JP2000034465A - Ultraviolet-screening material and its preparation - Google Patents

Ultraviolet-screening material and its preparation

Info

Publication number
JP2000034465A
JP2000034465A JP11127680A JP12768099A JP2000034465A JP 2000034465 A JP2000034465 A JP 2000034465A JP 11127680 A JP11127680 A JP 11127680A JP 12768099 A JP12768099 A JP 12768099A JP 2000034465 A JP2000034465 A JP 2000034465A
Authority
JP
Japan
Prior art keywords
ultraviolet
ultraviolet shielding
clay mineral
shielding material
screening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11127680A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsuda
泰宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKI CHEMCAL CO Ltd
Miyoshi Kasei Inc
Original Assignee
NIKKI CHEMCAL CO Ltd
Miyoshi Kasei Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKI CHEMCAL CO Ltd, Miyoshi Kasei Inc filed Critical NIKKI CHEMCAL CO Ltd
Priority to JP11127680A priority Critical patent/JP2000034465A/en
Publication of JP2000034465A publication Critical patent/JP2000034465A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an ultraviolet-screening material capable of inhibiting the photocatalyst function which the conventional ultraviolet-screening materials additionally possess and exhibiting ultraviolet-screening function alone without light-aging the organic base material having been added and dispersed in the ultraviolet-screening material, and to provide a method for preparing the same. SOLUTION: Ultraviolet-screening materials are obtained by coating an ultraviolet-screening functional substance with a clay mineral. A method for preparing the ultraviolet-screening material comprises the steps of (a) dispersing a clay mineral in a dispersion medium to prepare a clay mineral dispersion; (b) mixing an ultraviolet-screening functional substance into the clay mineral dispersion; (c) subjecting the resulting mixture to solid-liquid separation; and (d) heating the solids content obtained in step (c).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線遮蔽材に関
し、さらに詳しくは、チタン酸化物などの紫外線遮蔽機
能を有する無機化合物を含む紫外線遮蔽機能物質を粘土
鉱物で被覆することにより、紫外線遮蔽機能物質が併せ
持つ光触媒機能を発現できなくし、紫外線遮蔽材が添加
または分散されている有機基材を光老化させることな
く、紫外線遮蔽機能のみを発現させることができる紫外
線遮蔽材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet shielding material, and more particularly, to an ultraviolet shielding material comprising a clay mineral coated with an ultraviolet shielding material containing an inorganic compound having an ultraviolet shielding function such as titanium oxide. The present invention relates to an ultraviolet ray shielding material capable of exhibiting only an ultraviolet ray shielding function without causing a photocatalytic function of a substance to be exhibited and without causing photo-aging of an organic substrate to which an ultraviolet ray shielding material is added or dispersed, and a method for producing the same.

【0002】[0002]

【従来技術】従来から紫外線遮蔽材は、油分の分解を避
けるための食品包装材、変色や着色を避けるための家具
保護シート、ビニールハウス用シート、紫外線遮蔽繊
維、紫外線安定化塗料、紫外線カットガラス、紙および
建材などへの添加剤として応用分野が広がっている。紫
外線遮蔽物質は有機系および無機系とも紫外線エネルギ
ーを吸収することを基本としている。従って、紫外線エ
ネルギーの吸収により、紫外線遮蔽物質自体が変化した
り、或は活性酸素や電子を放出し、接触するものを酸化
する作用を有する。この性質は、紫外線遮蔽効果による
メリットを打ち消すほどのデメリットになることが多
い。即ち、プラスチックフィルムに添加して紫外線遮蔽
効果を得ようとする場合、フィルム自身を光老化させて
耐久性を損なう。有機系の紫外線遮蔽材の場合、それ自
身が変化して別物質となり紫外線遮蔽能力を失ってしま
い、その効果は永続的ではない。一方、無機系の紫外線
遮蔽材の場合は、SiO2 やAl23 等の不活性物質
で表面コートして光触媒機能を抑止することが試みられ
ている(例えば、特許第1934945号公報)。
2. Description of the Related Art Conventionally, ultraviolet shielding materials have been used for food packaging materials for avoiding decomposition of oil components, furniture protection sheets for preventing discoloration and coloring, greenhouse sheets, ultraviolet shielding fibers, ultraviolet stabilizing paints, ultraviolet cut glass. Application fields are expanding as additives to paper, building materials and the like. Ultraviolet shielding materials are based on the fact that both organic and inorganic materials absorb ultraviolet energy. Therefore, by absorbing the ultraviolet energy, the ultraviolet shielding substance itself changes or emits active oxygen and electrons, and has an action of oxidizing a contacting substance. This property often has a disadvantage that the advantage of the ultraviolet shielding effect is negated. That is, when an ultraviolet ray shielding effect is to be obtained by adding to a plastic film, the film itself is photo-aged and the durability is impaired. In the case of an organic ultraviolet ray shielding material, the substance itself changes into another substance and loses the ultraviolet ray shielding ability, and the effect is not permanent. On the other hand, in the case of an inorganic ultraviolet shielding material, an attempt has been made to suppress the photocatalytic function by coating the surface with an inert substance such as SiO 2 or Al 2 O 3 (for example, Japanese Patent No. 1934945).

【0003】ところで、一般の無機系の紫外線遮蔽材を
基材に添加する場合、遮蔽効果を高めるために基材の隠
蔽率をある程度大きくし、併せて可視光の透過率も良好
であることが要求されることから、遮蔽材の粒子径は極
めて微細でなければならない。そのために、粒子の凝集
力が大きいためプラステック、塗料などの基材へ添加す
るときに凝集し、均一に分散させるのが困難である。こ
の凝集と分散むらは遮蔽効果を低下させ、基材の外観を
も著しく損なう。
[0003] When a general inorganic ultraviolet shielding material is added to a substrate, it is necessary to increase the concealing rate of the substrate to some extent in order to enhance the shielding effect, and at the same time, to improve the transmittance of visible light. Due to the requirements, the particle size of the shielding material must be extremely fine. Therefore, since the particles have a large cohesive force, they are coagulated when added to a base material such as plastic or paint, and it is difficult to uniformly disperse them. The aggregation and dispersion unevenness lower the shielding effect and significantly impair the appearance of the substrate.

【0004】このような無機系の紫外線遮蔽材の分散性
の改善策として、酸化チタンなどの紫外線遮蔽機能を有
する化合物を薄片状粘土鉱物の表面に担持させること
(例えば、特開平9−87141、特開平9−5912
9)や粘土鉱物の層間にインターカレートすることが試
みられている。
As a measure for improving the dispersibility of such an inorganic ultraviolet shielding material, a compound having an ultraviolet shielding function such as titanium oxide is supported on the surface of a flaky clay mineral (for example, see JP-A-9-87141). JP-A-9-5912
9) and intercalation between layers of clay minerals have been attempted.

