JP6096536B2 - Photocatalyst composite particles and method for producing the same - Google Patents

Photocatalyst composite particles and method for producing the same Download PDF

Info

Publication number
JP6096536B2
JP6096536B2 JP2013045384A JP2013045384A JP6096536B2 JP 6096536 B2 JP6096536 B2 JP 6096536B2 JP 2013045384 A JP2013045384 A JP 2013045384A JP 2013045384 A JP2013045384 A JP 2013045384A JP 6096536 B2 JP6096536 B2 JP 6096536B2
Authority
JP
Japan
Prior art keywords
particles
photocatalyst
particle
photocatalyst composite
mother
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045384A
Other languages
Japanese (ja)
Other versions
JP2014171940A (en
Inventor
貴文 廣瀬
貴文 廣瀬
番場 昭典
昭典 番場
小池 匡
匡 小池
田中 尚樹
尚樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2013045384A priority Critical patent/JP6096536B2/en
Publication of JP2014171940A publication Critical patent/JP2014171940A/en
Application granted granted Critical
Publication of JP6096536B2 publication Critical patent/JP6096536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は、光触媒複合粒子及びその製造方法に関するものである。   The present invention relates to a photocatalyst composite particle and a method for producing the same.

酸化チタンに代表される光触媒は、そのバンドギャップ以上のエネルギーに相当する光が照射されると強い有機物分解力と光励起超親水化現象を示す。すなわち、光触媒が光を吸収した際に発生する正孔と励起電子は、水や酸素に伝播し、強力な酸化力や還元力を持つラジカルを生成する。このラジカルにより有機物を分解する有機物分解力が発現する。また、光を受けた光触媒は励起され、結晶中の酸素を酸化して分離させる。結果として光触媒中に酸素痕跡の欠陥を形成し、この欠陥に水分子が吸着されることによって光励起超親水化現象を発現する。   A photocatalyst typified by titanium oxide exhibits a strong organic substance decomposing force and a photoexcited superhydrophilic phenomenon when irradiated with light corresponding to an energy exceeding its band gap. That is, the holes and excited electrons generated when the photocatalyst absorbs light propagates to water and oxygen to generate radicals having strong oxidizing power and reducing power. The organic substance decomposing power for decomposing the organic substance is expressed by this radical. In addition, the photocatalyst that has received the light is excited to oxidize and separate oxygen in the crystal. As a result, a defect of an oxygen trace is formed in the photocatalyst, and a water molecule is adsorbed to the defect to develop a photoexcited superhydrophilic phenomenon.

光触媒を用いた屋外用途製品においては、光励起超親水化現象を応用しセルフクリーニング機能を付与できることが知られている。ところが、有機基材などに直接塗布した場合には、その有機物分解力により有機基材自身を侵食してしまうという問題が指摘されている(例えば、特許文献1)。   In outdoor use products using a photocatalyst, it is known that a self-cleaning function can be imparted by applying a photoexcited superhydrophilic phenomenon. However, it has been pointed out that when directly applied to an organic base material or the like, the organic base material itself is eroded by its organic substance decomposing power (for example, Patent Document 1).

上記特許文献1には、結晶子径が1〜10nmの範囲内にある結晶質酸化チタン、または、光半導体結晶物としてチューブ厚みが1〜10nmの範囲内にある光半導体ナノチューブを、少なくとも一方の主表面に含有することにより、太陽光照射下において、有機物分解力を抑制しつつ、光励起超親水化現象を示す光触媒膜が開示されている。   In Patent Document 1, at least one of crystalline titanium oxide having a crystallite diameter in the range of 1 to 10 nm or an optical semiconductor nanotube having a tube thickness in the range of 1 to 10 nm as an optical semiconductor crystal is provided. A photocatalyst film that exhibits a photoexcited superhydrophilization phenomenon while suppressing the decomposition of organic substances under sunlight irradiation by being contained on the main surface is disclosed.

また、結晶子を小さくすることで発現する量子サイズ効果を応用し、結晶性酸化チタン自体の光吸収量を減らすことにより、結晶性酸化チタンの有機物分解力を抑制できることが開示されている(例えば、特許文献2)。上記特許文献2には、市販される結晶子径の大きな結晶性酸化チタンに、強力な紫外線を照射することでフォトコロージョン(光溶解)させることにより、結晶子径の小さい結晶性酸化チタン粒子を得られることが開示されている。なお、量子サイズ効果とは、粒子径が小さくなるにつれて、バンドギャップエネルギーが増加する現象をいう。   In addition, it is disclosed that by applying the quantum size effect expressed by reducing the crystallite and reducing the light absorption amount of the crystalline titanium oxide itself, the organic substance decomposing power of the crystalline titanium oxide can be suppressed (for example, Patent Document 2). In Patent Document 2, crystalline titanium oxide particles having a small crystallite diameter are obtained by photocorrosion (photodissolution) by irradiating strong ultraviolet rays to commercially available crystalline titanium oxide having a large crystallite diameter. It is disclosed that it can be obtained. The quantum size effect is a phenomenon in which the band gap energy increases as the particle size decreases.

特開2009−208062号公報JP 2009-208062 A 特開2012−5999号公報JP 2012-5999 A

しかしながら上記特許文献1の場合、光触媒膜を製造するには、非晶質酸化チタン膜を出発原料とし、水分存在下で100℃以下の温度で処理をするので、所望の結晶を多量に生成させるためには、数十時間〜数百時間もの比較的長い時間が必要である。したがって上記特許文献1の光触媒膜は、効率的に製造することが困難であるという問題があった。   However, in the case of the above-mentioned Patent Document 1, in order to produce a photocatalytic film, an amorphous titanium oxide film is used as a starting material, and treatment is performed at a temperature of 100 ° C. or less in the presence of moisture, so that a large amount of desired crystals are generated. For this purpose, a relatively long time of several tens of hours to several hundreds of hours is required. Therefore, the photocatalyst film of Patent Document 1 has a problem that it is difficult to produce it efficiently.

また上記特許文献2の場合、酸化チタン原料の狭い領域に光を照射して酸化チタン原料に含まれる結晶を光溶解させる必要があるので、原料のロスが大きい(収率<30%)という問題があった。さらに得られる結晶性酸化チタン粒子は粒径が数nm程度と小さいため、凝集などにより他の材料への複合化が難しく、取扱いが困難であるという問題があった。   Further, in the case of the above-mentioned Patent Document 2, it is necessary to irradiate light to a narrow region of the titanium oxide raw material to photodissolve the crystals contained in the titanium oxide raw material, so that there is a problem that the loss of the raw material is large (yield <30%). was there. Furthermore, since the obtained crystalline titanium oxide particles have a small particle size of about several nanometers, there is a problem that they are difficult to be combined with other materials due to aggregation or the like and are difficult to handle.

そこで本発明は、有機物分解力を抑制しつつ、光励起超親水化現象を発現することができる光触媒複合粒子を提供することを目的とする。   Then, this invention aims at providing the photocatalyst composite particle which can express a photoexcited superhydrophilic phenomenon, suppressing organic substance decomposition power.

本発明に係る光触媒複合粒子は、無機酸化物で形成された母粒子と、前記母粒子表面に固定され、光触媒粒子で形成された結晶部を有する被覆層とを備える光触媒複合粒子において、前記被覆層の厚みは0.5nm以上13nm以下であり、前記光触媒複合粒子5gを45gのイソプロパノールに加えて室温下で4時間超音波処理し6時間放置した分散液の粒径分布解析により求められる重量換算粒子径が、前記光触媒複合粒子の走査型電子顕微鏡を用いた100,000倍の画像の20個の粒子から求めた平均粒子径の2倍未満であることを特徴とする。 The photocatalyst composite particle according to the present invention is a photocatalyst composite particle comprising a base particle formed of an inorganic oxide and a coating layer having a crystal part fixed on the surface of the base particle and formed of the photocatalyst particle. the thickness of the layer Ri der than 13nm or less 0.5 nm, the weight obtained by particle size distribution analysis of the 4-hour sonication was allowed to dispersion for 6 hours at room temperature the photocatalyst composite particles 5g in addition to isopropanol 45g The converted particle size is characterized by being less than twice the average particle size obtained from 20 particles of 100,000 times images of the photocatalyst composite particles using a scanning electron microscope .

本発明に係る光触媒複合粒子の製造方法は、無機酸化物で形成された母粒子と、前記母粒子表面に固定され、光触媒粒子で形成された結晶部を有する被覆層とを備える光触媒複合粒子の製造方法において、前記母粒子はゾルゲル法により形成されたものであり、前記母粒子の水分散スラリーにアルコールを加え、前記母粒子を前記アルコールに分散させた分散液とすることと、前記母粒子が分散した前記分散液に光触媒化合物を混合して加水分解により前記母粒子表面に前記光触媒粒子の被覆層を形成することと、前記被覆層を500℃〜1200℃の温度で加熱処理することとを備えることを特徴とする。 A method for producing a photocatalyst composite particle according to the present invention is a photocatalyst composite particle comprising: a mother particle formed of an inorganic oxide; and a coating layer having a crystal part fixed on the surface of the mother particle and formed of the photocatalyst particle. In the production method, the mother particles are formed by a sol-gel method, and an alcohol is added to an aqueous dispersion slurry of the mother particles to obtain a dispersion in which the mother particles are dispersed in the alcohol; and it but to form a coating layer of the photocatalyst particles on the surface of the base particles by hydrolysis by mixing a photocatalyst compound to the dispersion prepared by dispersing, and heat treating the coating layer at a temperature of 500 ° C. to 1200 ° C. It is characterized by providing.

本発明によれば、結晶部は、粒径が数nm程度の大きさであるので、量子サイズ効果を発現し、一般的なバルクの光触媒結晶よりもバンドギャップが大きいので、有機物分解力を抑制しつつ、光励起超親水化現象を発現することができる。   According to the present invention, since the crystal part has a particle size of about several nanometers, it exhibits a quantum size effect and has a larger band gap than a general bulk photocatalytic crystal, thereby suppressing the organic substance decomposing power. However, the photoexcited superhydrophilic phenomenon can be exhibited.

