JP2006335619A - Titanium oxide particle, and production method and application thereof - Google Patents

Titanium oxide particle, and production method and application thereof Download PDF

Info

Publication number
JP2006335619A
JP2006335619A JP2005164754A JP2005164754A JP2006335619A JP 2006335619 A JP2006335619 A JP 2006335619A JP 2005164754 A JP2005164754 A JP 2005164754A JP 2005164754 A JP2005164754 A JP 2005164754A JP 2006335619 A JP2006335619 A JP 2006335619A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide particles
titanium
mass
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005164754A
Other languages
Japanese (ja)
Inventor
Yasushi Kuroda
黒田  靖
Hirokazu Kanbara
弘和 蒲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005164754A priority Critical patent/JP2006335619A/en
Publication of JP2006335619A publication Critical patent/JP2006335619A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide rutile type titanium oxide particles exhibiting high photocatalytic activity to a practical light source such as a white fluorescent lamp; and a method for producing the titanium oxide particles by which the titanium oxide particles can be easily produced by performing hydrolysis of an aqueous solution of titanium tetrachloride under a certain condition. <P>SOLUTION: The titanium oxide particles have a rutile content of 50-99.9 mass% and a BET specific surface area of >50 and ≤300 m<SP>2</SP>/g. The method for producing the titanium oxide particles comprises mixing titanium tetrachloride and hydrochloric acid each in an amount of 1-5 mass% to water of 65-90°C and then performing hydrolysis while keeping the temperature of the resulting mixed liquid within a temperature range of 65°C to the boiling point of the mixed liquid. In the method for producing the titanium oxide particles, a process for incorporating one or more kinds of elements selected from nitrogen, carbon, sulfur, and chromium into the titanium oxide particles is not provided. A photocatalyst, an aqueous dispersion titanium oxide sol, and a titanium oxide thin film, obtained by using the titanium oxide particles, and an article and a base material, obtained by using the titanium oxide thin film, are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ルチル構造を結晶構造の主構造とする、つまりルチル含有率が50質量%〜99.9質量%であり、BET比表面積が50m2/g〜300m2/gであることを特徴とし、かつ、窒素やクロムなどの不純物を添加することなしに、白色蛍光灯や昼白色蛍光灯などの一般生活で使用する光源に対する光触媒活性が高い酸化チタン粒子と、該粒子を四塩化チタンまたは四塩化チタン水溶液の加水分解により製造する方法に関する。 The present invention is directed to a rutile structure as a main structure of the crystal structure, i.e. a rutile content of 50 to 99.9% by weight, wherein the BET specific surface area of 50m 2 / g~300m 2 / g And, without adding impurities such as nitrogen and chromium, titanium oxide particles having high photocatalytic activity for light sources used in general life such as white fluorescent lamps and daylight white fluorescent lamps, and titanium tetrachloride or The present invention relates to a method for producing a titanium tetrachloride aqueous solution by hydrolysis.

酸化チタンにはブルッカイト型、アナターゼ型、ルチル型の3つの結晶相の存在が知られている。主に後2者がそれぞれ光触媒用途、紫外線遮蔽用途などに使い分けがされている。このうち光触媒用途では、ルチル型よりもアナターゼ型がよく用いられている。その理由は、光触媒能力がアナターゼ型の方が高い事にある。この活性差異は、両者のエネルギーギャップによるものであり、このバンドギャップがルチル型に比べて約0.2eV高い事による。(非特許文献1)   Titanium oxide is known to have three crystal phases of brookite type, anatase type and rutile type. The latter two are used separately for photocatalyst use and ultraviolet shielding use, respectively. Of these, the anatase type is more frequently used than the rutile type for photocatalytic applications. The reason is that the photocatalytic ability is higher in the anatase type. This difference in activity is due to the energy gap between the two, and this band gap is about 0.2 eV higher than the rutile type. (Non-Patent Document 1)

この光触媒機能を利用した抗菌、消臭、防汚、大気の浄化、水質の浄化等の環境浄化が検討されている。   Environmental purification such as antibacterial, deodorizing, antifouling, air purification, water quality purification using this photocatalytic function has been studied.

しかしながら、酸化チタンの優れた光触媒機能を利用するためには、波長400nm以下の紫外光が必要であるため、室内や車内のような紫外光が得られにくい空間において光触媒機能を利用するのは難しかった。そこで、波長400nmよりも長波長の光を吸収する、いわゆる可視光応答型の光触媒についての研究が各所でなされている。   However, in order to use the excellent photocatalytic function of titanium oxide, ultraviolet light having a wavelength of 400 nm or less is necessary, and thus it is difficult to use the photocatalytic function in a space where it is difficult to obtain ultraviolet light such as indoors or in a vehicle. It was. Therefore, studies on so-called visible light responsive photocatalysts that absorb light having a wavelength longer than 400 nm have been made in various places.

例えば、特許文献1および特許文献2では、酸化チタンに窒素をドープすることでバンドギャップを狭くして可視光線を吸収させることが検討されている。特許文献1では、三塩化チタン溶液とアンモニア水との反応によって窒素をドープした酸化チタンを製造し、可視光線によるアセトアルデヒドガスの分解を確認している。また、特許文献2では、スパッタリングによって窒素をドープし、可視光線によるメチレンブルーの分解を確認している。   For example, in Patent Document 1 and Patent Document 2, it is studied that titanium oxide is doped with nitrogen to narrow the band gap and absorb visible light. In Patent Document 1, titanium oxide doped with nitrogen is produced by a reaction between a titanium trichloride solution and aqueous ammonia, and the decomposition of acetaldehyde gas by visible light is confirmed. In Patent Document 2, nitrogen is doped by sputtering, and methylene blue is decomposed by visible light.

また、触媒活性の高いアナターゼ型二酸化チタンにCr(クロム),V(バナジウム)等の金属元素をイオン注入して材料改質を行うことにより、二酸化チタンの光最大吸収波長を長波長側にシフトさせ、可視光での二酸化チタン触媒の動作を可能にしている報告もある。(特許文献3)   In addition, the metal optical elements such as Cr (chromium) and V (vanadium) are ion-implanted into anatase-type titanium dioxide with high catalytic activity, and the material is modified to shift the maximum light absorption wavelength of titanium dioxide to the longer wavelength side. Some reports have made it possible to operate the titanium dioxide catalyst with visible light. (Patent Document 3)

その他の高活性化の事例として、最近ではルチルとアナターゼ粒子を複合する事によって、顕著な活性向上が見られることも報告されている。これはルチル結晶がアンテナのように効率よく光を吸収し、ルチル−アナターゼ結晶間の電子移動で電子・正孔の電荷分離が促進された結果、電子・正孔対の再結合速度が低下する事が高活性の原因と考えられている(ルチル−アナターゼ複合効果)。(非特許文献2)   As another example of high activation, it has recently been reported that a remarkable improvement in activity is observed by combining rutile and anatase particles. This is because the rutile crystal absorbs light efficiently like an antenna, and the electron-hole separation is promoted by the electron transfer between the rutile-anatase crystals, resulting in a decrease in the recombination rate of the electron-hole pair. This is considered to be the cause of high activity (rutile-anatase combined effect). (Non-Patent Document 2)

また、従来の紫外線遮蔽用としてのルチル型酸化チタン微粒子の開発に加え、最近では光触能をもつルチル型酸化チタンの開発も提案されており、例えば、下記のような製造方法が提案されている。   In addition to the development of rutile-type titanium oxide fine particles for conventional UV shielding, the development of rutile-type titanium oxide having phototactility has recently been proposed. For example, the following production method has been proposed. Yes.

(1)気相反応において酸素と水素の混合気体中の水素の比率を変える事で、ルチル含有比率が99%以上の酸化チタンを製造する方法(特許文献4)。   (1) A method of producing titanium oxide having a rutile content ratio of 99% or more by changing the ratio of hydrogen in a mixed gas of oxygen and hydrogen in a gas phase reaction (Patent Document 4).

(2)四塩化チタン、水素および酸素を特定の範囲のモル比で燃焼させて四塩化チタンの加水分解により、ルチル含有率の高い酸化チタン微粒子を製造する方法(特許文献5)。   (2) A method of producing titanium oxide fine particles having a high rutile content by burning titanium tetrachloride, hydrogen and oxygen in a specific range of molar ratio and hydrolyzing titanium tetrachloride (Patent Document 5).

(3)チタンアルコキシド等のチタン化合物を加熱蒸発させ、これを気相状態下で熱分解することにより生成する超微粒子状アモルファス酸化チタンを、無機酸水溶液中で熟成することによりルチル型に変換して超微粒子状ルチル型酸化チタンを製造する方法(特許文献6)。   (3) Ultrafine particulate amorphous titanium oxide produced by heating and evaporating a titanium compound such as titanium alkoxide and thermally decomposing it in a gas phase is converted into a rutile type by aging in an aqueous inorganic acid solution. To produce ultrafine particulate rutile-type titanium oxide (Patent Document 6).

(4)硫酸チタン(III )を水溶液中でアルカリ(例えば、水酸化アンモニウムまたはアルカリ金属の水酸化物)を用い、加水分解によりルチル型二酸化チタンの製造方法。このルチル型二酸化チタンは250m2/g以上のBET比表面積を有し、420nmの光に対して活性を示す事が示されている(特許文献7)。 (4) A method for producing rutile titanium dioxide by hydrolysis of titanium (III) sulfate in an aqueous solution using an alkali (for example, ammonium hydroxide or alkali metal hydroxide). This rutile titanium dioxide has a BET specific surface area of 250 m 2 / g or more, and is shown to be active against light of 420 nm (Patent Document 7).