【0005】しかしながら、酸化チタン等の粘上鉱物へ
の表面担持物は当然のことながら紫外線遮蔽機能を有す
る化合物が表面に露出している。また、粘土鉱物層間に
インターカレートする場合も粘土層の最外層にも酸化チ
タンが配位する。従って、いずれも紫外線遮蔽機能を有
する化合物が表面に露出するのが避けられない。すなわ
ち、無機系の紫外線遮蔽材における凝集性と光触媒機能
の抑止という問題点が同時に解決されるには至っていな
い。
[0005] However, as a matter of course, a compound having a function of shielding ultraviolet light is exposed on the surface of a surface carrier on a visco-mineral such as titanium oxide. Also, when intercalating between clay mineral layers, titanium oxide is coordinated also in the outermost layer of the clay layer. Therefore, it is inevitable that a compound having an ultraviolet shielding function is exposed on the surface. That is, the problems of cohesiveness and suppression of the photocatalytic function in the inorganic ultraviolet shielding material have not been solved at the same time.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
したような従来の紫外線遮蔽材が併せ持つ光触媒機能を
抑止し、紫外線遮蔽材が添加または分散されている有機
基材を光老化させることなく、紫外線遮蔽機能のみを発
現させることができる紫外線遮蔽材およびその製造方法
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to suppress the photocatalytic function of the above-mentioned conventional ultraviolet shielding material and to cause photo-aging of the organic substrate to which the ultraviolet shielding material is added or dispersed. It is an object of the present invention to provide an ultraviolet ray shielding material capable of exhibiting only an ultraviolet ray shielding function and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記従来
技術の有する問題点を解決すべく鋭意検討した結果、チ
タン酸化物などの紫外線遮蔽機能を有する無機化合物を
含む紫外線遮蔽機能物質を粘土鉱物で被覆することによ
り、紫外線遮蔽機能物質が併せ持つ光触媒機能を発現で
きなくし、紫外線遮蔽材が添加または分散されている有
機基材を光老化させることなく、紫外線遮蔽機能のみを
発現させることができる本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, have found that an ultraviolet ray shielding material containing an inorganic compound having an ultraviolet ray shielding function such as titanium oxide is used. By coating with a clay mineral, the photocatalytic function of the ultraviolet shielding material cannot be exhibited, and only the ultraviolet shielding function can be exhibited without photoaging the organic base material to which the ultraviolet shielding material is added or dispersed. The present invention has been completed.

【0008】すなわち、本発明は紫外線遮蔽機能物質を
粘土鉱物で被覆したことを特徴とする紫外線遮蔽材であ
る。また本発明は、紫外線遮蔽材の製造方法であって、
以下の工程 a)粘土鉱物を分散媒中に分散させて粘土鉱物の分散液
を調製する工程、 b)紫外線遮蔽機能物質を前記粘土鉱物分散液に混合す
る工程、 c)前記混合物を固液分離する工程、 d)前記工程c)で得られた固形分を加熱する工程を含
むことを特徴とする前記方法である。
That is, the present invention is an ultraviolet shielding material characterized in that an ultraviolet shielding functional substance is coated with a clay mineral. The present invention is also a method for producing an ultraviolet shielding material,
The following steps: a) a step of preparing a dispersion of the clay mineral by dispersing the clay mineral in a dispersion medium; b) a step of mixing an ultraviolet shielding functional substance with the dispersion of the clay mineral; c) solid-liquid separation of the mixture And d) heating the solids obtained in step c).

【0009】[0009]

【発明の実施の形態】本発明に係る紫外線遮蔽材は、紫
外線遮蔽機能物質の表面が粘土鉱物で被覆され、紫外線
遮蔽機能物質そのものは表面に露出していない構造であ
る。そのために、紫外線の吸収能力は保持されている
が、紫外線遮蔽材が添加または分散している有機基材等
と直接接触することがないので、これら有機基材等が光
触媒作用により光劣化することはない。さらに、被覆後
の粘土鉱物は、粘土鉱物本来の膨潤性を保持しているの
で、遮蔽材同士が凝集することがなく、分散性にも優れ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The ultraviolet shielding material according to the present invention has a structure in which the surface of an ultraviolet shielding functional material is coated with a clay mineral, and the ultraviolet shielding functional material itself is not exposed on the surface. For this reason, although the ability to absorb ultraviolet light is maintained, the organic base material or the like to which the ultraviolet shielding material is added or dispersed does not come into direct contact, so that these organic base materials and the like are photo-degraded by photocatalysis. There is no. Furthermore, since the clay mineral after coating retains the original swelling property of the clay mineral, the shielding materials do not agglomerate with each other and have excellent dispersibility.

【0010】本発明における紫外線遮蔽機能物質として
は、紫外線の吸収能力が高く、従って紫外線の遮蔽能力
に優れた無機化合物を含むものであり、具体的な無機化
合物としてはチタン、鉄、亜鉛、スズ、セリウムなどの
無機酸化物が挙げられる。本発明において、上記無機酸
化物には水酸化物などの水和酸化物も含まれる。
[0010] The ultraviolet shielding material in the present invention includes an inorganic compound having a high ultraviolet absorbing ability and therefore an excellent ultraviolet shielding ability. Specific examples of the inorganic compound include titanium, iron, zinc and tin. And inorganic oxides such as cerium. In the present invention, the inorganic oxides include hydrated oxides such as hydroxides.

【0011】また、本発明における紫外線遮蔽機能物質
は、粘土鉱物、シリカ、アルミナあるいはガラスなどの
無機系の物質の表面に上記の無機化合物が担持されたも
のも含まれる。これらの無機系の物質の形状としては板
状または薄片状のものが好ましい。上記の粘土鉱物は被
覆用の粘土鉱物と同じものでもよい。
Further, the ultraviolet ray shielding material in the present invention includes those in which the above-mentioned inorganic compound is supported on the surface of an inorganic substance such as clay mineral, silica, alumina or glass. The shape of these inorganic substances is preferably plate-like or flake-like. The above clay mineral may be the same as the clay mineral for coating.