実施例及び比較例に係る粒子のTEM像であり、図1Aは実施例1−4−a、図1Bは実施例1−4−b、図1Cは実施例1−4−c、図1Dは比較例4−1−aである。FIG. 1A is a TEM image of particles according to Example and Comparative Example, FIG. 1A is Example 1-4-a, FIG. 1B is Example 1-4-b, FIG. 1C is Example 1-4-c, and FIG. This is Comparative Example 4-1-a. 比較例に係る粒子のSEM像であり、図2Aは比較例1−0、図2Bは比較例1−1、図2Cは比較例1−2、図2Dは比較例1−3、図2Eは比較例1−4、図2Fは比較例1−5である。2A is a SEM image of particles according to a comparative example, FIG. 2A is Comparative Example 1-0, FIG. 2B is Comparative Example 1-1, FIG. 2C is Comparative Example 1-2, FIG. 2D is Comparative Example 1-3, and FIG. Comparative Example 1-4 and FIG. 2F are Comparative Example 1-5. 比較例に係る粒子のSEM像であり、図3Aは比較例2−0、図3Bは比較例2−1、図3Cは比較例2−2、図3Dは比較例2−3、図3Eは比較例2−4、図3Fは比較例2−5、図3Gは比較例2−6である。3A is a SEM image of particles according to a comparative example, FIG. 3A is Comparative Example 2-0, FIG. 3B is Comparative Example 2-1, FIG. 3C is Comparative Example 2-2, FIG. 3D is Comparative Example 2-3, and FIG. Comparative Example 2-4 and FIG. 3F are Comparative Example 2-5, and FIG. 3G is Comparative Example 2-6. 比較例に係る粒子のSEM像であり、図4Aは比較例3−0、図4Bは比較例3−1、図4Cは比較例3−2、図4Dは比較例3−3、図4Eは比較例3−4である。4A is an SEM image of particles according to a comparative example, FIG. 4A is Comparative Example 3-0, FIG. 4B is Comparative Example 3-1, FIG. 4C is Comparative Example 3-2, FIG. 4D is Comparative Example 3-3, and FIG. This is Comparative Example 3-4. 比較例に係る粒子のSEM像であり、図5Aは比較例4−1、図5Bは比較例4−2である。It is a SEM image of the particle concerning a comparative example, and Drawing 5A is comparative example 4-1, and Drawing 5B is comparative example 4-2.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(全体構成)
本実施形態に係る物品は、基材と、当該基材表面に形成された光触媒膜とを備える。基材は、例えばポリメチルメタクリレートなどのアクリル樹脂、ポリスチレンやABS樹脂などのスチレン系樹脂、ポリエチレンやポリプロピレンなどのオレフィン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系樹脂、6−ナイロンや6,6−ナイロンなどのポリアミド系樹脂、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリフェニレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、ポリイミド系樹脂、セルロースアセテートなどのセルロース系樹脂、ポリ乳酸やポリグリコール酸、ポリブチレンサクシネート、ポリビニルアルコールなどの生分解性樹脂などで形成することができる。また、基材は、金属系材料、ガラスやセラミックス系材料、その他各種無機系または金属系材料からなる部材の表面に、有機系塗膜を有するものも含む。また、金属系材料、ガラスやセラミックス系材料、その他各種無機系または金属系材料からなる部材でもよい。
(overall structure)
The article according to the present embodiment includes a base material and a photocatalytic film formed on the surface of the base material. Examples of the base material include acrylic resins such as polymethyl methacrylate, styrene resins such as polystyrene and ABS resins, olefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, 6-nylon and 6, Polyamide resins such as 6-nylon, polyvinyl chloride resins, polycarbonate resins, polyphenylene sulfide resins, polyphenylene ether resins, polyimide resins, cellulose resins such as cellulose acetate, polylactic acid, polyglycolic acid, polybutylene It can be formed with biodegradable resins such as succinate and polyvinyl alcohol. Further, the base material includes those having an organic coating film on the surface of a member made of a metal-based material, glass, a ceramic-based material, or other various inorganic or metal-based materials. Further, it may be a member made of a metal material, glass or ceramic material, or other various inorganic or metal materials.

光触媒膜は光触媒複合粒子を含む。光触媒複合粒子は、母粒子と、当該母粒子表面に形成された被覆層とを備える。   The photocatalyst film includes photocatalyst composite particles. The photocatalyst composite particles include base particles and a coating layer formed on the surface of the base particles.

母粒子は、直径が10nm以上2μm以下であるのが好ましい。10nm未満であると、凝集体を作りやすく、また、合成液が粘調になるので取り扱いが困難になる。一方、2μm以上であると、反応液中で沈降して、均質な合成を得ることが困難になる。   The mother particles preferably have a diameter of 10 nm to 2 μm. When the thickness is less than 10 nm, it is easy to form an aggregate, and the synthetic solution becomes viscous, making handling difficult. On the other hand, if it is 2 μm or more, it will be precipitated in the reaction solution, making it difficult to obtain a homogeneous synthesis.

母粒子は、直径が20nm以上200nm未満であるのがより好ましい。上記範囲内であれば、透明性が要求される光学用途にも用いることができる。   More preferably, the mother particles have a diameter of 20 nm or more and less than 200 nm. If it is in the said range, it can be used also for the optical use by which transparency is requested | required.

母粒子は、無機物を含む無機酸化物で形成され、好ましくはシリカで形成される。無機酸化物としてはシリカに限定されず、例えば酸化チタン、ジルコニア、酸化バリウム、酸化鉄、酸化コバルト、酸化クロム、酸化バナジウム、酸化ハフニウム、酸化マグネシウム、酸化ストロンチウムなどを用いることができる。また母粒子はゾルゲル法で形成されるのが好ましい。   The mother particle is formed of an inorganic oxide containing an inorganic substance, and is preferably formed of silica. The inorganic oxide is not limited to silica, and for example, titanium oxide, zirconia, barium oxide, iron oxide, cobalt oxide, chromium oxide, vanadium oxide, hafnium oxide, magnesium oxide, strontium oxide, and the like can be used. The mother particles are preferably formed by a sol-gel method.

被覆層は、光触媒粒子で形成された結晶部を有する。光触媒粒子は、例えば酸化チタン、酸化亜鉛などで形成することができる。   The coating layer has a crystal part formed of photocatalytic particles. The photocatalyst particles can be formed of, for example, titanium oxide or zinc oxide.

被覆層は、厚みが0.5nm以上13nm以下である。被覆層は、厚みが0.5nm未満の場合、粒子状に生成する光触媒の塊も1nm未満のサイズになり、結晶子を生成するのに十分なアモルファス体の空間がなく、結晶子が生成されないため光触媒活性を得ることができない。   The coating layer has a thickness of 0.5 nm to 13 nm. When the coating layer has a thickness of less than 0.5 nm, the mass of photocatalyst produced in the form of particles also has a size of less than 1 nm, there is not enough amorphous space to produce crystallites, and no crystallites are produced. Therefore, photocatalytic activity cannot be obtained.

一方、被覆層は、厚みが13nmを超えると、合成時に粒子表面以外でも光触媒化合物が反応してしまい、粒子間の合着が懸念されると共に、生成する結晶子が一般的なバルクの光触媒結晶の結晶子と同様の形態になり、量子サイズ効果が見込めない。したがって厚みが13nmを超えると、有機物分解力を抑制することができない。さらに厚みが13nmを超えると、合成時に粒子表面以外でも光触媒化合物が反応してしまい、粒子間が合着するので、分散性が悪化する。   On the other hand, when the thickness of the coating layer exceeds 13 nm, the photocatalyst compound reacts outside the particle surface during synthesis, and there is a concern about the coalescence between the particles, and the generated crystallite is a general bulk photocatalytic crystal. The quantum size effect cannot be expected. Therefore, when the thickness exceeds 13 nm, the organic substance decomposition force cannot be suppressed. Further, when the thickness exceeds 13 nm, the photocatalytic compound reacts outside the particle surface at the time of synthesis and the particles are coalesced, so that dispersibility is deteriorated.

被覆層は、厚みが1nm以上8nm未満であることが好ましい。厚みが上記範囲内であれば、粒子間での合着が起きることなく光触媒複合粒子の合成が可能であり、母粒子表面に固定される光触媒粒子は極小のため、生成される結晶部も小さくすることができ、結果として量子サイズ効果をより確実に発現できる。   The coating layer preferably has a thickness of 1 nm or more and less than 8 nm. If the thickness is within the above range, it is possible to synthesize photocatalyst composite particles without causing coalescence between particles, and since the photocatalyst particles fixed on the surface of the mother particles are extremely small, the generated crystal part is also small. As a result, the quantum size effect can be expressed more reliably.

当該光触媒複合粒子は、バンドギャップが3.3eV以上3.7eV未満であることが好ましい。バンドギャップが3.3eV未満では、有機物分解力が市販の光触媒結晶と同等であるからである。また。バンドギャップが3.7eV以上では、光触媒粒子において結晶がほとんど存在せずほぼアモルファス体であると考えられ、有機物分解力だけでなく光励起超親水化現象も示さないためである。   The photocatalyst composite particles preferably have a band gap of 3.3 eV or more and less than 3.7 eV. This is because when the band gap is less than 3.3 eV, the organic substance decomposing ability is equivalent to that of a commercially available photocatalytic crystal. Also. When the band gap is 3.7 eV or more, it is considered that almost no crystals exist in the photocatalyst particles and is almost amorphous, and not only the organic substance decomposition force but also the photoexcited superhydrophilic phenomenon is not exhibited.

当該光触媒複合粒子は、バンドギャップが3.40eV以上3.65eV未満であることがより好ましい。バンドギャップが上記範囲内であれば、光触媒粒子は、太陽光下において、有機物分解力を抑えながらも、光励起超親水化現象をより確実に発現することが期待できるからである。   The photocatalyst composite particles preferably have a band gap of 3.40 eV or more and less than 3.65 eV. This is because if the band gap is within the above range, the photocatalyst particles can be expected to exhibit the photoexcited superhydrophilic phenomenon more reliably under sunlight while suppressing the organic substance decomposition force.

結晶部は、アナターゼ晶、ルチル晶、ブルッカイト晶のいずれか一つ以上を含むことが好ましい。結晶部はアナターゼ晶を含み、結晶子径が1〜7nmであることがより好ましい。結晶子径が上記範囲内であれば、量子サイズ効果をより確実に得ることができる。   The crystal part preferably contains one or more of anatase crystals, rutile crystals, and brookite crystals. The crystal part contains anatase crystals, and the crystallite diameter is more preferably 1 to 7 nm. If the crystallite diameter is within the above range, the quantum size effect can be obtained more reliably.

(製造方法)
まず光触媒複合粒子の製造方法について説明する。光触媒複合粒子は、母粒子を生成し、母粒子を分散液に分散させ、母粒子表面に被覆層を形成することにより製造される。母粒子を形成する無機酸化物としてシリカを用い、被覆層を形成する光触媒粒子として酸化チタン粒子を用いる場合について、以下説明する。
(Production method)
First, a method for producing photocatalyst composite particles will be described. The photocatalyst composite particles are produced by generating mother particles, dispersing the mother particles in a dispersion, and forming a coating layer on the surface of the mother particles. The case where silica is used as the inorganic oxide forming the mother particles and titanium oxide particles are used as the photocatalyst particles forming the coating layer will be described below.

母粒子としてのシリカ粒子は、ゾルゲル法で形成することができる。すなわち母粒子は、無機物を含む化合物として例えばシリコンアルコキシドを、水、アンモニアおよびアルコールからなる反応液中において加水分解および脱水・縮合させることにより生成することができる。   Silica particles as mother particles can be formed by a sol-gel method. That is, the mother particles can be produced by hydrolyzing, dehydrating and condensing, for example, silicon alkoxide as a compound containing an inorganic substance in a reaction solution composed of water, ammonia and alcohol.

上記のように得られた母粒子を分散させる分散液は、アルコール系溶媒が用いられる。アルコール系溶媒は、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノールなとの炭素数4〜10の中級アルコールが好適に用いられる。   An alcohol solvent is used for the dispersion in which the mother particles obtained as described above are dispersed. As the alcohol solvent, intermediate alcohols having 4 to 10 carbon atoms such as butanol, pentanol, hexanol, heptanol, octanol, nonanol and decanol are preferably used.