また、光触媒活性を示すルチル型の結晶を含む酸化チタンも提案されている。
(5)凝集粒子の平均粒径が0.1〜10μm、一次粒子の平均粒子径が10〜1000nm、BET比表面積が0.5〜50m2/g及びルチル化率が10〜100%である事を特徴とする酸化チタン粉末が光触媒活性を示し、この光触媒用酸化チタンが公知の種々の製法によらず製造できる事が示されている(特許文献8)。
In addition, titanium oxide containing a rutile crystal exhibiting photocatalytic activity has also been proposed.
(5) The average particle diameter of the aggregated particles is 0.1 to 10 μm, the average particle diameter of the primary particles is 10 to 1000 nm, the BET specific surface area is 0.5 to 50 m 2 / g, and the rutile ratio is 10 to 100%. It has been shown that titanium oxide powder characterized by this shows photocatalytic activity, and that this titanium oxide for photocatalyst can be produced without using various known production methods (Patent Document 8).

(6)ルチル型酸化チタン微粒子の希硫酸懸濁液を加熱還流し、中和することによって表面に無定形水酸化チタンが沈着したルチル型酸化チタンを製造する。この沈着した酸化チタンがアナターゼ型酸化チタンへ結晶化する条件で焼成し、アナターゼ型とルチル型の結晶が直接相互に固着している酸化チタン光触媒を提供している(特許文献9)。   (6) A dilute sulfuric acid suspension of rutile titanium oxide fine particles is heated to reflux and neutralized to produce rutile titanium oxide having amorphous titanium hydroxide deposited on the surface. There is provided a titanium oxide photocatalyst in which the deposited titanium oxide is baked under conditions for crystallization into anatase-type titanium oxide, and anatase-type and rutile-type crystals are directly adhered to each other (Patent Document 9).

特開2001−72419号公報JP 2001-72419 A 特開2001−205094号公報JP 2001-205094 A 特開平9−262482号公報JP-A-9-262482 特開平3−252315号公報JP-A-3-252315 特開平6−340423号公報JP-A-6-340423 特開平7−291629号公報JP-A-7-291629 特開2004−123481号公報JP 2004-123481 A 特開平11−349328号公報JP-A-11-349328 特開平2004−025147号公報Japanese Patent Laid-Open No. 2004-025147 セラミックス31(1996) No.10、P.817Ceramics 31 (1996) No. 10, p. 817 野坂芳雄・野坂篤子著 「入門光触媒」東京図書 2004年 第1版発行Published by Yoshio Nosaka and Atsuko Nosaka “Introductory Photocatalyst”, Tokyo Book 2004, 1st Edition

特許文献1及び2に記載されているような、いわゆる窒素ドープ可視光応答型光触媒では、酸化チタンのバンドギャップ内に生じた不純物準位によって正孔と電子の再結合が起こるため、量子効率が低下して光触媒能が低くなる。また、特許文献3のような金属元素のイオン注入は、製造装置が大規模になるため、高価になってしまい、工業的に製造するには現実性に乏しいという問題点がある。   In so-called nitrogen-doped visible light responsive photocatalysts described in Patent Documents 1 and 2, recombination of holes and electrons occurs due to impurity levels generated in the band gap of titanium oxide. The photocatalytic ability is lowered to decrease. In addition, the ion implantation of metal elements as in Patent Document 3 is expensive because the manufacturing apparatus becomes large, and there is a problem that it is not practical for industrial production.

特許文献4〜6は気相法による酸化チタン合成法であり、また高温での焼成処理が必要である為、高BET比表面積のルチル型酸化チタンを製造するのは難しい。また、特許文献7または9では、上記と同様に高温での焼成工程が必要である。   Patent Documents 4 to 6 are titanium oxide synthesizing methods by a vapor phase method, and it is difficult to produce a rutile type titanium oxide having a high BET specific surface area because a baking treatment at a high temperature is necessary. Moreover, in patent document 7 or 9, the baking process at high temperature is required similarly to the above.

さらに、上記で引用した特許文献も含め、従来の多くの可視光応答型の光触媒は、その触媒能の十分な発現のためには、キセノンランプのような強力な光源を必要としている点においても現実性に乏しいと言わざるを得ない。例えば白色蛍光灯や昼白色蛍光灯のような、一般生活において常用されるような実用光源に対して十分な光触媒活性を得ることが出来ていない。   Furthermore, many of the conventional visible light responsive photocatalysts, including the patent documents cited above, also require a powerful light source such as a xenon lamp in order to fully exhibit their catalytic ability. I have to say that the reality is scarce. For example, sufficient photocatalytic activity cannot be obtained for a practical light source such as a white fluorescent lamp or a day white fluorescent lamp that is commonly used in general life.

つまり、光触媒の活性の向上、可視光応答性の付与のため各種検討が行われてきたが、光触媒能が十分でなかったり、製造過程が非常に煩雑な工程であったりした。従って、既存の安価な光源、例えば白色蛍光灯のような室内において常用される光源で十分な光触媒効果を発揮する酸化チタン、つまり高感度酸化チタンを容易に製造することが出来れば大きな実用上のメリットがある。   In other words, various studies have been made to improve the activity of the photocatalyst and impart visible light responsiveness, but the photocatalytic ability is not sufficient, and the production process is a very complicated process. Therefore, if an existing inexpensive light source, for example, a titanium oxide that exhibits a sufficient photocatalytic effect with a light source that is commonly used indoors, such as a white fluorescent lamp, that is, a highly sensitive titanium oxide can be easily manufactured, it is of great practical use. There are benefits.

本発明は、白色蛍光灯のような実用的な光源に対して高い光触媒活性を示すルチル型酸化チタン粒子と、ある条件の下で四塩化チタン水溶液の加水分解を行うことで該酸化チタン粒子を容易に製造する方法を提供することにある。   The present invention relates to rutile-type titanium oxide particles exhibiting high photocatalytic activity for a practical light source such as a white fluorescent lamp, and the titanium oxide particles by hydrolyzing a titanium tetrachloride aqueous solution under certain conditions. The object is to provide a method of manufacturing easily.

本発明者らは、上記課題を解決するために、鋭意研究を重ねた。その結果、四塩化チタンまたは四塩化チタン水溶液を酸性水溶液中で、ある条件の下で加水分解を行う事により、蛍光灯のような実用的な光源に対して高い光触媒活性を示す高ルチル・高BET比表面積酸化チタン粒子ができることを見出し、本発明を完成させた。一般的に、ルチル構造の酸化チタンは、比表面積が小さくなる。したがって、ルチル化率が高く、しかも高比表面積であるということは、画期的である。   In order to solve the above problems, the present inventors have conducted intensive research. As a result, by hydrolyzing titanium tetrachloride or titanium tetrachloride aqueous solution in an acidic aqueous solution under certain conditions, high rutile and high high catalytic activity against practical light sources such as fluorescent lamps. The present inventors have found that BET specific surface area titanium oxide particles can be produced and completed the present invention. Generally, titanium oxide having a rutile structure has a small specific surface area. Therefore, the fact that the rutile ratio is high and the specific surface area is high is epoch-making.

即ち、本発明は以下の発明からなる。
(1)ルチル含有率が50〜99.9質量%であり、BET比表面積が50m2/g超300m2/g以下であることを特徴とする酸化チタン粒子。
That is, this invention consists of the following invention.
(1) Titanium oxide particles having a rutile content of 50 to 99.9% by mass and a BET specific surface area of more than 50 m 2 / g and 300 m 2 / g or less.

(2)一次粒子の平均粒子径が、5〜100nmの範囲内である、(1)に記載の酸化チタン粒子。
(3)酸化チタンが、アナターゼ型酸化チタン及びブルッカイト型酸化チタンのうち少なくとも1種以上の酸化チタンを含む、(1)または(2)に記載の酸化チタン粒子。
(2) The titanium oxide particles according to (1), wherein the average particle diameter of the primary particles is in the range of 5 to 100 nm.
(3) The titanium oxide particles according to (1) or (2), wherein the titanium oxide contains at least one kind of titanium oxide among anatase type titanium oxide and brookite type titanium oxide.

(4)窒素、炭素、硫黄、クロムの各元素の含有量が各々100質量ppm以下である、(1)ないし(3)のいずれか1項に記載の酸化チタン粒子。
(5)65〜90℃の水に対し、四塩化チタン及び塩酸を各々1〜5質量%混合し、65℃〜混合液の沸点の温度範囲に混合液の温度を保持しながら加水分解する、(1)ないし(4)のいずれか1項に記載の酸化チタン粒子の製造方法。
(4) The titanium oxide particles according to any one of (1) to (3), wherein the content of each element of nitrogen, carbon, sulfur, and chromium is 100 ppm by mass or less.
(5) 1 to 5% by mass of titanium tetrachloride and hydrochloric acid are each mixed with water at 65 to 90 ° C. and hydrolyzed while maintaining the temperature of the mixed solution within the temperature range of 65 ° C. to the boiling point of the mixed solution. (1) The manufacturing method of the titanium oxide particle of any one of (4).

(6)反応槽内の塩素イオン濃度を10,000〜50,000質量ppmの範囲内に維持する、(5)に記載の酸化チタン粒子の製造方法。
(7)四塩化チタンの加水分解を行うにあたり、塩化水素の反応槽からの逸脱を防止して行う、(5)または(6)に記載の酸化チタン粒子の製造方法。
(6) The method for producing titanium oxide particles according to (5), wherein the chlorine ion concentration in the reaction vessel is maintained within a range of 10,000 to 50,000 mass ppm.
(7) The method for producing titanium oxide particles according to (5) or (6), wherein the titanium tetrachloride is hydrolyzed while preventing deviation of hydrogen chloride from the reaction vessel.

(8)(5)ないし(7)のいずれか1項に記載の製造方法により得られた酸化チタン粒子の水分散ゾルを、濾過、乾燥する、酸化チタン粒子の製造方法。
(9)四塩化チタンを酸性水溶液中で加水分解する酸化チタン粒子の製造方法であって、窒素、炭素、硫黄、クロムから選択される1種類以上の元素を酸化チタン粒子に含有させる工程を設けない、(1)ないし(4)のいずれか1項に記載の酸化チタン粒子の製造方法。
(8) A method for producing titanium oxide particles, comprising filtering and drying an aqueous dispersion sol of titanium oxide particles obtained by the production method according to any one of (5) to (7).
(9) A method for producing titanium oxide particles in which titanium tetrachloride is hydrolyzed in an acidic aqueous solution, wherein the titanium oxide particles are provided with one or more elements selected from nitrogen, carbon, sulfur, and chromium. The method for producing titanium oxide particles according to any one of (1) to (4).