【0012】本発明で用いられる紫外線遮蔽機能物質
は、先に述べたように紫外線の吸収能力が高く、紫外線
の遮蔽能力に優れたチタン酸化物などの無機化合物を含
むものであるが、このうち上記の無機系物質に担持され
た無機化合物は従来公知の方法で得ることができる。例
えば、核となる無機物質を分散させた無機チタン塩また
は有機チタン化合物の水溶液中でチタン塩またはチタン
化合物を加水分解し、無機物質の表面にチタン加水分解
物を析出させる。ついで濾過、洗浄等の手段で固液分離
して目的の紫外線遮蔽機能物質を得ることができる。
The ultraviolet shielding material used in the present invention contains an inorganic compound such as titanium oxide which has a high ultraviolet absorbing ability and an excellent ultraviolet shielding ability as described above. The inorganic compound supported on the inorganic substance can be obtained by a conventionally known method. For example, a titanium salt or a titanium compound is hydrolyzed in an aqueous solution of an inorganic titanium salt or an organic titanium compound in which a core inorganic substance is dispersed, and a titanium hydrolyzate is deposited on the surface of the inorganic substance. Then, solid-liquid separation is performed by means such as filtration and washing to obtain a desired ultraviolet shielding functional substance.

【0013】上記の紫外線遮蔽機能物質を被覆するのに
用いられる粘土鉱物としては、層状構造を有するフィロ
ケイ酸塩が好ましく、具体的にはサポナイト、モンモリ
ロナイト等のスメクタイト、バーミキュライト、膨潤性
の雲母などが挙げられる。
As the clay mineral used for coating the above-mentioned ultraviolet shielding function material, a phyllosilicate having a layered structure is preferable, and specific examples thereof include smectites such as saponite and montmorillonite, vermiculite, and swelling mica. No.

【0014】次に本発明の紫外線遮蔽材の製造方法につ
いて説明する。本発明においては、粘土鉱物本来の膨潤
性などの特性を失わずに紫外線遮蔽機能物質と粘土鉱物
との結合力が増す温度領域が存在することに着目し、そ
の温度領域の範囲内で紫外線遮蔽機能物質と粘土鉱物の
混合物を加熱することにより、紫外線遮蔽機能物質と粘
土鉱物が強固に結合し両者が容易に剥離しない紫外線遮
蔽材を得ることを基本とする。
Next, a method for manufacturing the ultraviolet shielding material of the present invention will be described. In the present invention, attention is paid to the fact that there is a temperature region where the bonding force between the ultraviolet ray shielding functional substance and the clay mineral increases without losing the properties such as the inherent swelling properties of the clay mineral, and the ultraviolet ray shielding is performed within the temperature region. By heating a mixture of a functional substance and a clay mineral, an ultraviolet ray shielding material which is firmly bonded to the ultraviolet ray shielding functional substance and the clay mineral is not easily separated is basically obtained.

【0015】本発明における紫外線遮蔽材の製造法にお
いて、まず工程a)として、粘土鉱物を分散媒中に分散
させて粘土鉱物の分散液を調製する。このときの分散媒
としては、水、アルコールなどの極性物質が用いられ
る。これらはそれぞれ単独で用いてもよく、混合液とし
て用いてもよい。分散液の粘土鉱物の濃度は、特に限定
されるものではないが、製造効率の点から0.5〜3.
0重量%の範囲であることが好ましい。
In the method for producing an ultraviolet shielding material according to the present invention, first, as a step a), a clay mineral is dispersed in a dispersion medium to prepare a clay mineral dispersion. As the dispersion medium at this time, a polar substance such as water or alcohol is used. These may be used alone or as a mixture. The concentration of the clay mineral in the dispersion is not particularly limited, but from the viewpoint of production efficiency is 0.5 to 3.
It is preferably in the range of 0% by weight.

【0016】次に、工程b)として、紫外線遮蔽機能物
質を上記の分散液に均一に混合する。紫外線遮蔽機能物
質は、粉末状で混合してもよく、適当な分散媒に分散さ
せた分散液として混合してもよい。このときの分散媒は
粘土鉱物の分散媒と同様のものが好ましい。混合液の温
度は10〜70℃の範囲が好ましく、撹拌時間は0.5
〜24時間の範囲が好ましい。
Next, as a step b), an ultraviolet ray shielding material is uniformly mixed with the dispersion. The ultraviolet shielding functional substance may be mixed in a powder form, or may be mixed as a dispersion liquid dispersed in an appropriate dispersion medium. The dispersion medium at this time is preferably the same as the dispersion medium of the clay mineral. The temperature of the mixture is preferably in the range of 10 to 70 ° C., and the stirring time is 0.5 to 70 ° C.
A range of ~ 24 hours is preferred.

【0017】紫外線遮蔽機能物質を被覆するために用い
られる粘土鉱物の量は、紫外線遮蔽機能物質100重量
部当たり20〜500重量部が好ましい。20重量部未
満では被覆されない紫外線遮蔽機能物質が残存するので
紫外線遮蔽材の酸化分解能が大きくなり、好ましくな
い。500重量部を越すと、余分な粘土鉱物が多くなる
とともに得られる紫外線遮蔽材中の紫外線遮蔽機能物質
の相対的な量が少なくなり、紫外線の遮蔽機能が低下す
るなどの問題がでてくるので好ましくない。
The amount of the clay mineral used for coating the ultraviolet shielding material is preferably 20 to 500 parts by weight per 100 parts by weight of the ultraviolet shielding material. If the amount is less than 20 parts by weight, the unblocked ultraviolet ray shielding functional substance remains, so that the oxidation resolution of the ultraviolet ray shielding material is increased, which is not preferable. If the amount exceeds 500 parts by weight, the excess amount of the clay mineral increases, and the relative amount of the ultraviolet shielding function material in the obtained ultraviolet shielding material decreases, which causes problems such as a decrease in the ultraviolet shielding function. Not preferred.

【0018】次に、工程c)として、このようにして得
られた粘土鉱物と紫外線遮蔽物質との混合液から濾過、
遠心沈降などの手段により固液分離して固形分(ケー
キ)を得る。
Next, as step c), the mixture of the clay mineral thus obtained and the ultraviolet shielding material is filtered,
Solid-liquid separation is performed by means such as centrifugal sedimentation to obtain a solid (cake).

【0019】最後に、工程d)として、上記で得られた
ケーキを加熱することにより目的の紫外線遮蔽機能物質
が粘土鉱物で被覆された紫外線遮蔽材を得る。加熱条件
は、紫外線遮蔽機能物質と粘土鉱物との結合が強固にな
る60〜350℃の温度範囲から選ばれる。このとき加
熱処理後の紫外線遮蔽材を105ないし110℃の温度
で乾燥減量を測定したとき、乾燥減量が3ないし15重
量%の範囲となるように加熱することが好ましい。
Finally, as a step d), the above-obtained cake is heated to obtain an ultraviolet ray shielding material in which a target ultraviolet ray shielding functional substance is coated with a clay mineral. The heating conditions are selected from a temperature range of 60 to 350 ° C. at which the bond between the ultraviolet ray shielding functional substance and the clay mineral becomes strong. At this time, it is preferable to heat the ultraviolet shielding material after the heat treatment so that the loss on drying is measured at a temperature of 105 to 110 ° C. and the loss on drying is in a range of 3 to 15% by weight.