好ましくは、分散液中において母粒子に対し活性化処理をしてもよい。活性化処理は、アルカリが母粒子の表面に作用することにより、母粒子表面のシラノール基からのプロトン脱離を促進するための処理である。この活性化処理を行なうことにより、母粒子と被覆層の密着性を向上することができる。活性化処理は、分散液にアルカリ水溶液を添加して行う。アルカリ水溶液としては、アンモニア、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属塩、アルカリ土類金属塩などを含有した水溶液が用いられるが、特にアンモニア水溶液を用いるのが好ましい。   Preferably, the mother particles may be activated in the dispersion. The activation treatment is a treatment for accelerating proton elimination from the silanol group on the surface of the mother particle by the alkali acting on the surface of the mother particle. By performing this activation treatment, the adhesion between the mother particles and the coating layer can be improved. The activation treatment is performed by adding an alkaline aqueous solution to the dispersion. As the alkaline aqueous solution, an aqueous solution containing ammonia, an alkali metal hydroxide, an alkaline earth metal hydroxide, an alkali metal salt, an alkaline earth metal salt, or the like is used, and an aqueous ammonia solution is particularly preferable.

母粒子表面に形成される被覆層は、加水分解により光触媒粒子を析出させ、乾燥・焼成処理することにより形成される。加水分解は、分散液に光触媒を含む化合物を混合して行う。これにより母粒子表面に光触媒粒子が析出し、被覆層が形成される。   The coating layer formed on the surface of the mother particles is formed by precipitating the photocatalyst particles by hydrolysis, drying and baking treatment. Hydrolysis is performed by mixing a compound containing a photocatalyst with the dispersion. As a result, photocatalyst particles are deposited on the surface of the mother particles, and a coating layer is formed.

本実施形態の場合、光触媒を含む化合物は、チタンアルコキシドまたはその部分加水分解物が用いられる。チタンアルコキシドとしては、一般式Ti(OR)又はTi(R’)n(OR)4−n(式中、RおよびR’はアルキル基もしくはアシル基、特に炭素数1〜5のアルキル基もしくは炭素数2〜6個のアシル基であり、nは1〜3の整数である)で示されるチタンのアルコキシドが挙げられる。 In the present embodiment, titanium alkoxide or a partial hydrolyzate thereof is used as the compound containing the photocatalyst. As titanium alkoxide, general formula Ti (OR) 4 or Ti (R ′) n (OR) 4-n (wherein R and R ′ are alkyl groups or acyl groups, particularly alkyl groups having 1 to 5 carbon atoms, or An alkoxide of titanium represented by an acyl group having 2 to 6 carbon atoms, and n is an integer of 1 to 3.

またチタンのアルコキシドの部分加水分解物としては、上記一般式で示されるチタンのアルコキシドのアルコキシ基を部分的に加水分解したものが挙げられる。チタンのアルコキシドまたはその加水分解物の加水分解、脱水・縮合は、通常のゾルゲル法で用いる条件で行なわれる。   Examples of the partially hydrolyzed product of titanium alkoxide include a product obtained by partially hydrolyzing the alkoxy group of the titanium alkoxide represented by the above general formula. Hydrolysis, dehydration and condensation of titanium alkoxide or its hydrolyzate are carried out under the conditions used in the usual sol-gel method.

次いで、加水分解中の分散液に反応停止剤を加えて反応を終結させるのが好ましい。反応停止剤としては、イソプロピルアルコール及びアンモニア水を用いることができる。   Next, it is preferable to terminate the reaction by adding a reaction terminator to the hydrolyzing dispersion. As the reaction terminator, isopropyl alcohol and aqueous ammonia can be used.

次いで、得られた分散液を濃縮乾燥させることにより、被覆層が形成された母粒子を得ることができる。濃縮乾燥は、例えばエバポレーターを用いて行う。   Subsequently, the obtained dispersion liquid is concentrated and dried to obtain mother particles on which a coating layer is formed. Concentration drying is performed using, for example, an evaporator.

最後に、被覆層が形成された母粒子を500℃〜1200℃の温度条件で、3時間〜48時間、焼成を行う。以上により、複合粒子を得ることができる。   Finally, the mother particle on which the coating layer is formed is fired under a temperature condition of 500 ° C. to 1200 ° C. for 3 hours to 48 hours. Thus, composite particles can be obtained.

次に光触媒膜を製造する方法について説明する。上記のようにして得られた複合粒子を分散液に分散した塗工液を生成する。また、当該塗工液は、バインダー(造膜成分)や、シリカに代表される他の無機系微粒子などの機能性粒子を含んでもよい。当該塗工液を基材上にディップコート法、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などの従来法により塗布する。最後に乾燥させることにより、光触媒膜を得ることができる。   Next, a method for producing a photocatalytic film will be described. A coating liquid in which the composite particles obtained as described above are dispersed in a dispersion liquid is generated. The coating liquid may contain functional particles such as a binder (film-forming component) and other inorganic fine particles represented by silica. The coating solution is applied onto a substrate by conventional methods such as dip coating, spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating. . Finally, the photocatalytic film can be obtained by drying.

(作用及び効果)
上記のように構成された光触媒複合粒子は、母粒子と、前記母粒子表面に固定され、光触媒粒子で形成された結晶部を有する被覆層とを備え、前記被覆層の厚みは0.5nm以上13nm以下である。
(Function and effect)
The photocatalyst composite particle configured as described above includes a mother particle and a coating layer that is fixed to the surface of the mother particle and has a crystal part formed of the photocatalyst particle, and the thickness of the coating layer is 0.5 nm or more. 13 nm or less.

被覆層において生成された結晶部は、粒径が数nm程度の大きさであるので、量子サイズ効果を発現し、一般的なバルクの光触媒結晶よりもバンドギャップが大きい。そうすると被覆層は、応答する光の波長域が短波長側にずれる、すなわちブルーシフトする。したがって光触媒複合粒子は、太陽光下においては、吸収できる光の波長域が、バルクの光触媒結晶に比べ大幅に制限されるので、有機物分解力を抑制することができる。   Since the crystal part generated in the coating layer has a particle size of about several nanometers, it exhibits a quantum size effect and has a larger band gap than a general bulk photocatalytic crystal. Then, the coating layer shifts the wavelength range of the responding light to the short wavelength side, that is, blue shifts. Therefore, the photocatalyst composite particles can suppress the organic substance decomposing power because the wavelength range of light that can be absorbed under sunlight is greatly limited as compared with bulk photocatalytic crystals.

すなわち、照射される太陽光が一定量と仮定した場合、光触媒複合粒子は、バルクの光触媒結晶に比べ、ラジカル発生量が制限され、単位時間あたりの有機物分解量が抑制される。因みに、光触媒複合粒子は、被覆層表面の親水基の生成量が制限されるので、超親水化していく速度が遅くなるものの、表面が超親水化に至ることが阻止されるものではない。   That is, assuming that the amount of sunlight irradiated is constant, the photocatalyst composite particles are limited in the amount of radical generation and the amount of organic matter decomposition per unit time is suppressed compared to bulk photocatalyst crystals. Incidentally, the photocatalyst composite particles are limited in the amount of hydrophilic groups generated on the surface of the coating layer, so that the rate of superhydrophilization becomes slow, but the surface is not prevented from becoming superhydrophilic.

したがって光触媒複合粒子は、屋外用途において、有機バインダーなどと複合化しても、超親水性を維持しながら高耐候性を示すことができる。実際、光触媒複合粒子を複合化した光触媒膜は、太陽光下において、有機物分解力が抑制される一方、光励起超親水化現象を発現することができる。   Therefore, the photocatalyst composite particles can exhibit high weather resistance while maintaining super hydrophilicity even when they are combined with an organic binder or the like for outdoor use. In fact, a photocatalyst film obtained by compositing photocatalyst composite particles can exhibit a photoexcited superhydrophilic phenomenon while suppressing the decomposition of organic matter under sunlight.

光触媒複合粒子は、被覆層の厚みが13nm以下であることにより、合成時に粒子表面以外で光触媒化合物が反応することを抑制でき、良好な分散性が得られるので、他の材料へ容易に複合化することができる。   Since the photocatalyst composite particles have a coating layer thickness of 13 nm or less, the photocatalytic compound can be prevented from reacting outside the particle surface during synthesis, and good dispersibility can be obtained. can do.

さらに光触媒複合粒子は、水・アルコール液中で、超音波処理・ビーズミル処理などの比較的簡便な分散処理により、分散させることができ、様々なものとの複合化を可能とする。光触媒複合粒子は、母粒子が小さく、被覆層の厚みが薄いので、光触媒複合粒子を含む単分散液とすることで、透明材料への適応が可能である。   Furthermore, the photocatalyst composite particles can be dispersed in a water / alcohol solution by a relatively simple dispersion treatment such as ultrasonic treatment or bead mill treatment, and can be combined with various particles. Since the photocatalyst composite particles have small base particles and a thin coating layer, the photocatalyst composite particles can be applied to a transparent material by using a monodispersed liquid containing the photocatalyst composite particles.

光触媒複合粒子は、母粒子が分散した分散液に光触媒化合物を混合して加水分解により前記母粒子表面に光触媒粒子の被覆層を形成し、前記被覆層を500℃〜1200℃の温度で加熱処理することにより製造することができるので、従来に比べ短時間で製造することができる。焼成温度が500℃未満であると、結晶化が進みにくく、焼成温度が1200℃を超えると、母粒子が溶解してしまうため、球状の光触媒複合粒子を得ることができない。また、焼成温度が1200℃を超えると、酸化チタン結晶が、親水化挙動を示しにくいルチル型へと転移しまうことや、また、母粒子がシリカ粒子の場合は、母粒子体が溶解してしまい粒子形状を保てなくなることがある。   In the photocatalyst composite particles, a photocatalyst compound is mixed with a dispersion in which mother particles are dispersed, and a coating layer of the photocatalyst particles is formed on the surface of the mother particles by hydrolysis, and the coating layer is heated at a temperature of 500 ° C. to 1200 ° C. Since it can manufacture by doing, it can manufacture in a short time compared with the past. If the calcination temperature is less than 500 ° C., crystallization is difficult to proceed, and if the calcination temperature exceeds 1200 ° C., the mother particles are dissolved, so that spherical photocatalyst composite particles cannot be obtained. In addition, when the firing temperature exceeds 1200 ° C., the titanium oxide crystal is transferred to a rutile type that hardly exhibits a hydrophilization behavior, and when the mother particle is a silica particle, the mother particle body is dissolved. The particle shape may not be maintained.

光触媒複合粒子は、分散液中において母粒子に対し活性化処理をして安定化させた光触媒化合物を反応させ製造することにより、反応時間一日以下、収率80%以上を得ることができるので、効率的に製造することができる。したがって光触媒複合粒子は、母粒子の形状を保ちながら、母粒子表面に光触媒粒子を均一に固定化できるので、母粒子形状を生かした用途へ展開できると共に、光触媒特性を安定的に得ることができる。   Since the photocatalyst composite particles are produced by reacting and stabilizing the photocatalyst compound that has been stabilized by activating the mother particles in the dispersion, a reaction time of less than one day and a yield of 80% or more can be obtained. Can be manufactured efficiently. Therefore, since the photocatalyst composite particles can uniformly fix the photocatalyst particles on the surface of the mother particles while maintaining the shape of the mother particles, the photocatalyst composite particles can be developed for applications utilizing the shape of the mother particles, and the photocatalytic characteristics can be stably obtained. .

