same number of flow rates (three in this example) as the number of sensors, which is the number of unknowns. Using the equations as simultaneous linear equations, and using the errors (δS, δPb, δPa) related to each sensor as unknowns, an approximate value of the error related to each sensor is determined by a well-known method such as Gaussian elimination.

演算制御器8は、これらの近似値が所定の値より大きく
なった場合に警報信号を出し、および/またはその近似
値による当該センサによる実測値の補正を行い、この補
正後の値により流量計測値の算出を行う。
The arithmetic controller 8 issues an alarm signal when these approximate values become larger than a predetermined value, and/or corrects the actual value measured by the sensor using the approximate value, and performs flow measurement using the corrected value. Calculate the value.

次に、第2図にしたがって各センサによる実測値の取り
入れ、およびその記憶、ならびにそれらに関する誤差の
近似値の算出のための各センサによる実測値の選出ロジ
ックについて詳述する。
Next, in accordance with FIG. 2, the logic for selecting actual measurement values by each sensor for taking in actual measurement values by each sensor, storing them, and calculating approximate values of errors related to them will be described in detail.

まず、予め所要流量領域の全域にわたって適正な間隔で
複数の設定流量値を定め(#2−1)、固定絞り系、ま
たは可変絞り系により得られた流量計測値を読み込み(
#2−2)、これがこの設定流量値と一致する毎に次ス
テツプに進み(#2−3)、各設定流量値に対応した記
憶領域に各センサの実測値を取り入れて(#2−4)、
記憶データの更新を行う(#2−5)。
First, a plurality of set flow values are determined in advance at appropriate intervals over the entire required flow rate region (#2-1), and the flow rate measurement values obtained by the fixed or variable throttle system are read in (#2-1).
#2-2), and each time this matches the set flow rate value, the process advances to the next step (#2-3), and the actual measured value of each sensor is imported into the storage area corresponding to each set flow rate value (#2-4). ),
The stored data is updated (#2-5).

この各センサによる実測値の取り入れ、および記憶デー
タの更新か行われる毎に、更新が行われたものを含め、
それぞれ流量設定値の異なる最新の所要数の各センサの
実測値を選出しく#2−6)、これらを代入した誤差近
似式に基づく連立1次方程式により、各センサに関する
誤差の近似値の算出を行い(#2−7)、本演算は終了
し、この近似値に基づいて各センサによる実測値の補正
を行う。
Each time the actual measured values are taken in by each sensor and the stored data is updated, including those that have been updated,
Select the latest measured values of the required number of sensors with different flow rate settings (#2-6), and calculate the approximate error value for each sensor using simultaneous linear equations based on the error approximation formula by substituting these values. (#2-7), this calculation is completed, and the actual values measured by each sensor are corrected based on this approximate value.

ここまで詳述した演算方法によれば、予め各センサの校
正が行われている等により、各センサに関する誤差が小
さく、例えば±1%以下であり、かつ所要流量領域が高
流量領域の限られた範囲、例えば最大流量の60〜80
%の範囲の場合には充分な精度、例えば±0.03%以
下で各センサに関する誤差の近似値の算出が行えるので
実用上充分であるが、これらの誤差や流量領域が増すに
つれて、誤差近似式の近似に起因する各センサに関する
誤差の近似値の近似誤差が増大する。
According to the calculation method detailed so far, since each sensor is calibrated in advance, the error related to each sensor is small, for example, ±1% or less, and the required flow rate range is limited to the high flow rate range. range, e.g. 60 to 80 of the maximum flow rate.
% range, it is practically sufficient to calculate approximate values of errors related to each sensor with sufficient accuracy, for example, ±0.03% or less, but as these errors and the flow rate range increase, the error approximation becomes more difficult. The approximation error of the approximation of the error for each sensor due to the approximation of the equation increases.

この近似誤差を充分小さくする演算方法について、次に
第3図にしたがって詳述する。
Next, a calculation method for sufficiently reducing this approximation error will be described in detail with reference to FIG.