【0020】加熱温度が60℃未満または乾燥減量が1
5重量%を越えると紫外線遮蔽機能物質と粘土鉱物との
結合が不十分で、使用目的に応じて有機基材に分散する
ときに剥離し、紫外線遮蔽機能物質中のチタン酸化物が
露出するなどの問題がでてくる。また、350℃を越え
たとき、または乾燥減量が3重量%未満のときは、粘土
鉱物の特性である膨潤性が失われる。この場合、得られ
た紫外線遮蔽材を再度水などに分散しても膨潤せず、微
細粒子として分散させることができない。従って、微細
粒子化するためには機械的な粉砕に依らねばならず、粉
砕による破断面に一部紫外線遮蔽物質が露出し、好まし
くない。
The heating temperature is less than 60 ° C. or the loss on drying is 1
If the content exceeds 5% by weight, the bonding between the ultraviolet ray shielding functional substance and the clay mineral is insufficient, and the titanium oxide in the ultraviolet ray shielding functional substance is exposed due to peeling when dispersed in an organic base material according to the purpose of use. Problem comes out. On the other hand, when the temperature exceeds 350 ° C. or when the loss on drying is less than 3% by weight, the swelling characteristic of clay minerals is lost. In this case, even if the obtained ultraviolet shielding material is dispersed again in water or the like, it does not swell and cannot be dispersed as fine particles. Therefore, in order to form fine particles, it is necessary to rely on mechanical pulverization, and a part of the ultraviolet shielding material is exposed on the fracture surface by the pulverization, which is not preferable.

【0021】上記のような方法で得られた本発明に係る
紫外線遮蔽材は、紫外線遮蔽機能物質が粘土鉱物で被覆
されていて、その最外側が粘土鉱物からなる、すなわち
〔粘土鉱物(C)/紫外線遮蔽機能物質(M)/粘土鉱
物(C)〕なる構造を最小単位としている。また、紫外
線遮蔽機能物質に比較して粘土鉱物の量が少ない場合に
は、〔(C)/(M)/(C)/(M)/(C)〕のよ
うな最小単位のものが重なった構造をとることもある。
The ultraviolet shielding material according to the present invention obtained by the method described above has an ultraviolet shielding functional material coated with a clay mineral, and the outermost layer is made of a clay mineral, that is, [clay mineral (C) / Ultraviolet shielding functional material (M) / clay mineral (C)] as the minimum unit. When the amount of the clay mineral is smaller than that of the ultraviolet ray shielding material, the minimum unit such as [(C) / (M) / (C) / (M) / (C)] overlaps. In some cases, it has a different structure.

【0022】上記のような構造の本発明に係る紫外線遮
蔽材は、粘土鉱物の結晶構造が変化しない温度範囲で加
熱されているので、粘土鉱物の特性である膨潤性を保持
している。そのために得られた紫外線遮蔽材を再度水な
どの分散媒に分散させると、上記のような構造の紫外線
遮蔽材の最外側の粘土鉱物と粘土鉱物の層間に分散媒が
容易に侵入し、膨潤する。これを超音波振動などで分散
処理すると、上記の最小単位からなる構造の微粒子の分
散液が得られ、これを例えばスプレードライなどの適宜
の方法で乾燥すれば、従来のような機械的な粉砕による
ことなく、粘土鉱物で被覆された紫外線遮蔽材の微粒子
が得られる。
The ultraviolet shielding material according to the present invention having the above-mentioned structure is heated in a temperature range in which the crystal structure of the clay mineral does not change, so that it retains the swelling characteristic of the clay mineral. For this reason, when the obtained ultraviolet shielding material is dispersed again in a dispersion medium such as water, the dispersion medium easily penetrates between the layers of the outermost clay mineral and the clay mineral of the ultraviolet shielding material having the above structure and swells. I do. When this is subjected to dispersion treatment by ultrasonic vibration or the like, a dispersion of fine particles having a structure consisting of the minimum unit described above is obtained, and if this is dried by an appropriate method such as spray drying, a conventional mechanical pulverization is performed. Without the above, fine particles of the ultraviolet shielding material coated with the clay mineral can be obtained.

【0023】[0023]

【実施例】実施例1 (1)紫外線遮蔽機能物質の調製 80%酢酸水溶液1,000gにチタンテトライソプロ
ポキシド(TIP)113gを加えた後、撹拌してTI
Pを加水分解し、酸化チタン前駆体(p−TiO2 と略
記)が分散したゾルを得た。このゾルと、サポナイト
(クニミネ工業(株)製スメクトンSA、以下SAPと
略記)を純水に1.0重量%分散させたゾル4,000
gとを混合し、50℃で1時間撹拌した。このゾルから
遠心沈降により固形分を分離して、ケーキ状のSAPに
チタンの水和酸化物が担持された紫外線遮蔽機能物質
(a)を得た。
Example 1 (1) Preparation of UV-shielding functional substance 113 g of titanium tetraisopropoxide (TIP) was added to 1,000 g of an 80% aqueous acetic acid solution, and the mixture was stirred to obtain a TI.
P was hydrolyzed to obtain a sol in which a titanium oxide precursor (abbreviated as p-TiO 2 ) was dispersed. This sol and a sol 4,000 obtained by dispersing 1.0% by weight of saponite (Smecton SA manufactured by Kunimine Industries Co., Ltd .; hereinafter, abbreviated as SAP) in pure water.
and stirred at 50 ° C. for 1 hour. The solid content was separated from the sol by centrifugal sedimentation to obtain an ultraviolet shielding functional material (a) in which a hydrated oxide of titanium was supported on a cake SAP.

【0024】(2)紫外線遮蔽材の調製 上記で得られた紫外線遮蔽機能物質(a)を、上記で用
いたSAP1.0重量%分散ゾル8,000g中に分散
させ、常温で2時間撹拌した。撹拌後遠心沈降で固液分
離して得られたケーキを80℃に保持し、110℃にお
ける乾燥減量が6%になるまで乾燥して、紫外線遮蔽機
能物質(a)がサポナイトで被覆された紫外線遮蔽材
(A)を得た。
(2) Preparation of Ultraviolet Shielding Material The ultraviolet shielding functional material (a) obtained above was dispersed in 8,000 g of the above-mentioned SAP 1.0% by weight dispersion sol and stirred at room temperature for 2 hours. . After stirring, the cake obtained by solid-liquid separation by centrifugal sedimentation is kept at 80 ° C., dried until the loss on drying at 110 ° C. becomes 6%, and the ultraviolet ray having the ultraviolet ray shielding functional substance (a) coated with saponite A shielding material (A) was obtained.

