JP2017043505A - Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body - Google Patents

Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body Download PDF

Info

Publication number
JP2017043505A
JP2017043505A JP2015165759A JP2015165759A JP2017043505A JP 2017043505 A JP2017043505 A JP 2017043505A JP 2015165759 A JP2015165759 A JP 2015165759A JP 2015165759 A JP2015165759 A JP 2015165759A JP 2017043505 A JP2017043505 A JP 2017043505A
Authority
JP
Japan
Prior art keywords
zinc oxide
fine particles
shielding material
ultraviolet
ultraviolet shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015165759A
Other languages
Japanese (ja)
Inventor
長南 武
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015165759A priority Critical patent/JP2017043505A/en
Publication of JP2017043505A publication Critical patent/JP2017043505A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of manufacturing UV light shielding material particulates having sufficiently suppressed optical catalytic activity and high UV light shielding property while having a simple catalytic activity suppression effect-imparting step, a UV light shielding material particulate dispersoid that uses the UV light shielding material particulates, and a UV light shielding body.SOLUTION: A manufacturing method of UV light shielding material particulates is provided, the method includes a step of depositing precipitates of a zinc oxide precursor by dropping an aqueous solution in which one kind or more of compounds containing a predetermined additive element is dissolved into an aqueous solution containing a predetermined zinc oxide precursor, a decantation step of cleansing the deposited precipitates, a step of forming a wet-processed product by wet-treating the precipitates after the cleansing with an alcoholic solution, and, after that, of obtaining a zinc oxide precursor treated powder containing the predetermined compound by drying the wet-treated product, and a step of obtaining UV-light shielding material particulates containing zinc oxide particulates in which, by heating the zinc oxide precursor treated powder under a predetermined atmosphere and under a predetermined temperature, a zinc element in a zinc oxide crystal is substituted with a predetermined element and is dissolved therein.SELECTED DRAWING: None

Description

本発明は車両、ビル、事務所、一般住宅、電話ボックスなどの窓、ショーウィンドー、照明用ランプ、透明ケースなどのカバーに用いられる紫外線遮蔽機能を必要とする透明基材に適用される光触媒活性を抑制した紫外線遮蔽材料微粒子の製造方法に関し、さらには、当該紫外線遮蔽材料微粒子を用いた紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体に関する。   The present invention is a photocatalyst applied to a transparent base material that requires an ultraviolet shielding function used for a cover of a window such as a vehicle, a building, an office, a general house, a telephone box, a show window, a lighting lamp, or a transparent case. The present invention relates to a method for producing fine particles of ultraviolet shielding material with suppressed activity, and further relates to an ultraviolet shielding material fine particle dispersion using the ultraviolet shielding material fine particles and an ultraviolet shielding material.

酸化亜鉛微粒子は、可視光を透過し、かつ紫外線のカット波長領域が酸化チタン微粒子に比べて長波長側まで広い。さらに、酸化亜鉛微粒子は、当該紫外線カット効果が長期にわたって持続する。これらの特長から、酸化亜鉛微粒子は、紫外線遮蔽材料の一つとして用いられている。例えば、当該微粒子を樹脂に含有させてフィルム、繊維および樹脂板などの樹脂成形品として使用したり、当該微粒子と有機または無機のバインダーとを混合して、フィルム、繊維、樹脂板、ガラスおよび紙などの基材に塗装する塗料として使用されたりしている。   The zinc oxide fine particles transmit visible light, and the ultraviolet cut wavelength region is wider to the longer wavelength side than the titanium oxide fine particles. Further, in the zinc oxide fine particles, the ultraviolet ray cutting effect lasts for a long time. Because of these features, zinc oxide fine particles are used as one of ultraviolet shielding materials. For example, the fine particles are contained in a resin and used as a resin molded product such as a film, fiber, and resin plate, or the fine particles and an organic or inorganic binder are mixed to form a film, fiber, resin plate, glass, and paper. It is used as a paint to paint on a substrate such as.

しかしながら、酸化亜鉛微粒子が塗料表面に露出している場合、当該酸化亜鉛微粒子は空気中の水分等により水酸化亜鉛に変質し、当該塗料表面は白濁してしまう。この結果、酸化亜鉛微粒子を用いたフィルム、樹脂成形品および塗料は耐久性に劣ることとなる。   However, when the zinc oxide fine particles are exposed on the paint surface, the zinc oxide fine particles are transformed into zinc hydroxide due to moisture in the air, and the paint surface becomes cloudy. As a result, films, resin molded products and paints using zinc oxide fine particles are inferior in durability.

また、酸化亜鉛は併用する樹脂によっては反応性を有するため、併用できる樹脂の範囲が限定されるなどの課題を有している。さらに、酸化亜鉛微粒子は光触媒活性を有するため、紫外線の照射を受けると、当該酸化亜鉛微粒子表面付近において、有機物の分解・劣化を引き起こしてしまうという課題を有している。当該酸化亜鉛微粒子が反応性や光触媒活性を有するという課題に対し、この反応性や光触媒活性を抑制する方法として、酸化亜鉛微粒子の表面を所定の化合物で被覆する方法が知られている。   Moreover, since zinc oxide has reactivity depending on the resin to be used in combination, it has problems such as limiting the range of resins that can be used in combination. Furthermore, since the zinc oxide fine particles have photocatalytic activity, there is a problem that when irradiated with ultraviolet rays, the organic oxide is decomposed and deteriorated near the surface of the zinc oxide fine particles. In response to the problem that the zinc oxide fine particles have reactivity and photocatalytic activity, as a method for suppressing the reactivity and photocatalytic activity, a method of coating the surface of the zinc oxide fine particles with a predetermined compound is known.

例えば、特許文献1には、環状シリコーン化合物や低分子量の直鎖状シリコーン化合物を蒸気の形で、表面上に活性点を有する粉体と接触させ、その粉体の全表面上においてシリコーン化合物を重合させて、当該粉体の全表面上にシリコーンポリマーの被膜を担持した改質粉体を得、さらに焼成することによって、活性点を有する粉体の改質を達成する方法が提案されている。   For example, Patent Document 1 discloses that a cyclic silicone compound or a low-molecular-weight linear silicone compound is brought into contact with a powder having active sites on the surface in the form of vapor, and the silicone compound is deposited on the entire surface of the powder. A method has been proposed in which a modified powder carrying a silicone polymer coating on the entire surface of the powder is obtained by polymerization, and further modified to achieve the modification of the powder having active sites. .

特許文献2には、平均粒子径0.1μm以下の酸化亜鉛微粒子の表面に、Al、Si、ZrあるいはSnの酸化物もしくは水酸化物の内の1種あるいは複数種を、酸化亜鉛に対して重量比で0.1〜20%被覆する方法が開示されている。
Si、Zrの酸化物あるいは水酸化物は、酸化亜鉛微粒子を被覆することにより、主に酸化亜鉛微粒子の触媒活性を低下せしめて不活性化するものであり、一方、Al、Zr、Snの酸化物あるいは水酸化物は、酸化亜鉛微粒子を被覆してその動摩擦係数を低下させるものであり、当該酸化物あるいは水酸化物の動摩擦係数が小さく、ここで、酸化亜鉛微粒子は六方晶系であり、粒子形状が角柱状を呈しているが、当該酸化物あるいは水酸化物で被覆されることによって角が丸みを帯びるようになり、全体として球状に近づけることが提案されている。
Patent Document 2 discloses that one or more of Al, Si, Zr, Sn oxides or hydroxides are formed on the surface of zinc oxide fine particles having an average particle diameter of 0.1 μm or less with respect to zinc oxide. A method of coating 0.1 to 20% by weight is disclosed.
The oxides or hydroxides of Si and Zr are mainly deactivated by reducing the catalytic activity of the zinc oxide fine particles by coating the zinc oxide fine particles, while the oxidation of Al, Zr and Sn. The product or hydroxide is one that covers the zinc oxide fine particles to reduce its dynamic friction coefficient, and the dynamic friction coefficient of the oxide or hydroxide is small. Here, the zinc oxide fine particles are hexagonal, Although the particle shape has a prismatic shape, it has been proposed that the corners become rounded by being covered with the oxide or hydroxide so as to be nearly spherical as a whole.

特許文献3では、湿式法で、Zn(OH)(CO、ZnCO、ZnCO(OH)O等の酸化亜鉛前駆体を使用して、酸化亜鉛微粒子を製造する方法が開示されている。具体的には、前記酸化亜鉛前駆体を、Si、Al、Zr、Tiから選択された1種以上の元素が酸化物換算で0重量%を超え15重量%以下含有されているアルコール溶液へ浸漬処理した後、乾燥してSi、Al、Zr、Tiから選択された1種以上の元素を含む酸化亜鉛前駆体を得、加熱処理を経て、Si、Al、Zr、Tiのいずれか1種類以上の元素を含有する酸化物で酸化亜鉛微粒子を被覆することで、光触媒活性を抑制した酸化亜鉛微粒子の製造方法が開示されている。 In Patent Document 3, zinc oxide fine particles are prepared by using a zinc oxide precursor such as Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O by a wet method. A method of manufacturing is disclosed. Specifically, the zinc oxide precursor is immersed in an alcohol solution containing one or more elements selected from Si, Al, Zr, and Ti in an amount of more than 0% by weight and 15% by weight or less in terms of oxide. After the treatment, it is dried to obtain a zinc oxide precursor containing one or more elements selected from Si, Al, Zr, and Ti, and after heat treatment, any one or more of Si, Al, Zr, and Ti A method for producing zinc oxide fine particles in which the photocatalytic activity is suppressed by coating the zinc oxide fine particles with an oxide containing these elements is disclosed.

特許文献4には、酸化亜鉛微粉末の光触媒活性を抑制し、分散性を付与することを目的として、当該酸化亜鉛微粉末の表面をアルミニウムキレート化合物または環状アルミニウムオリゴマーで表面処理する方法が提案されている。   Patent Document 4 proposes a method of surface-treating the surface of the zinc oxide fine powder with an aluminum chelate compound or a cyclic aluminum oligomer for the purpose of suppressing the photocatalytic activity of the zinc oxide fine powder and imparting dispersibility. ing.

特許文献5には、酸化亜鉛微粒子自体の光触媒活性を抑制し、かつ、樹脂組成物(塗料、塗膜、フィルム、樹脂成形品、繊維等)や油脂組成物(化粧料等)への分散性を向上させることを目的に、酸化亜鉛粒子表面に、酸化亜鉛に対して0.2〜10重量%のシランカップリング剤を被覆処理する方法が提案されている。   In Patent Document 5, the photocatalytic activity of zinc oxide fine particles per se is suppressed, and the dispersibility in resin compositions (paints, coating films, films, resin molded products, fibers, etc.) and oil and fat compositions (cosmetics, etc.) is disclosed. In order to improve the above, a method of coating the surface of zinc oxide particles with 0.2 to 10% by weight of a silane coupling agent with respect to zinc oxide has been proposed.

しかしながら、本発明者が、紫外線遮蔽性能、透明性および製造コストといった観点から従来技術を検討してみると、以下の様な課題があることが見出された。
即ち、特許文献1〜5に係る従来技術は、いずれも酸化亜鉛微粒子表面に被覆処理を施す手段を用いている。しかしながら、当該酸化亜鉛微粒子表面に被覆処理を施す手段は、被覆処理後に乾燥あるいは焼成処理工程が必要であり生産性が劣るという課題がある。また、紫外線遮蔽特性や光触媒活性抑制の観点からも十分満足すべきものではなく改善の余地があった。
However, when the present inventor examined the prior art from the viewpoints of ultraviolet shielding performance, transparency, and manufacturing cost, it was found that there were the following problems.
That is, all the prior arts according to Patent Documents 1 to 5 use means for applying a coating treatment to the surface of the zinc oxide fine particles. However, the means for coating the surface of the zinc oxide fine particles requires a drying or baking process after the coating process, resulting in poor productivity. Further, it is not satisfactory from the viewpoint of ultraviolet shielding properties and photocatalytic activity suppression, and there is room for improvement.

特開昭63−139015号公報Japanese Unexamined Patent Publication No. 63-139015 特開平03−183620号公報Japanese Patent Laid-Open No. 03-183620 特開2009−132599号公報JP 2009-132599 A 特許第3491983号公報Japanese Patent No. 3491983 特許第3485643号公報Japanese Patent No. 3485634

本発明は、上述の状況においてなされたものであり、その課題とするところは、光触媒活性抑制効果付与工程が簡略でありながら、光触媒活性が十分抑制され、且つ紫外線遮蔽特性が高い紫外線遮蔽材料微粒子を製造する製造方法、当該紫外線遮蔽材料微粒子を用いた紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体を提供することである。   The present invention has been made in the above-mentioned situation, and the problem is that the photocatalytic activity suppressing effect imparting step is simple, but the photocatalytic activity is sufficiently suppressed and the ultraviolet shielding material fine particles having high ultraviolet shielding properties are obtained. The manufacturing method which manufactures, the ultraviolet-ray shielding material fine particle dispersion using the said ultraviolet-ray shielding material microparticles | fine-particles, and an ultraviolet shielding body are provided.