(実施例)
(光触媒複合粒子の製造)
次に本実施形態に係る光触媒複合粒子の実施例について説明する。光触媒複合粒子は下記に示す手順で生成した。まず母粒子としてシリカ粒子を含む分散液を調整した。シリカ粒子は粒子径が50nm、120nm、1.0μmの3種類を用意した。各粒子径の母粒子を含む分散液は以下のようにして生成した。
(Example)
(Manufacture of photocatalyst composite particles)
Next, examples of the photocatalyst composite particles according to the present embodiment will be described. Photocatalyst composite particles were produced by the following procedure. First, a dispersion containing silica particles as mother particles was prepared. Three types of silica particles with particle sizes of 50 nm, 120 nm, and 1.0 μm were prepared. A dispersion containing mother particles of each particle size was produced as follows.

(粒子径50nmの母粒子径を含む分散液の調整)
無機酸化物を含む分散液として宇部日東化成ハイプレシカAS(粒子径50nm、CV値27.6%、水分散スラリー固形分濃度10wt%)を100g、イソプロパノールを35g加え固形分濃度7.5wt%以下の溶液を、室温下で調製した。そして、80℃30mbarの条件で固形分濃度15wt%以上になるまで濃縮した後、イソプロパノールで希釈して再度7.5wt%以下の溶液とする作業を3回繰り返した。その後、固形分濃度15wt%以上になるまで濃縮し、その液中に1−ブタノールを加えた固形分濃度7.5wt%以下の溶液を濃縮した後、1−ブタノールで希釈して再度7.5wt%以下の溶液とする作業を2回繰り返した。さらに1−ブタノールで希釈することで、10wt%のシリカ粒子1−ブタノール分散液を調製し、液(1)とした。
(Preparation of a dispersion containing a base particle size of 50 nm)
As a dispersion containing an inorganic oxide, 100 g of Ube Nitto Kasei High Plessica AS (particle size 50 nm, CV value 27.6%, water-dispersed slurry solid content concentration 10 wt%) and 35 g of isopropanol are added, and the solid content concentration is 7.5 wt% or less. The solution was prepared at room temperature. And after concentrating until it became solid content concentration 15 wt% or more on condition of 80 degreeC and 30 mbar, the operation | work which made it dilute with isopropanol and made 7.5 wt% or less again was repeated 3 times. Then, it concentrates until it becomes solid content concentration 15wt% or more, After concentrating the solution of solid content concentration 7.5wt% or less which added 1-butanol in the liquid, it dilutes with 1-butanol and again 7.5wt The operation to make a solution of no more than% was repeated twice. Furthermore, by diluting with 1-butanol, a 10 wt% silica particle 1-butanol dispersion was prepared and used as liquid (1).

(粒子径120nmの母粒子を含む分散液の調整)
液(1)の製造に倣い、無機酸化物を含む分散液として宇部日東化成ハイプレシカAS(粒子径120nm、CV値19.2%、水分散スラリー固形分濃度10wt%)を用いて調製し、液(2)とした。
(Preparation of dispersion containing mother particles having a particle size of 120 nm)
Following the production of liquid (1), Ube Nitto Kasei High Plessica AS (particle size: 120 nm, CV value: 19.2%, water-dispersed slurry solid content concentration: 10 wt%) is prepared as a dispersion containing an inorganic oxide. (2).

(粒子径1.0μmの母粒子を含む分散液の調整)
無機酸化物として宇部日東化成ハイプレシカFQ(粒子径1.0μm、CV値3.5%)10gを、1−ブタノール90gに加え、室温下で超音波処理を4時間行うことで、10wt%のシリカ粒子1−ブタノール分散液を調製し、液(3)とした。
(Preparation of dispersion containing mother particles having a particle diameter of 1.0 μm)
Add 10g Ube Nitto Kasei High Plessica FQ (particle size 1.0μm, CV value 3.5%) as an inorganic oxide to 90g of 1-butanol, and perform ultrasonic treatment at room temperature for 4 hours for 10wt% silica A particle 1-butanol dispersion was prepared as Liquid (3).

(反応停止剤の調製)
反応停止剤は、0.5%アンモニア水とイソプロパノールとを2:5の割合で混合して得た。
(Preparation of reaction terminator)
The reaction terminator was obtained by mixing 0.5% aqueous ammonia and isopropanol at a ratio of 2: 5.

(試料の調整)
続いて、上記のように得られた液(1)〜(3)及び反応停止剤を用い、実施例及び比較例を製造した。各実施例及び比較例の製造条件は以下の通りである。
(Sample adjustment)
Subsequently, Examples and Comparative Examples were produced using the liquids (1) to (3) obtained as described above and a reaction terminator. The production conditions of each example and comparative example are as follows.

(実施例1−1−a)
110mLスクリュー管瓶中で液(1)20gをマグネチック攪拌子で攪拌しながら、25%アンモニア水0.5gを滴下して加え、液温を20℃に保持しながら30分間攪拌をした。次いで、その液中に、チタンテトライソポキシド0.25g、1−ブタノール20gのチタンアルコキシド混合液を、4g/minの速度で加え、さらに30分間攪拌をした。そして、反応停止剤を10g加え15分間攪拌をした後、60℃まで昇温し、60℃を保持しながら18時間攪拌を続け反応を終結させた。さらにこの液をエバポレーターを用いて、80℃30mbarの条件で濃縮乾燥させることで、粒子状酸化チタン被覆シリカ粒子の粉体を得た。さらに、300℃2時間(昇温時間30分)、500℃24時間(昇温時間30分)の条件で焼成を行い、光触媒複合粒子の粉体を得た。
(Example 1-1-a)
While stirring 20 g of liquid (1) with a magnetic stirrer in a 110 mL screw tube bottle, 0.5 g of 25% aqueous ammonia was added dropwise, and the mixture was stirred for 30 minutes while maintaining the liquid temperature at 20 ° C. Next, a titanium alkoxide mixed liquid of 0.25 g of titanium tetraisopoxide and 20 g of 1-butanol was added to the liquid at a rate of 4 g / min, and the mixture was further stirred for 30 minutes. And after adding 10g of reaction terminators and stirring for 15 minutes, it heated up to 60 degreeC, stirring was continued for 18 hours, maintaining 60 degreeC, and reaction was terminated. Further, this liquid was concentrated and dried using an evaporator under the conditions of 80 ° C. and 30 mbar to obtain particulate titanium oxide-coated silica particle powder. Further, firing was performed under the conditions of 300 ° C. for 2 hours (temperature increase time 30 minutes) and 500 ° C. for 24 hours (temperature increase time 30 minutes) to obtain photocatalyst composite particle powder.

(実施例1−1−b)
焼成温度を300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で行った以外は、実施例1−1−aに倣い、光触媒複合粒子の粉体を得た。
(Example 1-1-b)
Photocatalyst composite, following Example 1-1-a, except that the firing temperature was 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min). Particle powder was obtained.

(実施例1−2−a、b)
チタンテトライソポキシド0.5g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例1−1−a、bに倣い、光触媒複合粒子の粉体を得た。
(Example 1-2-a, b)
Photocatalyst composite particle powder was obtained in the same manner as in Examples 1-1-a and b except that a titanium alkoxide mixed solution of 0.5 g of titanium tetraisopoxide and 20 g of 1-butanol was used.

(実施例1−3−a、b)
チタンテトライソポキシド1.0g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例1−1−a、bに倣い、光触媒複合粒子の粉体を得た。
(Example 1-3-3-a, b)
Photocatalyst composite particle powder was obtained in the same manner as in Examples 1-1-a and b except that a titanium alkoxide mixed liquid of titanium tetraisopoxide 1.0 g and 1-butanol 20 g was used.

(実施例1−4−a、b)
チタンテトライソポキシド1.5g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例1−1−a、bに倣い、光触媒複合粒子の粉体を得た。
(Example 1-4-4-a, b)
Except for using a titanium alkoxide mixed solution of 1.5 g of titanium tetraisopoxide and 20 g of 1-butanol, a powder of photocatalyst composite particles was obtained in the same manner as in Examples 1-1-a and b.

(実施例1−4−c)
チタンテトライソポキシド1.5g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成温度を300℃2時間(昇温10℃/min含む)、1000℃24時間(昇温10℃/min含む)の条件で行い、光触媒複合粒子の粉体を得た。
(Example 1-4-4-c)
A titanium alkoxide mixed solution of 1.5 g of titanium tetraisopoxide and 20 g of 1-butanol is used, and the firing temperature is 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min), 1000 ° C. for 24 hours (including a temperature increase of 10 ° C./min). ) To obtain a powder of photocatalyst composite particles.

(実施例2−1−a)
(液1)に代わり(液2)を用い、滴下する25%アンモニア水を0.3gとし、チタンテトライソポキシド0.2g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例1−1−aに倣い、光触媒複合粒子の粉体を得た。
Example 2-1-a
Example (Except for using (Liquid 2) instead of (Liquid 1), 0.3 g of 25% ammonia water to be dropped, and using a titanium alkoxide mixed liquid of 0.2 g of titanium tetraisopoxide and 20 g of 1-butanol) In accordance with 1-1-a, powder of photocatalyst composite particles was obtained.

(実施例2−2−a)
チタンテトライソポキシド0.4g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例2−1−aに倣い、光触媒複合粒子の粉体を得た。
(Example 2-2a)
Photocatalyst composite particle powder was obtained in the same manner as in Example 2-1a except that a titanium alkoxide mixed solution of 0.4 g of titanium tetraisooxide and 20 g of 1-butanol was used.

(実施例2−3−a)
チタンテトライソポキシド0.6g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例2−1−aに倣い、光触媒複合粒子の粉体を得た。
(Example 2-3-3-a)
Except for using a titanium alkoxide mixed solution of 0.6 g of titanium tetraisopoxide and 20 g of 1-butanol, a powder of photocatalyst composite particles was obtained following Example 2-1-a.

(実施例2−4−a)
チタンテトライソポキシド0.8g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例2−1−aに倣い、光触媒複合粒子の粉体を得た。
(Example 2-4-a)
Except for using a titanium alkoxide mixed liquid of 0.8 g of titanium tetraisooxide and 20 g of 1-butanol, a powder of photocatalyst composite particles was obtained in the same manner as in Example 2-1-a.

(実施例2−4−b)
チタンテトライソポキシド0.8g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成温度を300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で行い、光触媒複合粒子の粉体を得た。
(Example 2-4-b)
A titanium alkoxide mixed solution of 0.8 g of titanium tetraisopoxide and 20 g of 1-butanol is used, and the firing temperature is 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min), 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min). ) To obtain a powder of photocatalyst composite particles.

(実施例2−4−c)
チタンテトライソポキシド0.8g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成温度を300℃2時間(昇温10℃/min含む)、1000℃24時間(昇温10℃/min含む)の条件で行い、光触媒複合粒子の粉体を得た。
(Example 2-4-c)
A titanium alkoxide mixed solution of 0.8 g of titanium tetraisopoxide and 20 g of 1-butanol is used, and the firing temperature is 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min), 1000 ° C. for 24 hours (including a temperature increase of 10 ° C./min). ) To obtain a powder of photocatalyst composite particles.