【0025】実施例2 (1)紫外線遮蔽機能物質の調製 15g/L(TiO2 換算)の硫酸チタニル水溶液2L
中にカオリン30gを添加し、95℃で2時間撹拌し
た。常温まで放冷した後固液分離して、ケーキ状のSA
Pにチタンの水和化合物が担持された紫外線遮蔽機能物
質(b)を得た。
Example 2 (1) Preparation of UV shielding functional substance 2 g of 15 g / L (TiO 2 equivalent) titanyl sulfate aqueous solution
30 g of kaolin was added thereto, and the mixture was stirred at 95 ° C. for 2 hours. After cooling to room temperature, solid-liquid separation is performed, and cake-like SA
An ultraviolet ray shielding material (b) in which a hydrated compound of titanium was supported on P was obtained.

【0026】(2)紫外線遮蔽材の調製 上記で得られた紫外線遮蔽機能物質(b)を、上記で用
いたSAP1.0重量%分散ゾル6,000g中に分散
させ、常温で2時間撹拌した。撹拌後遠心沈降で固液分
離して得られたケーキを80℃に保持し、110℃にお
ける乾燥減量が8%になるまで乾燥して、紫外線遮蔽機
能物質(b)がサポナイトで被覆された紫外線遮蔽材
(B)を得た。
(2) Preparation of Ultraviolet Shielding Material The ultraviolet shielding functional material (b) obtained above was dispersed in 6,000 g of the 1.0% by weight dispersion sol of SAP used above and stirred at room temperature for 2 hours. . After stirring, the cake obtained by solid-liquid separation by centrifugal sedimentation is kept at 80 ° C., dried until the loss on drying at 110 ° C. becomes 8%, and the ultraviolet ray having the ultraviolet ray shielding functional substance (b) coated with saponite A shielding material (B) was obtained.

【0027】実施例3 (1)紫外線遮蔽機能物質の調製 TiO2 換算2重量%の硫酸チタニル水溶液に、15%
アンモニア水をpHが8.5になるまで加えて撹拌した
後、濾過洗浄して含水酸化チタンのケーキを得た。固形
分換算500gのケーキを20%過酸化水素水8,00
0g中に加え85℃で3時間撹拌してチタン酸水溶液を
得た。この水溶液中にモンモリロナイト(クニミネ工業
(株)製クニピアF)56gを加え95℃で96時間撹
拌した。常温まで放冷したのち固液分離し、ケーキ状の
モンモリロナイトにチタン水和酸化物が担持された紫外
線遮蔽機能物質(c)を得た。
Example 3 (1) Preparation of Ultraviolet Shielding Functional Material A 15% aqueous solution of 2% by weight of TiO 2 in titanyl sulfate was added.
Aqueous ammonia was added until the pH reached 8.5, and the mixture was stirred, and then filtered and washed to obtain a cake of hydrous titanium oxide. A cake of 500 g in terms of solid content is prepared by adding 850% of a 20% aqueous hydrogen peroxide solution.
In 0 g, the mixture was stirred at 85 ° C. for 3 hours to obtain a titanic acid aqueous solution. 56 g of montmorillonite (Kunimine Kogyo Co., Ltd. Kunipia F) was added to the aqueous solution, and the mixture was stirred at 95 ° C. for 96 hours. After cooling to room temperature, solid-liquid separation was carried out to obtain an ultraviolet ray shielding functional material (c) in which titanium hydrated oxide was supported on cake-like montmorillonite.

【0028】(2)紫外線遮蔽材の調製 上記で得られた紫外線遮蔽機能物質(c)を、上記で用
いたモンモリロナイト1.0重量%分散ゾル11,20
0g中に分散させ、常温で2時間撹拌した。撹拌後遠心
沈降で固液分離して得られたケーキを80℃に保持し、
110℃における乾燥減量が9%になるまで乾燥して、
紫外線遮蔽機能物質(c)がモンモリロナイトで被覆さ
れた紫外線遮蔽材(C)を得た。
(2) Preparation of Ultraviolet Shielding Material The ultraviolet shielding functional material (c) obtained above was dispersed in the montmorillonite 1.0% by weight dispersion sol 11,20 used above.
0 g, and stirred at room temperature for 2 hours. After stirring, the cake obtained by solid-liquid separation by centrifugal sedimentation is kept at 80 ° C.
Dried until the loss on drying at 110 ° C. is 9%,
An ultraviolet shielding material (C) in which the ultraviolet shielding functional material (c) was covered with montmorillonite was obtained.

【0029】比較例1 実施例1〜3で得られた紫外線遮蔽材(A)、(B)お
よび(C)をそれぞれ200メッシュ以下に粉砕したの
ち500℃で2時間焼成し、紫外線遮蔽材(D)、
(E)および(F)を得た。これらは、いずれも110
℃における乾燥減量は0.2%以下であった。
Comparative Example 1 The ultraviolet shielding materials (A), (B) and (C) obtained in Examples 1 to 3 were each pulverized to 200 mesh or less and then fired at 500 ° C. for 2 hours. D),
(E) and (F) were obtained. These are all 110
The loss on drying at 0 ° C was 0.2% or less.

【0030】比較例2 実施例2において、80℃で乾燥する代わりに60℃2
4時間保持し、110℃における乾燥減量が28%の紫
外線遮蔽材(G)を得た。
COMPARATIVE EXAMPLE 2 In Example 2, instead of drying at 80 ° C.,
After holding for 4 hours, an ultraviolet ray shielding material (G) having a loss on drying at 110 ° C. of 28% was obtained.