本発明者らは、上述の課題を解決すべく鋭意研究を実施した。
そして、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶されている酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子を、媒体中に分散させた紫外線遮蔽材料微粒子分散体を用いれば、従来の酸化亜鉛粒子表面に被覆処理を施して光触媒活性を抑制し紫外線遮蔽特性を確保していた紫外線遮蔽体に比較して、透明性、光触媒活性抑制効果、紫外線遮蔽特性に優れる紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体を得られることを知見した。
The present inventors have conducted intensive research to solve the above-described problems.
Then, the ultraviolet shielding material fine particles including zinc oxide fine particles in which the zinc element in the zinc oxide crystal is substituted and dissolved with one or more elements selected from Si, Al, Zr and Ti are dispersed in the medium. By using the ultrafine UV shielding material particle dispersion, transparency and photocatalytic activity are suppressed compared to the conventional UV shielding material that has been coated on the surface of zinc oxide particles to suppress photocatalytic activity and ensure UV shielding properties. It has been found that an ultraviolet shielding material fine particle dispersion and an ultraviolet shielding body excellent in effect and ultraviolet shielding properties can be obtained.

さらに、本発明者らは、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶されている酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子の製造方法として、
所定の酸化亜鉛前駆体の水溶液に、Si、Al、ZrおよびTiから選択された1種以上の添加元素を含む1種以上の化合物を溶解した水溶液を滴下して、前記酸化亜鉛前駆体と前記添加元素の化合物との混合沈殿を析出させる工程と、
前記混合沈殿物の洗浄後液の導電率が所定値以下となるまでデカンテーションを行った後、前記デカンテーション後の混合沈殿物をアルコール溶液で湿潤処理して湿潤処理物を得、その後、当該湿潤処理物を乾燥してSi、Al、ZrおよびTiから選択された1種以上の化合物を含む酸化亜鉛前駆体処理粉を得る工程と、
前記酸化亜鉛前駆体処理粉を所定条件下において加熱処理して、酸化亜鉛結晶中の亜鉛元素を、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子からなる紫外線遮蔽材料微粒子を得る工程と、を具備している紫外線遮蔽材料微粒子の製造方法に想到して本発明を完成したものである。
Furthermore, the inventors of the present invention have disclosed ultraviolet ray shielding material fine particles including zinc oxide fine particles in which zinc element in a zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti. As a manufacturing method,
An aqueous solution in which one or more compounds including one or more additive elements selected from Si, Al, Zr, and Ti are dissolved in an aqueous solution of a predetermined zinc oxide precursor is dropped, and the zinc oxide precursor and the A step of depositing a mixed precipitate with the compound of the additive element;
After decantation until the conductivity of the liquid after washing the mixed precipitate becomes a predetermined value or less, the mixed precipitate after the decantation is wet-treated with an alcohol solution to obtain a wet-treated product, Drying the wet processed product to obtain a zinc oxide precursor-treated powder containing one or more compounds selected from Si, Al, Zr and Ti;
Zinc oxide fine particles obtained by heat-treating the zinc oxide precursor-treated powder under predetermined conditions and replacing the zinc element in the zinc oxide crystal with one or more elements selected from Si, Al, Zr and Ti. The present invention has been completed by conceiving a method for producing fine particles of ultraviolet shielding material comprising the step of obtaining fine particles of ultraviolet shielding material comprising:

即ち、上述の課題を解決するための第1の発明は、
Zn(OH)(CO、ZnCO、ZnCO(OH)O、Zn(OH)から選択される1種以上の酸化亜鉛前駆体を含む水溶液へ、Si、Al、ZrおよびTiから選択される1種以上の添加元素を含む1種以上の化合物を溶解した水溶液を滴下して、酸化物換算で15質量%以上35質量%以下の前記添加元素の化合物を含む前記酸化亜鉛前駆体の沈殿を析出させる工程と、
前記析出した沈殿を洗浄し、洗浄後液の導電率が1mS/cm以下となるまで洗浄を続けるデカンテーション工程と、
前記洗浄後の沈殿物をアルコール溶液で湿潤処理して湿潤処理物とし、その後、当該湿潤処理物を乾燥してSi、Al、ZrおよびTiから選択された1種以上の化合物を含む酸化亜鉛前駆体処理粉を得る工程と、
前記酸化亜鉛前駆体処理粉を、大気、不活性ガス、不活性ガスと還元性ガスとの混合ガスから選択されるいずれかの雰囲気下において、300℃以上650℃以下の温度で加熱処理を行い、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子であって、平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子を得る工程とを、具備することを特徴とする紫外線遮蔽材料微粒子の製造方法である。
第2の発明は、
酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子であって、
平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である前記酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子が媒体中に分散されていることを特徴とする紫外線遮蔽材料微粒子分散体である。
第3の発明は、
前記媒体が、樹脂またはガラスであることを特徴とする第2の発明に記載の紫外線遮蔽材料微粒子分散体である。
第4の発明は、
第2または第3の発明のいずれかに記載の紫外線遮蔽材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかの形状に加工されたものであることを特徴とする紫外線遮蔽体である。
第5の発明は、
波長400nmの光の透過率が75%以上であり、波長365nmの紫外線の透過率が8%以下であり、かつヘイズ値が1%以下であり、100mW/cmの紫外線を20時間照射前後におけるヘイズ値の差が1%以下であることを特徴とする第4の発明に記載の紫外線遮蔽体である。
That is, the first invention for solving the above-described problem is
To an aqueous solution containing one or more zinc oxide precursors selected from Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O, Zn (OH) 2 , Si An aqueous solution in which one or more compounds containing one or more additive elements selected from Al, Zr, and Ti are dissolved is dropped, and the compound of the additive element is 15% by mass or more and 35% by mass or less in terms of oxide Depositing a precipitate of the zinc oxide precursor comprising:
A decantation step of washing the deposited precipitate and continuing washing until the conductivity of the solution after washing becomes 1 mS / cm or less;
The washed precipitate is wet-treated with an alcohol solution to obtain a wet-processed product, and then the wet-processed product is dried to contain a zinc oxide precursor containing one or more compounds selected from Si, Al, Zr and Ti. Obtaining body treatment powder;
The zinc oxide precursor-treated powder is heat-treated at a temperature of 300 ° C. or higher and 650 ° C. or lower in any atmosphere selected from the atmosphere, an inert gas, and a mixed gas of an inert gas and a reducing gas. In addition, zinc oxide fine particles in which zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti, and the average particle diameter is 8.3 nm or more and 15.4 nm or less And a step of obtaining ultraviolet shielding material fine particles containing zinc oxide fine particles having a specific surface area of 67 m 2 / g or more and 124 m 2 / g or less.
The second invention is
Zinc oxide fine particles in which zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti,
Ultraviolet shielding material fine particles including the zinc oxide fine particles having an average particle diameter of 8.3 nm to 15.4 nm and a specific surface area of 67 m 2 / g to 124 m 2 / g are dispersed in a medium. It is an ultraviolet shielding material fine particle dispersion characterized.
The third invention is
The ultraviolet shielding material fine particle dispersion according to the second invention, wherein the medium is resin or glass.
The fourth invention is:
The ultraviolet ray shielding material fine particle dispersion according to any one of the second and third inventions is processed into any shape selected from a plate shape, a film shape, and a thin film shape. It is a shield.
The fifth invention is:
The transmittance of light with a wavelength of 400 nm is 75% or more, the transmittance of ultraviolet light with a wavelength of 365 nm is 8% or less, and the haze value is 1% or less, before and after irradiation with 100 mW / cm 2 of ultraviolet light for 20 hours. The difference in haze value is 1% or less. The ultraviolet shield according to the fourth invention.

本発明に係る紫外線遮蔽材料微粒子の製造方法は、工程が簡略である。それにもかかわらず、当該製造方法により製造された、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子を、媒体中に分散させた紫外線遮蔽材料微粒子分散体を用いることにより、従来の酸化亜鉛粒子表面に被覆処理を施して光触媒活性を抑制し紫外線遮蔽特性を確保していた紫外線遮蔽体に比較して、透明性、光触媒活性抑制効果、紫外線遮蔽特性に優れる紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体を得ることができる。   The manufacturing method of the ultraviolet shielding material fine particles according to the present invention has a simple process. Nevertheless, the ultraviolet shielding containing zinc oxide fine particles produced by the production method, in which the zinc element in the zinc oxide crystal is substituted and dissolved with one or more elements selected from Si, Al, Zr and Ti. By using an ultraviolet shielding material fine particle dispersion in which fine particles of material are dispersed in a medium, a conventional zinc oxide particle surface is coated to reduce the photocatalytic activity and ensure ultraviolet shielding properties. In comparison, an ultraviolet shielding material fine particle dispersion excellent in transparency, a photocatalytic activity suppressing effect, and an ultraviolet shielding property, and an ultraviolet shielding body can be obtained.

以下、本発明を実施するための形態について、1.紫外線遮蔽材料微粒子の製造方法、2.紫外線遮蔽材料微粒子分散体、3.紫外線遮蔽体、の順で詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described. 1. Manufacturing method of ultraviolet shielding material fine particles; 2. Ultraviolet shielding material fine particle dispersion; It demonstrates in detail in order of an ultraviolet-ray shield.

1.紫外線遮蔽材料微粒子の製造方法
本発明に係る紫外線遮蔽材料微粒子の製造方法は、以下(1)〜(5)の工程を有する。
(1)Zn(OH)(CO、ZnCO、ZnCO(OH)O、Zn(OH)から選択される1種以上の酸化亜鉛前駆体を含む水溶液に、Si、Al、ZrおよびTiから選択される1種以上の添加元素を含む1種以上の化合物を溶解した水溶液を滴下して、酸化物換算で15質量%以上35質量%以下の前記添加元素の化合物を含む前記酸化亜鉛前駆体の沈殿を析出させる工程。
(2)得られた前記酸化亜鉛前駆体と前記添加元素の化合物の沈殿を析出させた混合沈殿物の洗浄を行うデカンテ−ション工程。
但し、当該デカンテーションを行った際の、洗浄後液の導電率が、1mS/cm以下となるまで、当該デカンテーションを継続して行う。
(3)上記デカンテーション後の混合沈殿物をアルコール溶液で湿潤処理して、湿潤処理物を得る工程。
(4)当該湿潤処理物を乾燥してSi、Al、ZrおよびTiから選択された1種以上の化合物を含む酸化亜鉛前駆体処理粉を得る工程。
(5)前記酸化亜鉛前駆体処理粉を、大気中、不活性ガス中、不活性ガスと還元性ガスとの混合ガスから選択されるいずれかの雰囲気下において、300℃以上650℃以下の温度で加熱処理を行い、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子であって、平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である酸化亜鉛微粒子からなる紫外線遮蔽材料微粒子を得る工程。
1. Manufacturing method of ultraviolet shielding material fine particles The manufacturing method of the ultraviolet shielding material fine particles according to the present invention includes the following steps (1) to (5).
(1) An aqueous solution containing one or more zinc oxide precursors selected from Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O, and Zn (OH) 2 An aqueous solution in which one or more compounds containing one or more additive elements selected from Si, Al, Zr, and Ti are dissolved is dropped, and the addition of 15% by mass to 35% by mass in terms of oxide is added. Depositing a precipitate of the zinc oxide precursor containing an elemental compound.
(2) A decantation step of washing the mixed precipitate obtained by precipitating a precipitate of the compound of the obtained zinc oxide precursor and the additive element.
However, the decantation is continuously performed until the conductivity of the liquid after cleaning becomes 1 mS / cm or less when the decantation is performed.
(3) A step of wet-treating the mixed precipitate after the decantation with an alcohol solution to obtain a wet-processed product.
(4) A step of drying the wet treated product to obtain a zinc oxide precursor-treated powder containing one or more compounds selected from Si, Al, Zr and Ti.
(5) A temperature of 300 ° C. or higher and 650 ° C. or lower in the atmosphere in which the zinc oxide precursor-treated powder is selected from the atmosphere, an inert gas, and a mixed gas of an inert gas and a reducing gas. And zinc oxide fine particles in which the zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti, and the average particle size is 8.3 nm. The process of obtaining the ultraviolet shielding material fine particles comprising zinc oxide fine particles having a surface area of 15.4 nm or less and a specific surface area of 67 m 2 / g to 124 m 2 / g.

先ず、(1)工程である、Zn(OH)(CO、ZnCO、ZnCO(OH)O、Zn(OH)から選択される1種以上を含む酸化亜鉛前駆体の水溶液へ、Si化合物、Al化合物、Zr化合物およびTi化合物から選択される1種以上を含む添加化合物の水溶液を滴下して、酸化物換算で15質量%以上35質量%以下となる前記酸化亜鉛前駆体と前記添加化合物との混合沈殿物を析出させる工程について説明する。 First, the process (1) includes one or more selected from Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O, and Zn (OH) 2. An aqueous solution of an additive compound containing one or more selected from Si compounds, Al compounds, Zr compounds, and Ti compounds is dropped into an aqueous solution of a zinc oxide precursor, and 15% by mass or more and 35% by mass or less in terms of oxides. A step of depositing a mixed precipitate of the zinc oxide precursor and the additive compound will be described.