それぞれ設定流量値の異なる所要数の1組の各センサに
よる実測値を読込み(#3−1)、これについて、各セ
ンサに関する誤差の近似値を算出しく#3−2)、この
近似値と前回の近似値(最初はO)との差が所定の値よ
り小さいか否か判断しく#3−3)、小さくない場合は
その近似値の積算値によって各センサの実測値の修正を
行い(#35、#3−6)、修正された各センサの実測
値についての上記と同様の近似値の算出を行う(#32
)。近似値の算出、およびその積算、ならびに実測値の
修正の繰り返しを算出された近似値および/またはその
近似値と前回の近似値との差が所定の値より小さくなる
まで続ける。即ち、上記の繰り返しの最終において、誤
差近似式の近似に起因する各センサに関する誤差の近似
値の近似誤差が充分小さい値になるまで反復収束計算を
行うものであり、その収束結果の近似値の積算値は修正
前の各センサの実測値に含まれる各センサに関する誤差
の近似誤差が充分小さい近似値であるので、この積算値
により実測値の補正を行う(#3−4)。
Read the actual measured values from a required number of sensors, each with a different set flow rate value (#3-1), calculate the approximate error value for each sensor (#3-2), and compare this approximate value with the previous value. Determine whether the difference from the approximate value (O at first) is smaller than a predetermined value (#3-3), and if it is not smaller, correct the actual measured value of each sensor using the integrated value of the approximate value (#3-3). 35, #3-6), calculate the approximate value similar to the above for the corrected actual measured value of each sensor (#32
). The calculation of the approximate value, its integration, and the correction of the actual measured value are repeated until the calculated approximate value and/or the difference between the approximate value and the previous approximate value becomes smaller than a predetermined value. That is, at the end of the above iteration, the iterative convergence calculation is performed until the approximation error of the approximation value of the error regarding each sensor due to the approximation of the error approximation formula becomes a sufficiently small value, and the approximation value of the convergence result is Since the integrated value is an approximate value with a sufficiently small approximation error of the error related to each sensor included in the actual measured value of each sensor before correction, the actual measured value is corrected using this integrated value (#3-4).

さらに、各センサに関する誤差が大きくなる場合、例え
ば製造直後の校正の大部分を自動校正に負わせて簡略化
する場合、或は所要流量領域が広くなる場合、例えばタ
ーンダウンレシオの大きい燃焼制御に使用する場合には
、誤差近似式の近似に起因する各センサに関する誤差の
近似値の近似誤差が過大となり、上記のような反復計算
において発散するか、或は収束しないことがある。
Furthermore, when the error associated with each sensor becomes large, for example when most of the calibration immediately after manufacture is to be simplified by auto-calibration, or when the required flow rate range becomes wide, for example for combustion control with a large turndown ratio. When used, the approximation error of the approximation value of the error regarding each sensor due to the approximation of the error approximation formula may become excessive, and may diverge or not converge in the above-described iterative calculations.

この発散等を防止する演算方法について、次に第4図に
したがって詳述する。
A calculation method for preventing this divergence will be described in detail below with reference to FIG.

上記のような反復収束計算において、それぞれ設定流量
値の異なる所要数の一組の各センサによる実測値を読込
み(#4−1)、誤差近似式に基づく連立1次方程式に
よって誤差の近似値を算出しく#4−2)、算出した各
センサに関する誤差の近似値に1以下の係数、例えば0
.5を乗じて(#4−3)、および/またはこれらの近
似値が所定の値、例えば10%より大きい場合には所定
の値に制限して(#4−7)、その積算(#4−8)、
およびその積算値による実測値の修正(#4−9)を繰
り返す反復収束計算を行い、誤差の近似誤差が充分小さ
い場合には(#4−5)、上記積算値により実測値の補
正を行う(#4−6)。
In the iterative convergence calculation as described above, the actual measured values from a required number of sensors each having a different set flow rate value are read (#4-1), and the approximate value of the error is calculated using a simultaneous linear equation based on the error approximation formula. Calculate #4-2), add a coefficient of 1 or less, for example 0, to the calculated approximate value of the error for each sensor.
.. 5 (#4-3) and/or if these approximate values are larger than a predetermined value, e.g. 10%, limit it to a predetermined value (#4-7) -8),
Perform an iterative convergence calculation that repeats correction of the measured value using the integrated value (#4-9), and if the approximation error is sufficiently small (#4-5), correct the actual measured value using the integrated value. (#4-6).

