JP2007161539A - Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent - Google Patents

Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent Download PDF

Info

Publication number
JP2007161539A
JP2007161539A JP2005361066A JP2005361066A JP2007161539A JP 2007161539 A JP2007161539 A JP 2007161539A JP 2005361066 A JP2005361066 A JP 2005361066A JP 2005361066 A JP2005361066 A JP 2005361066A JP 2007161539 A JP2007161539 A JP 2007161539A
Authority
JP
Japan
Prior art keywords
ultraviolet shielding
zinc oxide
fine particles
oxide fine
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361066A
Other languages
Japanese (ja)
Other versions
JP4702615B2 (en
Inventor
Takeshi Naganami
武 長南
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005361066A priority Critical patent/JP4702615B2/en
Publication of JP2007161539A publication Critical patent/JP2007161539A/en
Application granted granted Critical
Publication of JP4702615B2 publication Critical patent/JP4702615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing zinc oxide fine particles excellent in dispersibility, ultraviolet shielding characteristics and productivity, and provide a liquid dispersion for forming an ultraviolet shielding agent using the fine particles, and provide the ultraviolet shielding agent. <P>SOLUTION: This zinc oxide fine particles for ultraviolet shielding are obtained by the steps of adding an alkali solution to a solution containing a zinc compound and stirring the mixture to obtain a precipitate, decanting the precipitate repeatedly until the electric conductivity of the washing liquid used for decantation becomes ≤1 mS/cm, drying the precipitate after conducting decantation to obtain a zinc oxide precursor, heat treating the zinc oxide precursor at 300-500°C under an atmosphere of a gas mixture of a reducing gas and an inert gas, where the concentration of the reducing gas is ≤5%. The liquid dispersion for forming the ultraviolet shielding agent is obtained by mixing the zinc oxide fine particle with a dispersant and a solvent. The ultraviolet shielding agent is obtained by dispersing a heat wave-shielding component dispersion obtained by removing a solvent from the dispersion for forming the ultraviolet shielding agent into a resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両、ビル、事務所、一般住宅などの窓、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなど、ガラス、プラスチックスその他の紫外線遮蔽機能を必要とする透明基材に適用される紫外線遮蔽材料に係り、特に、所望とする紫外線遮蔽特性を具備する紫外線遮蔽用酸化亜鉛微粒子の製造方法と、該微粒子を用いた紫外線遮蔽体形成用分散液並びに紫外線遮蔽体に関するものである。   The present invention can be applied to windows, telephone boxes, show windows, lighting lamps, transparent cases, etc., such as windows for vehicles, buildings, offices, ordinary houses, etc., for glass, plastics and other transparent base materials that require UV shielding function. In particular, the present invention relates to a method for producing ultraviolet shielding zinc oxide fine particles having desired ultraviolet shielding properties, a dispersion for forming an ultraviolet shielding material using the fine particles, and an ultraviolet shielding material. .

酸化亜鉛微粒子は可視光を透過し、且つ、紫外線のカット波長領域が、酸化チタン微粒子に比べて長波長側まで広く、かつ、該紫外線カット効果が長期にわたって持続する。このため、酸化亜鉛微粒子は、紫外線を遮蔽する材料の一つとして用いられており、該微粒子を樹脂に含有させてフィルム、繊維および樹脂板等の樹脂成形品として使用したり、該微粒子を有機または無機のバインダーとを混合して、フィルム、繊維、樹脂板、ガラスおよび紙等の基材に塗装する塗料として使用され、紫外線遮蔽効果を持つ透明製品が作られている。   The zinc oxide fine particles transmit visible light, the ultraviolet cut wavelength region is wider to the longer wavelength side than the titanium oxide fine particles, and the ultraviolet cut effect lasts for a long time. For this reason, zinc oxide fine particles are used as one of the materials for shielding ultraviolet rays. The fine particles are contained in a resin and used as resin molded products such as films, fibers and resin plates, or the fine particles are organically used. Alternatively, a transparent product having an ultraviolet shielding effect is produced by mixing with an inorganic binder and coating it on a substrate such as a film, fiber, resin plate, glass and paper.

ここで、該紫外線遮蔽機能を有する酸化亜鉛を製造する方法として、一般的には乾式法と湿式法とが知られている。例えば、特許文献1には、亜鉛塩を含む水溶液をアルカリで中和して亜鉛塩の一部または大部分を一度塩基性塩として沈殿させた後、そのままさらに中和して最終的に1μm以下の酸化亜鉛を生成させる方法が開示されている。   Here, as a method for producing zinc oxide having an ultraviolet shielding function, a dry method and a wet method are generally known. For example, in Patent Document 1, an aqueous solution containing a zinc salt is neutralized with an alkali, and a part or most of the zinc salt is once precipitated as a basic salt, then further neutralized as it is and finally 1 μm or less. A method for producing zinc oxide is disclosed.

また、特許文献2には、亜鉛塩を含む水溶液をアルカリで中和して、該水溶液中で直接酸化亜鉛を生成させる方法が開示されている。   Patent Document 2 discloses a method in which an aqueous solution containing a zinc salt is neutralized with an alkali and zinc oxide is directly produced in the aqueous solution.

また、特許文献3には、亜鉛塩と酢酸アンモニウムの混合溶液に硫化水素通じて得られた沈殿物を、非水溶媒に分散させて、これをオ−トクレ−ブで250〜400℃で加熱し、得られた乾燥粉を500〜800℃で加熱処理する方法が開示されている。   Patent Document 3 discloses that a precipitate obtained by passing hydrogen sulfide through a mixed solution of zinc salt and ammonium acetate is dispersed in a non-aqueous solvent and heated at 250 to 400 ° C. with an autoclave. And the method of heat-processing the obtained dried powder at 500-800 degreeC is disclosed.

さらに、特許文献4には、亜鉛塩水溶液とアルカリ水溶液とを、それぞれ別々に、かつ同時に、連続的にまたは半連続的に反応槽に装入して高速撹拌し、中和生成物を濾過、洗浄し、次いで乾燥、焼成すことからなる超微細酸化亜鉛の製造方法が提示されている。
特公昭56−18538公報 特開昭53−116296公報 特開平2−311314号公報 特開平10−120418号公報
Furthermore, Patent Document 4 discloses that a zinc salt aqueous solution and an alkaline aqueous solution are separately and simultaneously charged into a reaction vessel continuously or semi-continuously and stirred at high speed, and the neutralized product is filtered. A method for producing ultrafine zinc oxide comprising washing, then drying and firing is proposed.
Japanese Patent Publication No. 56-18538 JP-A-53-116296 Japanese Patent Laid-Open No. 2-311314 JP-A-10-120418

しかしながら、紫外線遮蔽性能や製造し易さといった観点より、本発明者らが従来技術を検討したところ、以下の様な課題があることに想到した。   However, from the viewpoints of ultraviolet shielding performance and ease of manufacture, the present inventors have examined the prior art and have found that there are the following problems.

まず、特許文献1、2に開示されている方法で製造した酸化亜鉛の粉末を用いて形成した膜の紫外線遮蔽特性は、満足すべきものではなかった。また、中和反応時間が長く生産効率が悪い欠点があった。   First, the ultraviolet shielding property of the film formed using the zinc oxide powder produced by the methods disclosed in Patent Documents 1 and 2 was not satisfactory. Moreover, there existed a fault that the neutralization reaction time was long and production efficiency was bad.

また、特許文献3に開示されている方法では、オ−トクレ−ブといった特殊な耐圧容器で加熱した後、乾燥した粉をさらに加熱する必要があり、生産性が低くかった。さらに、最終焼成温度を高くせざるを得ないため、酸化亜鉛粒子が粗大化してしまい分散性が悪くなるという課題が存在した。   Further, in the method disclosed in Patent Document 3, it is necessary to further heat the dried powder after heating in a special pressure vessel such as an autoclave, and the productivity is low. Furthermore, since the final firing temperature has to be increased, there is a problem that the zinc oxide particles are coarsened and the dispersibility is deteriorated.

さらに、特許文献4に提示されている超微細酸化亜鉛の紫外線遮蔽特性は、満足すべきものではなかった。   Furthermore, the ultra-fine zinc oxide ultraviolet shielding properties presented in Patent Document 4 were not satisfactory.

本発明者は、上述のような状況においてなされたもので、その課題とするところは、分散性、紫外線遮蔽特性および生産性に優れる紫外線遮蔽用酸化亜鉛微粒子の製造方法とこの微粒子を用いた紫外線遮蔽体形成用分散液並びに紫外線遮蔽体を提供することにある。   The inventor of the present invention has been made in the situation as described above, and the problem is that a method for producing zinc oxide fine particles for ultraviolet shielding excellent in dispersibility, ultraviolet shielding properties and productivity, and ultraviolet rays using the fine particles are used. The object is to provide a dispersion for forming a shielding body and an ultraviolet shielding body.

本発明者らは、上述の課題を解決すべく従来技術の問題点を研究した。その結果、特許文献1、2に開示されている方法では、中和反応温度が高いほど低pHで直接酸化亜鉛が生成されやすいのだが、最終温度が低いために酸化亜鉛の結晶性が完全でなく、この酸化亜鉛粉末を用いて形成した膜の紫外線遮蔽特性が不十分なものに留まってしまうことに想到した。また、当該方法は、中和反応時間が長いため生産効率が低いことにも想到した。   The present inventors have studied the problems of the prior art to solve the above-mentioned problems. As a result, in the methods disclosed in Patent Documents 1 and 2, the higher the neutralization reaction temperature, the easier the direct production of zinc oxide at a low pH. However, since the final temperature is low, the crystallinity of zinc oxide is complete. However, it was conceived that the film formed using this zinc oxide powder remained insufficient in ultraviolet shielding properties. In addition, this method has also been conceived that the production efficiency is low due to the long neutralization reaction time.