(10)(1)ないし(4)のいずれか1項に記載の酸化チタン粒子を含む光触媒。
(11)白色蛍光灯の光に対して光触媒活性を示す、(10)に記載の光触媒。
(10) A photocatalyst comprising the titanium oxide particles according to any one of (1) to (4).
(11) The photocatalyst according to (10), which exhibits photocatalytic activity with respect to light from a white fluorescent lamp.

(12)(1)ないし(4)のいずれか1項に記載の酸化チタン粒子を含む塗工剤。
(13)(1)ないし(4)のいずれか1項に記載の酸化チタン粒子が0.1〜30質量%分散している、水分散酸化チタンゾル。
(12) A coating agent comprising the titanium oxide particles according to any one of (1) to (4).
(13) A water-dispersed titanium oxide sol in which the titanium oxide particles according to any one of (1) to (4) are dispersed in an amount of 0.1 to 30% by mass.

(14)塩素イオン濃度が50〜10,000質量ppmである、(13)に記載の水分散酸化チタンゾル。
(15)(13)または(14)に記載の水分散酸化チタンゾルを含む、酸化チタン薄膜。
(14) The water-dispersed titanium oxide sol according to (13), wherein the chlorine ion concentration is 50 to 10,000 mass ppm.
(15) A titanium oxide thin film comprising the water-dispersed titanium oxide sol according to (13) or (14).

(16)基材が耐熱性物質であり、酸化チタン薄膜が焼成したものである、(15)に記載の酸化チタン薄膜。
(17)(13)または(14)に記載の水分散酸化チタンゾルと無機バインダーとの混合物を基材表面に塗布する、酸化チタン薄膜の形成方法。
(16) The titanium oxide thin film according to (15), wherein the base material is a heat-resistant substance and the titanium oxide thin film is fired.
(17) A method for forming a titanium oxide thin film, wherein the mixture of the water-dispersed titanium oxide sol and the inorganic binder according to (13) or (14) is applied to a substrate surface.

(18)(15)または(16)に記載の酸化チタン薄膜を有する物品。
(19)(15)または(16)に記載の酸化チタン薄膜を表面に有する基材。
(18) An article having the titanium oxide thin film according to (15) or (16).
(19) A substrate having the titanium oxide thin film according to (15) or (16) on the surface.

本発明によって得られる、ルチル構造を主構造とした酸化チタンは、BET比表面積が大きく、また白色蛍光灯や昼白色蛍光灯などの実用的な光に対しても光触媒効果を発揮する事が出来る。また、製造方法が容易であり、工業的にも安価に製造することが可能である。つまり、本発明によって得られた酸化チタンにより光触媒の適用範囲を大幅に広げる事が出来る。   The titanium oxide having a rutile structure as a main structure obtained by the present invention has a large BET specific surface area, and can exhibit a photocatalytic effect even for practical light such as a white fluorescent lamp and a daylight fluorescent lamp. . Further, the production method is easy, and it can be produced industrially at low cost. That is, the application range of the photocatalyst can be greatly expanded by the titanium oxide obtained by the present invention.

以下、本発明についてより詳細に説明する。
本発明における、ルチル含有率とは、酸化チタンの粉末X線回折におけるルチル型結晶のピークをリートベルト解析により算出した結果を示す。本発明における酸化チタン粒子は、このルチル化率が50〜99.9質量%であり、BET比表面積が50m2/g超300m2/g以下である。ルチル化率が50質量%未満では、本発明の特長である、光触媒活性が得られない。また、ルチル化率100%でも、その性能は得られない。つまり、ルチル型を主構造とし、アナターゼ型、ブルッカイト型、または非晶質の結晶構造部分を含みつつ、大きなBET比表面積を有していることが重要である。
Hereinafter, the present invention will be described in more detail.
In the present invention, the rutile content indicates the result of calculating the peak of a rutile crystal in powder X-ray diffraction of titanium oxide by Rietveld analysis. The titanium oxide particles in the present invention have a rutile ratio of 50 to 99.9% by mass and a BET specific surface area of more than 50 m 2 / g and 300 m 2 / g or less. When the rutile ratio is less than 50% by mass, the photocatalytic activity which is a feature of the present invention cannot be obtained. Even if the rutile ratio is 100%, the performance cannot be obtained. That is, it is important to have a large BET specific surface area with a rutile type as a main structure and an anatase type, brookite type, or amorphous crystal structure portion.

BET比表面積については、光触媒能の発現機構から考察すると、大きい方が好ましい。一方で、ルチル型酸化チタンは、BET比表面積が小さい方が製造しやすい。ルチル構造を主構造としつつ、大きな比表面積を有するものを得ることは、一般的には難しい。本発明では、高い光触媒活性を得るために、少なくとも50m2/g超のBET比表面積を有することが必要である。しかし、ルチル構造を主構造とする以上、300m2/gよりも大きなBET比表面積を有する酸化チタンを工業的に得ることは困難であると考える。 The BET specific surface area is preferably larger when considering the mechanism of the photocatalytic activity. On the other hand, the rutile type titanium oxide is easier to produce when the BET specific surface area is smaller. It is generally difficult to obtain one having a large specific surface area while having a rutile structure as a main structure. In the present invention, in order to obtain a high photocatalytic activity, it is necessary to have a BET specific surface area of at least more than 50 m 2 / g. However, since the rutile structure is the main structure, it is difficult to industrially obtain titanium oxide having a BET specific surface area greater than 300 m 2 / g.

好ましくは、ルチル化率55〜99.5質量%、BET比表面積100〜250m2/gであり、さらに好ましくは、ルチル化率55〜99質量%、BET比表面積150〜230質量%m2/gである。 Preferably, rutile content from 55 to 99.5 wt%, a BET specific surface area of 100 to 250 m 2 / g, more preferably, rutile content 55 to 99 wt%, BET specific surface area from 150 to 230 wt% m 2 / g.

本発明における酸化チタン粒子は、一次粒子径が小さく、均一であることが好ましい。一次粒子の平均粒子径が、5〜100nmの範囲内であることが好ましい。さらに好ましくは、7〜80nmの範囲内であり、もっとも好ましくは、10〜50nmの範囲内である。   The titanium oxide particles in the present invention preferably have a small primary particle size and are uniform. The average particle diameter of the primary particles is preferably in the range of 5 to 100 nm. More preferably, it exists in the range of 7-80 nm, Most preferably, it exists in the range of 10-50 nm.

本発明における粉末X線回折、BET比表面積の測定方法としては、公知の方法でよく、特にこれらには限定されない。一次粒子の平均粒子径の測定方法は、X線回折法、電子顕微鏡を用いた方法など、公知の方法でよく、特にこれらに限定されない。   The method for measuring the powder X-ray diffraction and the BET specific surface area in the present invention may be a known method, and is not particularly limited thereto. The method for measuring the average particle diameter of the primary particles may be a known method such as an X-ray diffraction method or a method using an electron microscope, and is not particularly limited thereto.

本発明の酸化チタン粒子において、ルチル構造以外の相の酸化チタンについては、結晶形の制限はない。アナターゼ型、ブルッカイト型を含んでいてもよく、これらの混晶になっていてもよい。また、非晶質な相を含んでいてもよい。さらに、これらの相が単相で存在していても、複数の結晶相を含む粒子が分散していてもよい。少なくとも、ルチル型の特徴を有する結晶相が50質量%超〜99.9質量%確認できることが必要であるが、他の部分の結晶形態、混合の状態に制限はない。   In the titanium oxide particles of the present invention, there is no limitation on the crystal form of titanium oxide having a phase other than the rutile structure. An anatase type and brookite type may be included, and these may be mixed crystals. Moreover, an amorphous phase may be included. Furthermore, even if these phases exist in a single phase, particles including a plurality of crystal phases may be dispersed. At least, it is necessary that the crystalline phase having the rutile-type characteristics can be confirmed to be more than 50% by mass to 99.9% by mass, but there is no limitation on the crystal form and mixed state of other parts.

ルチル型結晶相の存在を確認する方法として最も簡便で実用的な手法は、粉末X線回折により測定することが挙げられる。リートベルト解析については、公知の方法で、一般的に使用される条件でよい。   The most simple and practical method for confirming the presence of the rutile-type crystal phase is to measure by powder X-ray diffraction. The Rietveld analysis may be a known method and generally used conditions.

本発明のゾル、あるいはゾルを乾燥することによって得られる酸化チタン粉末は、実用的な蛍光灯の光でも光触媒能の発現が可能であり、必ずしも紫外線光源を必要としない。蛍光灯などの実用的な光としては、白色蛍光灯、昼白色蛍光灯、昼光色蛍光灯、温白色蛍光灯、電球色蛍光灯などの光を例示することができるが、特にこれらに限定されない。一般的に日常生活で使用される光源ならば、使用することができる。   The sol of the present invention or the titanium oxide powder obtained by drying the sol can exhibit photocatalytic activity even with light from a practical fluorescent lamp, and does not necessarily require an ultraviolet light source. Examples of practical light such as fluorescent lamps include, but are not limited to, lights such as white fluorescent lamps, daylight white fluorescent lamps, daylight color fluorescent lamps, warm white fluorescent lamps, and light bulb color fluorescent lamps. Any light source generally used in daily life can be used.

