JP2002284527A - Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it - Google Patents

Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it

Info

Publication number
JP2002284527A
JP2002284527A JP2001092682A JP2001092682A JP2002284527A JP 2002284527 A JP2002284527 A JP 2002284527A JP 2001092682 A JP2001092682 A JP 2001092682A JP 2001092682 A JP2001092682 A JP 2001092682A JP 2002284527 A JP2002284527 A JP 2002284527A
Authority
JP
Japan
Prior art keywords
zinc oxide
fine powder
zinc
solution
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001092682A
Other languages
Japanese (ja)
Inventor
Katsuyuki Tanabe
克行 田辺
Yoichiro Sugihara
陽一郎 杉原
Tomonori Furukawa
友紀 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001092682A priority Critical patent/JP2002284527A/en
Publication of JP2002284527A publication Critical patent/JP2002284527A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine powder of zinc oxide having an excellent ultraviolet screening property, an excellent dispersibility, an excellent transparency for visible ray, a low activity for photocatalysis, and 100 nm or less of average particle diameter, and a method for producing this fine powder of zinc oxide at low cost. SOLUTION: A method for producing a fine powder of zinc oxide characterized in that a given amount of a zinc containing solution and a given amount of an alkali solution are mixed while stirring within 0.1-600 seconds so as to make pH to 11-13 at the end point of mixing, and then the fine powder of zinc oxide in the mixed solution is matured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化亜鉛微粉末の
製造方法、その製造方法により得られる酸化亜鉛微粉末
及びその酸化亜鉛微粉末を含有する樹脂組成物に関する
ものである。
The present invention relates to a method for producing zinc oxide fine powder, a zinc oxide fine powder obtained by the method, and a resin composition containing the zinc oxide fine powder.

【0002】[0002]

【従来の技術】従来の酸化亜鉛微粉末の工業的な製造方
法としては、乾式法と湿式法がある。乾式法では、亜鉛
蒸気を気相中で酸化させ、酸化亜鉛微粉末が得られる。
湿式法では、水溶液中で亜鉛塩を含む水溶液を中和し、
生成した沈殿を濾過、乾燥の後、高温で加熱して酸化亜
鉛微粉末を得る方法などが知られている。
2. Description of the Related Art Conventional methods for industrially producing zinc oxide fine powder include a dry method and a wet method. In the dry method, zinc vapor is oxidized in the gas phase to obtain zinc oxide fine powder.
In the wet method, an aqueous solution containing a zinc salt is neutralized in the aqueous solution,
There is known a method in which the generated precipitate is filtered, dried, and then heated at a high temperature to obtain zinc oxide fine powder.

【0003】しかしながら、これらの方法で得られた酸
化亜鉛微粉末は高温で処理されているため、凝集力が強
いために分散が困難であり、さらには光触媒活性も大き
いという問題があった。
[0003] However, since the zinc oxide fine powder obtained by these methods is treated at a high temperature, there is a problem that it is difficult to disperse due to a strong cohesive force, and that the photocatalytic activity is large.