一方、特許文献3に開示されている方法では、最終焼成温度が高いために粒子が粗大化してしまう為に分散性に問題が起こることに想到した。   On the other hand, in the method disclosed in Patent Document 3, it was conceived that a problem arises in dispersibility because the particles are coarsened because the final firing temperature is high.

さらに、特許文献4に提示されている超微細酸化亜鉛は、当該酸化亜鉛製造中の微量不純物が除去され切れずに残留し、紫外線遮蔽性能を低下させていることに想到した。加えて、当該超微細酸化亜鉛は、結晶性で酸素欠陥のない超微細酸化亜鉛であるため紫外線遮蔽性能に劣ることにも想到した。   Furthermore, the ultrafine zinc oxide presented in Patent Document 4 has been conceived in that the trace impurities during the production of zinc oxide remain without being removed, and the ultraviolet shielding performance is lowered. In addition, the ultrafine zinc oxide was also considered to be inferior in ultraviolet shielding performance because it is crystalline and has no oxygen defects.

本発明者等は、上述の解明結果を基に鋭意研究を継続した結果、上記課題を解決し得る紫外線遮蔽機能を有する酸化亜鉛微粒子の製造方法に想到し本発明を完成したものである。   As a result of continual research based on the above-described elucidation results, the present inventors have conceived a method for producing zinc oxide fine particles having an ultraviolet shielding function capable of solving the above-mentioned problems and completed the present invention.

すなわち、上記課題を解決する第1の手段は、
亜鉛化合物を含む溶液へアルカリ溶液を添加すると共に、攪拌して沈殿物を得る工程と、
上記沈澱物をデカンテ−ションし、該デカンテ−ションに使用された後における洗浄液の導電率が1mS/cm以下となるまで、該デカンテ−ションを行った後、前記沈澱物を乾燥して酸化亜鉛の前駆体を得る工程と、
上記酸化亜鉛の前駆体を、還元性ガスと不活性ガスとの混合ガスであって、該還元性ガスの濃度が5%以下である混合ガス雰囲気下において、300℃以上500℃以下で加熱処理する工程と、を具備することを特徴とする紫外線遮蔽用酸化亜鉛微粒子の製造方法である。
That is, the first means for solving the above problems is
Adding an alkaline solution to a solution containing a zinc compound and stirring to obtain a precipitate;
The precipitate is decanted, and after the decantation is performed until the conductivity of the washing liquid after being used for the decantation is 1 mS / cm or less, the precipitate is dried to obtain zinc oxide. Obtaining a precursor of
The zinc oxide precursor is a heat treatment at 300 ° C. or more and 500 ° C. or less in a mixed gas atmosphere of a reducing gas and an inert gas in which the concentration of the reducing gas is 5% or less. And a process for producing zinc oxide fine particles for shielding ultraviolet rays.

第2の手段は、
上記亜鉛化合物を含む溶液が、Si化合物、Ti化合物から選ばれる1種以上を含有することを特徴とする第1の手段記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法である。
The second means is
The method for producing ultraviolet shielding zinc oxide fine particles according to the first means, wherein the solution containing the zinc compound contains one or more selected from Si compounds and Ti compounds.

第3の手段は、
上記亜鉛化合物が、硝酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛硫酸亜鉛から選ばれた1種以上であることを特徴とする第1の手段記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法である。
The third means is
The method for producing zinc oxide fine particles for ultraviolet shielding according to the first means, wherein the zinc compound is at least one selected from zinc nitrate, zinc chloride, zinc carbonate and zinc acetate zinc sulfate.

第4の手段は、
上記亜鉛化合物を含む溶液へアルカリ溶液を添加している際の、該亜鉛化合物の溶液温度が、50℃以下であることを特徴とする第1の手段記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法である。
The fourth means is
The method for producing zinc oxide fine particles for ultraviolet shielding according to the first means, wherein the solution temperature of the zinc compound when the alkaline solution is added to the solution containing the zinc compound is 50 ° C. or less It is.

第5の手段は、
上記アルカリ溶液の添加時間を、30分間以下とすることを特徴とする第1の手段記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法である。
The fifth means is
The method for producing ultraviolet shielding zinc oxide fine particles according to the first means, wherein the addition time of the alkaline solution is 30 minutes or less.

第6の手段は、
溶媒と該溶媒中に分散された紫外線遮蔽用微粒子とを含み、紫外線遮蔽体の形成に適用される紫外線遮蔽体形成用分散液であって、
上記紫外線遮蔽用微粒子が、第1〜第5のいずれか1の手段に記載の製造方法によって得られた紫外線遮蔽用酸化亜鉛微粒子であり、かつ、該溶媒中に分散された該紫外線遮蔽用酸化亜鉛微粒子の分散粒子径が、100nm以下であることを特徴とする紫外線遮蔽体形成用分散液である。
The sixth means is
A dispersion for forming an ultraviolet shielding material, which comprises a solvent and fine particles for ultraviolet shielding dispersed in the solvent, and is applied to the formation of an ultraviolet shielding material,
The ultraviolet shielding fine particles are ultraviolet shielding zinc oxide fine particles obtained by the production method according to any one of the first to fifth means, and the ultraviolet shielding fine particles dispersed in the solvent. A dispersion liquid for forming an ultraviolet shielding material, wherein a dispersed particle diameter of zinc fine particles is 100 nm or less.

第7の手段は、
上記紫外線遮蔽用微粒子として、L*a*b*表色系における粉体色において、L*が70以上、95以下、a*が−6以上、−0.1以下、b*が0.6以上、6以下の範囲内にある、請求項1〜5のいずれか1項に記載の製造方法によって得られた酸化亜鉛微粒子を用いることを特徴とする請求項6記載の紫外線遮蔽体形成用分散液である。
The seventh means is
As the ultraviolet shielding fine particles, in the powder color in the L * a * b * color system, L * is 70 or more and 95 or less, a * is −6 or more, −0.1 or less, and b * is 0.6. The dispersion for forming an ultraviolet shielding material according to claim 6, wherein the zinc oxide fine particles obtained by the production method according to any one of claims 1 to 5 in the range of 6 or less are used. It is a liquid.

第8の手段は、
無機バインダーまたは樹脂バインダーを含むことを特徴とする第6または第7の手段記載の紫外線遮蔽体形成用分散液である。
The eighth means is
The dispersion for forming an ultraviolet shielding material according to the sixth or seventh means, which contains an inorganic binder or a resin binder.

第9の手段は、
第6〜第8のいずれか1の手段に記載の紫外線遮蔽体形成用分散液を用いて形成されたことを特徴とする紫外線遮蔽体である。
The ninth means is
An ultraviolet shielding material, characterized by being formed using the ultraviolet shielding material-forming dispersion described in any one of the sixth to eighth means.

第10の手段は、
第6〜第8のいずれか1の手段に記載の紫外線遮蔽体形成用分散液から、溶剤成分を除去して得られた乾燥粉体を、熱可塑性樹脂へ練り込んでなることを特徴とする紫外線遮蔽体である。
The tenth means is
The dry powder obtained by removing the solvent component from the dispersion liquid for forming an ultraviolet shielding material according to any one of the sixth to eighth means is kneaded into a thermoplastic resin. It is an ultraviolet shield.

以上説明した、第1から第5のいずれかの手段に係る紫外線遮蔽用酸化亜鉛微粒子の製造方法によれば、分散性と紫外線遮蔽性に優れた紫外線遮蔽用酸化亜鉛微粒子を、高い生産性をもって得ることができる。また、第6から第8のいずれかの手段に係る紫外線遮蔽体形成用分散液によれば、紫外線遮蔽特性に優れる紫外線遮蔽体を形成することができる。さらに、第9または第10の手段に係る紫外線遮蔽体は、透明性と紫外線遮蔽特性に優れるので、可視光線は透過させ、紫外線は遮蔽したい用途に適用することができる。   According to the method for producing ultraviolet shielding zinc oxide fine particles according to any one of the first to fifth means described above, the ultraviolet shielding zinc oxide fine particles having excellent dispersibility and ultraviolet shielding properties are obtained with high productivity. Obtainable. Moreover, according to the dispersion liquid for forming an ultraviolet shielding body according to any one of the sixth to eighth means, an ultraviolet shielding body having excellent ultraviolet shielding characteristics can be formed. Furthermore, since the ultraviolet shielding body according to the ninth or tenth means is excellent in transparency and ultraviolet shielding properties, it can be applied to uses where it is desired to transmit visible light and shield ultraviolet light.

以下、本発明の実施の形態について、具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

本発明に係る紫外線遮蔽用酸化亜鉛微粒子の製造方法は、亜鉛化合物を含有する原料混合溶液に、アルカリ溶液を滴下すると共に、継続的に攪拌しながら熟成させて沈殿物を得る工程と、上記沈澱物をデカンテ−ションにより洗浄した後、乾燥して酸化亜鉛の前駆体を得る工程と、該前駆体を還元性ガスと不活性ガスとの混合ガス雰囲気下において300℃以上500℃以下でマイルドな還元処理を行う工程とを具備する。そこで、以下、本発明に係る紫外線遮蔽用酸化亜鉛微粒子の製造について各工程毎に説明し、併せて、紫外線遮蔽体形成用分散液および紫外線遮蔽体について説明する。   According to the present invention, there is provided a method for producing zinc oxide fine particles for shielding ultraviolet rays, the step of dropping an alkali solution into a raw material mixed solution containing a zinc compound and aging with continuous stirring to obtain a precipitate; After the product is washed by decantation, it is dried to obtain a zinc oxide precursor, and the precursor is mild at 300 ° C. to 500 ° C. in a mixed gas atmosphere of a reducing gas and an inert gas. And a reduction process. Therefore, the production of the ultraviolet shielding zinc oxide fine particles according to the present invention will be described for each step, and the ultraviolet shielding body forming dispersion and the ultraviolet shielding body will be described together.