【0031】性能試験 以下に実施例1〜3および比較例1、2で得られた紫外
線遮蔽材(A)〜(G)および紫外線遮蔽機能物質
(a)〜(c)について、各種性能を評価した。 (1)紫外線反射スペクトルの測定 紫外線遮蔽材(A)〜(C)を200メッシュ以下に粉
砕したもの、および紫外線遮蔽機能物質(a)〜(c)
を110℃、16時間乾燥後200メッシュ以下に粉砕
したものについて、波長毎の反射率を測定した。結果を
表1に示す。また図1には紫外線遮蔽材(A)、図2に
は紫外線遮蔽機能物質(a)の紫外線反射スペクトルを
示す。(測定機器:日本分光(株)製、紫外可視分光光
度計V−550)
Performance tests Various performances were evaluated for the ultraviolet shielding materials (A) to (G) and the ultraviolet shielding functional substances (a) to (c) obtained in Examples 1 to 3 and Comparative Examples 1 and 2. did. (1) Measurement of Ultraviolet Reflection Spectrum Ultraviolet shielding materials (A) to (C) pulverized to 200 mesh or less, and ultraviolet shielding functional substances (a) to (c)
Was dried at 110 ° C. for 16 hours and pulverized to 200 mesh or less, and the reflectance at each wavelength was measured. Table 1 shows the results. FIG. 1 shows an ultraviolet ray reflection spectrum of the ultraviolet ray shielding material (A), and FIG. 2 shows an ultraviolet ray reflection spectrum of the ultraviolet ray shielding material (a). (Measurement instrument: UV-visible spectrophotometer V-550, manufactured by JASCO Corporation)

【0032】[0032]

【表1】 表1および図1の結果から明らかなように、粘土鉱物で
被覆された紫外線遮蔽材(A)〜(C)と被覆されてい
ない紫外線遮蔽機能物質(a)〜(c)の紫外線反射能
に大きな変化がないことがわかる。
[Table 1] As is clear from the results shown in Table 1 and FIG. 1, the UV-reflecting ability of the UV-shielding materials (A) to (C) coated with the clay mineral and the UV-shielding functional materials (a) to (c) not coated were measured. It can be seen that there is no significant change.

【0033】(2)紫外線透過強度の測定 前記(1)で用いた紫外線遮蔽材(A)〜(C)および
紫外線遮蔽機能物質(a)〜(c)をそれぞれ、流動パ
ラフィンに対するTiO2 換算重量比が0.1になるよ
うに流動パラフィンに分散させ、これを隙間厚さ0.0
6mmの2枚の石英板に挟んで紫外線を照射し、300
nmの波長の光の透過強度を測定した。結果を表2に示
す。
(2) Measurement of Ultraviolet Transmission Intensity The ultraviolet shielding materials (A) to (C) and the ultraviolet shielding functional substances (a) to (c) used in the above (1) were each converted into TiO 2 weight relative to liquid paraffin. Disperse in liquid paraffin so that the ratio becomes 0.1,
UV light is applied between two 6 mm quartz plates,
The transmission intensity of light having a wavelength of nm was measured. Table 2 shows the results.

【0034】[0034]

【表2】 表2の結果からわかるように、粘土鉱物による被覆体と
非被覆体との差は小さいことがわかる。なお、ブランク
は、流動パラフィンのみの透過強度である。
[Table 2] As can be seen from the results in Table 2, the difference between the coated body and the uncoated body made of the clay mineral is small. In addition, the blank is the transmission intensity of only liquid paraffin.

【0035】(3)膨潤性および分散性の評価 紫外線遮蔽材(A)〜(F)および前記(1)で用いた
紫外線遮蔽機能物質(a)〜(c)をそれぞれ2gずつ
メスシリンダーに入れ、タッピングしたのち水を加えて
48時間静置した。静置後の固形分の嵩の増加分を測定
した。表3に結果を示す。
(3) Evaluation of swellability and dispersibility 2 g of each of the ultraviolet shielding materials (A) to (F) and the ultraviolet shielding functional substances (a) to (c) used in the above (1) were placed in a measuring cylinder. After tapping, water was added and the mixture was allowed to stand for 48 hours. The increase in the bulk of the solid after standing was measured. Table 3 shows the results.

【0036】[0036]

【表3】 表3の結果からわかるように、粘土鉱物で被覆されない
紫外線遮蔽機能物質(a)〜(c)はほとんど嵩が増え
ていないのに対し、紫外線遮蔽材(A)〜(C)は著し
く嵩が増え、膨潤していることがわかる。また、500
℃で焼成した紫外線遮蔽材(D)〜(F)は嵩が増え
ず、膨潤性が失われていることがわかる。
[Table 3] As can be seen from the results in Table 3, the UV-shielding functional substances (a) to (c) which are not coated with the clay mineral have almost no increase in bulk, whereas the UV-shielding materials (A) to (C) have significantly higher bulk. It can be seen that it has increased and swelled. Also, 500
It can be seen that the ultraviolet shielding materials (D) to (F) fired at ℃ did not increase in bulk and lost their swelling properties.

【0037】さらに、紫外線遮蔽材(A)と紫外線遮蔽
材(D)の膨潤後の試験品を超音波発信器により十分に
分散させて粒度分布を測定した。測定結果を図3に示
す。図3から明らかなように、紫外線遮蔽材(A)の膨
潤品はメヂアン径2.2μmの微粒子に容易に分散して
いるのに対し、紫外線遮蔽材(D)は粉砕時の粒径分布
と同じであり、十分に分散していないことがわかる。
Further, the test product after swelling of the ultraviolet ray shielding material (A) and the ultraviolet ray shielding material (D) was sufficiently dispersed by an ultrasonic transmitter to measure the particle size distribution. FIG. 3 shows the measurement results. As apparent from FIG. 3, the swelled product of the ultraviolet shielding material (A) is easily dispersed in the fine particles having a median diameter of 2.2 μm, whereas the ultraviolet shielding material (D) has a particle size distribution at the time of pulverization. It can be seen that they are the same and are not sufficiently dispersed.

【0038】(4)光触媒機能の比較 紫外線遮蔽材(A)〜(C)および(G)と、前記
(1)で用いた紫外線遮蔽機能物質(a)〜(c)をイ
オン交換水で膨潤および分散してスラリーを調製した。
これらのスラリーを100mm角の石英板に、TiO2
として50mgになるように塗布し、500℃で2時間
焼成して被膜を固定化した。紫外線遮蔽材(A)〜
(C)の塗布膜は、平滑で透明感があった。これらの石
英板をそれぞれ100ppmのアセトアルデヒドととも
に透明容器に封入し、紫外線を所定時間照射して光触媒
によるアセトアルデヒドの酸化分解機能を評価した。表
4にそれぞれの透明容器中のアセトアルデヒドの残存濃
度を示す。
(4) Comparison of photocatalytic functions The ultraviolet shielding materials (A) to (C) and (G) and the ultraviolet shielding functional materials (a) to (c) used in the above (1) are swollen with ion-exchanged water. And dispersed to prepare a slurry.
These slurries were placed on a 100 mm square quartz plate with TiO 2
, And baked at 500 ° C. for 2 hours to fix the coating. UV shielding material (A)
The coating film of (C) was smooth and transparent. Each of these quartz plates was sealed in a transparent container together with 100 ppm of acetaldehyde, and irradiated with ultraviolet rays for a predetermined time to evaluate the photocatalytic oxidative decomposition function of acetaldehyde. Table 4 shows the residual concentration of acetaldehyde in each transparent container.