上記で述べたとおり本発明の酸化チタン粒子は、蛍光灯などの実用的な光で光触媒能の発現が可能であるが、従来からの研究で行われている酸化チタンに窒素、炭素、硫黄、クロムなどの元素を積極的に添加することによりバンドギャップを狭くして可視光線を吸収させるなどといった処理は、行わなくてよい。また、純度99%以上の四塩化チタンを原料として使用できるため、得られる酸化チタンの純度が非常に高い。例えば、窒素、炭素、硫黄およびクロムの各元素がそれぞれ100質量ppm以下の酸化チタンを得ることができる。ただし、四塩化チタン原料中に微量に存在する不純物が、製造された酸化チタン中に含まれてしまうのは、積極的な添加ではない。本発明では、窒素、炭素、硫黄、クロムという、添加することによって可視光応答性が高まるという報告がある物質を、原料に添加したり、製品にドープしたりというように、積極的な添加を行わなくてもよい。すなわち、得られる酸化チタンにそれらの物質を含有させる工程を設けなくてよい。この状態で、蛍光灯などの光源に対して高い活性を示す酸化チタン粒子が得られることが特徴である。また、イオンドープ等の処置を行わないため、安価に製造できることが特徴である。   As described above, the titanium oxide particles of the present invention can exhibit photocatalytic activity with practical light such as a fluorescent lamp, but nitrogen, carbon, sulfur, It is not necessary to perform treatment such as adding a visible light ray by narrowing the band gap by positively adding an element such as chromium. Further, since titanium tetrachloride having a purity of 99% or more can be used as a raw material, the purity of the obtained titanium oxide is very high. For example, titanium oxide having nitrogen, carbon, sulfur, and chromium elements of 100 mass ppm or less can be obtained. However, it is not an active addition that impurities present in a minute amount in the titanium tetrachloride raw material are contained in the manufactured titanium oxide. In the present invention, active substances such as nitrogen, carbon, sulfur, and chromium, which have been reported to increase visible light responsiveness when added, are added to raw materials or doped into products. It does not have to be done. That is, it is not necessary to provide a step of incorporating these substances into the obtained titanium oxide. In this state, titanium oxide particles exhibiting high activity with respect to a light source such as a fluorescent lamp can be obtained. In addition, since no treatment such as ion doping is performed, it can be manufactured at low cost.

本発明の酸化チタン粉末が発現する光触媒活性には、抗菌、消臭、防汚、大気の浄化、水質の浄化等の環境浄化のような機能が含まれる。具体的には以下の機能が例示できるが、特にこれらには限定されない。   The photocatalytic activity exhibited by the titanium oxide powder of the present invention includes functions such as antibacterial, deodorizing, antifouling, air purification, water purification, and other environmental purification functions. Specifically, the following functions can be exemplified, but not particularly limited thereto.

(1)系内に本発明のゾルあるいはそれより得られた固形分とメチレンブルーやアルデヒド類などの有機化合物あるいはNH3、H2S、NOx、SOxなどの環境に悪影響を与える物質が存在したときに、光照射下において、暗所と比較した場合に有機物あるいは上記無機物質の濃度の低下が見られる。
(2)基板や物品上にゾルを塗布したとき、光照射下で暗所と比較した場合に水滴接触角が小さくなる現象が起こる。
(1) When the sol of the present invention or a solid content obtained therefrom and an organic compound such as methylene blue or aldehyde, or a substance having an adverse effect on the environment such as NH 3 , H 2 S, NOx, SOx exists in the system In addition, a decrease in the concentration of the organic substance or the inorganic substance is observed when compared with a dark place under light irradiation.
(2) When a sol is applied on a substrate or article, a phenomenon occurs in which the water droplet contact angle becomes smaller when compared with a dark place under light irradiation.

本発明における水分散酸化チタンゾルとは、以下のものを言う。液の媒体としては、水が50質量%以上含まれる必要があるが、100%の純水である必要はなく、50質量%未満の水溶性有機溶剤や何らかのイオンを含んでいてもよい。分散のための添加剤などが含まれていても良い。酸化チタン粒子の含有量は、ゾルを100℃以上の乾燥器中で十分乾燥させたときの固形分のことであり、これが0.1質量%〜30質量%の範囲内にあることが特徴である。好ましくは、酸化チタン粒子の含有量が、1〜20質量%の範囲内である。   The water-dispersed titanium oxide sol in the present invention refers to the following. The liquid medium needs to contain 50% by mass or more of water, but need not be 100% pure water, and may contain less than 50% by mass of a water-soluble organic solvent or some ions. Additives for dispersion may be included. The content of titanium oxide particles is the solid content when the sol is sufficiently dried in a dryer at 100 ° C. or higher, and this is characterized by being in the range of 0.1% by mass to 30% by mass. is there. Preferably, the content of titanium oxide particles is in the range of 1 to 20% by mass.

本発明の水分散酸化チタンゾルは、より良好な分散性を維持するために、塩素イオンが50〜10,000質量ppm含まれるのが好ましい。   The water-dispersed titanium oxide sol of the present invention preferably contains 50 to 10,000 ppm by mass of chlorine ions in order to maintain better dispersibility.

次に酸化チタンゾル及び酸化チタン粒子の製造方法について説明する。本発明のルチル構造を結晶の主構造とする酸化チタンゾルの製造方法は、四塩化チタン水溶液と塩酸が含まれる水とを混合して特定の条件下で四塩化チタンを加水分解することを特徴とする。四塩化チタンを加水分解して水分散酸化チタンゾルを得る方法では反応により塩化水素が生成する。生成する塩化水素は反応槽からの逸出を防止し、出来るだけゾル中に残留させる事が望ましい。発生する塩化水素を逸出させながら四塩化チタンの加水分解を行うとゾル中の酸化チタンは粒子径が小さくなりにくく、また結晶性もよくない。この加水分解により発生する塩化水素は完全に逸出が防止されていなくても抑制されておればよい。またその方法も抑制できるものであれば特に限定されず、例えば加圧する事によっても可能であるが、最も容易にして効果的な方法は加水分解の反応槽に還流冷却器を設置して加水分解を行う方法である。加水分解する四塩化チタン及び塩酸の混合液中の四塩化チタン濃度は低すぎると生産性が悪く、生成する水分散酸化チタンゾルから薄膜を形成する際に効率が低く、また濃度が高すぎると反応が激しくなり、得られる酸化チタン粒子が微細になりにくく、かつ分散性も悪くなる。加えて、酸化チタン濃度を0.5g/l〜2.5g/lに調整する事でルチル含有率の高い酸化チタンゾルを得ることが出来る。従って、加水分解により酸化チタン濃度の高いゾルを生成させ、これを多量の水で希釈して前記した酸化チタン濃度0.5g/l〜2.5g/lに調整する方法は好ましくない。ゾルの生成時において酸化チタンの濃度が前記の範囲にするのがよく、そのためには加水分解される四塩化チタン水溶液中の四塩化チタンの濃度は前記した生成する酸化チタンの濃度と大差はない値、すなわちほぼ0.5g/l〜2.5g/lとすればよく、必要ならば以後の工程で少量の水の添加もしくは濃縮することで濃度を0.5g/l〜2.5g/lに調整してもよい。   Next, a method for producing a titanium oxide sol and titanium oxide particles will be described. A method for producing a titanium oxide sol having a rutile structure as a main crystal structure according to the present invention is characterized in that a titanium tetrachloride aqueous solution and water containing hydrochloric acid are mixed to hydrolyze titanium tetrachloride under specific conditions. To do. In the method of hydrolyzing titanium tetrachloride to obtain a water-dispersed titanium oxide sol, hydrogen chloride is generated by the reaction. It is desirable that the generated hydrogen chloride is prevented from escaping from the reaction vessel and remains in the sol as much as possible. When the titanium tetrachloride is hydrolyzed while the generated hydrogen chloride is escaped, the titanium oxide in the sol is less likely to have a small particle size and has poor crystallinity. Hydrogen chloride generated by this hydrolysis may be suppressed even if escape is not completely prevented. The method is not particularly limited as long as it can also be suppressed. For example, it is possible to apply pressure, but the easiest and most effective method is to install a reflux condenser in the hydrolysis reaction tank and perform hydrolysis. It is a method to do. If the concentration of titanium tetrachloride in the mixture of hydrolyzed titanium tetrachloride and hydrochloric acid is too low, the productivity is poor, and when forming a thin film from the water-dispersed titanium oxide sol, the efficiency is low, and if the concentration is too high, the reaction occurs. The resulting titanium oxide particles are less likely to be fine and the dispersibility is also deteriorated. In addition, a titanium oxide sol having a high rutile content can be obtained by adjusting the titanium oxide concentration to 0.5 g / l to 2.5 g / l. Therefore, it is not preferable to produce a sol with a high titanium oxide concentration by hydrolysis and dilute it with a large amount of water to adjust the titanium oxide concentration to 0.5 g / l to 2.5 g / l. The concentration of titanium oxide should be within the above range at the time of sol formation. For this purpose, the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride to be hydrolyzed is not significantly different from the concentration of titanium oxide produced as described above. Value, that is, approximately 0.5 g / l to 2.5 g / l, and if necessary, the concentration is adjusted to 0.5 g / l to 2.5 g / l by adding or concentrating a small amount of water in the subsequent steps. You may adjust it.

加水分解における温度は50℃以上、反応液(混合液)の沸点までの範囲が好ましい。50℃未満では加水分解反応に長時間を要する。加水分解は上記の温度に昇温し、10分から12時間程度保持して行われる。この保持時間は加水分解の温度が高温側にあるほど短くてよい。四塩化チタンの加水分解は四塩化チタンと水との混合液を反応槽中で所定の温度に加熱してもよく、また水を反応槽中で予め加熱しておき、これに四塩化チタンもしくは四塩化チタン水溶液を添加し、所定の温度にしてもよい。この加水分解により一般的にはルチル型にアナターゼ型及び/又はブルッカイト型が混合した酸化チタンが得られる。その中でルチル型の酸化チタンの含有率を高めるには水を反応槽で予め65〜90℃に加熱しておき、これに四塩化チタンもしくは四塩化チタン水溶液を添加し、65℃〜反応液の沸点の温度範囲で加水分解する方法が適する。その方法によって生成する全酸化チタンのうちルチル型含有率を50質量%以上とすることが可能である。   The temperature in the hydrolysis is preferably in the range of 50 ° C. or higher and the boiling point of the reaction liquid (mixed liquid). Below 50 ° C., the hydrolysis reaction takes a long time. The hydrolysis is carried out by raising the temperature to the above temperature and holding it for about 10 minutes to 12 hours. This holding time may be shorter as the hydrolysis temperature is higher. Hydrolysis of titanium tetrachloride may be performed by heating a mixture of titanium tetrachloride and water to a predetermined temperature in a reaction vessel, or by preheating water in the reaction vessel, A titanium tetrachloride aqueous solution may be added to a predetermined temperature. This hydrolysis generally provides titanium oxide in which an anatase type and / or a brookite type are mixed with a rutile type. In order to increase the content of rutile-type titanium oxide, water is heated in advance to 65 to 90 ° C. in a reaction vessel, and titanium tetrachloride or a titanium tetrachloride aqueous solution is added thereto, and 65 ° C. to the reaction solution. A method of hydrolyzing in the temperature range of the boiling point of is suitable. Of the total titanium oxide produced by the method, the rutile-type content can be 50% by mass or more.