1.沈殿物を得る工程
本発明においては、まず、亜鉛化合物を含有する原料混合溶液に、アルカリ溶液を滴下すると共に、継続的に攪拌しながら熟成させて沈殿物を得る。さらに本発明においては、所望により、前記工程で準備する亜鉛化合物に加えてSi化合物を添加し、亜鉛化合物微粒子の触媒活性の抑制や、加熱処理における粒子の成長を抑制する構成を採っても良い。また同様に所望により、前記工程で準備する亜鉛化合物に加えてTi化合物を添加し、UVBからUVAまでの広範囲の紫外線を遮蔽する効果を付与する構成を採っても良い。ここで、亜鉛化合物に対する前記Si化合物とTi化合物の各含有量は、所望とする特性が得られるように適宜選択すればよい。
1. Step of Obtaining Precipitate In the present invention, first, an alkaline solution is dropped into a raw material mixed solution containing a zinc compound, and the precipitate is obtained by aging with continuous stirring. Furthermore, in the present invention, if desired, a configuration may be adopted in which a Si compound is added in addition to the zinc compound prepared in the above-described step to suppress the catalytic activity of the zinc compound fine particles and to suppress the particle growth in the heat treatment. . Similarly, if desired, a configuration in which a Ti compound is added in addition to the zinc compound prepared in the above-described step to give an effect of shielding a wide range of ultraviolet rays from UVB to UVA may be adopted. Here, each content of the Si compound and the Ti compound with respect to the zinc compound may be appropriately selected so as to obtain desired characteristics.

本発明において適用される亜鉛化合物は特に限定されるものでなく、例えば硝酸亜鉛、塩化亜鉛、塩化亜鉛、酢酸亜鉛、硫酸亜鉛などが挙げられる。上記亜鉛化合物の溶液は30℃以下に制御されていることが、粒子の成長を抑制して安定して沈殿物を得るために好ましい。   The zinc compound applied in the present invention is not particularly limited, and examples thereof include zinc nitrate, zinc chloride, zinc chloride, zinc acetate, and zinc sulfate. The solution of the zinc compound is preferably controlled to 30 ° C. or less in order to suppress the growth of particles and stably obtain a precipitate.

さらに、亜鉛化合物にSi化合物やTi化合物を添加する構成を採る場合、該Si化合物やTi化合物も焼成によって酸化物になるものであれば特に限定されるものではない。例えば、Si化合物として、水ガラス、アルコキシシラン、Ti化合物として、チタンの各アルコキシド、塩化チタン、硫酸チタンなどが挙げられる。また、アルカリ溶液も特に限定されず、例えば、炭酸水素アンモニウム、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、などの各水溶液が挙げられる。アルカリ溶液の濃度は、各塩が、前駆体として水酸化物となるに必要な化学当量以上あれば良い。尤も、残留アルカリ分を除去するための洗浄時間を短縮し生産性を上げる観点から、当量〜当量の3倍の範囲とすることが好ましい。   Furthermore, when taking the structure which adds Si compound and Ti compound to a zinc compound, if this Si compound and Ti compound also become an oxide by baking, it will not specifically limit. Examples of the Si compound include water glass, alkoxysilane, and Ti compound such as titanium alkoxide, titanium chloride, and titanium sulfate. Further, the alkaline solution is not particularly limited, and examples thereof include aqueous solutions of ammonium hydrogen carbonate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, and the like. The concentration of the alkali solution may be at least the chemical equivalent necessary for each salt to become a hydroxide as a precursor. However, from the viewpoint of shortening the washing time for removing the residual alkali and increasing the productivity, it is preferable to set the range from equivalent to 3 times equivalent.

また、アルカリ溶液の温度は50℃以下とすることが好ましい。該アルカリ溶液の温度の下限は、得られる酸化亜鉛微粒子の特性から特に限定されないが、溶液温度を低くするためには新たに冷却装置などが必要となる場合もある。ここで生産性の観点からは、そのような冷却装置を要しない温度とすることが好ましい。一方、溶液温度が50℃以下であれば、該アルカリ溶液からの水の蒸発などによって系内の亜鉛濃度が変化することを回避でき、得られる水酸化亜鉛微粒子の粒径等の再現性が得られるからであり、酸化亜鉛前駆体粒子の成長が過度に進み所望の光学特性が得られなくなることを回避できるからである。   Moreover, it is preferable that the temperature of an alkaline solution shall be 50 degrees C or less. The lower limit of the temperature of the alkaline solution is not particularly limited from the characteristics of the obtained zinc oxide fine particles, but a cooling device or the like may be newly required to lower the solution temperature. Here, from the viewpoint of productivity, it is preferable that the temperature does not require such a cooling device. On the other hand, if the solution temperature is 50 ° C. or lower, it can be avoided that the zinc concentration in the system changes due to evaporation of water from the alkaline solution, and reproducibility such as the particle diameter of the obtained zinc hydroxide fine particles is obtained. This is because it can be avoided that the zinc oxide precursor particles grow excessively and the desired optical properties cannot be obtained.

アルカリ溶液の滴下時間は、生産性の観点から30分間以下とすることが好ましい。さらに好ましくは25分間以下とすることが良い。   The dropping time of the alkaline solution is preferably 30 minutes or less from the viewpoint of productivity. More preferably, it should be 25 minutes or less.

アルカリ溶液の滴下終了後、系内の均一化を図るために、溶液のpH7以上を維持すると共に、溶液を継続的に攪拌することで沈殿物の熟成を行うが、該熟成時の温度は共沈温度と同温とするのが好ましい。また、熟成時間は特に限定されないが、生産性の観点から30分間以下、好ましくは15分間以下であるとよい。溶液のpHを7以上に維持することにより、生成した沈殿物の再溶解を回避して良好な収率を維持することができる。   After completion of the dropwise addition of the alkaline solution, the pH of the solution is maintained at 7 or more and the precipitate is aged by continuously stirring the solution. The temperature is preferably the same as the settling temperature. The aging time is not particularly limited, but is 30 minutes or less, preferably 15 minutes or less from the viewpoint of productivity. By maintaining the pH of the solution at 7 or more, re-dissolution of the generated precipitate can be avoided and a good yield can be maintained.

2.デカンテ−ション後、乾燥して酸化亜鉛の前駆体を得る工程
溶液を継続的に攪拌して熟成させた沈澱物を、デカンテ−ションすることによって洗浄するが、該デカンテ−ションに使われた洗浄液の導電率が1mS/cm以下となるまで、該デカンテ−ションを繰り返し実施する。即ち、溶液から生成した沈殿物を十分洗浄した後、乾燥することが肝要である。これは、沈殿物微粒子中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物が、本発明に係る紫外線遮蔽用酸化亜鉛微粒子の分散性に悪影響を及ぼすとともに、後述する還元性ガスを混合した雰囲気下での加熱処理工程においてマイルドな還元を阻害する要因となり、該マイルドな還元の阻害により本発明に係る紫外線遮蔽用酸化亜鉛微粒子の紫外線遮蔽特性が得られなくなるためである。
2. A step of drying and obtaining a zinc oxide precursor after decantation The precipitate aged by continuously stirring the solution is washed by decantation, and the washing solution used for the decantation The decantation is repeated until the electrical conductivity of 1 mS / cm or less. That is, it is important that the precipitate generated from the solution is sufficiently washed and then dried. This is because impurities such as chloride ions, nitrate ions, sulfate ions, and acetate ions remaining in the precipitate fine particles adversely affect the dispersibility of the ultraviolet shielding zinc oxide fine particles according to the present invention, and a reducing gas described later. This is because mild reduction is hindered in the heat treatment step in a mixed atmosphere, and the ultraviolet shielding property of the zinc oxide fine particles for ultraviolet shielding according to the present invention cannot be obtained due to the inhibition of mild reduction.

本発明者らの検討の結果、該洗浄後の沈澱物中に残留する不純物量が1.5重量%以下であれば、上述した紫外線遮蔽用酸化亜鉛微粒子の分散性悪化や、加熱処理工程におけるマイルドな還元の阻害という事態を回避出来ることが判明した。そして該洗浄後の沈澱物中に残留する不純物量と、デカンテ−ションに使われた洗浄液の導電率との関連を検討した結果、該洗浄液の導電率が1mS/cm以下となるまでデカンテ−ションを繰り返し実施すれば、沈澱物中に残留する不純物量を1.5重量%以下とすることができることに想到したものである。   As a result of the study by the present inventors, if the amount of impurities remaining in the precipitate after washing is 1.5% by weight or less, the dispersibility of the above-described zinc oxide fine particles for ultraviolet shielding is deteriorated or in the heat treatment step. It turned out that the situation of the inhibition of mild reduction could be avoided. As a result of examining the relationship between the amount of impurities remaining in the washed precipitate and the conductivity of the cleaning solution used for decantation, the decantation is performed until the conductivity of the cleaning solution becomes 1 mS / cm or less. It is conceived that the amount of impurities remaining in the precipitate can be reduced to 1.5% by weight or less by repeating the above.

次に、沈澱物の洗浄後の乾燥温度や乾燥時間は、特に限定されるものではない。沈澱物処理量や処理装置等条件によって適宜選択すれば良い。こうして、乾燥処理された酸化亜鉛前駆体を得る。   Next, the drying temperature and drying time after washing the precipitate are not particularly limited. What is necessary is just to select suitably by conditions, such as a sediment processing amount and a processing apparatus. Thus, a dried zinc oxide precursor is obtained.