本工程において適用される酸化亜鉛前駆体は、Zn(OH)(CO、ZnCO、ZnCO(OH)O、Zn(OH)から選択される1種以上を含む酸化亜鉛前駆体が用いられる。当該酸化亜鉛前駆体は、例えば硝酸亜鉛、塩化亜鉛、酢酸亜鉛、硫酸亜鉛などの亜鉛化合物の水溶液と、炭酸水素アンモニウム、アンモニア水、水酸化ナトリウム、水酸化カリウムなどの各アルカリ水溶液との、中和反応で得られるものである。
当該中和反応において、前記アルカリ水溶液へ前記亜鉛化合物の水溶液を滴下することにより、当該亜鉛化合物の水溶液が瞬時に過飽和度に到達して沈殿が生成する。この結果、比較的粒子サイズの揃った均一な微粒子が得られるので、当該中和反応を用いて当該酸化亜鉛前駆体を得ることが必要である。
The zinc oxide precursor applied in this step is one selected from Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O, and Zn (OH) 2. A zinc oxide precursor containing the above is used. The zinc oxide precursor includes, for example, an aqueous solution of a zinc compound such as zinc nitrate, zinc chloride, zinc acetate, and zinc sulfate, and an alkaline aqueous solution such as ammonium hydrogen carbonate, aqueous ammonia, sodium hydroxide, or potassium hydroxide. It is obtained by a sum reaction.
In the neutralization reaction, by dropping the aqueous solution of the zinc compound into the alkaline aqueous solution, the aqueous solution of the zinc compound instantaneously reaches the degree of supersaturation and precipitates are generated. As a result, uniform fine particles having a relatively uniform particle size can be obtained, and therefore it is necessary to obtain the zinc oxide precursor using the neutralization reaction.

一方、前記酸化亜鉛前駆体の水溶液へ添加する、Si源、Al源、Zr源およびTi源は特に限定されないが、酸化亜鉛前駆体中に均一な微粒子を沈殿させる観点から、水溶性の化合物であることが好ましい。
また、前記酸化亜鉛前駆体へのSi、Al、ZrおよびTiの化合物の添加量は、紫外線遮蔽特性と光触媒活性抑制との観点から、酸化物換算で15質量%以上35質量%以下とすることが必要である。添加量が酸化物換算で15質量%以上であると、光触媒活性が十分に抑制される。また、添加量が35質量%以下であれば、紫外線遮蔽特性が担保されるからである。
On the other hand, the Si source, Al source, Zr source and Ti source to be added to the aqueous solution of the zinc oxide precursor are not particularly limited. From the viewpoint of precipitating uniform fine particles in the zinc oxide precursor, a water-soluble compound is used. Preferably there is.
Moreover, the addition amount of the compound of Si, Al, Zr, and Ti to the zinc oxide precursor is 15% by mass or more and 35% by mass or less in terms of oxide from the viewpoint of ultraviolet shielding properties and suppression of photocatalytic activity. is necessary. When the addition amount is 15% by mass or more in terms of oxide, the photocatalytic activity is sufficiently suppressed. Moreover, it is because an ultraviolet-shielding characteristic will be ensured if the addition amount is 35 mass% or less.

前記酸化亜鉛前駆体の水溶液へ、Si源、Al源、Zr源およびTi源となる添加化合物を添加する際の水溶液の温度や、滴下する時間は特に限定されない。また、添加完了時における水溶液のpHは、Si源、Al源、Zr源およびTi源を安定的に析出させるために7.5〜8.0となることが好ましい。そして、滴下中は、系内を均一化するために水溶液の撹拌をこまめに行うことが好ましい。また、滴下完了後、さらに撹拌を継続して、沈殿物の熟成を行うことが好ましい。尚、熟成とは、沈殿物の均一安定化するための処理のことである。   There are no particular limitations on the temperature of the aqueous solution and the dropping time when adding the additive compounds to be the Si source, Al source, Zr source and Ti source to the aqueous solution of the zinc oxide precursor. Further, the pH of the aqueous solution at the completion of the addition is preferably 7.5 to 8.0 in order to stably precipitate the Si source, Al source, Zr source and Ti source. During the dropping, it is preferable to frequently stir the aqueous solution in order to make the system uniform. Moreover, after completion of the dropwise addition, it is preferable to continue the agitation to ripen the precipitate. Aging is a treatment for uniform stabilization of the precipitate.

熟成した前記所定の酸化亜鉛前駆体と前記添加化合物との混合沈殿において、酸化亜鉛前駆体中に添加化合物が均一に沈殿している。この結果、後述する所定雰囲気下において、所定温度で加熱処理を行う工程を経ることで、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子を得ることが出来た。   In the mixed precipitation of the predetermined zinc oxide precursor aged and the additive compound, the additive compound is uniformly precipitated in the zinc oxide precursor. As a result, zinc oxide fine particles substituted and dissolved in one or more elements selected from Si, Al, Zr, and Ti are obtained by performing a heat treatment process at a predetermined temperature in a predetermined atmosphere described later. Was made.

次に、(2)工程である、得られた前記酸化亜鉛前駆体と前記添加化合物の沈殿を析出させた混合沈殿物の洗浄を行うデカンテ−ション工程について説明する。
上述した(1)工程で、熟成させて得られた混合沈澱物は、水を用いたデカンテーションによって十分洗浄することが好ましい。具体的には、デカンテーションを行った後の洗浄後液における上澄み部分の導電率を測定し、当該導電率が1mS/cm以下となるまで洗浄を繰り返し行う。洗浄後液の上澄み部分の導電率が1mS/cm以下となるまで洗浄を行うことで、混合沈殿物中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物を減少させることができ、所望とする紫外線遮蔽特性を悪化させることを回避できるようになる。したがって、当該洗浄後液の上澄み部分の導電率が、1mS/cm以下(残留不純物量1.5質量%以下に相当する。)となるまで、混合沈殿物を十分洗浄することが好ましい。
Next, a decantation step of washing the mixed precipitate obtained by depositing the obtained zinc oxide precursor and the precipitate of the additive compound, which is step (2), will be described.
The mixed precipitate obtained by aging in step (1) described above is preferably sufficiently washed by decantation using water. Specifically, the electrical conductivity of the supernatant portion in the post-cleaning solution after decantation is measured, and the cleaning is repeated until the electrical conductivity is 1 mS / cm or less. By washing until the conductivity of the supernatant of the liquid after washing is 1 mS / cm or less, impurities such as chlorine ions, nitrate ions, sulfate ions and acetate ions remaining in the mixed precipitate can be reduced. This makes it possible to avoid deteriorating the desired ultraviolet shielding property. Therefore, it is preferable to sufficiently wash the mixed precipitate until the conductivity of the supernatant portion of the washed liquid becomes 1 mS / cm or less (corresponding to a residual impurity amount of 1.5 mass% or less).

次に、(3)工程である、上記デカンテーション後の混合沈殿物をアルコール溶液で湿潤処理して、湿潤処理物を得る工程について説明する。
当該湿潤処理は、デカンテーション後の混合沈殿物を上述したアルコール溶液中へ投入して攪拌すればよい。当該湿潤処理において、アルコール溶液の濃度は50%以上であることが好ましい。アルコール溶液の濃度が50%以上であれば、酸化亜鉛微粒子が強凝集体となることを回避でき、酸化亜鉛微粒子の溶媒中での分散が効率よく進むので、遮蔽体としたときのヘイズ値も1%以下となり、優れた透明性を発揮するからである。
Next, the step (3) of obtaining the wet treated product by wet-treating the mixed precipitate after the decantation with an alcohol solution will be described.
The wet treatment may be performed by putting the mixed precipitate after decantation into the alcohol solution described above and stirring. In the wet treatment, the concentration of the alcohol solution is preferably 50% or more. If the concentration of the alcohol solution is 50% or more, it can be avoided that the zinc oxide fine particles become strong aggregates, and the dispersion of the zinc oxide fine particles in the solvent proceeds efficiently. It is 1% or less and exhibits excellent transparency.

当該湿潤処理に用いられるアルコールは、特に限定されないが、水に対する溶解性に優れ、沸点100℃以下のアルコールが好ましい。例えば、メタノール、エタノール、プロパノール、tert−ブチルアルコールが挙げられる。   Although the alcohol used for the said wet process is not specifically limited, It is excellent in the solubility with respect to water, and alcohol with a boiling point of 100 degrees C or less is preferable. Examples include methanol, ethanol, propanol, and tert-butyl alcohol.

当該湿潤処理において、混合沈殿物をアルコール溶液中に投入する際のアルコール溶液量は、混合沈殿物を容易に攪拌できて、流動性を確保できる液量があれば良い。攪拌時間や攪拌速度は、濾過洗浄時に一部凝集した部分を含む沈殿物がアルコール溶液中において、凝集部が無くなるまで均一に混合されることを条件に適宜選択すれば良い。   In the wet treatment, the amount of the alcohol solution when the mixed precipitate is put into the alcohol solution may be a liquid amount that can easily stir the mixed precipitate and ensure fluidity. The stirring time and the stirring speed may be appropriately selected on the condition that a precipitate containing a part of the aggregate during filtration washing is uniformly mixed in the alcohol solution until there is no aggregate.

当該湿潤処理の温度は室温下で行えば良いが、必要に応じて、アルコールが蒸発して失われない程度に加温しながら行うことも勿論可能である。アルコールの沸点以下の温度で加熱するのであれば、湿潤処理中にアルコールが蒸発して失われ湿潤処理の効果がなくなってしまうことを回避できる。そして、当該湿潤処理中にアルコールが蒸発して失われ、湿潤処理の効果が喪失した後、当該湿潤処理物が乾燥し、強凝集体となってしまことを回避することが好ましい。   The wet treatment may be performed at room temperature, but it is of course possible to perform the wet treatment while heating the alcohol so that the alcohol is not lost by evaporation. If heating is performed at a temperature lower than the boiling point of the alcohol, it can be avoided that the alcohol is evaporated and lost during the wetting process and the effect of the wetting process is lost. Then, it is preferable to avoid that the alcohol is evaporated and lost during the wet treatment and the wet treatment is lost, and then the wet processed product is dried and becomes a strong aggregate.

次に、(4)工程である、湿潤処理物を乾燥して、Si、Al、ZrおよびTiから選択された1種以上の化合物を含む酸化亜鉛前駆体処理粉を得る工程について説明する。
湿潤処理後、湿潤処理物はアルコールに湿潤した状態のまま加熱乾燥する。ここで、当該加熱乾燥の乾燥温度や乾燥時間は特に限定されるものではない。当該湿潤処理後であれば、湿潤処理物の乾燥を行っても強凝集体となることがない。従って、湿潤処理物の処理量や処理装置などの条件によって、乾燥温度や乾燥時間を適宜選択して良い。
Next, the step (4) of drying the wet treated product to obtain a zinc oxide precursor-treated powder containing one or more compounds selected from Si, Al, Zr and Ti will be described.
After the wet treatment, the wet treated product is heat-dried while still wet with alcohol. Here, the drying temperature and drying time of the heat drying are not particularly limited. After the wet treatment, even if the wet treated product is dried, it does not become a strong aggregate. Therefore, the drying temperature and the drying time may be appropriately selected depending on the conditions such as the processing amount of the wet processed product and the processing apparatus.

最後に、(5)工程である、酸化亜鉛前駆体処理粉を、大気、不活性ガス、不活性ガスと還元性ガスとの混合ガス、から選択されるいずれかの雰囲気下において、300℃以上650℃以下の温度で加熱処理を行い、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子からなる紫外線遮蔽材料微粒子を得る工程について説明する。   Finally, in step (5), the zinc oxide precursor-treated powder is 300 ° C. or higher in any atmosphere selected from the atmosphere, an inert gas, and a mixed gas of an inert gas and a reducing gas. Ultraviolet shielding material fine particles comprising zinc oxide fine particles which are heat-treated at a temperature of 650 ° C. or less and in which zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti The process of obtaining

上述した(4)工程にて乾燥処理された前記酸化亜鉛前駆体処理粉には、紫外線遮蔽特性や隠蔽力を向上させるために、加熱処理を施す必要がある。当該加熱処理を行うことによって、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子が得られる。   The zinc oxide precursor-treated powder that has been dried in the above-described step (4) needs to be subjected to a heat treatment in order to improve ultraviolet shielding properties and hiding power. By performing the heat treatment, zinc oxide fine particles are obtained in which the zinc element in the zinc oxide crystal is substituted and dissolved by at least one element selected from Si, Al, Zr and Ti.