【0039】[0039]

【表4】 [Table 4]

【0040】また、図4はブランク、紫外線遮蔽材
(B)および紫外線遮蔽機能物質(b)についてのアセ
トアルデヒド残存量の変化を示す。表4および図4から
わかるとおり、紫外線遮蔽材(A)〜(C)はブランク
とほぼ同程度の残存量を示しているのに対し、紫外線遮
蔽機能物質(a)〜(c)は照射時間とともに急激に残
存量が減少している。このことから、紫外線遮蔽機能物
質を粘土鉱物で被覆することにより光触媒機能が効果的
に抑制されていることがわかる。
FIG. 4 shows the change in the residual amount of acetaldehyde for the blank, the ultraviolet shielding material (B) and the ultraviolet shielding functional material (b). As can be seen from Table 4 and FIG. 4, the ultraviolet shielding materials (A) to (C) show almost the same residual amount as the blank, whereas the ultraviolet shielding functional substances (a) to (c) show the irradiation time. At the same time, the remaining amount sharply decreases. This indicates that the photocatalytic function is effectively suppressed by coating the ultraviolet shielding material with the clay mineral.

【0041】また、紫外線遮蔽材(B)とこれに対応す
る紫外線遮蔽材(G)を比較すると、紫外線遮蔽材
(G)の方が紫外線遮蔽材(B)よりも大きな酸化分解
能を示している。このことから、粘土鉱物で被覆後十分
な加熱を行わない場合は、紫外線遮蔽機能物質と粘土鉱
物との結合が不十分で、水などへ分散させたとき両者が
分離し、一部のチタン酸化物などの露出面が生じたこと
を示している。
Further, comparing the ultraviolet shielding material (B) and the corresponding ultraviolet shielding material (G), the ultraviolet shielding material (G) has a higher oxidation resolution than the ultraviolet shielding material (B). . For this reason, if sufficient heating is not performed after coating with the clay mineral, the bond between the ultraviolet shielding functional material and the clay mineral is insufficient, and when dispersed in water, etc., both are separated and some titanium oxide This indicates that an exposed surface such as an object has occurred.

【0042】以上の性能試験の結果から明らかなよう
に、本発明に係る紫外線遮蔽材は粘土鉱物で被覆されて
いても紫外線の反射および透過に大きな差はなく、紫外
線遮蔽材としての機能は損なわれていないことがわか
る。ー方、光触媒としての酸化分解機能は大幅に低下し
ていることから、粘上鉱物による被覆が十分に行われて
いることがわかる。
As is evident from the results of the performance tests described above, even if the ultraviolet shielding material according to the present invention is coated with a clay mineral, there is no significant difference in the reflection and transmission of ultraviolet light, and the function as the ultraviolet shielding material is impaired. You can see that it is not. On the other hand, the oxidative decomposition function as a photocatalyst is significantly reduced, indicating that the coating with the visco-mineral is sufficiently performed.

【0043】[0043]

【発明の効果】本発明によれば、紫外線遮蔽機能物質と
シート状の粘土鉱物を十分に混合したのち固液分離後、
比較的低温で加熱するという極めて単純な操作によっ
て、紫外線遮蔽機能物質の粘土鉱物による被覆が可能で
ある。
According to the present invention, after sufficiently mixing the ultraviolet ray shielding functional material and the sheet-like clay mineral, the solid-liquid separation is performed.
By a very simple operation of heating at a relatively low temperature, it is possible to coat the ultraviolet shielding functional substance with a clay mineral.

【0044】このようにして得られた本発明に係る紫外
線遮蔽材は、粘土鉱物で被覆されていても紫外線の吸収
能が損なわれないので、紫外線遮蔽材としての機能を十
分備えている。一方、光触媒としての酸化分解機能は大
幅に低下しているので、有機基材などに添加しても有機
基材を光劣化させることがない。さらに、本発明に係る
紫外線遮蔽材を水などの分散媒に分散させると、容易に
膨潤し、機械的粉砕などの手段をとることなく均一な粒
径の微粒子の分散液が得られる。従って、微粒子化のた
めの機械的粉砕によって一部の紫外線遮蔽物質が露出す
るなどの問題がない。
The ultraviolet shielding material according to the present invention obtained in this way does not impair the ability to absorb ultraviolet light even when coated with a clay mineral, and thus has a sufficient function as an ultraviolet shielding material. On the other hand, since the oxidative decomposition function as a photocatalyst is significantly reduced, the organic base material does not deteriorate by light even when added to an organic base material. Further, when the ultraviolet shielding material according to the present invention is dispersed in a dispersion medium such as water, it easily swells, and a dispersion liquid of fine particles having a uniform particle size can be obtained without taking any means such as mechanical pulverization. Therefore, there is no problem that a part of the ultraviolet shielding material is exposed by mechanical pulverization for forming fine particles.

【0045】上記のような特性を持った本発明に係る紫
外線遮蔽材は種々の用途に用いることができる。例え
ば、フィルム製造用原料樹脂に、微粒子状の本発明に係
る紫外線遮蔽材を練り込みフィルムに延伸すれば、微粒
子状紫外線遮蔽材が均一に分散した、隠蔽率が高く紫外
線遮蔽機能に優れ、しかも光触媒による劣化がないフィ
ルムが得られる。
The ultraviolet shielding material according to the present invention having the above characteristics can be used for various applications. For example, if the fine particles of the ultraviolet shielding material according to the present invention are kneaded and stretched into a film, the fine particles of the ultraviolet shielding material are uniformly dispersed, the concealing ratio is high and the ultraviolet shielding function is excellent, and A film free from degradation by the photocatalyst is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られた、紫外線遮蔽材(A)の
紫外線反射スペクトルを示す。
FIG. 1 shows an ultraviolet reflection spectrum of an ultraviolet shielding material (A) obtained in Example 1.

【図2】 実施例1で得られた、紫外線遮蔽機能物質
(a)の紫外線反射スペクトルを示す。
FIG. 2 shows an ultraviolet reflection spectrum of the ultraviolet shielding functional material (a) obtained in Example 1.

【図3】 実施例1で得られた紫外線遮蔽材(A)およ
び比較例1で得られた紫外線遮蔽材(D)の膨潤および
分散後の粒度分布を示す。
FIG. 3 shows the particle size distribution of the ultraviolet shielding material (A) obtained in Example 1 and the ultraviolet shielding material (D) obtained in Comparative Example 1 after swelling and dispersion.