3.マイルドな還元処理を行う工程
乾燥処理された酸化亜鉛前駆体の分散性および紫外線遮蔽特性を向上させるの観点から、
該酸化亜鉛前駆体へマイルドな還元処理を施すことが肝要である。この還元処理法においては還元剤として、窒素、アルゴン、ヘリウムなどの不活性ガスと、水素、一酸化炭素、アンモニアなどの還元性ガスとの混合ガスを用いることが好ましい。さらに、該マイルドな還元処理とは、フィードする該混合ガス中の還元性ガス濃度を、0.1%〜5%の範囲とすることを意味している。
3. Mild reduction treatment process From the viewpoint of improving the dispersibility and UV shielding properties of the dried zinc oxide precursor,
It is important to subject the zinc oxide precursor to a mild reduction treatment. In this reduction treatment method, it is preferable to use a mixed gas of an inert gas such as nitrogen, argon or helium and a reducing gas such as hydrogen, carbon monoxide or ammonia as a reducing agent. Further, the mild reduction treatment means that the reducing gas concentration in the mixed gas to be fed is in the range of 0.1% to 5%.

乾燥処理された酸化亜鉛前駆体へ該マイルドな還元処理を施すことで、詳細は不明ながら該酸化亜鉛前駆体に僅かではあるが酸素欠陥が生成されることで、より優れた紫外線遮蔽性能を発揮するものと考えられる。さらに、還元性ガス濃度を0.1%以上、5%以下とすることで、還元処理温度との兼ね合いによる過剰な粒成長を回避し、紫外線遮蔽特性の低い酸化亜鉛粒子の生成を抑止する。ここで、該マイルドな還元処理で得られる酸化亜鉛微粒子の還元状態を制御し、分散性、紫外線遮蔽特性を発揮させる観点および生産性の観点から、還元処理温度の下限を300℃とすることが肝要である。また、還元処理中の過剰な粒成長や強凝集体の生成によって分散性が低下し、これにより本発明に係る紫外線遮蔽用酸化亜鉛微粒子の光学特性が低下する観点から、還元処理温度の上限を500℃とすることが好ましい。尚、該還元処理時間は、酸化亜鉛前駆体の処理量や処理温度との兼ね合いで適宜選択すればよいが、一般的には10分間から3時間の範囲で良い。以上のように、乾燥処理された酸化亜鉛前駆体へ該マイルドな還元処理を施すことで本発明に係る紫外線遮蔽用酸化亜鉛微粒子を得ることが出来る。   By applying the mild reduction treatment to the dried zinc oxide precursor, oxygen defects are generated in the zinc oxide precursor, although the details are unknown. It is thought to do. Further, by setting the reducing gas concentration to 0.1% or more and 5% or less, excessive grain growth due to the balance with the reduction treatment temperature is avoided, and the production of zinc oxide particles having low ultraviolet shielding properties is suppressed. Here, the lower limit of the reduction treatment temperature is set to 300 ° C. from the viewpoint of controlling the reduction state of the zinc oxide fine particles obtained by the mild reduction treatment, exhibiting dispersibility, ultraviolet shielding properties, and productivity. It is essential. Further, from the viewpoint of reducing the dispersibility due to excessive grain growth and the formation of strong aggregates during the reduction treatment, thereby reducing the optical properties of the ultraviolet shielding zinc oxide fine particles according to the present invention, the upper limit of the reduction treatment temperature is set. It is preferable to set it as 500 degreeC. The reduction treatment time may be appropriately selected in consideration of the treatment amount and treatment temperature of the zinc oxide precursor, but generally it may be in the range of 10 minutes to 3 hours. As described above, the ultraviolet shielding zinc oxide fine particles according to the present invention can be obtained by subjecting the dried zinc oxide precursor to the mild reduction treatment.

以上説明した製造方法で得られる本発明に係る紫外線遮蔽用酸化亜鉛微粒子の、国際照明委員会(CIE)が推奨しているL*a*b*表色系(JIS Z 8729)における粉体色は、L*が70以上、95以下、a*が−6以上、−0.1以下、b*が0.6以上、6以下の範囲内にあることが好ましい。これは、当該L*a*b*表色系における粉体色が、当該酸化亜鉛微粒子の還元状態の結果であると考えられることによる。従って、L*が95を超える場合、a*が−0.1を超える場合、b*が0.6未満の場合は還元が不足で、従来技術に係る酸化亜鉛微粒子に相当するものと考えられる。一方、L*が70未満の場合、a*が−6未満の場合、b*が6を超える場合であると、還元が過剰で金属Znが生成していると考えられ好ましくない。尚、上記好ましい表色系範囲にある酸化亜鉛微粒子は、目視観察によると僅かながら薄い灰色を呈していた。   Powder color in the L * a * b * color system (JIS Z 8729) recommended by the International Commission on Illumination (CIE) of the zinc oxide fine particles for ultraviolet shielding according to the present invention obtained by the production method described above. It is preferable that L * is in the range of 70 or more and 95 or less, a * is −6 or more and −0.1 or less, and b * is 0.6 or more and 6 or less. This is because the powder color in the L * a * b * color system is considered to be a result of the reduced state of the zinc oxide fine particles. Therefore, when L * exceeds 95, when a * exceeds −0.1, and when b * is less than 0.6, the reduction is insufficient, and it is considered that this corresponds to the zinc oxide fine particles according to the prior art. . On the other hand, when L * is less than 70, when a * is less than −6, and when b * exceeds 6, it is considered that reduction is excessive and metal Zn is generated, which is not preferable. In addition, the zinc oxide fine particles in the above preferred color system range exhibited a slightly light gray color by visual observation.

4.紫外線遮蔽体形成用分散液
本発明に係る紫外線遮蔽体形成用分散液は、本発明に係る紫外線遮蔽用酸化亜鉛微粒子を含有し、紫外線遮蔽体の形成に適用される紫外線遮蔽体形成用分散液であって、該紫外線遮蔽用微粒子が上述の製造方法によって得られた酸化亜鉛微粒子で構成され、かつ溶媒中に分散された該酸化亜鉛微粒子の分散粒子径が100nm以下であることを特徴とする。さらに、溶媒中に分散した紫外線遮蔽用微粒子の固形分濃度は、30重量%以下、好ましくは20重量%以下としたものである。該固形分濃度と生産コストとは比例するが、所望の紫外線遮蔽特性との兼ね合いから、一般的には、該固形分濃度増加の割合に遮蔽特性の向上が比例しないため、上述したように、溶媒中に分散した紫外線遮蔽用微粒子の固形分濃度は、30重量%以下、好ましくは20重量%以下となるように調整するのが良い。
4). Ultraviolet shielding body forming dispersion The ultraviolet shielding body forming dispersion according to the present invention contains the ultraviolet shielding zinc oxide fine particles according to the present invention, and is applied to the formation of an ultraviolet shielding body. The ultraviolet shielding fine particles are composed of the zinc oxide fine particles obtained by the above-described production method, and the dispersed particle diameter of the zinc oxide fine particles dispersed in the solvent is 100 nm or less. . Further, the solid content concentration of the ultraviolet shielding fine particles dispersed in the solvent is 30% by weight or less, preferably 20% by weight or less. Although the solid content concentration is proportional to the production cost, in general, since the improvement in the shielding property is not proportional to the rate of increase in the solid content concentration, in consideration of the desired ultraviolet shielding property, as described above, The solid content concentration of the ultraviolet shielding fine particles dispersed in the solvent is adjusted to be 30% by weight or less, preferably 20% by weight or less.

該紫外線遮蔽体形成用分散液は、紫外線遮蔽用微粒子を溶媒中に分散したものであるが、ここで該溶媒について説明する。   The dispersion for forming an ultraviolet shielding material is obtained by dispersing ultraviolet shielding fine particles in a solvent. The solvent will be described here.

該溶媒は特に限定されるものではなく、塗布条件、塗布環境に合わせて適宜選択すれば良く、さらに該紫外線遮蔽体形成用分散液へ無機バインダーや樹脂バインダーを含有させたときは、該バインダーに合わせて適宜選択することができる。例えば、水やエタノ−ル、プロパノ−ル、ブタノ−ル、イソプロピルアルコ−ル、イソブチルアルコ−ル、ジアセトンアルコ−ルなどのアルコ−ル類、メチルエ−テル、エチルエ−テル、プロピルエ−テルなどのエ−テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、塗布液中の微粒子の分散安定性を一層向上させるための分散剤として、各種の界面活性剤、カップリング剤などの添加が好ましい。   The solvent is not particularly limited, and may be appropriately selected according to the coating conditions and coating environment. Further, when an inorganic binder or a resin binder is added to the dispersion for forming an ultraviolet shielding material, They can be selected as appropriate. For example, alcohols such as water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc. Various organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl ketone, etc. can be used, and if necessary, pH can be adjusted by adding acid or alkali. May be. Furthermore, it is preferable to add various surfactants, coupling agents and the like as a dispersant for further improving the dispersion stability of the fine particles in the coating solution.

ここで、該紫外線遮蔽体形成用分散液中における、紫外線遮蔽用微粒子である該酸化亜鉛微粒子の分散粒子径について簡単に説明する。まず、該酸化亜鉛微粒子の分散粒子径とは、溶媒中に分散している酸化亜鉛微粒子が凝集して生成した凝集粒子の径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、酸化亜鉛微粒子分散液から酸化亜鉛微粒子の単体や凝集体が存在する状態のサンプルを採取し、当該サンプルを、動的光散乱法を原理とした大塚電子(株)社製ELS−8000にて測定することで求めることができる。   Here, the dispersion particle diameter of the zinc oxide fine particles which are the fine particles for ultraviolet shielding in the dispersion for forming the ultraviolet shielding material will be briefly described. First, the dispersed particle diameter of the zinc oxide fine particles means the diameter of the aggregated particles formed by aggregation of the zinc oxide fine particles dispersed in the solvent. Can be measured. For example, a sample containing zinc oxide fine particles alone or aggregates is collected from the zinc oxide fine particle dispersion, and the sample is applied to ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering. It can be obtained by measuring.