【0004】そこで、高温で加熱する工程なしに酸化亜
鉛微粉末を製造する方法もいくつか報告されている。
1)特開平4−16813号公報には、60℃以上の温
度下で、アルカリ水溶液を亜鉛塩の水溶液に滴下し、最
終pH9以上で酸化亜鉛の沈殿を生成させて平均粒径
0.2μm以下の酸化亜鉛微粉末を合成する方法が記載
されている。2)特開平9−137152号公報には、
亜鉛イオンを含有し、該亜鉛イオンに対し、総量で当量
を超える量の1種または2種以上の酸基を含有し、かつ
pH11以上の母液から沈殿を生成させる方法により、
平均粒径0.1〜1μm、平均粒子厚さ0.01〜0.
2μmの、平均板状比3以上の薄片状酸化亜鉛を合成す
る方法が記載されている。3)特開2000−9551
9号公報では、亜鉛を含有する酸性水溶液1に対し、ア
ルカリ水溶液を当量比で1を超え、1.5以下の範囲内
で接触させた後、直ちに大量の流動している水溶液中に
滴下することにより、連続的に酸化亜鉛粉末を合成する
方法が記載されている。
Therefore, there have been reported several methods for producing zinc oxide fine powder without a step of heating at a high temperature.
1) JP-A-4-16813 discloses that an alkaline aqueous solution is dropped into an aqueous solution of a zinc salt at a temperature of 60 ° C. or more, and a zinc oxide precipitate is formed at a final pH of 9 or more to give an average particle size of 0.2 μm or less. A method for synthesizing a fine zinc oxide powder is described. 2) JP-A-9-137152 discloses that
A method containing zinc ions, containing one or more acid groups in an amount exceeding the equivalent amount in total with respect to the zinc ions, and forming a precipitate from a mother liquor having a pH of 11 or more,
Average particle size 0.1-1 μm, average particle thickness 0.01-0.
A method for synthesizing 2 μm flaky zinc oxide having an average plate ratio of 3 or more is described. 3) JP-A-2000-9551
In Japanese Patent Application Publication No. 9 (1999), after an alkaline aqueous solution is brought into contact with an acidic aqueous solution 1 containing zinc in an equivalence ratio of more than 1 and 1.5 or less, it is immediately dropped into a large amount of flowing aqueous solution. Thus, a method for continuously synthesizing a zinc oxide powder is described.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
1)の方法ではアルカリ水溶液を亜鉛塩の水溶液に滴下
する時間について考慮されていないために、得られた酸
化亜鉛微粉末には亜鉛の水酸化物などの不純物が混入し
たり、粒子成長によって粒子サイズが大きくなり粒子サ
イズがバラつくなどの問題があった。
However, in the above-mentioned method 1), the time for dropping the aqueous alkali solution into the aqueous zinc salt solution is not taken into consideration, and thus the obtained zinc oxide fine powder contains zinc hydroxide. However, there is a problem that impurities such as impurities are mixed in, and the particle size increases due to the particle growth, and the particle size varies.

【0006】上記2)の方法では、反応工程において過
剰な酸基を加えるために、得られた酸化亜鉛微粉末は板
状であり、凝集力が強く分散が困難であり、また平均粒
径も0.1μm以上と大きいという問題があった。
In the above method 2), the resulting zinc oxide fine powder is plate-like, has a strong cohesive force, is difficult to disperse, and has an average particle size because an excessive acid group is added in the reaction step. There was a problem that it was as large as 0.1 μm or more.

【0007】上記3)の方法では、酸性水溶液とアルカ
リ水溶液との当量比だけに着目され、pHが考慮されて
いないために、得られた酸化亜鉛微粉末には亜鉛の水酸
化物などの不純物が混入したり、0.1μm以上の粒子
サイズの大きなものが得られるという問題があり、さら
には大量の水を必要とすることから、大規模な設備が必
要となり、製造コストが高くなるという問題もあった。
In the above method 3), attention is paid only to the equivalence ratio between the acidic aqueous solution and the alkaline aqueous solution, and the pH is not taken into account. Therefore, the obtained zinc oxide fine powder contains impurities such as zinc hydroxide. Or a large particle size of 0.1 μm or more can be obtained. Further, since a large amount of water is required, large-scale equipment is required, and the production cost is increased. There was also.

【0008】本発明の目的は、紫外線遮蔽性や分散性及
び可視光線透過性に優れ、光触媒活性が小さい、平均粒
径が100nm以下の酸化亜鉛微粉末及びこの酸化亜鉛
微粉末を安価に供給するための製造方法を提供すること
にある。
An object of the present invention is to provide a zinc oxide fine powder having excellent ultraviolet shielding properties, dispersibility and visible light transmittance, a small photocatalytic activity and an average particle diameter of 100 nm or less, and inexpensively supply this zinc oxide fine powder. To provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、亜鉛含有液とアルカリ水溶液を混合直後に含水率
の高いゲル状物が生成し、このゲル状物の脱水反応によ
って酸化亜鉛が生成することを見出し、さらにこの酸化
亜鉛の生成メカニズムを詳細に調べた結果、亜鉛含有液
とアルカリ水溶液とを混合する際のpHと混合時間をコ
ントロールすることにより、紫外線遮蔽性や分散性及び
可視光線透過性に優れ、光触媒活性が小さい、平均粒径
が100nm以下の酸化亜鉛微粉末が得られることを見
出し本発明に到達した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a gel having a high water content is formed immediately after mixing a zinc-containing solution and an alkaline aqueous solution, and zinc oxide is formed by a dehydration reaction of the gel. Was found, and as a result of investigating the formation mechanism of this zinc oxide in detail, by controlling the pH and the mixing time when mixing the zinc-containing solution and the aqueous alkali solution, the ultraviolet shielding property and dispersibility and The present inventors have found that a zinc oxide fine powder having excellent visible light transmittance, low photocatalytic activity and an average particle diameter of 100 nm or less can be obtained, and reached the present invention.