また触媒作用の点から、酸化チタンは結晶質であることが好ましい。
加水分解における反応液の昇温速度は早い方が得られる粒子が細かくなるので、好ましくは0.2℃/min以上、さらに好ましくは0.5℃/min以上である。本発明の水分散酸化チタンゾルの製造方法はバッチ式に限らず、反応槽を連続槽にして四塩化チタンと水を連続投入しながら、投入口の反対側で反応液を取り出し、引き続き脱塩素処理するような連続方式も可能である。
From the viewpoint of catalytic action, titanium oxide is preferably crystalline.
The faster the rate of temperature rise of the reaction solution in the hydrolysis, the finer the particles obtained, so that it is preferably at least 0.2 ° C./min, more preferably at least 0.5 ° C./min. The production method of the water-dispersed titanium oxide sol of the present invention is not limited to a batch type, and while continuously feeding titanium tetrachloride and water in a continuous tank, the reaction solution is taken out on the opposite side of the inlet, and subsequently dechlorinated. Such a continuous method is also possible.

脱塩素処理は一般の公知手段でよく電気透析、イオン交換樹脂、電気分解などが可能である。脱塩素の程度はゾルのpHを目安にすればよく、好ましい範囲のpHは約5〜1である。また、特に粉体光触媒を得たい場合には、得られた光触媒ゾルを加熱あるいはフリーズドライなどの公知の手法によって乾燥し、擂潰、粉砕してもよい。   The dechlorination treatment may be performed by a general known means, and electrodialysis, ion exchange resin, electrolysis and the like are possible. The degree of dechlorination may be based on the pH of the sol, and a preferable range is about 5 to 1. In particular, when it is desired to obtain a powder photocatalyst, the obtained photocatalyst sol may be dried, crushed and pulverized by a known method such as heating or freeze drying.

またゾル中の酸化チタン濃度は、該ゾル100gをパイレックス(登録商標)製ビーカーに秤取り、120℃の恒温乾燥器に24時間以上静置し、残った固形分の質量を秤量し、ゾルの固形分濃度X[質量%]が算出できる。本発明における沈降成分量Z[g]は以下のように定義される。まず固形分濃度X[質量%]の該ゾル100gを密閉容器に入れて、室温にて240時間静置後、液面から90体積%相当分をデカンテーションで分離し、残りを120℃の恒温乾燥器に24時間以上静置して水分を蒸発させる。得られた固形分には沈降している分だけでなく、当然デカンテーションによって除かれなかった下層の液中に分散していた分も含まれるので、得られた固形分Y[g]から、分散している分と予想される0.1X[g]を減じたものが沈降成分量Z[g]として定義される。すなわち、沈降成分量Z[g]は(式1)によって表すことができる。
Z=Y−0.1X (式1)
The titanium oxide concentration in the sol was measured by weighing 100 g of the sol in a Pyrex (registered trademark) beaker, leaving it in a constant temperature dryer at 120 ° C. for 24 hours or more, weighing the remaining solid content, The solid content concentration X [mass%] can be calculated. The sedimentation component amount Z [g] in the present invention is defined as follows. First, 100 g of the sol having a solid content concentration of X [mass%] was placed in a sealed container and allowed to stand at room temperature for 240 hours, and then 90 vol% was separated from the liquid surface by decantation, and the rest was kept at a constant temperature of 120 ° C Allow the water to evaporate by standing in a dryer for at least 24 hours. Since the obtained solid content includes not only the amount of sedimentation but also the amount dispersed in the lower layer liquid that was not removed by decantation, from the obtained solid content Y [g], The amount obtained by subtracting 0.1X [g] expected to be dispersed is defined as the amount of sedimentation component Z [g]. That is, the sedimentation component amount Z [g] can be expressed by (Formula 1).
Z = Y-0.1X (Formula 1)

本発明のルチル結晶含有酸化チタンゾルから酸化チタンの薄膜を形成する場合、加水分解反応で生成したゾルを、乾燥粉体を経由することなく、ゾルのまま用いて、基材に塗布することが好ましい。また、このゾルに無機バインダーを任意に添加して塗工剤となし、基材の表面に塗布することにより、光触媒性を有する基材を製造することができる。すなわち、塗料、コーティング組成物などの形態で使用できる。
基材としては、セラミックス、金属、ガラス、プラスチック、紙、木材などが挙げられる。
基材がセラミックス、金属、ガラスなどの耐熱性物質であれば、酸化チタン薄膜を焼成して成膜することができる。
When forming a thin film of titanium oxide from the rutile crystal-containing titanium oxide sol of the present invention, it is preferable to apply the sol produced by the hydrolysis reaction to the substrate using the sol as it is without going through the dry powder. . Moreover, the base material which has photocatalytic property can be manufactured by adding an inorganic binder arbitrarily to this sol, making it a coating agent, and apply | coating to the surface of a base material. That is, it can be used in the form of a paint, a coating composition or the like.
Examples of the substrate include ceramics, metal, glass, plastic, paper, and wood.
If the base material is a heat-resistant substance such as ceramics, metal, or glass, the titanium oxide thin film can be fired to form a film.

このような基材を有し光触媒性や親水性を付与され物品としては、特に制限されないが、各種建材、蛍光灯、窓ガラス、機械、車両、ガラス製品、家電製品、純水製造器、農業資材、電子機器、工具、食器、風呂用品、トイレ用品、家具、衣類、布製品、繊維、革製品、紙製品、スポーツ用品、蒲団、容器、眼鏡、看板、配管、配線、金具、衛生資材、自動車用品などを例示することができる。   The article having such a base material to which photocatalytic properties and hydrophilicity are imparted is not particularly limited, but various building materials, fluorescent lamps, window glass, machines, vehicles, glass products, home appliances, pure water producers, agriculture Materials, electronic equipment, tools, tableware, bath products, toilet products, furniture, clothing, fabric products, textiles, leather products, paper products, sports equipment, baskets, containers, glasses, signs, piping, wiring, metal fittings, sanitary materials, automobiles An article etc. can be illustrated.

また、シックハウス対策や、水・大気・土壌中のPCBやダイオキシン類のような有機塩素化合物の分解、水・土壌中の残留農薬や環境ホルモンの分解などに有効な環境浄化機器・装置にも応用できる。その際には、あらかじめ本発明の酸化チタンを樹脂に練りこんだり、繊維に混合したりしたものを物品等成形時の原料に混合したり、また物品上に成膜して使用することも可能であるが、特に限定されない。   It is also applied to environmental purification equipment and devices effective for measures against sick houses, decomposition of organic chlorine compounds such as PCBs and dioxins in water, air and soil, and decomposition of residual agricultural chemicals and environmental hormones in water and soil. it can. In that case, the titanium oxide of the present invention can be kneaded into the resin in advance or mixed with the fiber can be mixed with raw materials for molding such as articles, or can be used by forming a film on the article. However, it is not particularly limited.

以下、実施例及び比較例を挙げ本発明をさらに詳細に説明するが、本発明はこれらの記載により何らの限定を受けるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention does not receive any limitation by these description.

実施例1:
蒸留水651mL及び塩酸39.4g(濃度35質量%、関東化学(株)製 特級)を還流冷却器付きの反応槽に装入し、75℃に加温してそれを維持した。攪拌速度を約200rpmに保ちながら、ここに四塩化チタン水溶液(Ti含有量15.4質量%、昭和タイタニウム(株)製)水溶液60gを約2g/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。反応槽中では反応液が滴下直後から、白濁し始めたがそのままの温度で保持を続け、滴下終了後さらに昇温し沸点付近の温度(101℃)で60分間維持した。得られたゾルは冷却後、反応で生成した残留塩素を電気透析により取り除いた。得られたゾルの電気透析は、旭化成工業(株)製電気透析装置G3型を用いゾル液のpHを監視しながら実施した。これによって、水分散酸化チタンゾルを得た。
Example 1:
651 mL of distilled water and 39.4 g of hydrochloric acid (concentration: 35% by mass, special grade manufactured by Kanto Chemical Co., Inc.) were charged into a reaction tank equipped with a reflux condenser and heated to 75 ° C. to maintain it. While maintaining the stirring speed at about 200 rpm, 60 g of an aqueous solution of titanium tetrachloride (Ti content: 15.4% by mass, manufactured by Showa Titanium Co., Ltd.) was dropped into the reaction vessel at a rate of about 2 g / min. At this time, care was taken not to lower the temperature of the reaction solution. In the reaction vessel, the reaction solution started to become cloudy immediately after the dropping, but kept at the same temperature, and after the dropping was finished, the temperature was further raised and maintained at a temperature near the boiling point (101 ° C.) for 60 minutes. The obtained sol was cooled, and residual chlorine produced by the reaction was removed by electrodialysis. Electrodialysis of the obtained sol was performed while monitoring the pH of the sol solution using an electrodialysis apparatus G3 type manufactured by Asahi Kasei Kogyo Co., Ltd. As a result, a water-dispersed titanium oxide sol was obtained.

得られた水分散酸化チタンゾルを、120℃乾燥器で乾燥させた後に、乳鉢にて粉砕し、酸化チタンの粉末を得た。
このようにして得られた酸化チタン粒子の物性及び光触媒活性はそれぞれ以下の方法で実施した。
The obtained water-dispersed titanium oxide sol was dried with a 120 ° C. dryer and then pulverized in a mortar to obtain titanium oxide powder.
The physical properties and photocatalytic activity of the titanium oxide particles obtained in this manner were each carried out by the following methods.