該酸化亜鉛微粒子の分散粒子径は100nm以下であることが望ましい。分散粒子径が100nm以下であれば、該酸化亜鉛微粒子が光散乱源となって曇り(ヘイズ)を発生させ、可視光透過率が減少する原因となるのを回避することができるからである。   The dispersed particle diameter of the zinc oxide fine particles is desirably 100 nm or less. This is because if the dispersed particle diameter is 100 nm or less, it can be avoided that the zinc oxide fine particles serve as a light scattering source to cause haze and cause a decrease in visible light transmittance.

また、該紫外線遮蔽体形成用分散液へ、必要に応じて配合される無機バインダーや樹脂バインダーは、その種類を特に限定されるものではない。例えば、無機バインダーとしては、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物あるいはオルガノシラザンが利用できる。また、樹脂バインダーとしては、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが利用できる。   Moreover, the kind of the inorganic binder and the resin binder to be blended in the ultraviolet shielding body-forming dispersion liquid as necessary is not particularly limited. For example, as the inorganic binder, a metal alkoxide of silicon, zirconium, titanium, or aluminum, a partially hydrolyzed polycondensation product thereof, or an organosilazane can be used. As the resin binder, thermoplastic resins such as acrylic resins, thermosetting resins such as epoxy resins, and the like can be used.

該紫外線遮蔽体形成用分散液へ、紫外線遮蔽用微粒子である当該酸化亜鉛微粒子を分散させる方法は、当該酸化亜鉛微粒子を均一に分散させる方法であれば特に限定されず、例えばビ−ズミル、ボ−ルミル、サンドミル、ペイントシェ−カ−、超音波ホモジナイザ−などが挙げられる。   The method for dispersing the zinc oxide fine particles, which are the ultraviolet shielding fine particles, in the dispersion for forming the ultraviolet shielding material is not particularly limited as long as the zinc oxide fine particles are uniformly dispersed. -Lumil, sand mill, paint shaker, ultrasonic homogenizer and the like.

5.紫外線遮蔽体
本発明に係る紫外線遮蔽体の形態の一つは、例えば透明基板上に、上述した本発明に係る紫外線遮蔽体形成用分散液を塗布して、紫外線遮蔽用微粒子である酸化亜鉛微粒子が高密度に堆積して膜形成しているものがある。ここで、紫外線遮蔽体形成用分散液中に樹脂バインダーまたは無機バインダーを含有させた場合、該バインダーは、該紫外線遮蔽体形成用分散液が硬化後の酸化亜鉛微粒子の基材への密着性を向上させ、さらに膜の硬度を向上させる効果がある。
5. Ultraviolet shielding body One of the forms of the ultraviolet shielding body according to the present invention is, for example, by applying the above-described dispersion for forming an ultraviolet shielding body according to the present invention on a transparent substrate, and fine zinc oxide particles that are ultraviolet shielding fine particles. Are deposited at high density to form a film. Here, when a resin binder or an inorganic binder is included in the dispersion liquid for forming an ultraviolet shielding body, the binder provides adhesion of the zinc oxide fine particles to the substrate after the dispersion liquid for forming an ultraviolet shielding body is cured. This has the effect of improving the hardness of the film.

また、上述のようにして得られた透明基板上等に形成された第1層の膜上に、さらに珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシド、これらの部分加水分解縮重合物からなる膜を第2層として塗膜し、珪素、ジルコニウム、チタン、もしくはアルミニウムの酸化物膜を形成することで、酸化亜鉛微粒子を主成分とする第1層の膜の基材への結着力や、紫外線遮蔽膜の硬度、耐候性を一層向上させることができる。   Further, a film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polycondensation product thereof on the first layer film formed on the transparent substrate or the like obtained as described above. As a second layer, an oxide film of silicon, zirconium, titanium, or aluminum is formed, so that the binding force of the first layer film containing zinc oxide fine particles as a main component to the base material or ultraviolet light The hardness and weather resistance of the shielding film can be further improved.

また、本発明の紫外線遮蔽体形成用分散液の透明基板上等への塗布方法は、特に限定されず、例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、処理液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。   Further, the method for applying the ultraviolet shielding composition-forming dispersion of the present invention onto a transparent substrate is not particularly limited, and examples thereof include spin coating, bar coating, spray coating, dip coating, screen printing, Any method may be used as long as the treatment liquid can be applied flatly, thinly and uniformly, such as roll coating and flow coating.

また、本発明に係る紫外線遮蔽体の異なる形態は、上述した紫外線遮蔽体形成用分散液を加熱して溶媒を除去し乾燥粉体とした後に、該乾燥粉体を、さらに熱可塑性樹脂や繊維などに練り込んで使用するものがある。該形態において、乾燥粉体を練り込む際に分散剤や酸化防止剤などを適宜導入してもよく、また希釈倍率の調整のためにコンパウンドやマスターバッチを経由して熱可塑性樹脂や繊維などに練りこんでも良い。また、紫外線遮蔽体としてポリカーボネート樹脂などを用いる場合は、共押出しの操作を行って、押出された樹脂板の最表面層数10μmのみに、該紫外線遮蔽酸化亜鉛微粒子を分散させることも可能である。   Further, the different form of the ultraviolet shield according to the present invention is that the above-described dispersion for forming an ultraviolet shield is heated to remove the solvent to obtain a dry powder, and then the dry powder is further converted into a thermoplastic resin or fiber. There are things that are used by kneading. In this form, a dispersant, an antioxidant, or the like may be appropriately introduced when kneading the dry powder, and it is added to a thermoplastic resin or fiber via a compound or masterbatch for adjusting the dilution ratio. It can be kneaded. In the case where a polycarbonate resin or the like is used as the ultraviolet shielding body, it is possible to disperse the ultraviolet shielding zinc oxide fine particles only in the outermost surface layer number of 10 μm by performing a coextrusion operation. .

また、本発明に係る紫外線遮蔽用酸化亜鉛微粒子へ、さらにホウ化ランタン、ATO、ITO、AZO、Cs0.3WO、W1849、Siを添加した酸化タングステン、または、Si添加Cs酸化タングステンなどの近赤外線を遮蔽する材料を添加して、両者を組み合わせて使用することも好ましい構成である。 Further, the zinc oxide fine particles for ultraviolet shielding according to the present invention are further added with lanthanum boride, ATO, ITO, AZO, Cs 0.3 WO 3 , W 18 O 49 , Si-added tungsten oxide, or Si-added Cs oxide. It is also preferable to add a material that shields near infrared rays, such as tungsten, and use them in combination.

以上、説明したように本発明に係る紫外線遮蔽用酸化亜鉛微粒子の製造方法によれば、分散性および紫外線遮蔽特性に優れた紫外線遮蔽用酸化亜鉛微粒子を、高い生産性をもって製造することができる。そして、該製造された分散性および紫外線遮蔽特性に優れた紫外線遮蔽用酸化亜鉛微粒子を含む本発明に係る紫外線遮蔽体形成用分散液によれば、紫外線遮蔽特性に優れた効果を有する本発明に係る紫外線遮蔽体を効率よく製造することができる。   As described above, according to the method for producing ultraviolet shielding zinc oxide fine particles according to the present invention, the ultraviolet shielding zinc oxide fine particles having excellent dispersibility and ultraviolet shielding properties can be produced with high productivity. And according to the dispersion liquid for forming an ultraviolet shielding body according to the present invention containing the produced zinc oxide fine particles for ultraviolet shielding excellent in dispersibility and ultraviolet shielding characteristics, the present invention having an excellent effect in ultraviolet shielding characteristics is provided. Such an ultraviolet shield can be manufactured efficiently.

以下、本発明についてその実施例を挙げさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。なお、得られた酸化亜鉛微粒子の粉体色、酸化亜鉛微粒子分散液の可視光透過率、および紫外線透過率は日立製作所(株)製の分光光度計U−4000を用いて測定した。尚、当該粉体色は、光源D65を使用した10°視野によるものである。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. The powder color of the obtained zinc oxide fine particles, the visible light transmittance of the zinc oxide fine particle dispersion, and the ultraviolet transmittance were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. The powder color is based on a 10 ° field of view using the light source D65.

[実施例1]
10%Zn(NO6HO水溶液25582.7gを30℃に制御し攪拌した。そして15%NHHCO水溶液を、該Zn(NO6HO水溶液へ20分間かけて滴下し、pH7.6として沈殿を生成させた後、さらに10分間攪拌を継続して沈殿を熟成した。
[Example 1]
25582.7 g of 10% Zn (NO 3 ) 2 6H 2 O aqueous solution was controlled at 30 ° C. and stirred. Then, 15% NH 4 HCO 3 aqueous solution was dropped into the Zn (NO 3 ) 2 6H 2 O aqueous solution over 20 minutes to form a precipitate at pH 7.6, and then stirring was continued for another 10 minutes. Aged.

次に、生成した沈殿を収集しデカンテーションにて洗浄を行った。該デカンテーションによる洗浄を、洗浄操作後の洗浄液における導電率が1mS/cm以下になるまで繰り返し行った。そして該洗浄終了後、洗浄後の沈殿を105℃で乾燥した。   Next, the produced precipitate was collected and washed by decantation. The decantation cleaning was repeated until the conductivity in the cleaning liquid after the cleaning operation was 1 mS / cm or less. After the washing, the washed precipitate was dried at 105 ° C.