(実施例2−5−a)
チタンテトライソポキシド2.0g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例2−1−aに倣い、光触媒複合粒子の粉体を得た。
(Example 2-5-a)
Except for using a titanium alkoxide mixed liquid of 2.0 g of titanium tetraisopoxide and 20 g of 1-butanol, a powder of photocatalyst composite particles was obtained in the same manner as in Example 2-1-a.

(実施例3−1−b)
(液1)に代わり(液3)を用い、滴下する25%アンモニア水を0.2gとし、チタンテトライソポキシド0.03g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成温度を300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で行う以外は、実施例1−1−aに倣い、光触媒複合粒子の粉体を得た。
Example 3-1-b
Instead of (Liquid 1), (Liquid 3) is used, and 25% ammonia water to be dropped is 0.2 g. A titanium alkoxide mixed liquid of titanium tetraisopoxide 0.03 g and 1-butanol 20 g is used, and the firing temperature is 300. The powder of the photocatalyst composite particles was prepared in the same manner as in Example 1-1-a except that the temperature was 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min). Obtained.

(実施例3−2−b)
チタンテトライソポキシド0.6g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例3−1−bに倣い、光触媒複合粒子の粉体を得た。
(Example 3-2-b)
Except for using a titanium alkoxide mixed liquid of 0.6 g of titanium tetraisopoxide and 20 g of 1-butanol, a powder of photocatalyst composite particles was obtained in the same manner as in Example 3-1-b.

(実施例3−3−b)
チタンテトライソポキシド0.12g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例3−1−bに倣い、光触媒複合粒子の粉体を得た。
(Example 3-3-3-b)
Except for using a titanium alkoxide mixed solution of titanium tetraisopoxide 0.12 g and 1-butanol 20 g, a powder of photocatalyst composite particles was obtained in the same manner as in Example 3-1-b.

(比較例1−0)
(液1)をエバポレーターを用いて、80℃30mbarの条件で濃縮乾燥させることで、シリカ粒子の粉体の粉体を得た。
(Comparative Example 1-0)
(Liquid 1) was concentrated and dried using an evaporator at 80 ° C. and 30 mbar to obtain a powder of silica particles.

(比較例1−0−a)
比較例1−aを、300℃2時間(昇温10℃/min含む)、500℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体の粉体を得た。
(Comparative Example 1-0-a)
The comparative example 1-a was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 500 ° C. for 24 hours (including a temperature increase of 10 ° C./min). Obtained.

(比較例1−0−b)
比較例1−0を、300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体の粉体を得た。
(Comparative Example 1-0-b)
The comparative example 1-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min). Obtained.

(比較例1−0−c)
比較例1−0を、300℃2時間(昇温10℃/min含む)、1000℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体の粉体を得た。
(Comparative Example 1-0-c)
The comparative example 1-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 1000 ° C. for 24 hours (including a temperature increase of 10 ° C./min). Obtained.

(比較例1−1)
焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(比較例1−2)
焼成工程を省いた以外は、実施例1−2−aに倣い、粉体を得た。
(比較例1−3)
焼成工程を省いた以外は、実施例1−3−aに倣い、粉体を得た。
(比較例1−4)
焼成工程を省いた以外は、実施例1−4−aに倣い、粉体を得た。
(Comparative Example 1-1)
A powder was obtained in the same manner as in Example 1-1-a except that the firing step was omitted.
(Comparative Example 1-2)
A powder was obtained in the same manner as in Example 1-2a except that the firing step was omitted.
(Comparative Example 1-3)
Except for omitting the firing step, a powder was obtained in the same manner as in Example 1-3-a.
(Comparative Example 1-4)
Except for omitting the firing step, a powder was obtained following Example 1-4-4-a.

(比較例1−5)
チタンテトライソポキシド4.0g、1−ブタノール20gのチタンアルコキシド混合液を使用し焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(Comparative Example 1-5)
A powder was obtained in the same manner as in Example 1-1-a except that a titanium alkoxide mixed liquid of 4.0 g of titanium tetraisooxide and 20 g of 1-butanol was used and the firing step was omitted.

(比較例1−5−a、b)
チタンテトライソポキシド4.0g、1−ブタノール20gのチタンアルコキシド混合液を使用する以外は、実施例1−1−a、bに倣い、粉体を得た。
(Comparative Examples 1-5-a, b)
A powder was obtained in the same manner as in Examples 1-1-a and b except that a titanium alkoxide mixed solution of 4.0 g of titanium tetraisooxide and 20 g of 1-butanol was used.

(比較例2−0)
(液2)をエバポレーターを用いて、80℃30mbarの条件で濃縮乾燥させることで、シリカ粒子の粉体を得た。
(Comparative Example 2-0)
(Liquid 2) was concentrated and dried using an evaporator at 80 ° C. and 30 mbar to obtain silica particle powder.

(比較例2−0−a)
比較例2−0を、300℃2時間(昇温10℃/min含む)、500℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 2-0-a)
The comparative example 2-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 500 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain silica particle powder.

(比較例2−0−b)
比較例2−0を、300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 2-0-b)
Comparative Example 2-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain a powder of silica particles.

(比較例2−0−c)
比較例2−0を、300℃2時間(昇温10℃/min含む)、1000℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 2-0-c)
The comparative example 2-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 1000 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain silica particle powder.

(比較例2−1)
焼成工程を省いた以外は、実施例2−1−aに倣い、粉体を得た。
(比較例2−2)
焼成工程を省いた以外は、実施例2−2−aに倣い、粉体を得た。
(比較例2−3)
焼成工程を省いた以外は、実施例2−3−aに倣い、粉体を得た。
(比較例2−4)
焼成工程を省いた以外は、実施例2−4−aに倣い、粉体を得た。
(比較例2−5)
焼成工程を省いた以外は、実施例2−5−aに倣い、粉体を得た。
(Comparative Example 2-1)
Except for omitting the firing step, a powder was obtained following Example 2-1-a.
(Comparative Example 2-2)
A powder was obtained in the same manner as in Example 2-2a except that the firing step was omitted.
(Comparative Example 2-3)
A powder was obtained in the same manner as in Example 2-3-3-a except that the firing step was omitted.
(Comparative Example 2-4)
Except for omitting the firing step, a powder was obtained following Example 2-4-a.
(Comparative Example 2-5)
Except that the firing step was omitted, a powder was obtained according to Example 2-5-a.

(比較例2−6)
チタンテトライソポキシド20g、1−ブタノール20gのチタンアルコキシド混合液を使用し焼成工程を省いた以外は、実施例2−1−aに倣い、粉体を得た。
(Comparative Example 2-6)
A powder was obtained in the same manner as in Example 2-1a except that a titanium alkoxide mixed solution of 20 g of titanium tetraisooxide and 20 g of 1-butanol was used and the firing step was omitted.

(比較例3−0)
(液3)をエバポレーターを用いて、80℃30mbarの条件で濃縮乾燥させることで、シリカ粒子の粉体を得た。
(Comparative Example 3-0)
(Liquid 3) was concentrated and dried using an evaporator at 80 ° C. and 30 mbar to obtain silica particle powder.

(比較例3−0−a)
比較例3−0を、300℃2時間(昇温10℃/min含む)、500℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 3-0-a)
The comparative example 3-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 500 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain silica particle powder.

(比較例3−0−b)
比較例3−0を、300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 3-0-b)
The comparative example 3-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain silica particle powder.

(比較例3−0−c)
比較例3−0を、300℃2時間(昇温10℃/min含む)、1000℃24時間(昇温10℃/min含む)の条件で焼成を行い、シリカ粒子の粉体を得た。
(Comparative Example 3-0-c)
The comparative example 3-0 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 1000 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain silica particle powder.

(比較例3−1)
(液1)に代わり(液3)を用い、滴下する25%アンモニア水を0.2gとし、チタンテトライソポキシド0.03g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(Comparative Example 3-1)
Using (Liquid 3) instead of (Liquid 1), adding 25 g of 25% aqueous ammonia to 0.2 g, using a titanium alkoxide mixed liquid of 0.03 g of titanium tetraisopoxide and 20 g of 1-butanol, omitting the firing step. Except that, powder was obtained in the same manner as in Example 1-1-a.

(比較例3−2)
(液1)に代わり(液3)を用い、滴下する25%アンモニア水を0.2gとし、チタンテトライソポキシド0.6g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(Comparative Example 3-2)
Using (Liquid 3) instead of (Liquid 1), adding 25 g of 25% ammonia water to 0.2 g, using a titanium alkoxide mixed liquid of 0.6 g of titanium tetraisopoxide and 20 g of 1-butanol, omitting the firing step. Except that, powder was obtained in the same manner as in Example 1-1-a.

(比較例3−3)
(液1)に代わり(液3)を用い、滴下する25%アンモニア水を0.2gとし、チタンテトライソポキシド0.12g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(Comparative Example 3-3)
Using (Liquid 3) instead of (Liquid 1), adding 25 g of 25% ammonia water to 0.2 g, using a titanium alkoxide mixed liquid of 0.12 g of titanium tetraisopoxide and 20 g of 1-butanol, omitting the firing step. Except that, powder was obtained in the same manner as in Example 1-1-a.

(比較例3−4)
(液1)に代わり(液3)を用い、滴下する25%アンモニア水を0.2gとし、チタンテトライソポキシド2.0g、1−ブタノール20gのチタンアルコキシド混合液を使用し、焼成工程を省いた以外は、実施例1−1−aに倣い、粉体を得た。
(Comparative Example 3-4)
Using (Liquid 3) instead of (Liquid 1), adding 25 g of 25% aqueous ammonia to 0.2 g, using a titanium alkoxide mixed liquid of 2.0 g of titanium tetraisopoxide and 20 g of 1-butanol, omitting the firing step. Except that, powder was obtained in the same manner as in Example 1-1-a.

(比較例4−1)
110mLスクリュー管瓶中で、1−ブタノール20g、25%アンモニア水0.5gを、液温20℃に保持しながら30分間マグネチック攪拌子で攪拌した。その後、その液中に、チタンテトライソポキシド1.5g、1−ブタノール20gのチタンアルコキシド混合液を、5分かけてゆっくりと加え、さらに30分間攪拌をした。そして、(液4)を10g加え15分間攪拌をした後、60℃まで昇温し、60℃を保持しながら18時間攪拌を続け反応を終結させた。さらにこの液をエバポレーターを用いて、80℃30mbarの条件で濃縮乾燥させることで、酸化チタンからなる粉体を得た。
(Comparative Example 4-1)
In a 110 mL screw tube bottle, 20 g of 1-butanol and 0.5 g of 25% aqueous ammonia were stirred with a magnetic stirrer for 30 minutes while maintaining the liquid temperature at 20 ° C. Thereafter, a titanium alkoxide mixed solution of 1.5 g of titanium tetraisopoxide and 20 g of 1-butanol was slowly added to the solution over 5 minutes, and further stirred for 30 minutes. And after adding 10g of (Liquid 4) and stirring for 15 minutes, it heated up to 60 degreeC, stirring was continued for 18 hours, maintaining 60 degreeC, and reaction was terminated. Further, this liquid was concentrated and dried using an evaporator under conditions of 80 ° C. and 30 mbar to obtain a powder made of titanium oxide.