当該加熱処理は、大気、窒素、アルゴン、ヘリウムなどの不活性ガス、前記不活性ガスと水素ガスなどの還元性ガスとの混合ガス、のいずれかの雰囲気下で行う。このときの加熱処理温度は、所望とする紫外線遮蔽特性を得る観点から、300℃以上650℃以下とすることが必要である。処理温度が300℃以上であると、異相が混在せず、結晶性が高くなり好ましい。また、処理温度が650℃以下であれば、焼結による粒子の粗大化が起こらず好ましい。一方、処理時間は、当該酸化亜鉛前駆体処理粉の処理量や加熱処理温度に応じて適宜選択すればよい。   The heat treatment is performed in an atmosphere of any one of air, an inert gas such as nitrogen, argon, and helium, or a mixed gas of the inert gas and a reducing gas such as hydrogen gas. The heat treatment temperature at this time needs to be 300 ° C. or higher and 650 ° C. or lower from the viewpoint of obtaining desired ultraviolet shielding properties. A treatment temperature of 300 ° C. or higher is preferable because heterogeneous phases are not mixed and crystallinity is increased. Moreover, if processing temperature is 650 degrees C or less, the coarsening of the particle | grains by sintering does not occur and it is preferable. On the other hand, the treatment time may be appropriately selected according to the treatment amount of the zinc oxide precursor treatment powder and the heat treatment temperature.

上述した所定の前記酸化亜鉛前駆体処理粉を用い、当該加熱処理によって、Si、Al、ZrおよびTiから選択された1種以上の元素で亜鉛元素を置換固溶した、酸化亜鉛微粒子が得られる。   Using the predetermined zinc oxide precursor-treated powder described above, by the heat treatment, zinc oxide fine particles are obtained in which zinc element is substituted and dissolved with one or more elements selected from Si, Al, Zr and Ti. .

尚、本発明において、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子では、所定量のSi、Al、ZrおよびTiから選択された1種以上の元素を含みながら、X線回折測定の結果では、添加元素の化合物の回折ピークは現れず、ZnOの回折ピークのみとなっており、ZnO単一相であるとみなされる。   In the present invention, in the zinc oxide fine particles in which the zinc element in the zinc oxide crystal is substituted and dissolved with one or more elements selected from Si, Al, Zr and Ti, a predetermined amount of Si, Al, Zr and While containing one or more elements selected from Ti, the X-ray diffraction measurement results show that the diffraction peak of the compound of the additive element does not appear, only the diffraction peak of ZnO, and the ZnO single phase. It is regarded.

得られる酸化亜鉛微粒子は、平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である酸化亜鉛微粒子であることが好ましい。平均粒子径が8.3nm以上15.4nm以下であり、かつ、比表面積が67m/g以上124m/g以下を有する酸化亜鉛微粒子を得るため、Si、Al、ZrおよびTiから選択された1種以上の添加化合物を酸化亜鉛前駆体に、上述した所定量添加し、上述した加熱処理条件の範囲内において、適宜、加熱処理条件を設定すれば良い。
尚、当該平均粒子径は、式:d=6/(ρ・SA)から求めた値である。但し、(d;平均粒子径、ρ;真密度、SA;比表面積)である。
The obtained zinc oxide fine particles are preferably zinc oxide fine particles having an average particle diameter of 8.3 nm to 15.4 nm and a specific surface area of 67 m 2 / g to 124 m 2 / g. In order to obtain zinc oxide fine particles having an average particle diameter of 8.3 nm to 15.4 nm and a specific surface area of 67 m 2 / g to 124 m 2 / g, selected from Si, Al, Zr and Ti One or more additive compounds may be added to the zinc oxide precursor in the predetermined amount described above, and the heat treatment conditions may be set as appropriate within the range of the heat treatment conditions described above.
The average particle diameter is a value obtained from the formula: d = 6 / (ρ · SA). However, (d: average particle diameter, ρ: true density, SA: specific surface area).

上述した酸化亜鉛微粒子のSi、Al、ZrおよびTiから選択された1種以上の元素による置換固溶は、当該酸化亜鉛微粒子のX線回折測定を行い、ZnOの単一相であるとの結果を得ることによって確認することが出来る。   The above-described substitutional solid solution of the zinc oxide fine particles with one or more elements selected from Si, Al, Zr and Ti is a result of X-ray diffraction measurement of the zinc oxide fine particles and being a single phase of ZnO. Can be confirmed by obtaining

2.紫外線遮蔽材料微粒子分散体
本発明に係る紫外線遮蔽材料微粒子分散体は、上述した紫外線遮蔽材料微粒子の製造方法で得られる、酸化亜鉛結晶中の亜鉛元素をSi、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子であって、平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である前記酸化亜鉛微粒子からなる紫外線遮蔽材料微粒子を、適宜な媒体中に分散したものである。
2. Ultraviolet shielding material fine particle dispersion The ultraviolet shielding material fine particle dispersion according to the present invention was selected from Si, Al, Zr and Ti as the zinc element in the zinc oxide crystal obtained by the above-described method for producing the ultraviolet shielding material fine particles. The zinc oxide fine particles substituted and dissolved with one or more elements, having an average particle diameter of 8.3 nm to 15.4 nm and a specific surface area of 67 m 2 / g to 124 m 2 / g Ultraviolet shielding material fine particles composed of fine particles are dispersed in an appropriate medium.

当該媒体としては、樹脂またはガラスが用いられる。また、適宜な媒体中に上述した紫外線遮蔽材料微粒子を分散させ、得られた当該紫外線遮蔽材料微粒子分散体を所望の基材表面に成膜形成する方法や、所定の方法でフィルム状やボード状に成形して紫外線遮蔽体として使用する方法などを、採ることができる。   As the medium, resin or glass is used. Further, the above-described ultraviolet shielding material fine particles are dispersed in an appropriate medium, and the obtained ultraviolet shielding material fine particle dispersion is formed into a film on a desired substrate surface. It is possible to adopt a method such as molding into an ultraviolet shielding material.

本発明に係る紫外線遮蔽材料微粒子は、媒体中に練り込むことや、適宜な媒体によって基材表面に結着させることが可能であるので、樹脂基材等の耐熱温度の低い基材への成膜応用が可能である。さらに、上述した紫外線遮蔽材料微粒子分散体を用いれば、成膜形成の際に大型の真空容器等を必要とせず安価に成膜できるという利点がある。   Since the ultraviolet shielding material fine particles according to the present invention can be kneaded into a medium or bound to the surface of the base material by an appropriate medium, it can be formed on a base material having a low heat resistance temperature such as a resin base material. Membrane application is possible. Further, the use of the above-described ultraviolet shielding material fine particle dispersion has an advantage that a film can be formed at a low cost without requiring a large vacuum container or the like at the time of film formation.

次に、本発明に係る紫外線遮蔽材料微粒子分散体とその製造方法、その適用例について説明する。
(a)紫外線遮蔽材料微粒子を媒体中に分散して基材表面に成膜形成する方法
上述した本発明に係る紫外線遮蔽材料微粒子を適宜な溶媒中に分散させ、そこに媒体となる樹脂を添加して、紫外線遮蔽材料微粒子分散液を得ることができる。そして当該紫外線遮蔽材料微粒子分散液を、適宜な基材表面にコーティングし、溶媒を蒸発させ、所定の方法で樹脂を硬化させれば、当該紫外線遮蔽材料微粒子を媒体樹脂中に分散した紫外線遮蔽材料微粒子分散体を薄膜状に形成することが可能となる。
Next, an ultraviolet shielding material fine particle dispersion according to the present invention, a production method thereof, and an application example thereof will be described.
(A) Method of dispersing ultraviolet shielding material fine particles in a medium and forming a film on the surface of the substrate Dispersing the ultraviolet shielding material fine particles according to the present invention described above in an appropriate solvent, and adding a resin as a medium thereto Thus, an ultraviolet shielding material fine particle dispersion can be obtained. Then, the ultraviolet shielding material fine particle dispersion is coated on an appropriate base material surface, the solvent is evaporated, and the resin is cured by a predetermined method, whereby the ultraviolet shielding material fine particles are dispersed in the medium resin. The fine particle dispersion can be formed into a thin film.

コーティングの方法は特に限定されない。基材表面に紫外線遮蔽材料微粒子分散液が均一にコーティングできればよく、例えば、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗り等が挙げられる。また、当該紫外線遮蔽材料微粒子分散液において、紫外線遮蔽材料微粒子を直接媒体樹脂中に分散した構成を有するものは、基材表面にコーティングした後に溶媒を蒸発させる必要がないので、環境的、工業的にも好ましい。   The method of coating is not particularly limited. It suffices that the ultraviolet shielding material fine particle dispersion can be uniformly coated on the substrate surface, and examples thereof include a bar coating method, a spray coating method, a dip coating method, a screen printing method, a roll coating method, and a flow coating method. In addition, in the ultraviolet shielding material fine particle dispersion liquid, those having a configuration in which the ultraviolet shielding material fine particles are directly dispersed in the medium resin do not require evaporation of the solvent after coating on the surface of the substrate. Also preferred.

上述した媒体には、UV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が、目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。   As the medium described above, a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, or the like can be selected according to the purpose. Specifically, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin And polyvinyl butyral resin.

一方、上述した基材は、所望によりフィルム状でもボード状でも良く、形状は限定されない。透明基材材料としては、各種目的に応じて、ポリエチレンテレフタレート樹脂、アクリル樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、エチレン酢酸ビニル共重合体、塩化ビニル樹脂、フッ素樹脂等が使用可能である。また、樹脂以外ではガラスを用いることもできる。   On the other hand, the above-described base material may be in the form of a film or a board as desired, and the shape is not limited. As the transparent substrate material, polyethylene terephthalate resin, acrylic resin, urethane resin, polycarbonate resin, polyethylene resin, ethylene vinyl acetate copolymer, vinyl chloride resin, fluororesin and the like can be used according to various purposes. Moreover, glass other than resin can also be used.

(b)媒体中に紫外線遮蔽材料微粒子を分散し、当該分散体を成形する方法
本発明に係る紫外線遮蔽材料微粒子は、媒体中に分散させてもよい。
当該紫外線遮蔽材料微粒子を媒体樹脂中に分散させるには、媒体樹脂表面から浸透させても良い。当該媒体樹脂表面から浸透させる方法をとる場合、予め、媒体樹脂を溶融温度以上に昇温して溶融させておき、紫外線遮蔽材料微粒子と混合してもよい。このようにして得られた紫外線遮蔽材料微粒子分散体は、所定の方法でフィルム状やボード状に成形して紫外線遮蔽体として応用可能である。
(B) Method for Dispersing Ultraviolet Shielding Material Fine Particles in Medium and Forming the Dispersion The ultraviolet shielding material fine particles according to the present invention may be dispersed in the medium.
In order to disperse the ultraviolet shielding material fine particles in the medium resin, the fine particles may be permeated from the surface of the medium resin. When taking the method of permeating from the surface of the medium resin, the medium resin may be melted by raising the temperature of the medium resin to the melting temperature or higher in advance and mixed with the ultraviolet shielding material fine particles. The ultraviolet-ray shielding material fine particle dispersion thus obtained can be applied as an ultraviolet-shielding material by forming it into a film or board shape by a predetermined method.

例えば、PET樹脂に当該紫外線遮蔽材料微粒子を分散する方法としては、まずPET樹脂と紫外線遮蔽材料微粒子分散液とを混合し、当該混合物から分散溶媒を蒸発させる。その後、当該混合物を、PET樹脂の溶融温度である300℃程度に加熱して溶融させ、紫外線遮蔽材料微粒子と溶融したPET樹脂とを混練し、さらに、冷却することで紫外線遮蔽材料微粒子を分散させたPET樹脂を得ることができる。   For example, as a method of dispersing the ultraviolet shielding material fine particles in the PET resin, first, the PET resin and the ultraviolet shielding material fine particle dispersion are mixed, and the dispersion solvent is evaporated from the mixture. Thereafter, the mixture is heated and melted to about 300 ° C. which is the melting temperature of the PET resin, the ultraviolet shielding material fine particles and the molten PET resin are kneaded, and further cooled to disperse the ultraviolet shielding material fine particles. PET resin can be obtained.

この他、当該紫外線遮蔽材料微粒子を樹脂中に分散させる方法は、特に限定されないが、例えば、超音波照射、ビーズミル、サンドミル等を使用して分散させることができる。また、均一な分散体を得るために、さらに、各種添加剤を添加したり、pH調整したりしてもよい。   In addition, the method of dispersing the ultraviolet shielding material fine particles in the resin is not particularly limited, and for example, it can be dispersed using ultrasonic irradiation, a bead mill, a sand mill or the like. Moreover, in order to obtain a uniform dispersion, various additives may be further added, or the pH may be adjusted.