次に、乾燥処理を施した沈殿を雰囲気炉内に設置し、Nガスをキャリアとした2%Hガスを供給しながら400℃の温度で1時間焼成して、マイルドな還元処理を行うことにより酸化亜鉛微粒子を得た。該酸化亜鉛微粒子へ、X線回折測定(以下、XRD測定と記す場合がある。)を行った結果、ZnOの単一相であることが判明した。 Next, the dried precipitate is placed in an atmospheric furnace and baked at a temperature of 400 ° C. for 1 hour while supplying 2% H 2 gas with N 2 gas as a carrier to perform mild reduction treatment. As a result, zinc oxide fine particles were obtained. As a result of performing X-ray diffraction measurement (hereinafter sometimes referred to as XRD measurement) on the zinc oxide fine particles, it was found to be a single phase of ZnO.

該酸化亜鉛微粒子の表色系を表1に記載する。   Table 1 shows the color system of the zinc oxide fine particles.

ここで、得られた酸化亜鉛微粒子10重量%と、分散剤として高分子系分散剤を10重量%と、トルエン80重量%とを、充填率63%相当の0.3mmφジルコニアビーズを入れたペイントシェーカー内に装填し、8時間の分散操作を行って分散液Aを得た。このとき分散液A中における酸化亜鉛微粒子の分散粒子径は85nmで、該酸化亜鉛微粒子が分散し易い微粒子であることが判明した。
次に、該分散液を適宜トルエンで希釈して、希釈液の可視光透過率と紫外線透過率との関係を、また、希釈液の紫外線透過率と酸化亜鉛微粒子濃度との関係を求めた。その結果を表1および図1と図2に示す。
Here, a paint containing 10% by weight of the obtained zinc oxide fine particles, 10% by weight of a polymeric dispersant as a dispersant, 80% by weight of toluene, and 0.3 mmφ zirconia beads corresponding to a filling rate of 63%. The mixture was loaded into a shaker and dispersed for 8 hours to obtain dispersion A. At this time, the dispersed particle diameter of the zinc oxide fine particles in the dispersion A was 85 nm, and it was found that the zinc oxide fine particles were easy to disperse.
Next, the dispersion was appropriately diluted with toluene, and the relationship between the visible light transmittance and the ultraviolet transmittance of the diluted solution and the relationship between the ultraviolet transmittance of the diluted solution and the zinc oxide fine particle concentration were determined. The results are shown in Table 1 and FIGS.

[実施例2〜実施例3、比較例1〜比較例2]
マイルドな還元処理を行う際の、焼成温度を300℃とした以外は実施例1と同様にして、実施例2に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、実施例2に係る分散液Bを製造した。
[Example 2 to Example 3, Comparative Example 1 to Comparative Example 2]
Zinc oxide fine particles according to Example 2 were produced in the same manner as in Example 1 except that the firing temperature at the time of mild reduction treatment was set to 300 ° C., and the zinc oxide fine particles were used in the same manner as in Example 1. Thus, Dispersion B according to Example 2 was produced.

次に、焼成温度を500℃とした以外は実施例1と同様にして、実施例3に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、実施例3に係る分散液Cを製造した。   Next, zinc oxide fine particles according to Example 3 were produced in the same manner as in Example 1 except that the firing temperature was changed to 500 ° C., and in the same manner as in Example 1 using these zinc oxide fine particles, Such dispersion C was prepared.

次に、焼成温度を200℃とした以外は実施例1と同様にして、比較例1に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、比較例1に係る分散液Dを製造した。   Next, the zinc oxide fine particles according to Comparative Example 1 were produced in the same manner as in Example 1 except that the firing temperature was set to 200 ° C., and in the same manner as in Example 1 using the zinc oxide fine particles, Such a dispersion D was produced.

さらに、焼成温度を700℃とした以外は実施例1と同様にして、比較例2に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、比較例2に係る分散液Eを製造した。   Furthermore, the zinc oxide fine particles according to Comparative Example 2 were produced in the same manner as in Example 1 except that the firing temperature was set to 700 ° C., and according to Comparative Example 2 in the same manner as in Example 1 using these zinc oxide fine particles. Dispersion E was produced.

製造された各酸化亜鉛微粒子の構造をXRDにて測定した結果、実施例2、実施例3および比較例2に係る酸化亜鉛微粒子はZnO単一相であることが判明し、比較例1に係る酸化亜鉛微粒子には塩基性炭酸塩が混在していることが判明した。   As a result of measuring the structure of each manufactured zinc oxide fine particle by XRD, it was found that the zinc oxide fine particles according to Example 2, Example 3 and Comparative Example 2 were a single phase of ZnO. It was found that zinc carbonate fine particles were mixed with basic carbonate.

また、各分散液中の分散粒子径を測定したところ、分散液B(実施例2)が79nm、分散液C(実施例3)が96nm、分散液D(比較例1)が81nm、分散液E(比較例2)が230nmであり、比較例2に係る分散液E以外は分散粒子径が100nm以下の分散し易い微粒子であった。   Moreover, when the dispersed particle diameter in each dispersion liquid was measured, the dispersion liquid B (Example 2) was 79 nm, the dispersion liquid C (Example 3) was 96 nm, the dispersion liquid D (Comparative Example 1) was 81 nm, and the dispersion liquid. E (Comparative Example 2) was 230 nm, and particles other than Dispersion E according to Comparative Example 2 were easily dispersed fine particles having a dispersed particle diameter of 100 nm or less.

[実施例4〜実施例5]
溶液温度を50℃に制御した以外は実施例1と同様にして、実施例4に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、実施例4に係る分散液Fを製造した。
[Examples 4 to 5]
A zinc oxide fine particle according to Example 4 was produced in the same manner as in Example 1 except that the solution temperature was controlled at 50 ° C., and the dispersion according to Example 4 was performed in the same manner as in Example 1 using the zinc oxide fine particle. Liquid F was produced.

アルカリ溶液の滴下時間を30分とした以外は実施例1と同様にして、実施例5に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、実施例5に係る分散液Gを製造した。   A zinc oxide fine particle according to Example 5 was produced in the same manner as in Example 1 except that the dropping time of the alkaline solution was changed to 30 minutes, and the zinc oxide fine particle was used in the same manner as in Example 1 in Example 5. Such a dispersion G was produced.

製造された各酸化亜鉛微粒子の構造をXRDにて測定した結果、実施例4および実施例5に係る酸化亜鉛微粒子はZnO単一相であることが判明した。   As a result of measuring the structure of each manufactured zinc oxide fine particle by XRD, it was found that the zinc oxide fine particles according to Example 4 and Example 5 were ZnO single phase.

また、各分散液中の分散粒子径を測定したところ、分散液F(実施例4)が86nm、分散液G(実施例5)が83nmであり、いずれも分散粒子径が100nm以下の分散し易い微粒子であった。   Further, when the dispersed particle size in each dispersion was measured, the dispersion F (Example 4) was 86 nm and the dispersion G (Example 5) was 83 nm, both of which were dispersed with a dispersed particle size of 100 nm or less. It was a fine particle.

[比較例3〜比較例4]
酸化亜鉛微粒子の洗浄において、デカンテ−ションによる洗浄の繰り返しを、洗浄液の導電率が20mS/cmとなった時点で打ち切った以外は実施例2と同様にして、比較例3に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、比較例3に係る分散液Hを製造した。
[Comparative Examples 3 to 4]
In the cleaning of the zinc oxide fine particles, the zinc oxide fine particles according to Comparative Example 3 were obtained in the same manner as in Example 2 except that the cleaning by decantation was stopped when the conductivity of the cleaning liquid reached 20 mS / cm. A dispersion H according to Comparative Example 3 was produced in the same manner as Example 1 using the zinc oxide fine particles.

還元処理を行う際の焼成時に、Nガスをキャリアとした6%Hガスを供給した以外は実施例1と同様にして、比較例4に係る酸化亜鉛微粒子を製造し、該酸化亜鉛微粒子を用い実施例1と同様にして、比較例4に係る分散液Iを製造した。 Zinc oxide fine particles according to Comparative Example 4 were produced in the same manner as in Example 1 except that 6% H 2 gas using N 2 gas as a carrier was supplied during firing during the reduction treatment, and the zinc oxide fine particles were produced. A dispersion I according to Comparative Example 4 was produced in the same manner as in Example 1.

製造された各酸化亜鉛微粒子の構造をXRDにて測定した結果、比較例3に係る酸化亜鉛微粒子は比較的ブロードなZnOのピーク以外に帰属不明のピークが認められ、比較例4に係る酸化亜鉛微粒子はZnO単一相であることが判明した。   As a result of measuring the structure of each manufactured zinc oxide fine particle by XRD, the zinc oxide fine particle according to Comparative Example 3 has an unidentified peak in addition to the relatively broad ZnO peak, and the zinc oxide according to Comparative Example 4 is observed. The fine particles were found to be a ZnO single phase.

また、各分散液中の分散粒子径を測定したところ、分散液H(比較例3)が130nm、分散液I(比較例4)が160nmであり、いずれも分散粒子径が130nm以上で分散し難い微粒子であった。   Further, when the dispersed particle size in each dispersion liquid was measured, the dispersion liquid H (Comparative Example 3) was 130 nm, and the dispersion liquid I (Comparative Example 4) was 160 nm, both of which were dispersed when the dispersed particle diameter was 130 nm or more. It was a difficult fine particle.

[実施例1〜実施例5および比較例1〜比較例4のまとめ]
実施例1と同様に、実施例2〜実施例5および比較例1〜比較例4に係る酸化亜鉛微粒子の表色系を表1に記載する。
[Summary of Examples 1 to 5 and Comparative Examples 1 to 4]
As in Example 1, Table 1 shows the color system of zinc oxide fine particles according to Examples 2 to 5 and Comparative Examples 1 to 4.