【0010】すなわち、本発明の第一は、混合終了時点
でのpHが11〜13となる、亜鉛含有液の所定量とア
ルカリ水溶液の所定量とを0.1秒〜600秒の間で攪
拌しながら混合し、次いで混合液中の酸化亜鉛微粉末を
熟成することを特徴とする酸化亜鉛微粉末の製造方法を
要旨とするものである。本発明の第二は、本発明の第一
の製造方法によって得られた平均粒径100nm以下の
酸化亜鉛微粉末を要旨とするものであり、さらに本発明
の第三は、前記した酸化亜鉛微粉末を含有する樹脂組成
物を要旨とするものである。
That is, a first aspect of the present invention is to stir a predetermined amount of a zinc-containing solution and a predetermined amount of an alkaline aqueous solution at a pH of 11 to 13 at the end of mixing for 0.1 to 600 seconds. The present invention provides a method for producing a zinc oxide fine powder, which comprises mixing and then aging the zinc oxide fine powder in the mixed solution. A second aspect of the present invention is to provide a zinc oxide fine powder having an average particle diameter of 100 nm or less obtained by the first production method of the present invention, and a third aspect of the present invention is the above-described zinc oxide fine powder. The gist is a resin composition containing a powder.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いられる亜鉛含有液とは、亜鉛イオンを含有
した溶液であればよく、金属亜鉛を硫酸や塩酸あるいは
硝酸などに溶解したものや、硫酸亜鉛や塩化亜鉛あるい
は酢酸亜鉛などを水に溶解したものなどが挙げられ、塩
化ナトリウムや塩化カリウムなどの水溶性の無機物やア
ルコール、脂肪酸、高分子などの水溶性有機物が含有さ
れていても構わない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The zinc-containing solution used in the present invention may be any solution containing zinc ions, such as a solution of zinc metal dissolved in sulfuric acid, hydrochloric acid or nitric acid, or a solution of zinc sulfate, zinc chloride or zinc acetate in water. It may contain a water-soluble inorganic substance such as sodium chloride or potassium chloride or a water-soluble organic substance such as alcohol, fatty acid, or polymer.

【0012】亜鉛含有液中の亜鉛濃度としては、0.0
1モル/リットル以上、5.0モル/リットル以下が好
ましく、さらに好ましくは0.1モル/リットル以上、
2.0モル/リットル以下である。亜鉛濃度が0.01
モル/リットル未満の場合には、生産性が低くなるので
好ましくない。
The zinc concentration in the zinc-containing liquid is 0.0
1 mol / L or more and 5.0 mol / L or less, more preferably 0.1 mol / L or more,
2.0 mol / liter or less. Zinc concentration 0.01
If the amount is less than mol / liter, productivity is undesirably reduced.

【0013】本発明で用いられるアルカリ水溶液とは、
水酸化ナトリウムや水酸化カリウムや水酸化リチウムな
どのアルカリ性を示す水溶液やこれらの混合水溶液が挙
げられ、塩化ナトリウムや塩化カリウムなどの水溶性の
無機物やアルコール、脂肪酸、高分子などの水溶性有機
物が含有されていても構わない。
The aqueous alkaline solution used in the present invention is:
Aqueous solutions such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, and aqueous solutions thereof, and aqueous solutions thereof, and water-soluble inorganic substances such as sodium chloride and potassium chloride, and water-soluble organic substances such as alcohols, fatty acids, and polymers can be used. It may be contained.

【0014】アルカリ水溶液の濃度としては、0.01
モル/リットル以上、10モル/リットル以下が好まし
く、さらに好ましくは0.1モル/リットル以上、5モ
ル/リットル以下である。アルカリ水溶液の濃度が0.
01モル/リットル未満の場合には、生産性が低くなる
ので好ましくない。
The concentration of the aqueous alkali solution is 0.01
It is preferably at least mol / l and at most 10 mol / l, more preferably at least 0.1 mol / l and at most 5 mol / l. The concentration of the aqueous alkali solution is 0.
If the amount is less than 01 mol / liter, productivity is undesirably reduced.