3.紫外線遮蔽体
本発明に係る紫外線遮蔽材料微粒子分散体を、板状、フィルム状または薄膜状に形成すれば紫外線遮蔽体とすることができる。
上述したように、本発明に係る紫外線遮蔽体は、酸化亜鉛結晶中の亜鉛元素を、Si、Al、ZrおよびTiから選択された1種以上の元素で置換固溶した酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子を媒体中に分散させた紫外線遮蔽材料微粒子分散体を用いている。この結果、従来の酸化亜鉛粒子表面に被覆処理を施して光触媒活性を抑制し紫外線遮蔽特性を確保していた紫外線遮蔽体に比較して、透明性、光触媒活性抑制効果、紫外線遮蔽特性に優れた紫外線遮蔽体を得ることができる。
3. Ultraviolet shielding material The ultraviolet shielding material fine particle dispersion according to the present invention may be formed into a plate shape, a film shape, or a thin film shape to form an ultraviolet shielding material.
As described above, the ultraviolet shield according to the present invention includes an ultraviolet ray containing zinc oxide fine particles in which a zinc element in a zinc oxide crystal is substituted and dissolved by at least one element selected from Si, Al, Zr, and Ti. An ultraviolet shielding material fine particle dispersion in which shielding material fine particles are dispersed in a medium is used. As a result, transparency, photocatalytic activity-suppressing effect, and UV-shielding properties were superior compared to conventional UV-shielding materials that applied a coating treatment to the surface of zinc oxide particles to suppress photocatalytic activity and ensure UV-shielding properties. An ultraviolet shield can be obtained.

特に、本発明に係る紫外線遮蔽体は、波長400nmの可視光透過率が75%以上で、波長365nmの紫外線透過率が8%以下であり、かつ、ヘイズ値が1%以下であるという、優れた光学的特性を有している。
具体的には、当該紫外線遮蔽体の吸収端は可視光近傍の紫外線領域にあるので、紫外線は十分に遮蔽しつつ、紫外光に近い可視光は効率よく透過するという、立ち上がりの良い理想的な紫外線遮蔽プロファイルを有し、透明性に優れた紫外線遮蔽体を得ることができる。
In particular, the ultraviolet shield according to the present invention is excellent in that the visible light transmittance at a wavelength of 400 nm is 75% or more, the ultraviolet transmittance at a wavelength of 365 nm is 8% or less, and the haze value is 1% or less. It has optical characteristics.
Specifically, the absorption edge of the ultraviolet shield is in the ultraviolet region near the visible light, so that the visible light close to the ultraviolet light is efficiently transmitted while the ultraviolet ray is sufficiently shielded. An ultraviolet shielding body having an ultraviolet shielding profile and excellent in transparency can be obtained.

さらに、スーパーUV照射前後において透過率の差を測定することで、紫外線遮蔽体材料の紫外線照射による劣化状態をみることができるが、本発明に係る紫外線遮蔽体では、スーパーUV照射前後の透過率の差が1%以下であることから、光触媒活性が十分抑制された紫外線遮蔽体となっていることを確認できる。   Furthermore, by measuring the difference in transmittance before and after super UV irradiation, it is possible to see the deterioration state of the ultraviolet shielding material due to ultraviolet irradiation. However, in the ultraviolet shielding according to the present invention, the transmittance before and after super UV irradiation. Therefore, it can be confirmed that the photocatalytic activity is sufficiently suppressed.

以下、実施例を挙げて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
尚、紫外線遮蔽材料微粒子の比表面積は、マウンテック社製のMacsorbを用いて測定した。また、紫外線遮蔽材料微粒子分散体を板状、フィルム状または薄膜状に形成した紫外線遮蔽体の可視光透過率や紫外線透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
The specific surface area of the ultraviolet shielding material fine particles was measured using a Macsorb manufactured by Mountec. The visible light transmittance and ultraviolet transmittance of the ultraviolet shielding material in which the ultraviolet shielding material fine particle dispersion is formed in a plate shape, a film shape or a thin film shape are measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. It was measured.

また、本発明に係る紫外線遮蔽材料微粒子や紫外線遮蔽材料微粒子分散体の光触媒活性抑制効果を調べるために、紫外線照射試験を行った(本発明において「スーパーUV照射」と記載する場合がある。)。具体的には、紫外線照射装置(岩崎電気(株)製SUV−W131)を使用し、試験対象である紫外線遮蔽体に対して、100mW/cmの紫外線を20時間照射し、当該紫外線照射前後の紫外線遮蔽体におけるヘイズ値の変化(本発明において「Δヘイズ」と記載する場合がある。)を測定した。 Moreover, in order to investigate the photocatalytic activity suppression effect of the ultraviolet shielding material fine particles and the ultraviolet shielding material fine particle dispersion according to the present invention, an ultraviolet irradiation test was performed (in the present invention, sometimes referred to as “super UV irradiation”). . Specifically, using an ultraviolet irradiation device (SUV-W131 manufactured by Iwasaki Electric Co., Ltd.), the ultraviolet shielding body to be tested was irradiated with 100 mW / cm 2 ultraviolet rays for 20 hours, before and after the ultraviolet irradiation. The change in the haze value in the ultraviolet shield (which may be referred to as “Δhaze” in the present invention) was measured.

[実施例1]
40℃の水100mlに塩基性炭酸亜鉛2ZnCO・3Zn(OH)(中央電気工業製)13.72gを添加して攪拌し、ここへ水ガラス1号(SiO濃度36.5質量%)6.85gを水100mlで希釈した水溶液を約40分間かけて滴下した。当該滴下終了後に2分間攪拌を継続してから、17.6質量%硝酸をpH7.5〜8.0となるように滴下して沈殿物を生成させた。当該滴下終了後さらに10分間攪拌を継続して、沈殿物の熟成を行った。このときの最終pHは、7.5であった。
[Example 1]
13.72 g of basic zinc carbonate 2ZnCO 3 .3Zn (OH) 2 (manufactured by Chuo Denki Kogyo) was added to 100 ml of water at 40 ° C. and stirred, and water glass No. 1 (SiO 2 concentration 36.5% by mass) was added here An aqueous solution obtained by diluting 6.85 g with 100 ml of water was dropped over about 40 minutes. Stirring was continued for 2 minutes after completion of the dropping, and 17.6% by mass nitric acid was added dropwise so as to have a pH of 7.5 to 8.0 to form a precipitate. After completion of the dropping, stirring was further continued for 10 minutes to age the precipitate. The final pH at this time was 7.5.

次に、洗浄後液の上澄み液の導電率が1mS/cm以下になるまでデカンテーションにて、沈殿物の洗浄を繰り返し行った。その後、洗浄された沈殿物を、変性アルコール(日本アルコール販売(株)製、ソルミックスAP−2(商品名))(本発明において「AP−2」と記載する場合がある。)に浸漬して湿潤処理し、105℃で乾燥し乾燥粉を得た。   Next, the precipitate was repeatedly washed by decantation until the electrical conductivity of the supernatant liquid after washing was 1 mS / cm or less. Thereafter, the washed precipitate is immersed in denatured alcohol (manufactured by Nippon Alcohol Sales Co., Ltd., Solmix AP-2 (trade name)) (may be described as “AP-2” in the present invention). Wet treatment and drying at 105 ° C. gave a dry powder.

次に、当該乾燥粉を、大気中400℃の温度で1時間加熱処理することによって、20%SiO処理ZnO微粒子aを得た。当該乾燥粉に含まれるZnO量は10.17gであり、SiO量は2.50gであることから、乾燥物中のSiOの割合は、
2.50/(10.17+2.50)×100=19.7質量%
となっていることから、当該乾燥粉を20%SiO処理ZnO微粒子aと表記しているものである。
Next, the dry powder was heat-treated in the atmosphere at a temperature of 400 ° C. for 1 hour to obtain 20% SiO 2 -treated ZnO fine particles a. Since the amount of ZnO contained in the dry powder is 10.17 g and the amount of SiO 2 is 2.50 g, the proportion of SiO 2 in the dried product is
2.50 / (10.17 + 2.50) × 100 = 19.7% by mass
Therefore, the dry powder is expressed as 20% SiO 2 -treated ZnO fine particles a.

上述した加熱処理によって得られた20%SiO処理ZnO微粒子aについて、X線回折測定(本発明において「XRD測定」と記載する場合がある。)を行った結果、ZnOの単一相であることが判明した。これにより、実施例1に係る20%SiO処理ZnO微粒子aは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該20%SiO処理ZnO微粒子aの比表面積は94.1m/gで、平均粒子径は11.0nmであった。
As a result of performing X-ray diffraction measurement (may be described as “XRD measurement” in the present invention) on the 20% SiO 2 -treated ZnO fine particles a obtained by the heat treatment described above, it is a single phase of ZnO. It has been found. Thus, it was confirmed that the 20% SiO 2 treated ZnO fine particles a according to Example 1 were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.
The specific surface area of the 20% SiO 2 -treated ZnO fine particles a was 94.1 m 2 / g, and the average particle size was 11.0 nm.

次に、20%SiO処理ZnO微粒子a(ZnO換算)7.5質量%と、アクリル系分散剤2.25質量%と、残部トルエンとを、充填率80%相当の0.3mmジルコニアビーズを入れたペイントシェーカーに装填し、10時間分散処理して、分散液Aを得た。 Next, 7.5% by mass of 20% SiO 2 treated ZnO fine particles a (ZnO equivalent), 2.25% by mass of acrylic dispersant, and the remaining toluene, 0.3 mm zirconia beads corresponding to a filling rate of 80%. The mixture was loaded into a paint shaker and dispersed for 10 hours to obtain dispersion A.

当該分散液A66.7質量%と、UV硬化樹脂33.3質量%とをよく混合して混合液とした後、番手40のバーを用いて、3mm厚のクリアガラス基板上へ、当該混合液を塗布した。当該塗布された面に、70℃で1分間の条件で高圧水銀ランプの紫外線を照射し、実施例1に係る紫外線遮蔽体Aを得た。   After thoroughly mixing 66.7% by mass of the dispersion A and 33.3% by mass of the UV curable resin to obtain a mixed solution, the mixed solution was applied onto a 3 mm thick clear glass substrate using a bar of count 40. Was applied. The coated surface was irradiated with ultraviolet rays from a high-pressure mercury lamp at 70 ° C. for 1 minute to obtain an ultraviolet shield A according to Example 1.

得られた紫外線遮蔽体Aの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体AへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
The ultraviolet light shielding material A thus obtained was measured for the visible light transmittance, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield A was measured, and Δ haze before and after UV irradiation was determined.

当該20%SiO処理ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。 Table 1 shows the outline of the manufacturing conditions of the 20% SiO 2 -treated ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[実施例2]
水ガラス1号(SiO濃度36.5質量%)の滴下量を11.75gとした以外は、実施例1と同様の操作を行って、実施例2に係る30%SiO処理ZnO微粒子b、分散液Bおよび紫外線遮蔽体Bを得た。
[Example 2]
30% SiO 2 treated ZnO fine particles b according to Example 2 by performing the same operation as in Example 1, except that the amount of water glass No. 1 (SiO 2 concentration: 36.5% by mass) dropped to 11.75 g. Dispersion B and ultraviolet shield B were obtained.

上述した加熱処理によって得られた30%SiO処理ZnO微粒子bについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。これにより、実施例2に係る30%SiO処理ZnO微粒子bは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該30%SiO処理ZnO微粒子bの比表面積は104.1m/gで、平均粒子径は9.9nmであった。
As a result of X-ray diffraction measurement of the 30% SiO 2 -treated ZnO fine particles b obtained by the heat treatment described above, it was found to be a single phase of ZnO. Thus, it was confirmed that the 30% SiO 2 -treated ZnO fine particles b according to Example 2 were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.
The specific surface area of the 30% SiO 2 -treated ZnO fine particles b was 104.1 m 2 / g, and the average particle size was 9.9 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Bの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体BへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
By the same operation as in Example 1, the obtained ultraviolet light shielding body B was measured for the visible light transmittance, the light transmittance in the visible region with a wavelength of 400 nm, the light transmittance in the ultraviolet region with a wavelength of 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield B was measured, and Δ haze before and after UV irradiation was determined.

当該30%SiO処理ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。 Table 1 shows an outline of the manufacturing conditions of the 30% SiO 2 -treated ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[実施例3]
40℃の水100mlに塩基性炭酸亜鉛(中央電気工業製)13.72gを添加して攪拌し、ここへ水ガラス1号(SiO濃度36.5質量%)5.14gを水100mlにて希釈した水溶液を約40分間かけて滴下した。当該滴下終了後に2分間攪拌を継続してから、水100mlに硝酸アルミニウム9水和物4.56gを添加し溶解した水溶液を、約40分間かけて滴下し沈殿物を生成した。このとき、液内のpHが7.5〜8.0となるように7%アンモニア水を適宜滴下した。当該滴下終了後さらに10分間攪拌を継続して、沈殿物の熟成を行った。このときの最終pHは、7.7であった。
[Example 3]
13.72 g of basic zinc carbonate (manufactured by Chuo Denki Kogyo Co., Ltd.) was added to 100 ml of water at 40 ° C. and stirred, and 5.14 g of water glass No. 1 (SiO 2 concentration 36.5% by mass) was added to 100 ml of water. The diluted aqueous solution was added dropwise over about 40 minutes. After completion of the dropping, stirring was continued for 2 minutes, and then an aqueous solution in which 4.56 g of aluminum nitrate nonahydrate was dissolved in 100 ml of water was dropped over about 40 minutes to form a precipitate. At this time, 7% aqueous ammonia was appropriately added dropwise so that the pH in the liquid was 7.5 to 8.0. After completion of the dropping, stirring was further continued for 10 minutes to age the precipitate. The final pH at this time was 7.7.