(比較例4−1−a)
比較例4−1を、300℃2時間(昇温10℃/min含む)、500℃24時間(昇温10℃/min含む)の条件で焼成を行い、酸化チタン粒子の粉体を得た。
(Comparative Example 4-1-a)
The comparative example 4-1 was baked under conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 500 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain titanium oxide particle powder. .

(比較例4−1−b)
比較例4−1を、300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で焼成を行い、酸化チタン粒子の粉体を得た。
(Comparative Example 4-1-b)
The comparative example 4-1 was fired under conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain titanium oxide particle powder. .

(比較例4−2)
チタンテトライソポキシド0.5g、1−ブタノール1gのチタンアルコキシド混合液を使用する以外は、比較例4−1に倣い、酸化チタンからなる粉体を得た。
(Comparative Example 4-2)
A powder made of titanium oxide was obtained in the same manner as in Comparative Example 4-1, except that a titanium alkoxide mixed solution of 0.5 g of titanium tetraisopoxide and 1 g of 1-butanol was used.

(比較例4−2−a)
比較例4−2を、300℃2時間(昇温10℃/min含む)、500℃24時間(昇温10℃/min含む)の条件で焼成を行い、酸化チタン粒子の粉体を得た。
(Comparative Example 4-2a)
The comparative example 4-2 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 500 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain titanium oxide particle powder. .

(比較例4−2−b)
比較例4−2を、300℃2時間(昇温10℃/min含む)、800℃24時間(昇温10℃/min含む)の条件で焼成を行い、酸化チタン粒子の粉体を得た。
(Comparative Example 4-2b)
The comparative example 4-2 was fired under the conditions of 300 ° C. for 2 hours (including a temperature increase of 10 ° C./min) and 800 ° C. for 24 hours (including a temperature increase of 10 ° C./min) to obtain a powder of titanium oxide particles. .

(比較例5)
石原産業製酸化チタン粉体ST−01を用いた。
(比較例6)
石原産業製酸化チタン粉体PT−501Aを用いた。
(比較例7)
石原産業製酸化チタン粉体TTO−51を用いた。
(比較例8)
住友化学製酸化チタン水分散液PC−201を用いた。
(比較例9)
石原産業製酸化チタン水分散液STS−100を用いた。
(比較例10)
粒子なしとした。
製造した光触媒複合粒子について各特性を確認した。製造した実施例及び比較例の各特性を表1〜4に示す。
(Comparative Example 5)
Titanium oxide powder ST-01 manufactured by Ishihara Sangyo was used.
(Comparative Example 6)
Ishihara Sangyo titanium oxide powder PT-501A was used.
(Comparative Example 7)
Titanium oxide powder TTO-51 made by Ishihara Sangyo was used.
(Comparative Example 8)
A titanium oxide aqueous dispersion PC-201 manufactured by Sumitomo Chemical was used.
(Comparative Example 9)
A titanium oxide aqueous dispersion STS-100 manufactured by Ishihara Sangyo was used.
(Comparative Example 10)
No particles.
Each characteristic was confirmed about the manufactured photocatalyst composite particle. Tables 1 to 4 show the characteristics of the manufactured Examples and Comparative Examples.

Figure 0006096536
Figure 0006096536

Figure 0006096536
Figure 0006096536

Figure 0006096536
Figure 0006096536

Figure 0006096536
Figure 0006096536

(粒子径・被覆厚み測定)
得られた粉体を水に分散させ、その分散液を金属製台座の上に垂らし乾燥させた後、サンユー電子社製金属蒸着機(SC−701MCY)を用いて、導通用のPtを50Å蒸着したサンプルを作成した。JEOL製電界放出型走査電子顕微鏡(JEM−6700F型、加速電圧10kV)を用いてSEM測定し、同社の画像解析ソフトSmile view(ver.2.2)にて画像解析を行った。100,000倍の画像より20個の粒子に関して無作為に直径を求め、平均値をその粒子の粒子径とした。また複合粒子の直径から母粒子の直径を引き、2で割った値を被覆層の厚みとした。また、この厚みをドーム状に成長する光触媒粒子の大きさとして見立てている。
(Measurement of particle diameter and coating thickness)
The obtained powder was dispersed in water, the dispersion was dropped on a metal pedestal and dried, and then Pt for conduction was deposited by 50 mm using a metal evaporation machine (SC-701MCY) manufactured by Sanyu Electronics. Made a sample. SEM measurement was performed using a field emission type scanning electron microscope (JEM-6700F type, acceleration voltage 10 kV) manufactured by JEOL, and image analysis was performed with the company's image analysis software Smile view (ver. 2.2). The diameter was randomly determined for 20 particles from a 100,000-fold image, and the average value was taken as the particle size of the particles. Also, the thickness of the coating layer was obtained by subtracting the diameter of the mother particle from the diameter of the composite particle and dividing it by 2. This thickness is regarded as the size of the photocatalyst particles that grow in a dome shape.

凝集などにより粒子径の測定が不可能なものについては、単位シリカ表面積に対するチタンテトライソプロポキシドの添加量(A[g/m])と、被覆層の計算厚み(B[nm])との関係式(式1)を適応し計算した。 When the particle size cannot be measured due to aggregation or the like, the amount of titanium tetraisopropoxide added per unit silica surface area (A [g / m 2 ]), the calculated thickness of the coating layer (B [nm]), The following relational expression (Formula 1) was applied and calculated.

B=3.7×ln(A)+25.5・・・・・(式1) B = 3.7 × ln (A) +25.5 (Equation 1)

上記(式1)は、実施例で得られた値より作成した近似式である。但し、B≧30の場合、シリカ粒子の粒子径(曲率R)の項が大きく関わり、シリカ粒子の粒子径が小さいほど、酸化チタン膜厚が高いほど近似式から外れ、上記(式1)を適用することは出来ない。   The above (formula 1) is an approximate formula created from the values obtained in the examples. However, in the case of B ≧ 30, the term of the particle diameter (curvature R) of the silica particles is greatly involved, and the smaller the particle diameter of the silica particles, the higher the titanium oxide film thickness, the more the approximate expression is deviated. It cannot be applied.

B≦30の場合、まず反応液中のシリカ粒子重量(W[g])とシリカ粒子の見かけ比重(2.0[g/cm])、及びシリカ粒子の粒子径(L[nm])より、反応液中のシリカ粒子の総表面積(S[m])を求めた(式2)。なお(式2)において[4/3×π×(L/2×10−9]はシリカ粒子1個の体積、[4×π×(L/2×10−9]はシリカ粒子1個の表面積である。 When B ≦ 30, the silica particle weight (W [g]) in the reaction solution, the apparent specific gravity of the silica particles (2.0 [g / cm 3 ]), and the particle diameter of the silica particles (L [nm]) Thus, the total surface area (S [m 2 ]) of the silica particles in the reaction solution was determined (Formula 2). In (Formula 2), [4/3 × π × (L / 2 × 10 −9 ) 3 ] is the volume of one silica particle, and [4 × π × (L / 2 × 10 −9 ) 2 ] is silica. The surface area of one particle.

S=W÷[4/3×π×(L/2×10−9]÷(2.0×10)×[4×π×(L/2×10−9]
=3×W÷L×10・・・・・(式2)
S = W ÷ [4/3 × π × (L / 2 × 10 −9 ) 3 ] ÷ (2.0 × 10 6 ) × [4 × π × (L / 2 × 10 −9 ) 2 ]
= 3 x W / L x 10 3 (Formula 2)

さらに反応に用いたチタンテトライソプロポキシド量(T[g])をSで割り返し、Aを算出した(式3)。   Further, the amount of titanium tetraisopropoxide (T [g]) used in the reaction was divided by S to calculate A (Formula 3).

A=T÷S・・・・・(式3) A = T ÷ S (Equation 3)

実施例1−4−a〜cに係る光触媒複合粒子について透過型電子顕微鏡(TEM:Transmission Electron Microscope)像を図1に示す。また、参考までに得られた比較例に係る粒子について走査電子顕微鏡(SEM:Scanning Electron Microscope)像を図2〜図5に示す。   A transmission electron microscope (TEM) image of the photocatalyst composite particles according to Example 1-4-ac is shown in FIG. Moreover, the scanning electron microscope (SEM: Scanning Electron Microscope) image about the particle | grains concerning the comparative example obtained for reference is shown in FIGS.

(結晶系測定)
得られた粉体を、PANalytical社製 X線回折装置(X’Pert PRO)を用いてXRD測定し、結晶系の同定を行った。
(Crystal system measurement)
The obtained powder was subjected to XRD measurement using an X-ray diffractometer (X'Pert PRO) manufactured by PANalytical to identify the crystal system.

(バンドギャップ測定)
得られた粉体を測定用の石英セルに詰め、JEOL社製積分球(ISN−723)をセットしたJEOL社製紫外可視分光光度計(V−670)を用いて、拡散反射スペクトルを測定した。ベースラインには、付属のスペクトラロン(積分球用標準白板)を用い、ダーク補正は、検出部への光透過を金属板でふさぐことで行った。測定条件は、測定モード:%T(透過)、レスポンス:medium、バンド幅:5.0nm、走査速度:400nm/min、測定波長300〜800nm、データ取り込み間隔:1nmとした。また、得られたデータより同社のバンドギャップ解析ソフト(VWBG−773)にてバンドギャップ解析を行ない、アナターゼ型に同定されるものに関しては、直接遷移の計算を用い、ルチル型に同定されるものに関しては、間接遷移の計算を用い、バンドギャップを算出した。
(Band gap measurement)
The obtained powder was packed in a quartz cell for measurement, and a diffuse reflection spectrum was measured using a JEOL ultraviolet-visible spectrophotometer (V-670) in which an integrating sphere (ISN-723) manufactured by JEOL was set. . For the baseline, the attached Spectralon (standard white plate for integrating sphere) was used, and dark correction was performed by blocking light transmission to the detection unit with a metal plate. The measurement conditions were: measurement mode:% T (transmission), response: medium, band width: 5.0 nm, scanning speed: 400 nm / min, measurement wavelength of 300 to 800 nm, and data capture interval: 1 nm. In addition, band gap analysis is performed with the company's band gap analysis software (VWBG-773) from the obtained data, and those identified as anatase type are identified as rutile type using direct transition calculation. For, band gap was calculated using indirect transition calculation.

(結晶子径測定)
イソプロパノール中に分散させた各粉体をカーボン支持付きのモリブデンメッシュに載せ試料とし、JEOL社製電界放射型透過電子顕微鏡(JEM−2012F型、加速電圧200kV)を用いて、倍率4,000,000倍、写真範囲50nm×65nmの条件で画像測定を行ない、写真より直接結晶子径を測定した。
(Crystallite diameter measurement)
Each powder dispersed in isopropanol is placed on a carbon mesh-supported molybdenum mesh as a sample, and a magnification of 4,000,000 using a field emission transmission electron microscope (JEM-2012F type, acceleration voltage 200 kV) manufactured by JEOL. Image measurement was carried out under the conditions of double and photographic range 50 nm × 65 nm, and the crystallite diameter was measured directly from the photograph.