ここまでに詳述した演算方法によれば、各センサによる
実測値、および各センサに関する誤差の変動が、補正の
頻度に比べて緩やかな場合は問題ないが、これらの変動
が頻繁(短周期)な場合には、毎回の補正値の変動によ
る流量計測値の急変を生じ、特に流量計測値を制御に使
用する場合には制御の不安定化による制御精度の低下や
可動部の寿命短縮等の不具合を生じることが多い。
According to the calculation method detailed so far, there is no problem if the fluctuations in the actual measurement values from each sensor and the errors related to each sensor are gentle compared to the frequency of correction, but if these fluctuations are frequent (short period) In such a case, the flow rate measurement value may suddenly change due to the fluctuation of the correction value each time, and especially when the flow rate measurement value is used for control, the control accuracy may decrease due to control instability and the life span of the moving parts may be shortened. Often causes problems.

この流量計測値の急変を回避する演算方法にっいて、次
に第5図にしたがって詳述する。
A calculation method for avoiding sudden changes in the flow rate measurement value will be described in detail below with reference to FIG.

計測制御対象流体はポンプ・ブロア等による脈動や系統
内の使用量の変動による圧力変動等、極めて短周期の変
動が定常的にあることか多く、これらによる各絞り機構
の差圧の変動、つまり各差圧センサによる実測値の変動
が大きいことが多い。
The fluid to be measured and controlled often has extremely short-period fluctuations on a regular basis, such as pulsations caused by pumps and blowers, and pressure fluctuations due to fluctuations in usage within the system. There are often large fluctuations in the actual values measured by each differential pressure sensor.

この種の変動による補正値の変動を抑制する方法の第1
は、各センサの誤差の近似値を算出するための各センサ
の実測値の取り入れに先だって、各センサによる実測値
を適正な時定数の移動平均化(指数平滑ともいう高周波
成分のフィルタリング)により短周期変動を充分小さく
しておくことで(#5−1)、平均化した各センサ値を
読込み(#5−2)、これに基づいて誤差の近似値およ
び補正値を算出する(#5−3)。
The first method for suppressing fluctuations in correction values due to this type of fluctuation
Before incorporating the actual measured values of each sensor to calculate the approximate value of the error of each sensor, the actual measured values of each sensor are shortened by moving averaging with an appropriate time constant (filtering of high frequency components, also known as exponential smoothing). By keeping the periodic fluctuation sufficiently small (#5-1), the averaged values of each sensor are read (#5-2), and based on this, the approximate error value and correction value are calculated (#5- 3).

各センサに関する誤差の変動は各センサによる実測値の
変動となっているので、上記のような実測値の変動の平
滑化によってかなり抑制できるが、必ずしも万全ではな
い。
Since fluctuations in errors related to each sensor are fluctuations in the actual values measured by each sensor, it can be considerably suppressed by smoothing the fluctuations in the actual measurements as described above, but this is not always perfect.

補正値の変動による不具合が残る場合には、補正値の変
動を抑制する方法の第2としての算出された補正値の移
動平均化を併用して(#5−4)、各センサによる実測
値の補正を行う(#5−5)。
If problems remain due to fluctuations in the correction values, use the second method of suppressing fluctuations in the correction values, moving averaging of the calculated correction values (#5-4), and calculate the actual values measured by each sensor. Perform the correction (#5-5).

なお、上記のような実測値の変動が軽微な場合には上記
の補正値の移動平均化のみで充分な場合もある。
Note that if the fluctuations in the actual measured values are slight as described above, it may be sufficient to simply move the average of the correction values described above.

ここまでに詳述した演算方法によれば、各センサに関す
る誤差が全測定範囲にわたって一定の値が加わる(また
は減する)いわゆるゼロドリフトが主であり、他の誤差
が無視できる場合には充分な誤差補正を行えるが、測定
値に比例して増大するいわゆる比例誤差や各センサ特有
の器差(予め補正を行っていない場合)が無視できない
場合には、測定値に対応した補正値を得る必要がある。
According to the calculation method detailed so far, the error related to each sensor is mainly a so-called zero drift, in which a constant value is added (or subtracted) over the entire measurement range, and if other errors can be ignored, the error is sufficient. Error correction can be performed, but if the so-called proportional error that increases in proportion to the measured value or the instrumental error unique to each sensor (if no correction has been performed in advance) cannot be ignored, it is necessary to obtain a correction value that corresponds to the measured value. There is.