【0015】本発明において、亜鉛含有液とアルカリ水
溶液の所定量は、亜鉛含有液とアルカリ水溶液を混合終
了時点でのpHが11〜13となる量である。すなわ
ち、混合終了時に目的のpHとなる亜鉛含有液とアルカ
リ水溶液の所定量を決定するためには、例えば、前もっ
て亜鉛含有液とアルカリ水溶液を混合した際のpHを測
定しておけばよい。
In the present invention, the predetermined amount of the zinc-containing liquid and the aqueous alkaline solution is such that the pH at the end of mixing the zinc-containing liquid and the aqueous alkaline solution is 11 to 13. That is, in order to determine the predetermined amounts of the zinc-containing solution and the aqueous alkali solution at the target pH at the end of the mixing, for example, the pH at the time of mixing the zinc-containing solution and the aqueous alkali solution may be measured in advance.

【0016】本発明において、亜鉛含有液とアルカリ水
溶液を混合する方法としては、例えば1)亜鉛含有液に
対して、アルカリ水溶液を滴下やポンプで注入する方
法、2)アルカリ水溶液に亜鉛含有液を滴下やポンプで
注入する方法、3)亜鉛含有液とアルカリ水溶液を同時
に滴下したりポンプで注入する方法が挙げられ、いずれ
の方法で混合してもよい。
In the present invention, the method of mixing the zinc-containing solution with the aqueous alkali solution includes, for example, 1) a method of dropping or injecting the aqueous alkali solution into the zinc-containing solution, and 2) adding the zinc-containing solution to the aqueous alkali solution. A method of dropping or injecting with a pump, 3) a method of simultaneously dropping or injecting a zinc-containing solution and an aqueous alkali solution with a pump, or any other method may be used.

【0017】本発明において特徴とするところは、亜鉛
含有液とアルカリ水溶液のそれぞれの所定量を混合し終
えるまでに要する時間が0.1〜600秒であることで
ある。この時間は好ましくは、1〜300秒である。こ
の際混合が十分にされるように十分に攪拌することが好
ましい。この時間は、混合直後に生じるゲル状物が脱水
反応により酸化亜鉛を生成するまでの誘導期間が0.1
秒〜600秒であることを見出したことにより導かれた
ものである。混合終了までに600秒を超えると、それ
までに生成した酸化亜鉛微粉体が凝集成長したり、一度
生成した酸化亜鉛微粉体の表面から成長するなど粒子サ
イズが大きくなり、粒子サイズのバラツキも大きくなる
ので採用できない。
A feature of the present invention is that the time required to complete the mixing of the respective predetermined amounts of the zinc-containing solution and the aqueous alkaline solution is 0.1 to 600 seconds. This time is preferably between 1 and 300 seconds. At this time, it is preferable to sufficiently stir the mixture so as to be sufficiently mixed. In this time, the induction period until the gel formed immediately after mixing forms zinc oxide by a dehydration reaction is 0.1%.
This is derived from finding that the time is from second to 600 seconds. If the mixing time exceeds 600 seconds, the particle size increases, such as the zinc oxide fine powder generated up to that time being aggregated or growing from the surface of the zinc oxide fine powder once generated, and the dispersion of the particle size is also large. Cannot be adopted.

【0018】攪拌の方法としては、撹拌翼を用いた回転
撹拌などが行われるが、撹拌力の目安としてレイノルズ
数を用いた場合、レイノルズ数が10以上の撹拌が必要
であり、レイノルズ数が50以上の撹拌が好ましい。レ
イノルズ数が10未満の撹拌または撹拌を行わなかった
場合には、100nm以上の粒子が生成するので好まし
くない。混合時及びその後の熟成時において、液温は0
℃〜100℃程度であればよく、10℃〜90℃が好ま
しい。0℃未満では冷却コストが高くなり、100℃を
超えると耐圧容器が必要となるため好ましくない。
As a method of stirring, rotary stirring using a stirring blade or the like is performed. When the Reynolds number is used as a standard of the stirring power, stirring with a Reynolds number of 10 or more is required, and a Reynolds number of 50 is used. The above stirring is preferred. Unless stirring or stirring with a Reynolds number of less than 10 is not performed, particles of 100 nm or more are generated, which is not preferable. During mixing and subsequent ripening, the liquid temperature is 0.
The temperature may be about 100C to 100C, and preferably 10C to 90C. If the temperature is lower than 0 ° C., the cooling cost increases, and if it exceeds 100 ° C., a pressure-resistant container is required, which is not preferable.