(結晶比)
X線回折は、粉末をパナリティカル製粉末X線回折装置で測定した。結晶比は、装置に付属のリートベルト解析ソフトにより求めた。
(Crystal ratio)
For X-ray diffraction, the powder was measured with a powder X-ray diffractometer manufactured by Panalical. The crystal ratio was determined by Rietveld analysis software attached to the apparatus.

(BET比表面積)
BET比表面積は島津製フローソーブIIを用い、0.15gの粉末試料を200℃にて15分間脱気した後に測定した。
(BET specific surface area)
The BET specific surface area was measured after degassing a 0.15 g powder sample at 200 ° C. for 15 minutes using Shimadzu Flowsorb II.

(一次粒子径)
水分散酸化チタンゾルを、導電性の試料台上で乾燥させ、走査型電子顕微鏡を使用し、倍率100,000倍以上で観察し、一視野の中での粒子径範囲を測定した。
(Primary particle size)
The water-dispersed titanium oxide sol was dried on a conductive sample stage and observed at a magnification of 100,000 or more using a scanning electron microscope, and the particle size range in one field of view was measured.

(光触媒活性:アセトアルデヒド分解試験)
合成した触媒活性の評価は、アセトアルデヒド分解試験にて行った。試験の概要は以下の通りである。
(1)内径90mmのシャーレに酸化チタンの粉末20mgを正確に秤量した。イオン交換水を少量添加し、懸濁液をシャーレ全面に展開させた後、120℃の乾燥機内に30分間入れて乾燥した。
(Photocatalytic activity: acetaldehyde decomposition test)
The synthesized catalytic activity was evaluated by an acetaldehyde decomposition test. The outline of the test is as follows.
(1) 20 mg of titanium oxide powder was accurately weighed in a petri dish having an inner diameter of 90 mm. A small amount of ion-exchanged water was added, and the suspension was developed on the entire surface of the petri dish, and then placed in a dryer at 120 ° C. for 30 minutes for drying.

(2)チャンバー内にシャーレを入れ、密閉した。このチャンバーを暗所に置き、チャンバー内を純空気で置換した。
(3)チャンバーに4.80vol−%アセトアルデヒド標準ガスを所定量注入し、チャンバー内を所定の濃度とした。
(2) A petri dish was placed in the chamber and sealed. This chamber was placed in a dark place, and the inside of the chamber was replaced with pure air.
(3) A predetermined amount of 4.80 vol-% acetaldehyde standard gas was injected into the chamber, and the inside of the chamber was adjusted to a predetermined concentration.

(4)所定の湿度とするため、イオン交換水をチャンバー内に挿入した。
(5)暗所に所定時間静置し、チャンバー内を平衡状態とした。
(6)光を照射し、1時間ごとにチャンバー内のガスをGCにて分析した。
光触媒活性の判断は、光触媒反応によりアセトアルデヒドが分解されて発生する二酸化炭素発生率(式2で定義)とした。
二酸化炭素発生率(%)=(二酸化炭素発生量(mol)×1/2)/(アセトアルデヒド仕込み量(mol))×100 (式2)
(4) Ion exchange water was inserted into the chamber to obtain a predetermined humidity.
(5) The sample was left in a dark place for a predetermined time, and the chamber was in an equilibrium state.
(6) Light was irradiated and the gas in the chamber was analyzed by GC every hour.
Judgment of the photocatalytic activity was based on the carbon dioxide generation rate (defined by Formula 2) generated by the decomposition of acetaldehyde by the photocatalytic reaction.
Carbon dioxide generation rate (%) = (carbon dioxide generation amount (mol) × 1/2) / (acetaldehyde charge amount (mol)) × 100 (Formula 2)

GCは島津製作所GC−14A(FID検出器)にメタナイザーMTN−1を組み合わせて使用し、カラムはCP−PoraBOND Q(0.53mm I.D.×25m df=10μm)を使用した。純空気は、ジャパンファインプロダクツ社製G3を使用した。アセトアルデヒド標準ガスボンベは、ジャパンファインプロダクツ社製で、4.80vol−%アセトアルデヒド(窒素ベース)を使用した。測定は、すべて、エアコンにて室温を約25℃に制御した室内で行った。それ以外の条件については、表1の粉末試料の測定条件とした。   GC used Shimadzu Corporation GC-14A (FID detector) in combination with a metanizer MTN-1, and the column used was CP-PoraBOND Q (0.53 mm ID × 25 m df = 10 μm). As pure air, G3 manufactured by Japan Fine Products was used. The acetaldehyde standard gas cylinder was manufactured by Japan Fine Products and used 4.80 vol-% acetaldehyde (nitrogen base). All measurements were performed in a room where the room temperature was controlled at about 25 ° C. with an air conditioner. The other conditions were the measurement conditions for the powder sample in Table 1.

実施例2:
塩酸添加量を29.6gとした以外は実施例1と同様にして酸化チタン粒子を得た。
Example 2:
Titanium oxide particles were obtained in the same manner as in Example 1 except that the amount of hydrochloric acid added was 29.6 g.

実施例3:
四塩化チタン水溶液の滴下速度を約4g/minした以外は実施例1と同様にして酸化チタン粒子を得た。
Example 3:
Titanium oxide particles were obtained in the same manner as in Example 1 except that the dropping rate of the titanium tetrachloride aqueous solution was about 4 g / min.

実施例4:
四塩化チタン水溶液量を30gとした以外は実施例1と同様にして酸化チタン粒子を得た。
Example 4:
Titanium oxide particles were obtained in the same manner as in Example 1 except that the amount of the titanium tetrachloride aqueous solution was 30 g.

実施例5:
蒸留水651mL、塩酸39.4g(濃度35質量%、関東化学(株)製 特級)及び四塩化チタン水溶液(Ti含有量15.4質量%、昭和タイタニウム(株)製)水溶液60gを還流冷却器付きの反応槽に装入し、60℃に加温して30分間それを維持した。攪拌速度を約200rpmに保ちながら、反応槽内を均一に分散させた。このとき、反応液の温度が下がらないように注意した。反応槽中では反応液が約50℃付近から白濁し始め、60℃の温度で30分間保持を続け、さらに昇温し沸点付近の温度(101℃)で60分間維持した。得られたゾルを冷却後、反応で生成した残留塩素を電気透析により取り除いた。得られたゾルの電気透析は、旭化成工業(株)製電気透析装置G3型を用いゾル液のpHを監視しながら実施した。これによって、酸化チタン粒子を得た。
Example 5:
A reflux condenser was used for 651 mL of distilled water, 39.4 g of hydrochloric acid (concentration 35 mass%, special grade manufactured by Kanto Chemical Co., Ltd.) and 60 g aqueous solution of titanium tetrachloride (Ti content 15.4 mass%, Showa Titanium Co., Ltd.). The reaction vessel was charged and heated to 60 ° C. and maintained for 30 minutes. While maintaining the stirring speed at about 200 rpm, the inside of the reaction vessel was uniformly dispersed. At this time, care was taken not to lower the temperature of the reaction solution. In the reaction vessel, the reaction solution started to become cloudy from about 50 ° C., kept at a temperature of 60 ° C. for 30 minutes, further heated and maintained at a temperature near the boiling point (101 ° C.) for 60 minutes. After cooling the obtained sol, residual chlorine generated by the reaction was removed by electrodialysis. Electrodialysis of the obtained sol was performed while monitoring the pH of the sol solution using an electrodialysis apparatus G3 type manufactured by Asahi Kasei Kogyo Co., Ltd. Thereby, titanium oxide particles were obtained.

実施例6:
四塩化チタン水溶液量を30g、反応槽内の温度を75℃として30分間維持した以外は実施例5と同様にして酸化チタン粒子を得た。
Example 6:
Titanium oxide particles were obtained in the same manner as in Example 5 except that the amount of the titanium tetrachloride aqueous solution was 30 g and the temperature in the reaction vessel was maintained at 75 ° C. for 30 minutes.

実施例7:
反応槽内の温度を75℃とした以外は実施例5と同様にして酸化チタン粒子を得た。
Example 7:
Titanium oxide particles were obtained in the same manner as in Example 5 except that the temperature in the reaction vessel was 75 ° C.

実施例8:
反応槽内の温度を75℃として60分間維持した以外は実施例5と同様にして酸化チタン粒子を得た。
Example 8:
Titanium oxide particles were obtained in the same manner as in Example 5 except that the temperature in the reaction vessel was maintained at 75 ° C. for 60 minutes.

実施例9:
実施例5で得られた水分散酸化チタンゾルに、バインダー成分として炭酸ジルコニウムアンモニウム溶液を加え、コーティング剤を調整した。このとき、酸化チタン粉体が1.0質量%、ZrO2/酸化チタン粉体(質量比)は20%であった。このコーティング剤を7.5cm×7.5cm四方のガラス板上に塗布して、120℃にて15分間空気中で熱処理して酸化チタンの薄膜を得た。得られた薄膜は、鉛筆引っかき強度が4Hであり、無色透明であった。
光触媒活性の測定は、アセトアルデヒド分解試験でシャーレの代わりにこの薄膜を形成したガラス板をチャンバー内に入れ、表1のガラス板上薄膜試料の条件で行った。
Example 9:
A zirconium ammonium carbonate solution was added as a binder component to the water-dispersed titanium oxide sol obtained in Example 5 to prepare a coating agent. At this time, the titanium oxide powder was 1.0% by mass, and the ZrO 2 / titanium oxide powder (mass ratio) was 20%. This coating agent was applied on a 7.5 cm × 7.5 cm square glass plate and heat-treated in air at 120 ° C. for 15 minutes to obtain a titanium oxide thin film. The obtained thin film had a pencil scratch strength of 4H and was colorless and transparent.
The photocatalytic activity was measured under the conditions of the thin film sample on the glass plate shown in Table 1 by placing the glass plate on which this thin film was formed instead of the petri dish in the acetaldehyde decomposition test in a chamber.