次に、実施例1と同様に、実施例2〜実施例5および比較例1〜比較例4に係る各分散液を適宜トルエンで希釈して希釈液とし、該各希釈液の可視光透過率と紫外線透過率との関係を求めた。その結果を表1および図1に示す。また、該各希釈液の紫外線透過率と酸化亜鉛微粒子濃度との関係を求めた。その結果を表1および図2に示す。   Next, in the same manner as in Example 1, each dispersion according to Examples 2 to 5 and Comparative Examples 1 to 4 is appropriately diluted with toluene to obtain a diluted solution, and the visible light transmittance of each diluted solution And the relationship between UV transmittance and UV transmittance. The results are shown in Table 1 and FIG. Further, the relationship between the ultraviolet transmittance of each diluted solution and the zinc oxide fine particle concentration was determined. The results are shown in Table 1 and FIG.

図1は、縦軸に紫外線透過率、横軸に可視光透過率をとり、実施例1〜5および比較例1〜4の各希釈液試料における紫外線透過率と可視光透過率との関係をプロットしたグラフである。   FIG. 1 shows the relationship between the ultraviolet transmittance and the visible light transmittance in each of the diluted liquid samples of Examples 1 to 5 and Comparative Examples 1 to 4 with the ultraviolet transmittance on the vertical axis and the visible light transmittance on the horizontal axis. This is a plotted graph.

表1および図1に示した結果より、実施例1〜実施例5に係る分散液を用いて調製した分散液希釈液と、比較例1〜比較例4に係る分散液を用いて調製した分散液希釈液とを比較した場合、実施例1〜実施例5に係る分散液を用いて調製した分散液希釈液は、同じ可視光透過率を示す分散液希釈液であれば紫外線透過率がより低いことが明らかである。   From the results shown in Table 1 and FIG. 1, the dispersions prepared using the dispersions according to Examples 1 to 5 and the dispersions prepared using the dispersions according to Comparative Examples 1 to 4. When compared with the liquid diluent, the dispersion liquid prepared using the dispersion liquids according to Examples 1 to 5 has a higher ultraviolet transmittance if the liquid dispersion liquid exhibits the same visible light transmittance. Clearly low.

図2は、縦軸に紫外線透過率、横軸に分散液中の酸化亜鉛濃度をとり、実施例1、2および比較例1の各希釈液試料における紫外線透過率と酸化亜鉛濃度との関係をプロットしたグラフである。   FIG. 2 shows the relationship between the ultraviolet transmittance and the zinc oxide concentration in each of the diluted liquid samples of Examples 1 and 2 and Comparative Example 1, with the vertical axis representing the ultraviolet transmittance and the horizontal axis representing the zinc oxide concentration in the dispersion. This is a plotted graph.

表1および図2に示した結果より、実施例1および実施例2に係る分散液を用いて調製した分散液希釈液と、比較例1に係る分散液を用いて調製した分散液希釈液とを比較した場合、実施例1および実施例2に係る分散液を用いて調製した分散液希釈液は、比較例1で得られた分散液を用いた分散液希釈液に比べて、より少ない酸化亜鉛微粒子濃度で紫外線を遮蔽することができることがわかる。   From the results shown in Table 1 and FIG. 2, a dispersion dilution prepared using the dispersion according to Example 1 and Example 2, and a dispersion dilution prepared using the dispersion according to Comparative Example 1, In comparison, the dispersion diluted with the dispersions according to Example 1 and Example 2 is less oxidized than the dispersion diluted with the dispersion obtained in Comparative Example 1. It can be seen that ultraviolet rays can be shielded by the concentration of zinc fine particles.

Figure 2007161539
Figure 2007161539

[実施例6]
実施例1で得られた酸化亜鉛微粒子の分散液A 500gに、分散剤375gを添加し、攪拌しながら60℃の減圧下で溶剤を完全に除去し、熱線遮蔽成分分散体(酸化亜鉛濃度:10.5重量%)を得た(熱線遮蔽成分分散体A)。尚、該分散剤の配合割合は、LaB61重量部に対して8.5重量部とした。次に、得られた該熱線遮蔽成分分散体Aを熱可塑性樹脂であるポリカーボ−ネート樹脂パウダーへ、酸化亜鉛濃度が2.0重量%となるように添加し、ブレンダーで均一に混合し混合物とした。次に、該混合物を二軸押出機で熔融混練し、Tダイを用いて厚さ2.0mmに押出成形し、酸化亜鉛微粒子が樹脂全体に均一に分散した熱線遮蔽透明樹脂成形体を得た。この透明樹脂成形体の光学特性を分光光度計で評価した結果、可視光透過率94.5%、紫外線透過率1.24%であった。
[Example 6]
To 500 g of the zinc oxide fine particle dispersion A obtained in Example 1, 375 g of a dispersing agent was added, and the solvent was completely removed under reduced pressure at 60 ° C. while stirring to obtain a heat ray shielding component dispersion (zinc oxide concentration: (10.5% by weight) was obtained (heat ray shielding component dispersion A). The mixing ratio of the dispersant was 8.5 parts by weight with respect to 1 part by weight of LaB 6 . Next, the obtained heat ray shielding component dispersion A is added to a polycarbonate resin powder, which is a thermoplastic resin, so that the zinc oxide concentration becomes 2.0% by weight, and the mixture is uniformly mixed with a blender. did. Next, the mixture was melt-kneaded with a twin-screw extruder and extruded to a thickness of 2.0 mm using a T-die to obtain a heat ray shielding transparent resin molded product in which zinc oxide fine particles were uniformly dispersed throughout the resin. . As a result of evaluating the optical characteristics of the transparent resin molding with a spectrophotometer, the visible light transmittance was 94.5%, and the ultraviolet transmittance was 1.24%.

本発明に係る紫外線遮蔽用酸化亜鉛微粒子分散液の希釈液における可視光透過率と紫外線透過率との関係を示したグラフである。It is the graph which showed the relationship between the visible light transmittance | permeability and the ultraviolet-ray transmittance in the dilution liquid of the zinc oxide fine particle dispersion liquid for ultraviolet shielding which concerns on this invention. 本発明に係る紫外線遮蔽用酸化亜鉛微粒子分散液の希釈液における紫外線透過率と酸化亜鉛微粒子濃度との関係を示したグラフである。It is the graph which showed the relationship between the ultraviolet-ray transmittance in the dilution liquid of the zinc oxide fine particle dispersion for ultraviolet shielding which concerns on this invention, and the zinc oxide fine particle density | concentration.

Claims (10)

亜鉛化合物を含む溶液へアルカリ溶液を添加すると共に、攪拌して沈殿物を得る工程と、
上記沈澱物をデカンテ−ションし、該デカンテ−ションに使用された後における洗浄液の導電率が1mS/cm以下となるまで、該デカンテ−ションを行った後、前記沈澱物を乾燥して酸化亜鉛の前駆体を得る工程と、
上記酸化亜鉛の前駆体を、還元性ガスと不活性ガスとの混合ガスであって、該還元性ガスの濃度が5%以下である混合ガス雰囲気下において、300℃以上500℃以下で加熱処理する工程と、を具備することを特徴とする紫外線遮蔽用酸化亜鉛微粒子の製造方法。
Adding an alkaline solution to a solution containing a zinc compound and stirring to obtain a precipitate;
The precipitate is decanted, and after the decantation is performed until the conductivity of the washing liquid after being used for the decantation is 1 mS / cm or less, the precipitate is dried to obtain zinc oxide. Obtaining a precursor of
The zinc oxide precursor is a heat treatment at 300 ° C. or more and 500 ° C. or less in a mixed gas atmosphere of a reducing gas and an inert gas in which the concentration of the reducing gas is 5% or less. And a process for producing zinc oxide fine particles for shielding ultraviolet rays.
上記亜鉛化合物を含む溶液が、Si化合物、Ti化合物から選ばれる1種以上を含有することを特徴とする請求項1記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法。   The method for producing zinc oxide fine particles for ultraviolet shielding according to claim 1, wherein the solution containing the zinc compound contains one or more selected from Si compounds and Ti compounds. 上記亜鉛化合物が、硝酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛硫酸亜鉛から選ばれた1種以上であることを特徴とする請求項1記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法。   2. The method for producing ultraviolet shielding zinc oxide fine particles according to claim 1, wherein the zinc compound is at least one selected from zinc nitrate, zinc chloride, zinc carbonate, and zinc acetate zinc sulfate. 上記亜鉛化合物を含む溶液へアルカリ溶液を添加している際の、該亜鉛化合物の溶液温度が、50℃以下であることを特徴とする請求項1記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法。   The method for producing zinc oxide fine particles for ultraviolet shielding according to claim 1, wherein the solution temperature of the zinc compound when the alkaline solution is added to the solution containing the zinc compound is 50 ° C or lower. 上記アルカリ溶液の添加時間を、30分間以下とすることを特徴とする請求項1記載の紫外線遮蔽用酸化亜鉛微粒子の製造方法。   2. The method for producing zinc oxide fine particles for ultraviolet shielding according to claim 1, wherein the addition time of the alkaline solution is 30 minutes or less. 溶媒と該溶媒中に分散された紫外線遮蔽用微粒子とを含み、紫外線遮蔽体の形成に適用される紫外線遮蔽体形成用分散液であって、
上記紫外線遮蔽用微粒子が、請求項1〜5のいずれか1項に記載の製造方法によって得られた紫外線遮蔽用酸化亜鉛微粒子であり、かつ、該溶媒中に分散された該紫外線遮蔽用酸化亜鉛微粒子の分散粒子径が、100nm以下であることを特徴とする紫外線遮蔽体形成用分散液。
A dispersion for forming an ultraviolet shielding material, which comprises a solvent and fine particles for ultraviolet shielding dispersed in the solvent, and is applied to the formation of an ultraviolet shielding material,
The ultraviolet shielding zinc oxide dispersed in the solvent, wherein the ultraviolet shielding fine particles are the ultraviolet shielding zinc oxide fine particles obtained by the production method according to any one of claims 1 to 5. A dispersion for forming an ultraviolet shielding material, wherein the dispersed particle diameter of the fine particles is 100 nm or less.
上記紫外線遮蔽用微粒子として、L*a*b*表色系における粉体色において、L*が70以上、95以下、a*が−6以上、−0.1以下、b*が0.6以上、6以下の範囲内にある、請求項1〜5のいずれか1項に記載の製造方法によって得られた酸化亜鉛微粒子を用いることを特徴とする請求項6記載の紫外線遮蔽体形成用分散液。   As the ultraviolet shielding fine particles, in the powder color in the L * a * b * color system, L * is 70 or more and 95 or less, a * is −6 or more, −0.1 or less, and b * is 0.6. The dispersion for forming an ultraviolet shielding material according to claim 6, wherein the zinc oxide fine particles obtained by the production method according to any one of claims 1 to 5 in the range of 6 or less are used. liquid. 無機バインダーまたは樹脂バインダーを含むことを特徴とする請求項6または7記載の紫外線遮蔽体形成用分散液。   The dispersion liquid for forming an ultraviolet shielding body according to claim 6 or 7, comprising an inorganic binder or a resin binder. 請求項6〜8のいずれか1項に記載の紫外線遮蔽体形成用分散液を用いて形成されたことを特徴とする紫外線遮蔽体。   An ultraviolet shielding body formed using the ultraviolet shielding body-forming dispersion liquid according to any one of claims 6 to 8. 請求項6〜8のいずれか1項に記載の紫外線遮蔽体形成用分散液から、溶剤成分を除去して得られた乾燥粉体を、熱可塑性樹脂へ練り込んでなることを特徴とする紫外線遮蔽体。   An ultraviolet ray obtained by kneading a dry powder obtained by removing the solvent component from the dispersion for forming an ultraviolet shielding body according to any one of claims 6 to 8, into a thermoplastic resin. Shield.
JP2005361066A 2005-12-14 2005-12-14 Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding Active JP4702615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361066A JP4702615B2 (en) 2005-12-14 2005-12-14 Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361066A JP4702615B2 (en) 2005-12-14 2005-12-14 Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding

Publications (2)

Publication Number Publication Date
JP2007161539A true JP2007161539A (en) 2007-06-28
JP4702615B2 JP4702615B2 (en) 2011-06-15

Family

ID=38244858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361066A Active JP4702615B2 (en) 2005-12-14 2005-12-14 Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding

Country Status (1)

Country Link
JP (1) JP4702615B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843190B1 (en) 2007-08-01 2008-07-02 요업기술원 Method of fabrication of zinc oxide by freeze drying at low temperature
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP2011157504A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd Dispersion of fine particle of near-infrared shield material, near-infrared shield body, process for producing near-infrared shield fine particle and near-infrared shield fine particle
JP2012062219A (en) * 2010-09-16 2012-03-29 Mitsui Mining & Smelting Co Ltd Aluminum-doped zinc oxide particle and its manufacturing method
JP2014221708A (en) * 2013-05-14 2014-11-27 テイカ株式会社 Zinc oxide and production method of zinc oxide as well as cosmetic, resin composition, coating composition, and inorganic powder using zinc oxide
JP2015132807A (en) * 2013-12-13 2015-07-23 株式会社リコー Electrophotographic photoreceptor, electrophotographic process, electrophotographic device, and process cartridge
JP2017043505A (en) * 2015-08-25 2017-03-02 住友金属鉱山株式会社 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
WO2017094909A1 (en) * 2015-12-02 2017-06-08 住友金属鉱山株式会社 Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material
JP2017106007A (en) * 2015-12-02 2017-06-15 住友金属鉱山株式会社 Heat ray shielding dispersion and heat ray shielding laminate transparent substrate
WO2017134910A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Zinc oxide particles with controlled color properties, method for producing same, and coating composition that includes said zinc oxide particles
US11130315B2 (en) 2015-12-02 2021-09-28 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116296A (en) * 1977-03-22 1978-10-11 Dowa Mining Co Wet process for producing zinc oxide
JPS5618538B2 (en) * 1978-09-22 1981-04-30
JPH02311314A (en) * 1989-05-24 1990-12-26 Sumitomo Cement Co Ltd Production of ultrafine zinc oxide powder
JPH04164815A (en) * 1990-10-30 1992-06-10 Mitsubishi Materials Corp Zinc oxide fine particle dispersion
JPH10120418A (en) * 1996-10-15 1998-05-12 Mitsui Mining & Smelting Co Ltd Production of ultrafine zinc oxide
JP2002284527A (en) * 2001-03-28 2002-10-03 Unitika Ltd Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it
JP2004142999A (en) * 2002-10-25 2004-05-20 Sk Kaken Co Ltd Method for producing spherical zinc oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116296A (en) * 1977-03-22 1978-10-11 Dowa Mining Co Wet process for producing zinc oxide
JPS5618538B2 (en) * 1978-09-22 1981-04-30
JPH02311314A (en) * 1989-05-24 1990-12-26 Sumitomo Cement Co Ltd Production of ultrafine zinc oxide powder
JPH04164815A (en) * 1990-10-30 1992-06-10 Mitsubishi Materials Corp Zinc oxide fine particle dispersion
JPH10120418A (en) * 1996-10-15 1998-05-12 Mitsui Mining & Smelting Co Ltd Production of ultrafine zinc oxide
JP2002284527A (en) * 2001-03-28 2002-10-03 Unitika Ltd Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it
JP2004142999A (en) * 2002-10-25 2004-05-20 Sk Kaken Co Ltd Method for producing spherical zinc oxide

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843190B1 (en) 2007-08-01 2008-07-02 요업기술원 Method of fabrication of zinc oxide by freeze drying at low temperature
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
JP2009269946A (en) * 2008-04-30 2009-11-19 Sumitomo Metal Mining Co Ltd Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP4655105B2 (en) * 2008-04-30 2011-03-23 住友金属鉱山株式会社 Ultraviolet light shielding transparent resin molding and method for producing the same
CN101570641B (en) * 2008-04-30 2013-03-20 住友金属矿山株式会社 Ultraviolet-shielding transparent resin molding and manufacturing method of the same
JP2011157504A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd Dispersion of fine particle of near-infrared shield material, near-infrared shield body, process for producing near-infrared shield fine particle and near-infrared shield fine particle
JP2012062219A (en) * 2010-09-16 2012-03-29 Mitsui Mining & Smelting Co Ltd Aluminum-doped zinc oxide particle and its manufacturing method
JP2014221708A (en) * 2013-05-14 2014-11-27 テイカ株式会社 Zinc oxide and production method of zinc oxide as well as cosmetic, resin composition, coating composition, and inorganic powder using zinc oxide
JP2015132807A (en) * 2013-12-13 2015-07-23 株式会社リコー Electrophotographic photoreceptor, electrophotographic process, electrophotographic device, and process cartridge
JP2017043505A (en) * 2015-08-25 2017-03-02 住友金属鉱山株式会社 Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
WO2017094909A1 (en) * 2015-12-02 2017-06-08 住友金属鉱山株式会社 Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material
JP2017106007A (en) * 2015-12-02 2017-06-15 住友金属鉱山株式会社 Heat ray shielding dispersion and heat ray shielding laminate transparent substrate
US11130315B2 (en) 2015-12-02 2021-09-28 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate
WO2017134910A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Zinc oxide particles with controlled color properties, method for producing same, and coating composition that includes said zinc oxide particles
US10400107B2 (en) 2016-02-02 2019-09-03 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same
US11084936B2 (en) 2016-02-02 2021-08-10 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same

Also Published As

Publication number Publication date
JP4702615B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4702615B2 (en) Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding
JP5754580B2 (en) Indium tin oxide powder
EP2113528B1 (en) Ultraviolet-shielding transparent resin molding and manufacturing method of the same
EP3392199B1 (en) Ultrafine particles of complex tungsten oxide, and fluid dispersion thereof
US9211535B2 (en) Process for producing dispersion of particles of rutile titanium oxide
EP3546426B1 (en) Black-film-forming mixed powder and production method therefor
EP2495217B1 (en) Heat-ray shielding composition and method for producing the same
WO2021153693A1 (en) Electromagnetic wave absorbing particle dispersion, electromagnetic wave absorbing laminate, and electromagnetic wave absorbing transparent substrate
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
JP4382607B2 (en) Titanium oxide particles
KR20200016848A (en) Method for producing hexagonal plate-shaped zinc oxide
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP5344131B2 (en) Ultraviolet shielding material fine particle manufacturing method, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding material
JP2017043505A (en) Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
WO2019159923A1 (en) Flaky titanic acid and method for production thereof, and use thereof
JP6697692B2 (en) Infrared absorbing fine particles, dispersion using the same, dispersion, combined transparent substrate, film, glass, and method for producing the same
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP4382872B1 (en) Method for producing titanium oxide particles
JP2017145164A (en) Boride particles, boride particle production method, and boride particle dispersion
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP2005022953A (en) Complex indium oxide particle and its manufacturing method, and conductive paint, conductive coating film and conductive sheet
EP3761082A1 (en) Near infrared ray absorption material micro-particle dispersion, near infrared ray absorber, near infrared ray absorption laminate, combined structure for near infrared ray absorption
JP2017145163A (en) Method for selecting substituted element of boride particle and manufacturing method of boride particle
JP2004244599A (en) Modified carbon black particle powder, its manufacturing method, and coating material and resin composition containing it
JP2020158350A (en) Zinc oxide particles and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

R150 Certificate of patent or registration of utility model

Ref document number: 4702615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150