【0019】本発明においては混合し終えた時に、さら
に混合液のpHを11〜13に調整することもできる。
好ましくはpHは11.5〜12.5である。混合終了
時のpHが11未満であると水酸化物などの不純物が混
入する上に粒子サイズも大きくなり、混合終了時のpH
が13を超えると、棒状の100nm以上の粒子が生成
するので適していない。pHの調整方法としては、混合
後に酸性水溶液やアルカリ水溶液を加えて調整する方法
などが挙げられる。
In the present invention, when the mixing is completed, the pH of the mixture can be further adjusted to 11 to 13.
Preferably the pH is between 11.5-12.5. If the pH at the end of mixing is less than 11, impurities such as hydroxides will be mixed and the particle size will increase.
Is more than 13, rod-shaped particles of 100 nm or more are not suitable. Examples of the method for adjusting the pH include a method of adjusting the pH by adding an acidic aqueous solution or an alkaline aqueous solution after mixing.

【0020】その後、混合液中の酸化亜鉛微粉末を熟成
させるために攪拌を継続する。熟成中にも粒子の凝集が
生じる可能性があるために、攪拌は必要であり、熟成時
間は600秒以上が好ましい。
Thereafter, stirring is continued to ripen the zinc oxide fine powder in the mixture. Stirring is necessary because aggregation of particles may occur during aging, and the aging time is preferably 600 seconds or more.

【0021】熟成して得られた液相中の酸化亜鉛微粉末
を濾過やデカンテーション、遠心分離などの方法を用い
て、水溶液中の溶存塩などの不純物を除去した後、その
ままあるいは界面活性剤やチクソ剤や分散剤等を添加し
たスラリーとして、または真空乾燥や凍結乾燥、噴霧乾
燥、静置乾燥、加熱乾燥などの方法によって乾燥粉末と
して使用することができる。以上のような方法により、
酸化亜鉛微粉末が得られる。
The zinc oxide fine powder in the liquid phase obtained by aging is filtered, decanted, centrifuged or the like to remove impurities such as dissolved salts in the aqueous solution and then used as it is or as a surfactant. Or a slurry to which a thixotropic agent, a dispersant, or the like is added, or as a dry powder by a method such as vacuum drying, freeze drying, spray drying, standing drying, and heat drying. By the above method,
A fine zinc oxide powder is obtained.

【0022】本発明の製造方法により得られる酸化亜鉛
微粉末は、平均粒径100nm以下であり、好ましくは
平均粒径が1〜70nmであり、より好ましくは平均粒
径が5〜50nmである。平均粒径が1nm未満である
と強い凝集力が発生し、逆に平均粒径が100nmを超
えると、可視光線の透過性が低下する。ここでいう平均
粒径とは、透過型電子顕微鏡によって観察した一次粒子
の200個以上の平均個数粒径である。本発明で得られ
る酸化亜鉛微粉末は液相で生成した後、液相中または乾
燥後に60℃以上に加熱することで結晶性を向上させるこ
とも可能である。
The zinc oxide fine powder obtained by the production method of the present invention has an average particle size of 100 nm or less, preferably has an average particle size of 1 to 70 nm, and more preferably has an average particle size of 5 to 50 nm. If the average particle size is less than 1 nm, a strong cohesive force is generated, and if the average particle size exceeds 100 nm, the transmittance of visible light decreases. Here, the average particle diameter is an average number particle diameter of 200 or more primary particles observed by a transmission electron microscope. After the zinc oxide fine powder obtained in the present invention is formed in the liquid phase, it can be heated to 60 ° C. or higher in the liquid phase or after drying to improve the crystallinity.