次に、洗浄後液の上澄み液の導電率が1mS/cm以下になるまでデカンテーションにて、沈殿物の洗浄を繰り返し行った。その後、洗浄された沈殿物を、AP−2に浸漬して湿潤処理し、105℃で乾燥し乾燥粉を得た以外は、実施例1と同様の操作を行って、実施例3に係る15%SiO+5%Al処理ZnO微粒子c、分散液Cおよび紫外線遮蔽体Cを得た。 Next, the precipitate was repeatedly washed by decantation until the electrical conductivity of the supernatant liquid after washing was 1 mS / cm or less. Thereafter, the washed precipitate was dipped in AP-2, wet-treated, dried at 105 ° C. to obtain a dry powder, and the same operation as in Example 1 was performed. % SiO 2 + 5% Al 2 O 3 treated ZnO fine particles c, dispersion C and ultraviolet shield C were obtained.

上記加熱処理によって得られた15%SiO+5%Al処理ZnO微粒子cについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。これにより、実施例3に係る15%SiO+5%Al処理ZnO微粒子cは、Si、Al元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該15%SiO+5%Al処理ZnO微粒子cの比表面積は90.4m/gで、平均粒子径は11.4nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles c obtained by the heat treatment, it was found to be a single phase of ZnO. Thus, it was confirmed that the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles c according to Example 3 were zinc oxide fine particles in which a zinc element was substituted and dissolved by Si and Al elements.
The specific surface area of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles c was 90.4 m 2 / g, and the average particle size was 11.4 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Cの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体CへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該15%SiO+5%Al処理ZnO微粒子c、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the obtained ultraviolet light shielding body C was measured for the visible light transmittance, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield C was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows the outline of the manufacturing conditions of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles c, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[実施例4]
乾燥粉の焼成温度を500℃とした以外は実施例3と同様の操作を行って、実施例4に係る15%SiO+5%Al処理ZnO微粒子d、分散液Dおよび紫外線遮蔽体Dを得た。
[Example 4]
15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles d according to Example 4, dispersion D and ultraviolet shielding material, except that the firing temperature of the dry powder was 500 ° C. D was obtained.

上述した加熱処理によって得られた15%SiO+5%Al処理ZnO微粒子dについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。これにより、実施例4に係る15%SiO+5%Al処理ZnO微粒子dは、Si、Al元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該15%SiO+5%Al処理ZnO微粒子dの比表面積は81.4m/gで、平均粒子径は12.7nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles d obtained by the heat treatment described above, it was found to be a single phase of ZnO. Thus, it was confirmed that the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles d according to Example 4 were zinc oxide fine particles in which a zinc element was substituted and dissolved by Si and Al elements.
The specific surface area of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles d was 81.4 m 2 / g, and the average particle size was 12.7 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Dの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体DへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該15%SiO+5%Al処理ZnO微粒子d、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the obtained ultraviolet shielding material D was measured for the visible light transmittance, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield D was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows the outline of the manufacturing conditions of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles d, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[実施例5]
酸化亜鉛前駆体乾燥粉の焼成温度を600℃とした以外は実施例3と同様の操作を行って、実施例5に係る15%SiO+5%Al処理ZnO微粒子e、分散液Eおよび紫外線遮蔽体Eを得た。
[Example 5]
15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles e, dispersion E according to Example 5 except that the firing temperature of the zinc oxide precursor dry powder was 600 ° C. And the ultraviolet shielding body E was obtained.

上述した加熱処理によって得られた15%SiO+5%Al処理ZnO微粒子eについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、実施例5に係る15%SiO+5%Al処理ZnO微粒子eは、Si、Al元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該15%SiO+5%Al処理ZnO微粒子eの比表面積は78.6m/gで、平均粒子径は13.2nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles e obtained by the heat treatment described above, it was found to be a single phase of ZnO.
Accordingly, it was confirmed that the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles e according to Example 5 were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si and Al elements.
The specific surface area of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles e was 78.6 m 2 / g, and the average particle size was 13.2 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Eの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体EへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該15%SiO+5%Al処理ZnO微粒子e、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the obtained ultraviolet shielding E was measured for the visible light transmittance, the light transmittance in the visible region with a wavelength of 400 nm, the light transmittance in the ultraviolet region with a wavelength of 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield E was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles e, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[実施例6]
水ガラス1号(SiO濃度36.5%)5.14gとした以外は、実施例1と同様の操作を行って、実施例6に係る15%SiO処理ZnO微粒子f、分散液Fおよび紫外線遮蔽体Fを得た。
[Example 6]
Except for water glass No. 1 (SiO 2 concentration 36.5%) 5.14 g, the same operation as in Example 1 was performed, and 15% SiO 2 treated ZnO fine particles f according to Example 6, dispersion F and An ultraviolet shield F was obtained.

上述した加熱処理によって得られた15%SiO処理ZnO微粒子fについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、15%SiO処理ZnO微粒子fは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該15%SiO処理ZnO微粒子fの比表面積は69.6m/gで、平均粒子径は14.9nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 -treated ZnO fine particles f obtained by the heat treatment described above, it was found to be a single phase of ZnO.
As a result, it was confirmed that the 15% SiO 2 -treated ZnO fine particles f were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.
The specific surface area of the 15% SiO 2 -treated ZnO fine particles f was 69.6 m 2 / g, and the average particle size was 14.9 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Fの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。
さらに、当該紫外線遮蔽体FへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該15%SiO処理ZnO微粒子f、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the obtained ultraviolet shielding F was measured for the visible light transmittance, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value.
Furthermore, the haze value after 20 hours of super UV irradiation on the ultraviolet shield F was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the 15% SiO 2 -treated ZnO fine particles f, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the characteristic measurement results of the ultraviolet shielding material.

[比較例1、比較例2]
水ガラス1号(SiO濃度36.5質量%)の滴下量を3.42gとした以外は実施例1と同様の操作を行って、比較例1に係る10%SiO処理ZnO微粒子g、分散液Gおよび紫外線遮蔽体Gを得た。
また、水ガラス1号(SiO濃度36.5質量%)を滴下しなかった以外は、実施例1と同様の操作を行って、比較例2に係るZnO微粒子h、分散液Hおよび紫外線遮蔽体Hを得た。
[Comparative Example 1 and Comparative Example 2]
10% SiO 2 treated ZnO fine particles g according to Comparative Example 1 were obtained by performing the same operation as in Example 1 except that the amount of water glass No. 1 (SiO 2 concentration: 36.5% by mass) was 3.42 g. Dispersion G and ultraviolet shield G were obtained.
In addition, the same operation as in Example 1 was performed except that water glass No. 1 (SiO 2 concentration of 36.5% by mass) was not dropped, and ZnO fine particles h, dispersion H and ultraviolet shielding according to Comparative Example 2 were performed. Body H was obtained.

上述した加熱処理によって得られた比較例1に係る10%SiO処理ZnO微粒子gについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、10%SiO処理ZnO微粒子gは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該10%SiO処理ZnO微粒子gの比表面積は66.5m/gで、平均粒子径は15.6nmであった。
As a result of X-ray diffraction measurement of the 10% SiO 2 -treated ZnO fine particles g according to Comparative Example 1 obtained by the heat treatment described above, it was found to be a single phase of ZnO.
Thus, it was confirmed that the 10% SiO 2 -treated ZnO fine particles g were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.
The specific surface area of the 10% SiO 2 -treated ZnO fine particles g was 66.5 m 2 / g, and the average particle size was 15.6 nm.

上述した加熱処理によって得られた比較例2に係るZnO微粒子hについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
当該ZnO微粒子hの比表面積は30.9m/gで、平均粒子径は33.5nmであった。
As a result of X-ray diffraction measurement of the ZnO fine particles h according to Comparative Example 2 obtained by the heat treatment described above, it was found to be a single phase of ZnO.
The specific surface area of the ZnO fine particles h was 30.9 m 2 / g, and the average particle size was 33.5 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体GとHの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体FとGとへのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該10%SiO処理ZnO微粒子g、ZnO微粒子h、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the visible light transmittance of the obtained ultraviolet shields G and H, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value were measured. did. Furthermore, the haze value after 20 hours of super UV irradiation to the ultraviolet shields F and G was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the 10% SiO 2 -treated ZnO fine particles g, ZnO fine particles h, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the characteristics of the ultraviolet shielding material.

[比較例3]
シリカ−アルミナ処理酸化亜鉛(NANOFINE50A、BET比表面積 50m/g、堺化学社製)7.5質量%(ZnO換算)と、アクリル系分散剤2.25質量%と、残部のトルエン組成で分散した以外は実施例1と同様の操作を行って、比較例3に係るSiO・Al被覆ZnO微粒子i、分散液Iおよび紫外線遮蔽体Iを得た。
当該SiO・Al被覆ZnO微粒子iの比表面積は60.7m/gで、平均粒子径は17.0nmであった。
[Comparative Example 3]
Silica-alumina-treated zinc oxide (NANOFINE 50A, BET specific surface area 50 m 2 / g, manufactured by Sakai Chemical Co., Ltd.) 7.5% by mass (ZnO conversion), acrylic dispersant 2.25% by mass, and remaining toluene composition Except that, the same operation as in Example 1 was performed to obtain SiO 2 · Al 2 O 3 -coated ZnO fine particles i, dispersion I, and ultraviolet shield I according to Comparative Example 3.
The specific surface area of the SiO 2 · Al 2 O 3 -coated ZnO fine particles i was 60.7 m 2 / g, and the average particle size was 17.0 nm.

実施例1と同様の操作により得られた紫外線遮蔽体Iの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体HのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該化合物添加ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
The visible light transmittance of the ultraviolet shield I obtained by the same operation as in Example 1, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value were measured. Furthermore, the haze value after 20 hours of super UV irradiation of the ultraviolet shielding body H was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the compound-doped ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the properties of the ultraviolet shielding material.

[実施例7]
炭酸水素アンモニウム(特級)86.9gを含む水溶液1100gを準備し、ここへ硝酸亜鉛6水和物(特級)148.4gを含む水溶液946.1gを、25℃下で撹拌しながら6分間かけて滴下して沈殿物を生成した。ここへ水ガラス1号(SiO濃度36.5質量%)5.14gを水100mlにて希釈した水溶液を約40分間かけて滴下し、滴下後2分間攪拌を継続した。この後、水100mlに硝酸アルミニウム9水和物を溶解した水溶液を約40分間かけて滴下した。このとき、液内のpHが7.5〜8.0となるように7%アンモニア水を適宜滴下した。当該滴下終了後さらに10分間攪拌を継続して、沈殿物の熟成を行った。このときの最終pHは、7.5であった。
[Example 7]
1100 g of an aqueous solution containing 86.9 g of ammonium hydrogen carbonate (special grade) was prepared, and 946.1 g of an aqueous solution containing 148.4 g of zinc nitrate hexahydrate (special grade) was stirred at 25 ° C. over 6 minutes. A precipitate was formed by dropwise addition. Here water glass No. 1 and (SiO 2 concentration 36.5 wt%) 5.14 g was added dropwise over about 40 minutes an aqueous solution prepared by diluting with water 100 ml, and stirring was continued for 2 minutes after dropwise addition. Thereafter, an aqueous solution in which aluminum nitrate nonahydrate was dissolved in 100 ml of water was dropped over about 40 minutes. At this time, 7% aqueous ammonia was appropriately added dropwise so that the pH in the liquid was 7.5 to 8.0. After completion of the dropping, stirring was further continued for 10 minutes to age the precipitate. The final pH at this time was 7.5.

次に、洗浄後液の上澄み液の導電率が1mS/cm以下になるまでデカンテーションにて、沈殿物の洗浄を繰り返し行った。その後、洗浄された沈殿物をAP−2に浸漬して湿潤処理し、105℃で乾燥し乾燥粉を得た。   Next, the precipitate was repeatedly washed by decantation until the electrical conductivity of the supernatant liquid after washing was 1 mS / cm or less. Thereafter, the washed precipitate was dipped in AP-2 and wet-treated, and dried at 105 ° C. to obtain a dry powder.

当該乾燥粉の構造をXRDにて測定した結果、ZnCOとZnCO(OH)OとZn(OH)(COとの混合相であった。 As a result of measuring the structure of the dry powder by XRD, it was a mixed phase of ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O and Zn 5 (OH) 6 (CO 3 ) 2 .

当該乾燥粉を用いた以外は、実施例3と同様の操作を行って、実施例7に係る15%SiO+5%Al処理ZnO微粒子j、分散液Jおよび紫外線遮蔽体Jを得た。 Except for using the dry powder, the same operation as in Example 3 was performed to obtain 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles j, dispersion J, and ultraviolet shield J according to Example 7. It was.