比較例1:
蒸留水689mL及びリン酸0.81g(濃度85質量%、関東化学(株)製 特級)を還流冷却器付きの反応槽に装入し、100℃に加温してそれを維持した。攪拌速度を約200rpmに保ちながら、ここに四塩化チタン水溶液(Ti含有量15.4質量%、昭和タイタニウム(株)製)水溶液60gを約1g/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。滴下終了後さらに昇温し沸点付近の温度(101℃)で60分間維持した。得られたゾルは冷却後、反応で生成した残留塩素を電気透析により取り除いた。得られたゾルの電気透析は、旭化成工業(株)製電気透析装置G3型を用いゾル液のpHを監視しながら実施した。
Comparative Example 1:
689 mL of distilled water and 0.81 g of phosphoric acid (concentration 85% by mass, special grade manufactured by Kanto Chemical Co., Ltd.) were charged into a reaction tank equipped with a reflux condenser and heated to 100 ° C. to maintain it. While maintaining the stirring speed at about 200 rpm, 60 g of an aqueous solution of titanium tetrachloride (Ti content: 15.4% by mass, manufactured by Showa Titanium Co., Ltd.) was dropped into the reaction vessel at a rate of about 1 g / min. At this time, care was taken not to lower the temperature of the reaction solution. After completion of the dropwise addition, the temperature was further raised and maintained at a temperature near the boiling point (101 ° C.) for 60 minutes. The obtained sol was cooled, and residual chlorine produced by the reaction was removed by electrodialysis. Electrodialysis of the obtained sol was performed while monitoring the pH of the sol solution using an electrodialysis apparatus G3 type manufactured by Asahi Kasei Kogyo Co., Ltd.

比較例2:
蒸留水690mLを還流冷却器付きの反応槽に装入し、95℃に加温してそれを維持した。攪拌速度を約200rpmに保ちながら、ここに四塩化チタン水溶液(Ti含有量15.4質量%、昭和タイタニウム(株)製)水溶液60gを約1g/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。滴下終了後さらに昇温し沸点付近の温度(101℃)で60分間維持した。得られたゾルは冷却後、反応で生成した残留塩素を電気透析により取り除いた。得られたゾルの電気透析は、旭化成工業(株)製電気透析装置G3型を用いゾル液のpHを監視しながら実施した。
Comparative Example 2:
Distilled water (690 mL) was charged into a reaction vessel equipped with a reflux condenser and heated to 95 ° C. to maintain it. While maintaining the stirring speed at about 200 rpm, 60 g of an aqueous solution of titanium tetrachloride (Ti content: 15.4% by mass, manufactured by Showa Titanium Co., Ltd.) was dropped into the reaction vessel at a rate of about 1 g / min. At this time, care was taken not to lower the temperature of the reaction solution. After completion of the dropwise addition, the temperature was further raised and maintained at a temperature near the boiling point (101 ° C.) for 60 minutes. The obtained sol was cooled, and residual chlorine produced by the reaction was removed by electrodialysis. Electrodialysis of the obtained sol was performed while monitoring the pH of the sol solution using an electrodialysis apparatus G3 type manufactured by Asahi Kasei Kogyo Co., Ltd.

比較例3:
実施例5で得られた水分散酸化チタンゾルの代わりに、比較例1で得られた水分散酸化チタンゾルを使用した以外は、実施例9と同様の操作によって、ガラス板上の酸化チタン薄膜を得た。得られた薄膜は、鉛筆引っかき強度4Hであり、わずかに白濁していた。
Comparative Example 3:
A titanium oxide thin film on a glass plate was obtained in the same manner as in Example 9, except that the water-dispersed titanium oxide sol obtained in Comparative Example 1 was used instead of the water-dispersed titanium oxide sol obtained in Example 5. It was. The obtained thin film had a pencil scratch strength of 4H and was slightly cloudy.

実施例1〜9および比較例1、2にて得られた酸化チタン粒子の物性値、および、光触媒活性を表2に示した。本発明にて得られた酸化チタン粒子は、白色蛍光灯下においても、アセトアルデヒドを分解していることが明らかである。また、実施例9で得られた薄膜は、比較例3で得られた薄膜よりも、白色蛍光灯下での光触媒活性が、明らかに高い。   Table 2 shows the physical property values and photocatalytic activity of the titanium oxide particles obtained in Examples 1 to 9 and Comparative Examples 1 and 2. It is clear that the titanium oxide particles obtained in the present invention decompose acetaldehyde even under a white fluorescent lamp. Moreover, the thin film obtained in Example 9 clearly has higher photocatalytic activity under the white fluorescent lamp than the thin film obtained in Comparative Example 3.

Figure 2006335619
Figure 2006335619

Figure 2006335619
Figure 2006335619

Figure 2006335619
Figure 2006335619

Claims (19)

ルチル含有率が50〜99.9質量%であり、BET比表面積が50m2/g超300m2/g以下である、酸化チタン粒子。 Titanium oxide particles having a rutile content of 50 to 99.9% by mass and a BET specific surface area of more than 50 m 2 / g and not more than 300 m 2 / g. 一次粒子の平均粒子径が、5〜100nmの範囲内である、請求項1に記載の酸化チタン粒子。   The titanium oxide particles according to claim 1, wherein the average particle diameter of the primary particles is in the range of 5 to 100 nm. 酸化チタンが、アナターゼ型酸化チタン及びブルッカイト型酸化チタンのうち少なくとも1種以上の酸化チタンを含む、請求項1または2に記載の酸化チタン粒子。   The titanium oxide particles according to claim 1 or 2, wherein the titanium oxide contains at least one titanium oxide of anatase type titanium oxide and brookite type titanium oxide. 窒素、炭素、硫黄、クロムの各元素の含有量が各々100質量ppm以下である、請求項1〜3のいずれか1項に記載の酸化チタン粒子。   The titanium oxide particles according to any one of claims 1 to 3, wherein the content of each element of nitrogen, carbon, sulfur, and chromium is 100 ppm by mass or less. 65〜90℃の水に対し、四塩化チタン及び塩酸を各々1〜5質量%混合し、65℃〜混合液の沸点の温度範囲に混合液の温度を保持しながら加水分解する、請求項1ないし4のいずれか1項に記載の酸化チタン粒子の製造方法。   The titanium tetrachloride and hydrochloric acid are each mixed in an amount of 1 to 5% by mass with respect to water at 65 to 90 ° C, and hydrolyzed while maintaining the temperature of the mixed solution in a temperature range of 65 ° C to the boiling point of the mixed solution. The manufacturing method of the titanium oxide particle of any one of thru | or 4. 反応槽内の塩素イオン濃度を10,000〜50,000質量ppmの範囲内に維持する、請求項5に記載の酸化チタン粒子の製造方法。   The manufacturing method of the titanium oxide particle of Claim 5 which maintains the chlorine ion concentration in a reaction tank in the range of 10,000-50,000 mass ppm. 四塩化チタンの加水分解を行うにあたり、塩化水素の反応槽からの逸脱を防止して行う、請求項5または6に記載の酸化チタン粒子の製造方法。   The method for producing titanium oxide particles according to claim 5 or 6, wherein the titanium tetrachloride is hydrolyzed while preventing deviation of hydrogen chloride from the reaction vessel. 請求項5ないし7のいずれか1項に記載の製造方法により得られた酸化チタン粒子の水分散ゾルを、濾過、乾燥する、酸化チタン粒子の製造方法。   The manufacturing method of the titanium oxide particle which filters and dries the water dispersion sol of the titanium oxide particle obtained by the manufacturing method of any one of Claim 5 thru | or 7. 四塩化チタンを酸性水溶液中で加水分解する酸化チタン粒子の製造方法であって、窒素、炭素、硫黄、クロムから選択される1種類以上の元素を酸化チタン粒子に含有させる工程を設けない、請求項1〜4のいずれか1項に記載の酸化チタン粒子の製造方法。   A method for producing titanium oxide particles in which titanium tetrachloride is hydrolyzed in an acidic aqueous solution, and does not include a step of incorporating one or more elements selected from nitrogen, carbon, sulfur, and chromium into titanium oxide particles. Item 5. The method for producing titanium oxide particles according to any one of Items 1 to 4. 請求項1ないし4のいずれか1項に記載の酸化チタン粒子を含む光触媒。   The photocatalyst containing the titanium oxide particle of any one of Claims 1 thru | or 4. 白色蛍光灯の光に対して光触媒活性を示す、請求項10に記載の光触媒。   The photocatalyst of Claim 10 which shows photocatalytic activity with respect to the light of a white fluorescent lamp. 請求項1ないし4のいずれか1項に記載の酸化チタン粒子を含む塗工剤。   The coating agent containing the titanium oxide particle of any one of Claims 1 thru | or 4. 請求項1ないし4のいずれか1項に記載の酸化チタン粒子が0.1〜30質量%分散している、水分散酸化チタンゾル。   A water-dispersed titanium oxide sol in which the titanium oxide particles according to any one of claims 1 to 4 are dispersed in an amount of 0.1 to 30% by mass. 塩素イオン濃度が50〜10,000質量ppmである、請求項13に記載の水分散酸化チタンゾル。   The water-dispersed titanium oxide sol according to claim 13, having a chlorine ion concentration of 50 to 10,000 ppm by mass. 請求項13または14に記載の水分散酸化チタンゾルを含む、酸化チタン薄膜。   A titanium oxide thin film comprising the water-dispersed titanium oxide sol according to claim 13 or 14. 基材が耐熱性物質であり、酸化チタン薄膜が焼成したものである、請求項15に記載の酸化チタン薄膜。   The titanium oxide thin film according to claim 15, wherein the base material is a heat-resistant substance and the titanium oxide thin film is fired. 請求項13または14に記載の水分散酸化チタンゾルと無機バインダーとの混合物を基材表面に塗布する、酸化チタン薄膜の形成方法。   A method for forming a titanium oxide thin film, wherein the mixture of the water-dispersed titanium oxide sol according to claim 13 or 14 and an inorganic binder is applied to a substrate surface. 請求項15または16に記載の酸化チタン薄膜を有する物品。   An article comprising the titanium oxide thin film according to claim 15 or 16. 請求項15または16に記載の酸化チタン薄膜を表面に有する基材。   The base material which has a titanium oxide thin film of Claim 15 or 16 on the surface.
JP2005164754A 2005-06-03 2005-06-03 Titanium oxide particle, and production method and application thereof Pending JP2006335619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164754A JP2006335619A (en) 2005-06-03 2005-06-03 Titanium oxide particle, and production method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164754A JP2006335619A (en) 2005-06-03 2005-06-03 Titanium oxide particle, and production method and application thereof