【0023】本発明の酸化亜鉛微粉末は、水溶液中に生
成した後や乾燥した後に珪酸ナトリウムや珪酸アルミニ
ウム、カップリング剤、脂肪酸、シリコーン化合物など
によって表面処理を行っても構わない。また、本発明で
得られる酸化亜鉛微粉末は焼成等の高温処理がなされて
いないために、酸化亜鉛微粉末の最表面層がアモルファ
ス酸化亜鉛や水酸化物を含有すると考えられ、そのため
に光触媒活性が小さく、化粧品や塗料、樹脂、フィルム
などに混合する際に光触媒活性を抑制するために必要な
表面処理をする必要がなくなる。なお光触媒活性をさら
に抑制したり、分散性を向上させるための表面処理を行
っても構わない。さらに本発明の酸化亜鉛微粉末は最表
面層がアモルファスか水酸化物を多く含有すると考えら
れ、高い抗菌性を示す。そこで、表面処理をしない本発
明で得られた酸化亜鉛微粉末、または部分的に表面処理
をした本発明で得られた酸化亜鉛微粉末は、成形体ある
いは塗料・ペースト等に配合あるいはコーティングして
用いることで、化粧品やフィルム、樹脂、ガラス等の透
明性を損なうことなく、紫外線遮蔽効果や抗菌効果を付
与することができる。
The zinc oxide fine powder of the present invention may be subjected to a surface treatment with sodium silicate or aluminum silicate, a coupling agent, a fatty acid, a silicone compound or the like after being formed in an aqueous solution or after being dried. In addition, since the zinc oxide fine powder obtained in the present invention has not been subjected to high-temperature treatment such as firing, it is considered that the outermost surface layer of the zinc oxide fine powder contains amorphous zinc oxide or hydroxide, and therefore, has a photocatalytic activity. And, when mixed with cosmetics, paints, resins, films, etc., it is not necessary to perform a surface treatment necessary for suppressing photocatalytic activity. A surface treatment for further suppressing the photocatalytic activity or improving the dispersibility may be performed. Further, the zinc oxide fine powder of the present invention is considered to have a high antibacterial property because the outermost surface layer is considered to be amorphous or contain a large amount of hydroxide. Therefore, the zinc oxide fine powder obtained by the present invention without surface treatment, or the zinc oxide fine powder obtained by the present invention, which has been partially surface-treated, is mixed or coated into a molded product or a paint or paste. By using the compound, an ultraviolet shielding effect and an antibacterial effect can be imparted without impairing the transparency of cosmetics, films, resins, glass, and the like.

【0024】本発明の第三は、上記の酸化亜鉛微粉末を
含有する樹脂組成物である。含有される樹脂としては、
ポリアミドやポリエステル、シリコーン、アクリル、ポ
リスチレン、ポリプロピレン、ポリエチレン、フェノー
ル、フッ素樹脂、テフロン(登録商標)、メラミン、エ
ポキシ、セルロース、ポリ乳酸などが挙げられるが、こ
れらに限定されるものではない。酸化亜鉛微粉末は、樹
脂中に混合あるいは樹脂表面にコーティングあるいは付
着しているものである。該酸化亜鉛微粉末は樹脂に対し
て0.0001〜50重量%含有されているものが好ま
しい。
A third aspect of the present invention is a resin composition containing the above zinc oxide fine powder. As the contained resin,
Examples include, but are not limited to, polyamide, polyester, silicone, acrylic, polystyrene, polypropylene, polyethylene, phenol, fluororesin, Teflon (registered trademark), melamine, epoxy, cellulose, polylactic acid, and the like. The zinc oxide fine powder is mixed in the resin or coated or adhered to the resin surface. The zinc oxide fine powder preferably contains 0.0001 to 50% by weight of the resin.