(合成液)
粒子を合成した合成液を山一電機工業社製ビスコメイト粘度計(VM−1G)により測定し、測定値が50cP未満の場合を低粘度◎とし、測定値が50cP以上100cP未満の場合を粘調○とし、測定値が100cP以上1000cP未満の場合を高粘調△とした。
(Synthetic solution)
The synthetic solution obtained by synthesizing the particles was measured with a viscomate viscometer (VM-1G) manufactured by Yamaichi Electric Industry Co., Ltd., and when the measured value was less than 50 cP, the viscosity was low, and when the measured value was 50 cP or more and less than 100 cP, the viscosity was A case where the measured value was 100 cP or more and less than 1000 cP was defined as a high viscosity Δ.

(収率計算)
合成後最終的に得られた粉末の重量(収量)を、合成時に用いた母粒子であるシリカ粒子の固形分とチタンアルコキシドから生成される酸化チタン量の和で割り返し、得られた値を収率とした。収率が80%を超えるものを◎、50%を超え80%以下のものを○、30%を超え50%以下のものを△、粉末として取り出せないものを×とした。
(Yield calculation)
The weight (yield) of the powder finally obtained after synthesis is divided by the sum of the solid content of the silica particles, which are the mother particles used in the synthesis, and the amount of titanium oxide produced from the titanium alkoxide. Yield. The case where the yield exceeded 80% was rated as ◎, the case where the yield exceeded 50% and 80% or less was indicated as ◯, the case where the yield exceeded 30% and less than 50% was indicated as △, and the case where the yield could not be taken out as powder.

この際、シリカ粒子分散液の固形分は、アルミカップに約1gの液を採取し重量計測した後、150℃に設定したホットプレート上で、1時間加熱乾燥し室温下で10分静置させたものの重量測定を行うことで算出した。また、合成された各粒子の粉体は、取り出し後さらにオーブン80℃下で3日間乾燥させたものの重量を収量とした。   At this time, the solid content of the silica particle dispersion was collected by weighing about 1 g in an aluminum cup and weighed, then dried on a hot plate set at 150 ° C. for 1 hour and allowed to stand at room temperature for 10 minutes. It was calculated by measuring the weight of the food. In addition, the synthesized powder of each particle was taken out and further dried in an oven at 80 ° C. for 3 days to obtain the weight.

(分散性確認)
110mLスクリュー管瓶中で、得られた各粒子の粉体5gをイソプロパノール45gに溶き、AZ ONE製超音波処理機を用いて、室温下で4時間超音波処理をした。
(Dispersibility check)
In a 110 mL screw tube bottle, 5 g of the obtained powder of each particle was dissolved in 45 g of isopropanol, and sonicated for 4 hours at room temperature using an AZONE ultrasonic processor.

その後、スクリュー管瓶の底面を観察し、目視で大きな塊が見られるかどうかと、6時間放置した際の粒子の沈降を確認し、視認できる塊が見られる場合を×、6時間放置した際に粒子の沈降が見られるものを△とした。また、粒子の沈降が視認出来ない分散性の高いものに関しては、大塚電子社製光散乱計(ELS−Z)を用いて分散粒径測定を行い、粒径分布解析により求められる重量換算粒子径の値を分散粒径とした。この際得られる値がSEMで測定した粒径の2倍未満の場合を◎、2倍以上の場合を○と評価した。   Then, the bottom of the screw tube bottle is observed, and whether or not a large lump is visually observed and the sedimentation of the particles when left for 6 hours is confirmed. The case where the sedimentation of the particles is observed is indicated by Δ. In addition, for highly dispersible particles in which particle sedimentation cannot be visually recognized, the dispersion particle size is measured using a light scattering meter (ELS-Z) manufactured by Otsuka Electronics Co., Ltd., and the weight-converted particle size obtained by particle size distribution analysis. Was the dispersed particle size. The case where the value obtained at this time was less than twice the particle size measured by SEM was evaluated as ◎, and the case where it was 2 times or more was evaluated as ◯.

(光触媒膜の製造)
続いて光触媒性能を評価するための評価膜を以下の手順で製造した。まず、エチルセロソルブ10g、チタンテトライソプロポキシド(日本曹達社製)5.07gを50mLのガラス容器に入れ、30℃に温度を保ちながらマグネティックスターラーで10分間攪拌した。ここに、蒸留水0.31gと60%硝酸0.85g、エチルセロソルブ3.91gの混合液を滴下し、液温を30℃に保持しながら4時間加水分解した。このチタニア加水分解物を含む液(以下、「加水分解縮合液」という。)の固形分濃度は、TiO換算で、7.1%であった。この加水分解縮合液を用いることにより、アモルファスの酸化チタン膜を形成することができる。アモルファスの酸化チタン膜は、この成分単体では、光触媒性能を発現せず、また、初期水接触角がシリカ膜よりも高く設定することができる。したがって、上記アモルファスの酸化チタン膜は、複合させた粒子の光触媒性能(親水化挙動、有機物分解力)をより容易に評価することができる。
(Manufacture of photocatalytic film)
Then, the evaluation film | membrane for evaluating photocatalyst performance was manufactured in the following procedures. First, 10 g of ethyl cellosolve and 5.07 g of titanium tetraisopropoxide (manufactured by Nippon Soda Co., Ltd.) were placed in a 50 mL glass container and stirred for 10 minutes with a magnetic stirrer while maintaining the temperature at 30 ° C. A mixed liquid of 0.31 g of distilled water, 0.85 g of 60% nitric acid and 3.91 g of ethyl cellosolve was added dropwise thereto, and the mixture was hydrolyzed for 4 hours while maintaining the liquid temperature at 30 ° C. The solid content concentration of the liquid containing the titania hydrolyzate (hereinafter referred to as “hydrolysis condensation liquid”) was 7.1% in terms of TiO 2 . By using this hydrolysis-condensation liquid, an amorphous titanium oxide film can be formed. The amorphous titanium oxide film does not exhibit photocatalytic performance with this component alone, and the initial water contact angle can be set higher than that of the silica film. Therefore, the amorphous titanium oxide film can more easily evaluate the photocatalytic performance (hydrophilization behavior, organic matter decomposing ability) of the composite particles.

次いで、エチルセロソルブ5g、上記の加水分解縮合液3g、分散性確認の項目で使用して得られた粒子の10wt%イソプロパノール分散液2gを、この順番で液温を20℃に保ちながら攪拌し混ぜ合わせた。その後、サンユー電子製スピンコーターを用いて、5cm各3mm厚のフロートガラス板に、20℃環境下、1.5minで回転数2000rpmでスピンコートした。さらにオーブンにて120℃で2分間乾燥させ光触媒機能の評価膜とした。この評価膜は、評価対象の光触媒複合粒子が敷き詰められている。したがって評価膜は、表面が評価対象の光触媒複合粒子の被覆層である酸化チタン粒子によって形成されているため、単純な酸化チタン膜として評価することができる。
得られた評価膜について以下に示す特性を確認した。各特性を表1〜4に示す。
Next, 5 g of ethyl cellosolve, 3 g of the above-mentioned hydrolysis-condensation liquid, and 2 g of 10 wt% isopropanol dispersion of particles obtained using the items for confirming dispersibility were stirred and mixed in this order while keeping the liquid temperature at 20 ° C. Combined. Thereafter, using a spin coater made by Sanyu Electronics, a 3 mm-thick float glass plate of 5 cm was spin-coated at a rotation speed of 2000 rpm in a 20 ° C. environment for 1.5 minutes. Furthermore, it was dried in an oven at 120 ° C. for 2 minutes to obtain a photocatalytic function evaluation film. This evaluation film is covered with photocatalyst composite particles to be evaluated. Therefore, the evaluation film can be evaluated as a simple titanium oxide film because the surface is formed of titanium oxide particles that are coating layers of the photocatalyst composite particles to be evaluated.
The following characteristics of the obtained evaluation film were confirmed. Each characteristic is shown to Tables 1-4.

(親水化挙動測定)
親水化挙動は、上記の評価膜を遮光用のステンレス密閉容器を用い暗所保持下で十分に疎水化(水接触角>40°)させてから、各種波長の紫外線を照射した。そしてエルマ販売社製接触角計(G−1−1000)で、蒸留水に対する接触角の経時変化を追跡した。各種波長の紫外線を10時間照射後の接触角が30°以下のものをその波長における光応答性ありとした。この際、光応答性が310nm以上350nm未満で見られたものを◎、350nm以上365nm未満のものを○、365nm以上380nm未満のものを△、380nm以上のものを×と評価した。
(Measurement of hydrophilization behavior)
For the hydrophilization behavior, the above evaluation film was sufficiently hydrophobized (water contact angle> 40 °) in a dark place using a stainless steel sealed container for light shielding, and then irradiated with ultraviolet rays of various wavelengths. And the change with time of the contact angle with respect to distilled water was traced with a contact angle meter (G-1-1000) manufactured by Elma Sales. Those having a contact angle of 30 ° or less after irradiation with ultraviolet rays of various wavelengths for 10 hours were considered to have photoresponsiveness at that wavelength. At this time, the case where the photoresponsiveness was observed at 310 nm or more and less than 350 nm was evaluated as ◎, the case where it was 350 nm or more and less than 365 nm was evaluated as ○, the case where 365 nm or less was less than 380 nm was evaluated as Δ, and the case where 380 nm or more was measured as ×.

この際光源は、朝日分光(株)製キセノン光源(MAX−302)を用い、バンドパスフィルターを介在させることにより、半値幅が15nm以下の所定波長の光を取り出した。使用した光源とその照射波長領域及び、光の照度を表5に示す。それぞれの照度は、各種主波長のフォトン数が、概ね同一(3.7×1015quanta/cm/s、2mW/cm at 365nm)となるように設定した。 At this time, a xenon light source (MAX-302) manufactured by Asahi Spectroscopic Co., Ltd. was used as the light source, and light having a predetermined wavelength with a half-value width of 15 nm or less was extracted by interposing a bandpass filter. Table 5 shows the light source used, its irradiation wavelength region, and the illuminance of light. Each illuminance was set so that the number of photons of various dominant wavelengths was substantially the same (3.7 × 10 15 quanta / cm 2 / s, 2 mW / cm 2 at 365 nm).

Figure 0006096536
Figure 0006096536

(有機物分解測定)
JIS R 1703−2に定められる湿式分解法に則り、メチレンブルー分解試験による有機物分解指数を求めた。その際得られる有機物分解指数が、1未満のものを◎、1以上3未満のものを○、3以上5未満のものを△、5以上のものを×と評価した。
(Decomposition measurement of organic matter)
In accordance with the wet decomposition method defined in JIS R 1703-2, an organic matter decomposition index was determined by a methylene blue decomposition test. The organic substance decomposition index obtained at that time was evaluated as ◎ when the organic compound was less than 1, ◯ when it was 1 or more and less than 3, and Δ when it was 3 or more and less than 5, and x when it was 5 or more.