この測定値に対応した補正値を得る演算方法について、
次に第6図にしたがって詳述する。
Regarding the calculation method to obtain the correction value corresponding to this measured value,
Next, it will be explained in detail according to FIG.

各センサに関する誤差の近似値の算出にはセンサ数、つ
まり未知数と同数の適正な間隔の流量値群における各セ
ンサの実測値群が必要であり、誤差近似式に基づく連立
方程式による各センサに関する誤差の近似値の算出はそ
れらの誤差がその群の実測値において同一値であること
を前掛としたものであるので、異なる場合には、それら
の誤差が同一であると見なしたことによる、見なし誤差
が算出した近似値に含まれるとともに、その近似値に対
応する実測値は不確定となる。
Calculating the approximate error value for each sensor requires the number of sensors, that is, a group of actual measured values of each sensor in a flow rate value group at appropriate intervals, which is the same number as the unknown number, and the error related to each sensor is determined by simultaneous equations based on the error approximation formula. The calculation of the approximate value of is based on the assumption that the errors are the same in the actual measured values of the group, so if they differ, it is assumed that the errors are the same. The assumed error is included in the calculated approximate value, and the actual measured value corresponding to the approximate value becomes uncertain.

そこで、算出された近似値を、とりあえずその実測値群
の中央値に対応したものと仮定して、逐次、所要測定領
域全域にわたる補正値の数式またはデータテーブルを作
成し、これによる補正を行った実測値群による近似値の
算出等(#6−1)と、その近似値による補正値の数式
等の修正(#6−2)を順次繰り返すことにより、各セ
ンサによる実測値の補正を行って(#6−3)、次第に
見なし誤差の低減と対応する実測値の確定化を図るもの
である。
Therefore, assuming that the calculated approximate value corresponds to the median value of the group of actually measured values, we sequentially created a formula or data table for correction values over the entire required measurement area, and performed correction using this. By sequentially repeating calculation of approximate values based on a group of actual measured values (#6-1) and correction of formulas for correction values based on the approximate values (#6-2), the actual measured values of each sensor are corrected. (#6-3), the aim is to gradually reduce the assumed error and establish the corresponding actual measured value.

(発明の効果) 以上の説明より明らかなように、本発明によれば、計測
対象である流体管路に設けた固定絞り機構および可変絞
り機構と、この可変絞り機構に取付けた可変絞り駆動機
構および開度センサと、上記固定絞り機構および可変絞
り機構のおのおのの前後の差圧を検出する第1差圧セン
サ、第2差圧センサと、上記固定絞り機構、第1差圧セ
ンサを含む固定絞り系の第1差圧センサからの信号に基
づく流量計測値、および上記可変絞り機構、開度センサ
、第2差圧センサを含む可変絞り系の開度センサ、第2
差圧センサからの信号に基づく流量計測値のおのおのを
算出するための演算式の差と、両演算式についての「誤
差の波及の一般式」に基づいた上記各センサに関する誤
差による流量計測誤差の近似式の差とを等しいと仮定し
た誤差近似式に、適正な間隔の所要数の流量時における
上記各センサの実測値を代入した連立方程式をたてて、
上記各センサに関する誤差について解くことにより、誤
差の近似値を算出し、この誤差の近似値により上記各セ
ンサの実測値の補正を行い、この補正後の値により灘量
計測値を算出し、出力する演算制御器とから形成しであ
る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a fixed diaphragm mechanism and a variable diaphragm mechanism provided in the fluid pipeline to be measured, and a variable diaphragm drive mechanism attached to the variable diaphragm mechanism. and an opening sensor, a first differential pressure sensor that detects the differential pressure before and after the fixed throttle mechanism and the variable throttle mechanism, a second differential pressure sensor, and a fixed throttle mechanism that includes the fixed throttle mechanism and the first differential pressure sensor. A flow rate measurement value based on a signal from a first differential pressure sensor of the throttle system, and an opening sensor of the variable throttle system including the variable throttle mechanism, an opening sensor, and a second differential pressure sensor, and a second
The flow rate measurement error due to the difference in the calculation formula for calculating each flow rate measurement value based on the signal from the differential pressure sensor, and the error related to each of the above sensors based on the "general formula for error propagation" for both calculation formulas. Set up simultaneous equations by substituting the actual measured values of each of the above sensors at the required number of flow rates at appropriate intervals into the error approximation formula, which assumes that the difference between the approximation formulas is equal.
By solving for the errors related to each of the above sensors, an approximate value of the error is calculated, the actual measured values of each of the above sensors are corrected using the approximate value of the error, the measured value of the Nada volume is calculated using the corrected value, and the output is It is formed from an arithmetic controller.