【図4】 実施例2で得られた、紫外線遮蔽材(B)お
よび紫外線遮蔽機能物質(b)の光触媒機能としての酸
化分解能を示す。
FIG. 4 shows the oxidative resolution as a photocatalytic function of the ultraviolet shielding material (B) and the ultraviolet shielding functional substance (b) obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 7/40 A61K 7/40 (C08K 9/02 3:22) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) A61K 7/40 A61K 7/40 (C08K 9/02 3:22)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 紫外線遮蔽機能物質を粘土鉱物で被覆し
たことを特徴とする紫外線遮蔽材。
1. An ultraviolet shielding material comprising an ultraviolet shielding functional material coated with a clay mineral.
【請求項2】 前記粘土鉱物がフィロケイ酸塩であるこ
とを特徴とする請求項1に記載の紫外線遮蔽材。
2. The ultraviolet shielding material according to claim 1, wherein the clay mineral is a phyllosilicate.
【請求項3】 前記紫外線遮蔽機能物質が紫外線遮蔽機
能を有する無機化合物を含むことを特徴とする請求項1
または2に記載の紫外線遮蔽材。
3. The ultraviolet shielding material includes an inorganic compound having an ultraviolet shielding function.
Or the ultraviolet shielding material according to 2.
【請求項4】 前記紫外線遮蔽機能を有する無機化合物
がチタン酸化物であることを特徴とする請求項3に記載
の紫外線遮蔽材。
4. The ultraviolet shielding material according to claim 3, wherein the inorganic compound having an ultraviolet shielding function is titanium oxide.
【請求項5】 紫外線遮蔽材の製造方法であって、以下
の工程 a)粘土鉱物を分散媒中に分散させて粘土鉱物の分散液
を調製する工程、 b)紫外線遮蔽機能物質を前記粘土鉱物分散液に混合す
る工程、 c)前記混合物を固液分離する工程、および d)前記工程c)で得られた固形分を加熱する工程を含
むことを特徴とする前記方法。
5. A method for producing an ultraviolet ray shielding material, comprising the following steps: a) a step of dispersing a clay mineral in a dispersion medium to prepare a dispersion of the clay mineral; Mixing the mixture with a dispersion, c) separating the mixture into a solid and a liquid, and d) heating the solid obtained in the step c).
【請求項6】 前記工程d)の加熱温度が60〜350
℃の範囲であることを特徴とする請求項5に記載の紫外
線遮蔽材の製造方法。
6. The heating temperature in the step d) is 60 to 350.
The method for producing an ultraviolet shielding material according to claim 5, wherein the temperature is in the range of ° C.
【請求項7】 前記粘土鉱物がフィロケイ酸塩であるこ
とを特徴とする請求項5または6に記載の紫外線遮蔽材
の製造方法。
7. The method according to claim 5, wherein the clay mineral is a phyllosilicate.
【請求項8】 前記紫外線遮蔽機能物質が紫外線遮蔽機
能を有する無機化合物を含むことを特徴とする請求項5
ないし7に記載の紫外線遮蔽材の製造方法。
8. The ultraviolet ray shielding material includes an inorganic compound having an ultraviolet ray shielding function.
8. The method for producing an ultraviolet shielding material according to any one of Items 1 to 7.
【請求項9】 前記紫外線遮蔽機能を有する無機化合物
がチタン酸化物であることを特徴とする請求項8に記載
の紫外線遮蔽材の製造方法。
9. The method according to claim 8, wherein the inorganic compound having an ultraviolet shielding function is a titanium oxide.
JP11127680A 1998-05-14 1999-05-07 Ultraviolet-screening material and its preparation Withdrawn JP2000034465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127680A JP2000034465A (en) 1998-05-14 1999-05-07 Ultraviolet-screening material and its preparation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-148284 1998-05-14
JP14828498 1998-05-14
JP11127680A JP2000034465A (en) 1998-05-14 1999-05-07 Ultraviolet-screening material and its preparation

Publications (1)

Publication Number Publication Date
JP2000034465A true JP2000034465A (en) 2000-02-02

Family

ID=26463576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127680A Withdrawn JP2000034465A (en) 1998-05-14 1999-05-07 Ultraviolet-screening material and its preparation

Country Status (1)

Country Link
JP (1) JP2000034465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036418A (en) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology Film material with photocatalytic function
JP2002220549A (en) * 2000-11-24 2002-08-09 Ishihara Sangyo Kaisha Ltd Granular inorganic filler and method for producing the same and resin composition compounded with the same
CN115232485A (en) * 2022-07-13 2022-10-25 塔里木大学 Leech Dan Ziwai barrier material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036418A (en) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology Film material with photocatalytic function
JP2002220549A (en) * 2000-11-24 2002-08-09 Ishihara Sangyo Kaisha Ltd Granular inorganic filler and method for producing the same and resin composition compounded with the same
JP4598303B2 (en) * 2000-11-24 2010-12-15 石原産業株式会社 Granular inorganic filler, process for producing the same, and resin composition comprising the granular inorganic filler
CN115232485A (en) * 2022-07-13 2022-10-25 塔里木大学 Leech Dan Ziwai barrier material and preparation method and application thereof
CN115232485B (en) * 2022-07-13 2023-11-07 塔里木大学 Vermiculite ultraviolet blocking material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4974459B2 (en) Support comprising a photocatalytic TiO2 layer
GB2226018A (en) Titanium dioxide dispersions
JP3755852B2 (en) Coating liquid for forming transparent film having photocatalytic activity and substrate with transparent film
JP4382607B2 (en) Titanium oxide particles
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP2549691B2 (en) Method for producing titanium oxide coated body
JP4153066B2 (en) Method for producing strongly cohesive titanium oxide
JP4540971B2 (en) Neutral titanium oxide sol and method for producing the same
JP5343604B2 (en) Method for producing titanium oxide photocatalyst thin film
JP2000034465A (en) Ultraviolet-screening material and its preparation
JP4382872B1 (en) Method for producing titanium oxide particles
JP2861806B2 (en) Metal oxide fine particle dispersed flake glass and method for producing the same
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP3978636B2 (en) Coating composition for photocatalyst film formation
KR100324406B1 (en) UV blocking Material and Method of fabricating the same
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
JP3537110B2 (en) Coating composition for forming transparent film having photocatalytic activity and substrate with transparent film
JP2010090011A (en) Titanium oxide powder, dispersion liquid, and method of producing the titanium oxide powder
JP5327848B2 (en) Ultraviolet shielding dispersion and ultraviolet shielding coating composition
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
JPH09124319A (en) Titanium dioxide powder having high masking ability and its production
JPH11236515A (en) Ultraviolet ray screening fine particle composition and application thereof
JP3199332B2 (en) Polymer-metal composite, method for producing the same, solid surface treatment agent and ultraviolet shielding agent using the same
JP6096536B2 (en) Photocatalyst composite particles and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801