上述した加熱処理によって得られた15%SiO+5%Al処理ZnO微粒子jについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。これにより、実施例7に係る15%SiO+5%Al処理ZnO微粒子jは、Si、Al元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
当該15%SiO+5%Al処理ZnO微粒子jの比表面積は90.6m/gで、平均粒子径は11.4nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles j obtained by the heat treatment described above, it was found to be a single phase of ZnO. Thus, it was confirmed that the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles j according to Example 7 were zinc oxide fine particles in which a zinc element was substituted and dissolved by Si and Al elements.
The specific surface area of the 15% SiO 2 + 5% Al 2 O 3 treated ZnO fine particles j was 90.6 m 2 / g, and the average particle size was 11.4 nm.

得られた紫外線遮蔽体Jの可視光透過率、波長400nmの可視域の透過率、波長365nmの紫外域の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体HのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該化合物添加ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
The ultraviolet light shielding material J thus obtained was measured for visible light transmittance, visible wavelength transmittance of 400 nm, ultraviolet wavelength transmittance of 365 nm, and haze value. Furthermore, the haze value after 20 hours of super UV irradiation of the ultraviolet shielding body H was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the compound-doped ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the properties of the ultraviolet shielding material.

[実施例8、比較例4〜比較例6]
焼成温度を350℃とした以外は、実施例1と同様の操作を行って実施例8に係る20%SiO処理ZnO微粒子k、分散液Kおよび紫外線遮蔽体Kを得た。
また、焼成温度を300℃とした以外は、実施例1と同様の操作を行って比較例4に係る20%SiO処理ZnO微粒子l、分散液Lおよび紫外線遮蔽体Lを得た。
そして、焼成温度を650℃とした以外は、実施例1と同様の操作を行って比較例5に係る20%SiO処理ZnO微粒子m、分散液Mおよび紫外線遮蔽体Mを得た。
さらに、焼成温度を700℃とした以外は、実施例1と同様の操作を行って比較例6に係る20%SiO処理ZnO微粒子n、分散液Nおよび紫外線遮蔽体Nを得た。
[Example 8, Comparative Examples 4 to 6]
Except that the firing temperature was 350 ° C., the same operation as in Example 1 was performed to obtain 20% SiO 2 -treated ZnO fine particles k, dispersion K, and ultraviolet shield K according to Example 8.
Further, the same operation as in Example 1 was performed except that the firing temperature was set to 300 ° C., so that 20% SiO 2 treated ZnO fine particles 1, dispersion L and ultraviolet shielding body L according to Comparative Example 4 were obtained.
Then, the same operation as in Example 1 was performed except that the firing temperature was set to 650 ° C., to obtain 20% SiO 2 -treated ZnO fine particles m, dispersion M, and ultraviolet shield M according to Comparative Example 5.
Further, the same operation as in Example 1 was performed except that the firing temperature was set to 700 ° C., so that 20% SiO 2 -treated ZnO fine particles n, dispersion N and ultraviolet shielding body N according to Comparative Example 6 were obtained.

得られた実施例8に係る20%SiO処理ZnO微粒子kについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、実施例8に係る20%SiO処理ZnO微粒子kは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
The obtained 20% SiO 2 treated ZnO fine particles k according to Example 8 were subjected to X-ray diffraction measurement, and as a result, it was found to be a single phase of ZnO.
Thus, it was confirmed that the 20% SiO 2 -treated ZnO fine particles k according to Example 8 were zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.

また、得られた比較例4に係る20%SiO処理ZnO微粒子lについて、X線回折測定を行った結果、ZnO以外にSiO相と思われるブロードなピークが見られた。
これにより、比較例4に係る20%SiO処理ZnO微粒子kは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子ではないことが確認された。
Further, as a result of X-ray diffraction measurement of the obtained 20% SiO 2 -treated ZnO fine particles 1 according to Comparative Example 4, a broad peak thought to be a SiO 2 phase other than ZnO was observed.
Thus, it was confirmed that the 20% SiO 2 -treated ZnO fine particles k according to Comparative Example 4 were not zinc oxide fine particles in which the zinc element was substituted and dissolved by the Si element.

そして、得られた比較例5に係る20%SiO処理ZnO微粒子m、および、比較例6に係る20%SiO処理ZnO微粒子nについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、比較例5に係る20%SiO処理ZnO微粒子m、および、比較例6に係る20%SiO処理ZnO微粒子nは、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
Then, 20% SiO 2 treated ZnO particles m of Comparative Example 5 obtained, and, for 20% SiO 2 treated ZnO particle n according to Comparative Example 6, results of X-ray diffraction measurement, ZnO single phase of It turned out to be.
Thus, 20% SiO 2 treated ZnO particle m according to Comparative Example 5, and, 20% SiO 2 treated ZnO particle n in accordance with Comparative Example 6, a zinc oxide fine particle zinc element is substituted solid solution with Si element It was confirmed that

実施例8に係る20%SiO処理ZnO微粒子kの比表面積は100.4m/gで、平均粒子径は10.3nmであった。
比較例4に係る20%SiO処理ZnO微粒子lの比表面積は97.5m/gで、平均粒子径は10.6nmであった。
比較例5に係る20%SiO処理ZnO微粒子mの比表面積は50.4m/gで、平均粒子径は20.5nmであった。
比較例6に係る20%SiO処理ZnO微粒子nの比表面積は34.1m/gで、平均粒子径は30.3nmであった。
The specific surface area of the 20% SiO 2 -treated ZnO fine particles k according to Example 8 was 100.4 m 2 / g, and the average particle size was 10.3 nm.
The specific surface area of the 20% SiO 2 -treated ZnO fine particles 1 according to Comparative Example 4 was 97.5 m 2 / g, and the average particle size was 10.6 nm.
The specific surface area of the 20% SiO 2 -treated ZnO fine particles m according to Comparative Example 5 was 50.4 m 2 / g, and the average particle size was 20.5 nm.
The specific surface area of 20% SiO 2 -treated ZnO fine particles n according to Comparative Example 6 was 34.1 m 2 / g, and the average particle size was 30.3 nm.

実施例1と同様の操作により、得られた実施例8、比較例4〜比較例6に係る紫外線遮蔽体K〜Nの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体K〜NのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該化合物添加ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the visible light transmittance of the ultraviolet shielding bodies K to N obtained in Example 8 and Comparative Examples 4 to 6, the light transmittance in the visible region of wavelength 400 nm, the wavelength 365 nm. The light transmittance and haze value in the ultraviolet region were measured. Furthermore, the haze value after 20 hours of super UV irradiation of the ultraviolet shielding bodies K to N was measured, and Δ haze before and after UV irradiation was obtained.
Table 1 shows an outline of the manufacturing conditions of the compound-doped ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the properties of the ultraviolet shielding material.

[実施例9]
40℃の水100mlに塩基性炭酸亜鉛(中央電気工業製)13.72gを添加して攪拌し、ここへ水100mlに硫酸ジルコニウム4水和物7.21gを溶解した水溶液と、7%アンモニア水とを約40分間かけて同時並行滴下した。このとき、液内のpHが7.5〜8.0となるように、適宜、7%アンモニア水を滴下した以外は、実施例1と同様の操作を行って実施例9に係る20%ZrO処理ZnO微粒子o、分散液Oおよび紫外線遮蔽体Oを得た。
[Example 9]
13.72 g of basic zinc carbonate (manufactured by Chuo Denki Kogyo Co., Ltd.) was added to 100 ml of water at 40 ° C. and stirred, and an aqueous solution in which 7.21 g of zirconium sulfate tetrahydrate was dissolved in 100 ml of water, and 7% aqueous ammonia Were simultaneously dripped over about 40 minutes. At this time, 20% ZrO according to Example 9 was obtained by performing the same operation as in Example 1 except that 7% ammonia water was appropriately added dropwise so that the pH in the liquid was 7.5 to 8.0. Two- processed ZnO fine particles o, a dispersion O and an ultraviolet shield O were obtained.

上述した加熱処理によって得られた20%ZrO処理ZnO微粒子oについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、実施例9に係る20%ZrO処理ZnO微粒子oは、Zr元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。
実施例9に係る20%ZrO処理ZnO微粒子oの比表面積は68.2m/gで、平均粒子径は15.2nmであった。
As a result of X-ray diffraction measurement of the 20% ZrO 2 -treated ZnO fine particles o obtained by the heat treatment described above, it was found to be a single phase of ZnO.
Thus, it was confirmed that the 20% ZrO 2 -treated ZnO fine particles o according to Example 9 were zinc oxide fine particles in which a zinc element was substituted and dissolved by a Zr element.
The specific surface area of the 20% ZrO 2 -treated ZnO fine particles o according to Example 9 was 68.2 m 2 / g, and the average particle size was 15.2 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Oの可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体OのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該化合物添加ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the obtained ultraviolet shielding body O was measured for the visible light transmittance, the light transmittance in the visible region of wavelength 400 nm, the light transmittance in the ultraviolet region of wavelength 365 nm, and the haze value. Furthermore, the haze value after 20 hours of super UV irradiation of the ultraviolet shield O was measured, and Δ haze before and after UV irradiation was obtained.
Table 1 shows an outline of the manufacturing conditions of the compound-doped ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the properties of the ultraviolet shielding material.

[実施例10]
水100mlに塩基性炭酸亜鉛(中央電気工業製)13.72gを添加して攪拌し、ここへ水ガラス1号(SiO濃度36.5質量%)5.14gを水100mlにて希釈した水溶液を約40分間かけて滴下した。滴下後2分間攪拌を継続した後、水100mlに四塩化チタン溶液1.49gを溶解した水溶液を約40分間かけて滴下した。このとき、液内のpHが7.5〜8.0となるように、適宜、7質量%アンモニア水を滴下した。当該滴下終了後さらに10分間攪拌を継続して、沈殿物の熟成を行った。このときの最終pHは、7.7であった。
[Example 10]
13.72 g of basic zinc carbonate (manufactured by Chuo Denki Kogyo Co., Ltd.) was added to 100 ml of water and stirred, and an aqueous solution obtained by diluting 5.14 g of water glass No. 1 (SiO 2 concentration 36.5% by mass) with 100 ml of water. Was dropped over about 40 minutes. After the dropping, stirring was continued for 2 minutes, and then an aqueous solution in which 1.49 g of a titanium tetrachloride solution was dissolved in 100 ml of water was dropped over about 40 minutes. At this time, 7% by mass of ammonia water was appropriately added dropwise so that the pH in the liquid was 7.5 to 8.0. After completion of the dropping, stirring was further continued for 10 minutes to age the precipitate. The final pH at this time was 7.7.

次に、洗浄後液の導電率が1mS/cm以下になるまでデカンテーションした以外は、実施例3と同様の操作を行って実施例10に係る15%SiO+5%TiO処理ZnO微粒子p、分散液Pおよび紫外線遮蔽体Pを得た。 Next, a 15% SiO 2 + 5% TiO 2 -treated ZnO fine particle p according to Example 10 was obtained by performing the same operation as in Example 3 except that decantation was performed until the electric conductivity of the liquid after washing became 1 mS / cm or less. Dispersion P and ultraviolet shield P were obtained.

上述した加熱処理によって得られた15%SiO+5%TiO処理ZnO微粒子pについて、X線回折測定を行った結果、ZnOの単一相であることが判明した。
これにより、実施例10に係る15%SiO+5%TiO処理ZnO微粒子pは、Si,Ti元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっていることが確認された。当該実施例10に係る15%SiO+5%TiO処理ZnO微粒子pの比表面積は86.2m/gで、平均粒子径は12.0nmであった。
As a result of X-ray diffraction measurement of the 15% SiO 2 + 5% TiO 2 -treated ZnO fine particles p obtained by the heat treatment described above, it was found to be a single phase of ZnO.
Thus, it was confirmed that the 15% SiO 2 + 5% TiO 2 -treated ZnO fine particles p according to Example 10 were zinc oxide fine particles in which a zinc element was substituted and dissolved by Si and Ti elements. The specific surface area of the 15% SiO 2 + 5% TiO 2 -treated ZnO fine particles p according to Example 10 was 86.2 m 2 / g, and the average particle size was 12.0 nm.

実施例1と同様の操作により、得られた紫外線遮蔽体Pの可視光透過率、波長400nmの可視域の透過率、波長365nmの紫外域の透過率、ヘイズ値について測定した。さらに、当該紫外線遮蔽体CのスーパーUV20時間照射後のヘイズ値を測定し、UV照射前後のΔヘイズを求めた。
当該化合物添加ZnO微粒子、紫外線遮蔽材料微粒子分散体、紫外線遮蔽体の製造条件の概略を表1に、紫外線遮蔽体の特性測定結果を表2に示す。
By the same operation as in Example 1, the visible light transmittance, the visible transmittance at a wavelength of 400 nm, the transmittance in the ultraviolet region at a wavelength of 365 nm, and the haze value of the obtained ultraviolet shield P were measured. Furthermore, the haze value after 20 hours of super UV irradiation of the ultraviolet shield C was measured, and Δ haze before and after UV irradiation was determined.
Table 1 shows an outline of the manufacturing conditions of the compound-doped ZnO fine particles, the ultraviolet shielding material fine particle dispersion, and the ultraviolet shielding material, and Table 2 shows the measurement results of the properties of the ultraviolet shielding material.