即ち、固定絞り機構と可変絞り機構による流瑣計測手段
の組合わせ・活用により、稼動中に自動的に各センサの
誤差の補正を行うものであり、入手容易な汎用センサを
用いて高精度の流量計測装置を得ることができるととも
に、校正作業を大幅に軽減することができるという効果
を奏する。
In other words, by combining and utilizing a fixed diaphragm mechanism and a variable diaphragm mechanism to automatically correct the errors of each sensor during operation, it is possible to achieve high precision using easily available general-purpose sensors. It is possible to obtain a flow rate measuring device, and the calibration work can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る流量計測装置の系統図、第2図〜
第6図は各センサの実測値の読込み、各センサの誤差の
近似値の算出、補正等の手順を示すフローチャート、第
7図は従来の固定絞り機構を利用した流量計測装置の系
統図、第8図は第7図におけろ差圧センサのゼロドリフ
トによる流量計測誤差と流量との関係を示す図、第9図
は可変絞り機構を利用した流量計測装置の系統図、第1
0図は第9図における差圧センサのゼロドリフト、およ
び開度センサのゼロドリフトによる流量計測誤差と流量
との関係を示す図である。 l・・・流体管路、2・・・固定絞り機構、3・・・開
度センサ、5・・・可変絞り機構、6,7・・・第1.
第2差圧センサ、8・・・演算制御器。 第7図 冨3図 第9図 第4図 第6図 第5図 第8図 20   40   60 一/虎量(%) 0 00 第10図 20   40   60 流量(%) 0 0
Fig. 1 is a system diagram of a flow rate measuring device according to the present invention, Fig. 2-
Fig. 6 is a flowchart showing the procedure for reading the actual measurement values of each sensor, calculating approximate values of errors of each sensor, correction, etc. Fig. 7 is a system diagram of a flow rate measuring device using a conventional fixed diaphragm mechanism; Figure 8 is a diagram showing the relationship between the flow rate measurement error and flow rate due to zero drift of the differential pressure sensor in Figure 7, Figure 9 is a system diagram of a flow rate measurement device using a variable throttle mechanism, and Figure 1
FIG. 0 is a diagram showing the relationship between the flow rate measurement error and the flow rate due to the zero drift of the differential pressure sensor and the zero drift of the opening sensor in FIG. 9. l... Fluid pipe line, 2... Fixed throttle mechanism, 3... Opening degree sensor, 5... Variable throttle mechanism, 6, 7... First.
Second differential pressure sensor, 8... Arithmetic controller. Figure 7: 3 Figure 9: Figure 4: Figure 6: Figure 5: Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)計測対象である流体管路に設けた固定絞り機構お
よび可変絞り機構と、この可変絞り機構に取付けた可変
絞り駆動機構および開度センサと、上記固定絞り機構お
よび可変絞り機構のおのおのの前後の差圧を検出する第
1差圧センサ、第2差圧センサと、上記固定絞り機構、
第1差圧センサを含む固定絞り系の第1差圧センサから
の信号に基づく流量計測値、および上記可変絞り機構、
開度センサ、第2差圧センサを含む可変絞り系の開度セ
ンサ、第2差圧センサからの信号に基づく流量計測値の
おのおのを算出するための演算式の差と、両演算式につ
いての「誤差の波及の一般式」に基づいた上記各センサ
に関する誤差による流量計測誤差の近似式の差とを等し
いと仮定した誤差近似式に、適正な間隔の所要数の流量
時における上記各センサの実測値を代入した連立方程式
をたてて、上記各センサに関する誤差について解くこと
により、誤差の近似値を算出し、この誤差の近似値によ
り上記各センサの実測値の補正を行い、この補正後の値
により流量計測値を算出し、出力する演算制御器とから
なることを特徴とする流量計測装置。
(1) A fixed throttle mechanism and a variable throttle mechanism installed in the fluid pipeline to be measured, a variable throttle drive mechanism and an opening sensor attached to the variable throttle mechanism, and each of the fixed throttle mechanism and variable throttle mechanism A first differential pressure sensor, a second differential pressure sensor that detects the differential pressure between the front and rear, and the fixed throttle mechanism,
a flow rate measurement value based on a signal from a first differential pressure sensor of a fixed throttle system including a first differential pressure sensor, and the variable throttle mechanism;
The difference between the calculation formulas for calculating each of the flow rate measurement values based on the signals from the opening sensor, the opening sensor of the variable throttle system including the second differential pressure sensor, and the second differential pressure sensor, and the difference between the calculation formulas for both calculation formulas. The error approximation formula assumes that the difference in the approximation formula for the flow rate measurement error due to the error related to each sensor is equal to the difference in the approximate formula for the flow rate measurement error due to the error related to each sensor based on the "general formula for error propagation". By creating simultaneous equations in which the actual measured values are substituted and solving for the errors related to each of the above sensors, an approximate value of the error is calculated.The actual measured values of each of the above sensors are corrected using this approximate value of the error, and after this correction, 1. A flow rate measuring device comprising: a calculation controller that calculates and outputs a flow rate measurement value based on the value of .
JP27539089A 1989-10-23 1989-10-23 Flow rate measuring device Expired - Lifetime JPH0726861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27539089A JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27539089A JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Publications (2)