【0025】本発明の樹脂組成物は、フィルム、繊維、
シート、粒子や各種成形体として、塗料、化粧料など各
種用途に用いられる。例えば、塗料の場合には、酸化亜
鉛微粉末を0.0001〜50重量%含有された塗料の
ことであり、該酸化亜鉛微粉末は塗料中に分散して使用
される。また化粧料の場合には、酸化亜鉛微粉末を0.
0001〜70重量%含有する化粧料のことであり、パ
ウダー状あるいは液状の化粧料に混合あるいは分散して
使用される。該酸化亜鉛微粉末を含有した樹脂組成物、
塗料及び化粧料は、含有される酸化亜鉛微粉末によって
紫外線を遮蔽する性質を有し、酸化亜鉛微粉末による可
視光線の遮蔽率が小さいという特徴を有する。また、該
酸化亜鉛微粉末に表面処理がされていない場合、あるい
は表面処理が部分的に行われているものについては、抗
菌性能も有する。
The resin composition of the present invention comprises a film, a fiber,
It is used for various purposes such as paints and cosmetics as sheets, particles and various molded articles. For example, in the case of a paint, it means a paint containing 0.0001 to 50% by weight of zinc oxide fine powder, and the zinc oxide fine powder is used by being dispersed in the paint. In the case of cosmetics, a fine powder of zinc oxide is used in an amount of 0.1.
Cosmetics containing 0001 to 70% by weight are used by mixing or dispersing them in powdery or liquid cosmetics. A resin composition containing the zinc oxide fine powder,
Paints and cosmetics have the property of shielding ultraviolet rays by the contained zinc oxide fine powder, and have the characteristic that the visible light shielding rate by the zinc oxide fine powder is small. Further, when the zinc oxide fine powder is not subjected to a surface treatment, or when the surface treatment is partially performed, the zinc oxide fine powder also has an antibacterial property.

【0026】[0026]

【実施例】以下、実施例によって本発明を具体的に説明
する、 実施例1 25℃の0.5モル/リットル塩化亜鉛水溶液2リット
ルに、25℃の1モル/リットル水酸化ナトリウム水溶
液2.05リットルを強撹拌下で加えて混合し、20秒
で混合を終了し、pHを12.1に調整し、撹拌を続け
た。混合開始時より10分後、混合液より白色生成物を
遠心分離により分離し、この白色生成物を水で洗浄した
後、30℃で真空乾燥を24時間行い、79.3gの白
色粉末が得られた。X線回折の結果、この白色粉体は酸
化亜鉛であることがわかった。キレート滴定により亜鉛
濃度を求めて酸化亜鉛に換算したところ、酸化亜鉛純度
は99.5%であった。透過型電子顕微鏡で230個の
一次粒子の粒径を測定すると平均粒径は32nmであっ
た。
The present invention will now be described in detail with reference to the following Examples. Example 1 2 mol of 0.5 mol / l zinc chloride aqueous solution at 25 ° C. and 1 mol / l sodium hydroxide aqueous solution at 25 ° C. 05 liters were added under vigorous stirring and mixed, the mixing was stopped in 20 seconds, the pH was adjusted to 12.1, and the stirring was continued. After 10 minutes from the start of mixing, a white product was separated from the mixed solution by centrifugation, and the white product was washed with water, and then vacuum-dried at 30 ° C. for 24 hours to obtain 79.3 g of a white powder. Was done. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 99.5%. When the particle size of 230 primary particles was measured with a transmission electron microscope, the average particle size was 32 nm.

【0027】実施例2 40℃の0.1モル/リットル硫酸亜鉛水溶液1リット
ルに、40℃の0.2モル/リットル水酸化ナトリウム
水溶液1.2リットルを強撹拌下で加えて混合し、30
秒で混合を終了しpHを11.9に調整し、撹拌を続け
た。混合開始時より10分後、混合液より白色生成物を
遠心分離により分離し、この白色生成物を水で洗浄した
後、30℃で真空乾燥を24時間行い、7.5gの白色
粉末が得られた。X線回折の結果、この白色粉体は酸化
亜鉛であることがわかった。キレート滴定により亜鉛濃
度を求めて酸化亜鉛に換算したところ、酸化亜鉛純度は
99.1%であった。透過型電子顕微鏡で243個の一
次粒子の粒径を測定すると平均粒径は38nmであっ
た。
Example 2 To 1 liter of a 0.1 mol / l aqueous solution of zinc sulfate at 40 ° C., 1.2 liter of a 0.2 mol / l aqueous sodium hydroxide solution at 40 ° C. was added under vigorous stirring and mixed.
Mixing was completed in seconds, the pH was adjusted to 11.9, and stirring was continued. After 10 minutes from the start of mixing, a white product was separated from the mixed solution by centrifugation, and the white product was washed with water, and then vacuum-dried at 30 ° C. for 24 hours to obtain 7.5 g of a white powder. Was done. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 99.1%. When the particle size of 243 primary particles was measured with a transmission electron microscope, the average particle size was 38 nm.