Publications (1)

Publication Number Publication Date
JP2006335619A true JP2006335619A (en) 2006-12-14

Family

ID=37556482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164754A Pending JP2006335619A (en) 2005-06-03 2005-06-03 Titanium oxide particle, and production method and application thereof

Country Status (1)

Country Link
JP (1) JP2006335619A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199924A (en) * 2007-02-19 2008-09-04 Nippon Sheet Glass Co Ltd Bioreactor by porous carrier coated with photocatalyst
WO2009035019A1 (en) * 2007-09-12 2009-03-19 M.Technique Co., Ltd. Ultrafine particles of titanium dioxide and process for producing the ultrafine particles
JP2009132596A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Titanium dioxide ultrafine particle and method for producing the same
JP2010527880A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Titanium dioxide with increased sintering action
WO2010095726A1 (en) 2009-02-19 2010-08-26 堺化学工業株式会社 Dispersion of rutile titanium oxide particles, method for producing same and use of same
WO2012017752A1 (en) * 2010-08-02 2012-02-09 昭和電工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
WO2012023621A1 (en) 2010-08-17 2012-02-23 堺化学工業株式会社 Method for producing dispersion of rutile-type titanium oxide particles
WO2013161749A1 (en) * 2012-04-27 2013-10-31 昭和電工株式会社 Anode for secondary battery, method for producing same, and secondary battery
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
US9023147B2 (en) * 2011-12-02 2015-05-05 Nissan Chemical Industries, Ltd. Method for producing rutile type titanium oxide sol
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same
CN111913354A (en) * 2014-12-26 2020-11-10 太阳油墨制造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2020182918A (en) * 2019-05-09 2020-11-12 Dic株式会社 Method for producing titanium oxide composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143327A (en) * 1996-08-30 1999-02-16 Showa Denko Kk Titanium oxide particle, its water dispersing sol, coated film and their production
JP2000128534A (en) * 1998-10-20 2000-05-09 Titan Kogyo Kk Hydrophobic rutile type titanium oxide and its production and application
JP2003327430A (en) * 2002-03-06 2003-11-19 Ishihara Sangyo Kaisha Ltd Rutile type titanium dioxide fine grain and production method thereof
JP2004123481A (en) * 2002-10-04 2004-04-22 Ecodevice Co Ltd Method for manufacturing rutile type titanium dioxide
JP2004243307A (en) * 2002-06-27 2004-09-02 Showa Denko Kk High activity photocatalyst particle, manufacturing method therefor and usage thereof
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143327A (en) * 1996-08-30 1999-02-16 Showa Denko Kk Titanium oxide particle, its water dispersing sol, coated film and their production
JP2000128534A (en) * 1998-10-20 2000-05-09 Titan Kogyo Kk Hydrophobic rutile type titanium oxide and its production and application
JP2003327430A (en) * 2002-03-06 2003-11-19 Ishihara Sangyo Kaisha Ltd Rutile type titanium dioxide fine grain and production method thereof
JP2004243307A (en) * 2002-06-27 2004-09-02 Showa Denko Kk High activity photocatalyst particle, manufacturing method therefor and usage thereof
JP2004123481A (en) * 2002-10-04 2004-04-22 Ecodevice Co Ltd Method for manufacturing rutile type titanium dioxide
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199924A (en) * 2007-02-19 2008-09-04 Nippon Sheet Glass Co Ltd Bioreactor by porous carrier coated with photocatalyst
JP2010527880A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Titanium dioxide with increased sintering action
US8636974B2 (en) 2007-09-12 2014-01-28 M. Technique Co., Ltd. Titanium dioxide superfine particles and method for producing the same
WO2009035019A1 (en) * 2007-09-12 2009-03-19 M.Technique Co., Ltd. Ultrafine particles of titanium dioxide and process for producing the ultrafine particles
JP2009132596A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Titanium dioxide ultrafine particle and method for producing the same
WO2010095726A1 (en) 2009-02-19 2010-08-26 堺化学工業株式会社 Dispersion of rutile titanium oxide particles, method for producing same and use of same
US20110301270A1 (en) * 2009-02-19 2011-12-08 Atsushi Nomura Dispersion of particles of rutile titanium oxide, process for producing the same, and use of the same
KR101604159B1 (en) 2009-02-19 2016-03-16 사까이가가꾸고오교가부시끼가이샤 Dispersion of particles of rutile titanium oxide, process for producing the same, and use of the same
US9234113B2 (en) * 2009-02-19 2016-01-12 Sakai Chemical Industry Co., Ltd. Dispersion of particles of rutile titanium oxide, process for producing the same, and use of the same
JP4941614B2 (en) * 2009-02-19 2012-05-30 堺化学工業株式会社 Dispersion of rutile titanium oxide particles, production method thereof and use thereof
AU2010216659B2 (en) * 2009-02-19 2013-01-10 Sakai Chemical Industry Co., Ltd. Dispersion of rutile titanium oxide particles, method for producing same and use of same
RU2513423C2 (en) * 2009-02-19 2014-04-20 Сакай Кемикал Индастри Ко., Лтд. Dispersion of particles of titanium oxide with rutile structure, method of its obtaining and its application
US8741431B2 (en) 2010-08-02 2014-06-03 Showa Denko K.K. Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
CN102596814A (en) * 2010-08-02 2012-07-18 昭和电工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
WO2012017752A1 (en) * 2010-08-02 2012-02-09 昭和電工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
US9211535B2 (en) * 2010-08-17 2015-12-15 Sakai Chemical Industry Co., Ltd. Process for producing dispersion of particles of rutile titanium oxide
US20130143729A1 (en) * 2010-08-17 2013-06-06 Takanori MORITA Process for producing dispersion of particles of rutile titanium oxide
JP5170342B2 (en) * 2010-08-17 2013-03-27 堺化学工業株式会社 Method for producing dispersion of rutile titanium oxide particles
JPWO2012023621A1 (en) * 2010-08-17 2013-10-28 堺化学工業株式会社 Method for producing dispersion of rutile titanium oxide particles
WO2012023621A1 (en) 2010-08-17 2012-02-23 堺化学工業株式会社 Method for producing dispersion of rutile-type titanium oxide particles
CN103025664B (en) * 2010-08-17 2014-11-12 堺化学工业株式会社 Method for producing dispersion of rutile-type titanium oxide particles
CN103025664A (en) * 2010-08-17 2013-04-03 堺化学工业株式会社 Method for producing dispersion of rutile-type titanium oxide particles
RU2569083C2 (en) * 2010-08-17 2015-11-20 Сакай Кемикал Индастри Ко., Лтд. Method for producing disperse system of titanium oxide rutile particles
US9023147B2 (en) * 2011-12-02 2015-05-05 Nissan Chemical Industries, Ltd. Method for producing rutile type titanium oxide sol
JPWO2013161749A1 (en) * 2012-04-27 2015-12-24 昭和電工株式会社 Negative electrode for secondary battery, method for producing the same, and secondary battery
WO2013161749A1 (en) * 2012-04-27 2013-10-31 昭和電工株式会社 Anode for secondary battery, method for producing same, and secondary battery
US9774029B2 (en) 2012-04-27 2017-09-26 Showa Denko K.K. Anode for secondary battery, method for producing same, and secondary battery
JP2014105150A (en) * 2012-11-29 2014-06-09 Taki Chem Co Ltd Method for manufacturing transition metal-supported alkaline rutile-type titanium oxide sol
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same
EP3339248A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3339249A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3656740A2 (en) 2014-07-02 2020-05-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3705455A1 (en) 2014-07-02 2020-09-09 Ishihara Sangyo Kaisha, Ltd. Method for producing titanium oxide fine particles
US10787369B2 (en) 2014-07-02 2020-09-29 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
CN111913354A (en) * 2014-12-26 2020-11-10 太阳油墨制造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2020182918A (en) * 2019-05-09 2020-11-12 Dic株式会社 Method for producing titanium oxide composition

Similar Documents

Publication Publication Date Title
JP2006335619A (en) Titanium oxide particle, and production method and application thereof
Li et al. Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide
Wu et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light
Li et al. Ionic-liquid-assisted synthesis of high-visible-light-activated N–B–F-tri-doped mesoporous TiO2 via a microwave route
Zaleska Doped-TiO2: a review
Etacheri et al. Highly visible light active TiO2− x N x heterojunction photocatalysts
Samsudin et al. Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
Tobaldi et al. Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity
DE102004027549A1 (en) Carbonaceous titania photocatalyst and process for its preparation
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
Li et al. Visible light active TiO2–ZnO composite films by cerium and fluorine codoping for photocatalytic decontamination
Benhebal et al. Visible-light photo-activity of alkali metal doped ZnO
Kassahun et al. Optimization of sol-gel synthesis parameters in the preparation of N-doped TiO 2 using surface response methodology
Singh et al. Hierarchical growth of BiOCl on SrO‐Bi2O3‐B2O3 glass‐ceramics for self‐cleaning applications
Yamazaki et al. Factors affecting photocatalytic activity of TiO2
TWI291895B (en) Sol containing titanium oxide, thin film formed therefrom and production process of the sol
JP2011136879A (en) Visible light-responsive titanium oxide-based fine particle dispersion and method for producing the same
WO2008076308A1 (en) Highly photosensitive titanium dioxide and process for forming the same
Ravi et al. Synthesis of Y 2 Ti 2 O 7-x N y with visible light responsive photocatalytic activity
Chandrapal et al. Hydrothermally synthesized strontium-modified ZnO hierarchical nanostructured photocatalyst for second-generation fluoroquinolone degradation
Mourya et al. Tuning the morphologies of ZnO for enhanced photocatalytic activity
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
Yaacob et al. Structural and photocatalytic properties of co-doped hybrid ZrO 2–TiO 2 photocatalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914