Publication Number Publication Date
JPH03137419A true JPH03137419A (en) 1991-06-12
JPH0726861B2 JPH0726861B2 (en) 1995-03-29

Family

ID=17554829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27539089A Expired - Lifetime JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH0726861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035822A (en) * 1998-07-17 2000-02-02 Horiba Ltd Dilution gas flow rate controller
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller
JP2005534110A (en) * 2002-07-19 2005-11-10 セレリティー グループ,インコーポレイテッド Method and apparatus for pressure compensation in a mass flow controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844645B2 (en) * 2012-01-06 2016-01-20 東邦瓦斯株式会社 Gas burner combustion control device
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035822A (en) * 1998-07-17 2000-02-02 Horiba Ltd Dilution gas flow rate controller
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller
JP2005534110A (en) * 2002-07-19 2005-11-10 セレリティー グループ,インコーポレイテッド Method and apparatus for pressure compensation in a mass flow controller
US8751180B2 (en) 2002-07-19 2014-06-10 Brooks Instrument Llc Methods and apparatus for pressure compensation in a mass flow controller

Also Published As

Publication number Publication date
JPH0726861B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US7363182B2 (en) System and method for mass flow detection device calibration
CN101839737B (en) Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same
RU2209395C2 (en) Method of calibration of system of measurement of liquid flow pressure difference
KR101722304B1 (en) Mass flow controller
CN102483344B (en) Upstream volume mass flow verification system and method
KR20130040740A (en) Flow rate control device, diagnostic device for use in flow rate measuring mechanism or for use in flow rate control device including the flow rate measuring mechanism and recording medium having diagnostic program recorded thereon for use in the same
US4667153A (en) Automatic calibrator
US5259186A (en) Gas turbine fuel control
JPH03137419A (en) Flow rate measuring device
JP2001509882A (en) Method and apparatus for increasing update rate in a measuring device
JPH1182897A (en) Distributed water pressure control device
US6990856B2 (en) Method and apparatus for determining mass of engine intake air with reversion compensation
EP0938650A1 (en) Method and apparatus for volume determination
JP2597710B2 (en) Pressure gauge calibration device
US5824879A (en) Method of calibrating an ultrasonic flow meter
CN114485863A (en) Flow error correction method, system, computer and medium for ultrasonic water meter
JPS6175217A (en) Instrumental errors corrector for flowmeter
JPH081330B2 (en) Temperature controller for continuous fluid heating device
JPH0914180A (en) Method and device for detecting delivery flow rate of variable speed pump
JP3346788B2 (en) Positioning control method in drive device of flow control valve
JPH06278505A (en) Fuel meter of internal combustion engine for automobile
JPS61737A (en) Automatic calibration gas introduction time decision mechanism for continuous analyzer
JPH0731554B2 (en) Flow controller
JPH04262408A (en) Mass flow controller
JPH02304604A (en) Flow rate controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15