(総合評価)
各評価でつけられた評価で、最低点のものを各粉体における総合評価点とした。各実施例は、総合評価が◎〜△であることが確認できた。
(Comprehensive evaluation)
Of the evaluations given in each evaluation, the lowest score was taken as the overall evaluation score for each powder. In each example, it was confirmed that the overall evaluation was で to Δ.

比較例1−0、1−0−a〜c、2−0、2−0−a〜c、3−0、3−0−a〜cはいずれも被覆層を有していないことにより光触媒活性が得られないため、「親水化挙動」の評価が×となった。   Comparative Examples 1-0, 1-0-a to c, 2-0, 2-0-a to c, 3-0, and 3-0-a to c are all photocatalysts because they do not have a coating layer. Since the activity could not be obtained, the evaluation of “hydrophilization behavior” was x.

比較例1−1〜5、2−1〜6、3−1〜4はいずれも焼成処理を省略しているため被覆層を形成する酸化チタン粒子がアモルファス体である。したがって光触媒活性が得られないため、「親水化挙動」の評価が×となった。   Since all of Comparative Examples 1-1 to 5-1, 2-1 to 6, and 3-1 to 4 omit the firing treatment, the titanium oxide particles forming the coating layer are amorphous. Therefore, since the photocatalytic activity could not be obtained, the evaluation of “hydrophilization behavior” was x.

また、比較例1−5、1−5−a,b、2−6、3−4は、被覆層の厚みが13nmを超えていることにより粒子が凝集しているため、「分散性」の評価が×となった。   In Comparative Examples 1-5, 1-5-a, b, 2-6, and 3-4, since the thickness of the coating layer exceeds 13 nm, the particles are aggregated. Evaluation became x.

比較例4−1、4−2、4−1−a,b、4−2−a,bは、いずれも母粒子を備えていないことにより分散性が悪化しているため、「分散性」の評価が×となった。   Since Comparative Examples 4-1, 4-2, 4-1-a, b, 4-2-a, b are not provided with mother particles, the dispersibility is deteriorated. Was evaluated as x.

比較例5、6、8、9は、市販の酸化チタンであることによりいずれも有機物分解力が高いため、「親水化挙動」の評価が×又は△、「有機物分解力」の評価が×となった。
比較例10は、粒子がない状態で評価を行ったので、光触媒活性は当然得られないため、「親水化挙動」の評価が×となった。
Since Comparative Examples 5, 6, 8, and 9 are commercially available titanium oxides, all have high organic matter decomposing power, the evaluation of “hydrophilization behavior” is x or Δ, and the evaluation of “organic decomposing power” is x. became.
Since Comparative Example 10 was evaluated in the absence of particles, the photocatalytic activity was naturally not obtained, so the evaluation of “hydrophilization behavior” was x.

(変形例)
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
(Modification)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.

Claims (8)

無機酸化物で形成された母粒子と、
前記母粒子表面に固定され、光触媒粒子で形成された結晶部を有する被覆層と
を備える光触媒複合粒子において、
前記被覆層の厚みは0.5nm以上13nm以下であり、
前記光触媒複合粒子5gを45gのイソプロパノールに加えて室温下で4時間超音波処理し6時間放置した分散液の粒径分布解析により求められる重量換算粒子径が、前記光触媒複合粒子の走査型電子顕微鏡を用いた100,000倍の画像の20個の粒子から求めた平均粒子径の2倍未満である
ことを特徴とする光触媒複合粒子。
Mother particles formed of an inorganic oxide;
In the photocatalyst composite particle comprising a coating layer having a crystal part fixed to the surface of the mother particle and formed of the photocatalyst particle,
The thickness of the coating layer is Ri der than 13nm or less 0.5 nm,
The weight-converted particle diameter obtained by the particle size distribution analysis of a dispersion obtained by adding 5 g of the photocatalyst composite particles to 45 g of isopropanol, sonicating at room temperature for 4 hours, and allowing to stand for 6 hours is a scanning electron microscope of the photocatalyst composite particles. The photocatalyst composite particles, wherein the average particle diameter is less than twice the average particle diameter obtained from 20 particles of 100,000 times of the image using
バンドギャップは3.3eV以上3.7eV未満であることを特徴とする請求項1記載の光触媒複合粒子。   The photocatalyst composite particle according to claim 1, wherein the band gap is 3.3 eV or more and less than 3.7 eV. 前記結晶部は、アナターゼ晶を含み、結晶子径が1〜7nmであることを特徴とする請求項1又は2記載の光触媒複合粒子。   The photocatalyst composite particle according to claim 1 or 2, wherein the crystal part includes an anatase crystal and has a crystallite diameter of 1 to 7 nm. 前記母粒子の粒子径は10nm以上2μm以下であることを特徴とする請求項1〜3のいずれか1項記載の光触媒複合粒子。   The photocatalyst composite particle according to any one of claims 1 to 3, wherein the base particle has a particle size of 10 nm or more and 2 µm or less. 請求項1〜4のいずれか1項記載の光触媒複合粒子を分散させたことを特徴とする分散液。   A dispersion liquid in which the photocatalyst composite particles according to any one of claims 1 to 4 are dispersed. 基材表面に請求項1〜4のいずれか1項記載の光触媒複合粒子を含む光触媒膜を有することを特徴とする物品。   An article having a photocatalyst film containing the photocatalyst composite particles according to any one of claims 1 to 4 on the surface of a substrate. 無機酸化物で形成された母粒子と、
前記母粒子表面に固定され、光触媒粒子で形成された結晶部を有する被覆層と
を備える光触媒複合粒子の製造方法において、
前記母粒子はゾルゲル法により形成されたものであり、前記母粒子の水分散スラリーにアルコールを加え、前記母粒子を前記アルコールに分散させた分散液とすることと、
前記母粒子が分散した前記分散液に光触媒化合物を混合して加水分解により前記母粒子表面に前記光触媒粒子の被覆層を形成することと、
前記被覆層を500℃〜1200℃の温度で加熱処理することと
を備えることを特徴とする光触媒複合粒子の製造方法。
Mother particles formed of an inorganic oxide;
In the method for producing photocatalyst composite particles, comprising a coating layer having a crystal part fixed on the surface of the mother particles and formed of photocatalyst particles,
The mother particles are formed by a sol-gel method, and an alcohol is added to an aqueous dispersion slurry of the mother particles to obtain a dispersion in which the mother particles are dispersed in the alcohol;
And said base particles to form a coating layer of the photocatalyst particles on the surface of the base particles by hydrolysis by mixing a photocatalyst compound to the dispersion obtained by dispersing,
Heat-treating the said coating layer at the temperature of 500 to 1200 degreeC, The manufacturing method of the photocatalyst composite particle characterized by the above-mentioned.
前記母粒子表面に前記光触媒粒子の被覆層を形成する前に、前記母粒子が分散した前記分散液にアルカリ水溶液を添加して、前記母粒子に活性化処理を施すことをさらに備えることを特徴とする請求項7記載の光触媒複合粒子の製造方法。Before forming the coating layer of the photocatalyst particles on the surface of the mother particles, it further comprises adding an alkaline aqueous solution to the dispersion in which the mother particles are dispersed to subject the mother particles to an activation treatment. The method for producing photocatalyst composite particles according to claim 7.
JP2013045384A 2013-03-07 2013-03-07 Photocatalyst composite particles and method for producing the same Active JP6096536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045384A JP6096536B2 (en) 2013-03-07 2013-03-07 Photocatalyst composite particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045384A JP6096536B2 (en) 2013-03-07 2013-03-07 Photocatalyst composite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014171940A JP2014171940A (en) 2014-09-22
JP6096536B2 true JP6096536B2 (en) 2017-03-15

Family

ID=51693791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045384A Active JP6096536B2 (en) 2013-03-07 2013-03-07 Photocatalyst composite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6096536B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105998B2 (en) * 2013-03-26 2017-03-29 パナホーム株式会社 Method for producing photocatalyst composition and method for producing photocatalyst

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304366B2 (en) * 1995-03-20 2012-10-03 Toto Ltd. Use of a photocatalytically rendered superhydrophilic surface with antifogging properties
JP3780592B2 (en) * 1995-12-21 2006-05-31 旭硝子株式会社 Photocatalyst composition, method for producing the same, and substrate with photocatalyst composition
JP3234893B2 (en) * 1998-07-02 2001-12-04 経済産業省産業技術総合研究所長 Method for producing fine hollow glass spheres coated with titanium oxide
JP2000290528A (en) * 1999-04-09 2000-10-17 Matsushita Electric Works Ltd Lustrous material, coating composition and coated item
JP2003340290A (en) * 2002-03-20 2003-12-02 Nok Corp Photocatalyst structure and manufacturing method therefor
JP2005199261A (en) * 2003-12-17 2005-07-28 Fujikura Kasei Co Ltd Photocatalyst composite material, coating composition comprising photocatalyst and self-cleaning type coating film
JP2007144403A (en) * 2005-10-27 2007-06-14 Atomix Co Ltd Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JP5511159B2 (en) * 2007-10-16 2014-06-04 宇部エクシモ株式会社 Photocatalyst film, method for producing photocatalyst film, article and method for hydrophilization
JP2012512019A (en) * 2008-12-16 2012-05-31 ディルップ・アー・エス Self-cleaning paint composition
JP5734741B2 (en) * 2011-05-24 2015-06-17 日揮触媒化成株式会社 Method for producing crystalline titanate and crystalline titanate

Also Published As

Publication number Publication date
JP2014171940A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5077941B2 (en) Core-shell type cerium oxide fine particles or dispersion containing the same and method for producing them
JP5920478B2 (en) Composite photocatalyst and photocatalyst material
Shahmirzaee et al. In situ crystallization of ZnAl 2 O 4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater
TW201016611A (en) Method for making metal/titania pulp and photocatalyst
EP2133311B1 (en) Zirconium oxalate sol
Eshaghi et al. Preparation and characterization of TiO 2 sol–gel modified nanocomposite films
JP2006335619A (en) Titanium oxide particle, and production method and application thereof
CN1483002A (en) High activity photo-catalyst
JP4382607B2 (en) Titanium oxide particles
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
US20100056365A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained thereby
WO2011065521A1 (en) Silica nanofiber/nanocrystalline metal oxide composite and method for producing same
WO2022007756A1 (en) Titanium dioxide material and preparation method therefor, dispersion improvement method, and application thereof
Abbas et al. Effect of annealing time on structural and optical proprieties of mercury (Hg+ 2) doped TiO2 thin films elaborated by sol-gel method for future photo-catalytic application
CN113896231B (en) Preparation method of titanium dioxide material
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
JP6096536B2 (en) Photocatalyst composite particles and method for producing the same
JP2017043505A (en) Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
JP4382872B1 (en) Method for producing titanium oxide particles
JP5313051B2 (en) Zirconium oxalate sol
Liboon et al. Physico-Chemical Properties of TiO2 Coatings Derived from Acid Catalyst-Free Precursor via Spin Coating
JP5644877B2 (en) Method for producing dispersion of photocatalyst particles
JP4751805B2 (en) Method for producing composition containing low-order titanium oxide particles
Jiang et al. Visible Photocatalysis of a Building Glass Coated with NF-TiO 2/rGO
Abdollahi et al. Photocatalytic coating using Titania-Silica core/shell nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250