[評価]
表2において、可視光透過率、波長400nmの可視域における光の透過率、波長365nmの紫外域における光の透過率、ヘイズ値、さらに、当該紫外線遮蔽体のスーパーUV20時間照射前後のΔヘイズについて、微粒子a〜fおよびj、k、oおよびpを用いた実施例1〜実施例10に係る分散液A〜F、J、K、OおよびP、当該分散液から調製した紫外線遮蔽体A〜F、J、K、OおよびPと、微粒子g〜i、l〜nを用いた比較例1〜比較例6に係る分散液G〜IおよびL〜N、当該分散液から調製した紫外線遮蔽体G〜IおよびL〜Nとを比較した。
[Evaluation]
In Table 2, the visible light transmittance, the light transmittance in the visible region with a wavelength of 400 nm, the light transmittance in the ultraviolet region with a wavelength of 365 nm, the haze value, and the Δhaze before and after irradiation of the ultraviolet shield for Super UV 20 hours , Dispersions A to F, J, K, O, and P according to Examples 1 to 10 using fine particles a to f and j, k, o, and p, and ultraviolet shields A to F prepared from the dispersions Dispersions G to I and L to N according to Comparative Examples 1 to 6 using F, J, K, O, and P and fine particles g to i and l to n, an ultraviolet shield prepared from the dispersion G to I and L to N were compared.

その結果、実施例1〜実施例10に係る紫外線遮蔽体A〜F、J、K、OおよびPは、波長400nmの可視域の透明性が75%以上と高く、波長365nmの紫外域の透過率が8%以下で、Δヘイズが1.0%以下であり、透明性および紫外線遮蔽に優れ、かつスーパーUV20時間照射前後のΔヘイズがいずれも1%以下であり、光触媒活性が十分抑制されていることが明らかである。   As a result, the ultraviolet shields A to F, J, K, O, and P according to Examples 1 to 10 have a high transparency of 75% or more in the visible region at a wavelength of 400 nm, and transmit the ultraviolet region at a wavelength of 365 nm. The rate is 8% or less, Δhaze is 1.0% or less, transparency and UV shielding are excellent, Δhaze before and after super UV 20 hours irradiation is 1% or less, and photocatalytic activity is sufficiently suppressed. It is clear that

一方、比較例1と2に係る紫外線遮蔽体GとHは、スーパーUV20時間照射前後のΔヘイズがいずれも2%を超え、比較例3に係る紫外線遮蔽体Iは、波長365nmの紫外域における光の透過率が10%と高く、またスーパーUV20時間照射前後のΔヘイズが1%を超えるものであった。   On the other hand, in the ultraviolet shielding bodies G and H according to Comparative Examples 1 and 2, Δhaze before and after the super UV 20-hour irradiation both exceeds 2%, and the ultraviolet shielding body I according to Comparative Example 3 is in the ultraviolet region with a wavelength of 365 nm. The light transmittance was as high as 10%, and the Δhaze before and after irradiation with Super UV for 20 hours exceeded 1%.

また、比較例4に係る紫外線遮蔽体Lは、波長365nmの紫外域における光の透過率が、比較例3に近く9%を越えた。これは、比較例4においては、Si元素で亜鉛元素が置換固溶された酸化亜鉛微粒子となっておらず、ZnO以外にSiO相と思われる他相が生成したために、光学的特性が従来の被覆品に近いものになったものと推定される。
また、比較例5と6に係る紫外線遮蔽体MとNは、波長400nmの可視域における光の透過率が70%未満で、かつ紫外線遮蔽体Nにおける初期のヘイズ値が1%を越えるものであった。
Moreover, the ultraviolet light shielding body L according to Comparative Example 4 has a light transmittance in the ultraviolet region with a wavelength of 365 nm close to that of Comparative Example 3 and exceeds 9%. This is because, in Comparative Example 4, zinc oxide fine particles in which zinc element is substituted and dissolved in Si element are not formed, and other phases that are considered to be SiO 2 phases are formed in addition to ZnO, so that the optical characteristics have been conventionally improved. It is presumed that it became close to the coated product.
The ultraviolet shields M and N according to Comparative Examples 5 and 6 have a light transmittance of less than 70% in the visible region with a wavelength of 400 nm, and the initial haze value of the ultraviolet shield N exceeds 1%. there were.

Figure 2017043505
Figure 2017043505
Figure 2017043505
Figure 2017043505

Claims (5)

Zn(OH)(CO、ZnCO、ZnCO(OH)O、Zn(OH)から選択される1種以上の酸化亜鉛前駆体を含む水溶液へ、Si、Al、ZrおよびTiから選択される1種以上の添加元素を含む1種以上の化合物を溶解した水溶液を滴下して、酸化物換算で15質量%以上35質量%以下の前記添加元素の化合物を含む前記酸化亜鉛前駆体の沈殿を析出させる工程と、
前記析出した沈殿を洗浄し、洗浄後液の導電率が1mS/cm以下となるまで洗浄を続けるデカンテーション工程と、
前記洗浄後の沈殿物をアルコール溶液で湿潤処理して湿潤処理物とし、その後、当該湿潤処理物を乾燥してSi、Al、ZrおよびTiから選択された1種以上の化合物を含む酸化亜鉛前駆体処理粉を得る工程と、
前記酸化亜鉛前駆体処理粉を、大気、不活性ガス、不活性ガスと還元性ガスとの混合ガスから選択されるいずれかの雰囲気下において、300℃以上650℃以下の温度で加熱処理を行い、酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子であって、平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子を得る工程とを、具備することを特徴とする紫外線遮蔽材料微粒子の製造方法。
To an aqueous solution containing one or more zinc oxide precursors selected from Zn 5 (OH) 6 (CO 3 ) 2 , ZnCO 3 , Zn 4 CO 3 (OH) 6 H 2 O, Zn (OH) 2 , Si An aqueous solution in which one or more compounds containing one or more additive elements selected from Al, Zr, and Ti are dissolved is dropped, and the compound of the additive element is 15% by mass or more and 35% by mass or less in terms of oxide Depositing a precipitate of the zinc oxide precursor comprising:
A decantation step of washing the deposited precipitate and continuing washing until the conductivity of the solution after washing becomes 1 mS / cm or less;
The washed precipitate is wet-treated with an alcohol solution to obtain a wet-processed product, and then the wet-processed product is dried to contain a zinc oxide precursor containing one or more compounds selected from Si, Al, Zr and Ti. Obtaining body treatment powder;
The zinc oxide precursor-treated powder is heat-treated at a temperature of 300 ° C. or higher and 650 ° C. or lower in any atmosphere selected from the atmosphere, an inert gas, and a mixed gas of an inert gas and a reducing gas. In addition, zinc oxide fine particles in which zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti, and the average particle diameter is 8.3 nm or more and 15.4 nm or less And a step of obtaining ultraviolet shielding material fine particles containing zinc oxide fine particles having a specific surface area of 67 m 2 / g or more and 124 m 2 / g or less.
酸化亜鉛結晶中の亜鉛元素が、Si、Al、ZrおよびTiから選択される1種以上の元素で置換固溶した酸化亜鉛微粒子であって、
平均粒子径が8.3nm以上15.4nm以下であり、比表面積が67m/g以上124m/g以下である前記酸化亜鉛微粒子を含む紫外線遮蔽材料微粒子が媒体中に分散されていることを特徴とする紫外線遮蔽材料微粒子分散体。
Zinc oxide fine particles in which zinc element in the zinc oxide crystal is substituted and dissolved by one or more elements selected from Si, Al, Zr and Ti,
Ultraviolet shielding material fine particles including the zinc oxide fine particles having an average particle diameter of 8.3 nm to 15.4 nm and a specific surface area of 67 m 2 / g to 124 m 2 / g are dispersed in a medium. Ultraviolet shielding material fine particle dispersion characterized.
前記媒体が、樹脂またはガラスであることを特徴とする請求項2に記載の紫外線遮蔽材料微粒子分散体。   The ultraviolet ray shielding material fine particle dispersion according to claim 2, wherein the medium is resin or glass. 請求項2または3のいずれか1項に記載の紫外線遮蔽材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかの形状に加工されたものであることを特徴とする紫外線遮蔽体。   The ultraviolet shielding material fine particle dispersion according to any one of claims 2 and 3, wherein the ultraviolet shielding material fine particle dispersion is processed into any shape selected from a plate shape, a film shape, and a thin film shape. Shield. 波長400nmの光の透過率が75%以上であり、波長365nmの紫外線の透過率が8%以下であり、かつヘイズ値が1%以下であり、100mW/cmの紫外線を20時間照射前後におけるヘイズ値の差が1%以下であることを特徴とする請求項4に記載の紫外線遮蔽体。 The transmittance of light with a wavelength of 400 nm is 75% or more, the transmittance of ultraviolet light with a wavelength of 365 nm is 8% or less, and the haze value is 1% or less, before and after irradiation with 100 mW / cm 2 of ultraviolet light for 20 hours. The ultraviolet shielding body according to claim 4, wherein a difference in haze value is 1% or less.
JP2015165759A 2015-08-25 2015-08-25 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body Pending JP2017043505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165759A JP2017043505A (en) 2015-08-25 2015-08-25 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165759A JP2017043505A (en) 2015-08-25 2015-08-25 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body

Publications (1)

Publication Number Publication Date
JP2017043505A true JP2017043505A (en) 2017-03-02

Family

ID=58211200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165759A Pending JP2017043505A (en) 2015-08-25 2015-08-25 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body

Country Status (1)

Country Link
JP (1) JP2017043505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183677B1 (en) * 2016-06-02 2017-08-23 エム・テクニック株式会社 Colored UV protection agent
WO2017208616A1 (en) * 2016-06-02 2017-12-07 エム・テクニック株式会社 Colorant / uv protectant
CN108735517A (en) * 2018-05-30 2018-11-02 大连交通大学 A kind of basic zinc carbonate electrode material for super capacitor and preparation method thereof
WO2020218354A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light emitting diode, and nanoparticle aggregate manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161539A (en) * 2005-12-14 2007-06-28 Sumitomo Metal Mining Co Ltd Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP2010146878A (en) * 2008-12-19 2010-07-01 Idemitsu Kosan Co Ltd Conductive zinc oxide particulate and its manufacturing method
JP2010208922A (en) * 2009-03-12 2010-09-24 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161539A (en) * 2005-12-14 2007-06-28 Sumitomo Metal Mining Co Ltd Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP2010146878A (en) * 2008-12-19 2010-07-01 Idemitsu Kosan Co Ltd Conductive zinc oxide particulate and its manufacturing method
JP2010208922A (en) * 2009-03-12 2010-09-24 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183677B1 (en) * 2016-06-02 2017-08-23 エム・テクニック株式会社 Colored UV protection agent
WO2017208616A1 (en) * 2016-06-02 2017-12-07 エム・テクニック株式会社 Colorant / uv protectant
CN108735517A (en) * 2018-05-30 2018-11-02 大连交通大学 A kind of basic zinc carbonate electrode material for super capacitor and preparation method thereof
WO2020218354A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light emitting diode, and nanoparticle aggregate manufacturing method
CN113711378A (en) * 2019-04-25 2021-11-26 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light-emitting diode, and method for producing nanoparticle aggregate

Similar Documents

Publication Publication Date Title
US20180031739A1 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
JP4655105B2 (en) Ultraviolet light shielding transparent resin molding and method for producing the same
JP4702615B2 (en) Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
JP2014019611A (en) Aqueous core-shell tetragonal titanium oxide solid-solution dispersion, method for manufacturing the same, ultraviolet-shielding silicone coating composition, and coated object
EP3339249B1 (en) Method for producing titanium oxide fine particles
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP2017043505A (en) Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
WO2018230472A1 (en) Method for producing hexagonal plate-shaped zinc oxide
JP4382607B2 (en) Titanium oxide particles
JP5517268B2 (en) Particulate metal oxides and their applications
JP5344131B2 (en) Ultraviolet shielding material fine particle manufacturing method, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding material
JP2010042947A (en) Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
KR20220121797A (en) Near-infrared absorbing material particles, near-infrared absorbing material particle dispersion, near-infrared absorbing material particle dispersion
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP5016192B2 (en) Metal oxide particles and uses thereof
JP5633571B2 (en) Method for producing rutile type titanium oxide fine particle dispersion
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
JP5016193B2 (en) Particulate metal oxides and their applications
CN111902364B (en) Titanium oxide particles and method for producing same
JP5304306B2 (en) UV cut glass paint and UV cut glass
TWI832929B (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JP7371638B2 (en) Surface-treated infrared absorbing fine particle dispersion and method for producing the same
Busko et al. Optical and photocatalytic properties of TiO2 films modified with oxides and gold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023