【0028】実施例3 30℃の1モル/リットル塩化亜鉛水溶液45リットル
と、30℃の2モル/リットル水酸化ナトリウム水溶液
48リットルを同時に100秒間で添加し、強撹拌下で
混合した。混合後のpHは12.3であった。混合開始
時より30分後、混合液より白色生成物を遠心分離によ
り分離し、この白色生成物を水で洗浄した後、105℃
で加熱乾燥を24時間行い、3.51kgの白色粉末が
得られた。X線回折の結果、この白色粉体は酸化亜鉛で
あることがわかった。キレート滴定により亜鉛濃度を求
めて酸化亜鉛に換算したところ、酸化亜鉛純度は99.
3%であった。透過型電子顕微鏡で223個の一次粒子
の粒径を測定すると平均粒径は28nmであった。
Example 3 45 liters of a 1 mol / l aqueous zinc chloride solution at 30 ° C. and 48 liters of a 2 mol / l aqueous sodium hydroxide solution at 30 ° C. were simultaneously added over 100 seconds, and mixed with vigorous stirring. The pH after mixing was 12.3. Thirty minutes after the start of mixing, a white product was separated from the mixture by centrifugation, and the white product was washed with water and then heated to 105 ° C.
For 24 hours, and 3.51 kg of white powder was obtained. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted into zinc oxide, the zinc oxide purity was 99.
3%. The average particle size of the 223 primary particles measured by a transmission electron microscope was 28 nm.

【0029】実施例4 50℃の1モル/リットル塩化亜鉛水溶液450リット
ルに、50℃の2モル/リットル水酸化ナトリウム水溶
液480リットルを同時に200秒間で添加し、強撹拌
下で混合した。混合後のpHは12.4であった。混合
開始時より60分後、混合液より白色生成物を遠心分離
により分離し、この白色生成物を水で洗浄した後、30
℃で真空乾燥を24時間行い、34.5kgの白色粉末
が得られた。X線回折の結果、この白色粉体は酸化亜鉛
であることがわかった。キレート滴定により亜鉛濃度を
求めて酸化亜鉛に換算したところ、酸化亜鉛純度は9
9.5%であった。透過型電子顕微鏡で243個の一次
粒子の粒径を測定すると平均粒径は38nmであった。
Example 4 To 450 liters of a 1 mol / l aqueous solution of zinc chloride at 50 ° C., 480 liters of a 2 mol / l aqueous sodium hydroxide solution at 50 ° C. were simultaneously added for 200 seconds, and mixed with vigorous stirring. The pH after mixing was 12.4. After 60 minutes from the start of mixing, a white product was separated from the liquid mixture by centrifugation.
After vacuum drying at 24 ° C. for 24 hours, 34.5 kg of a white powder was obtained. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 9
It was 9.5%. When the particle size of 243 primary particles was measured with a transmission electron microscope, the average particle size was 38 nm.

【0030】実施例5 40℃の0.1モル/リットル硫酸亜鉛水溶液9リット
ルに、40℃の0.2モル/リットル水酸化ナトリウム
水溶液10リットルを強撹拌下で加えて混合し、500
秒で混合を終えpHを11.9に調整し、撹拌を続け
た。混合開始時より10分後、混合液より白色生成物を
遠心分離により分離し、この白色生成物を水で洗浄した
後、30℃で真空乾燥を24時間行い、7.0gの白色
粉末が得られた。X線回折の結果、この白色粉体は酸化
亜鉛であることがわかった。キレート滴定により亜鉛濃
度を求めて酸化亜鉛に換算したところ、酸化亜鉛純度は
98.5%であった。透過型電子顕微鏡で211個の一
次粒子の粒径を測定すると平均粒径は58nmであっ
た。
Example 5 To 10 liters of a 0.1 mol / l aqueous solution of zinc sulfate at 40 ° C., 10 liters of a 0.2 mol / l aqueous sodium hydroxide solution at 40 ° C. were added under vigorous stirring and mixed.
Mixing was completed in seconds, the pH was adjusted to 11.9, and stirring was continued. After 10 minutes from the start of mixing, a white product was separated from the mixed solution by centrifugation, and the white product was washed with water, and then vacuum-dried at 30 ° C. for 24 hours to obtain 7.0 g of a white powder. Was done. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 98.5%. When the particle size of 211 primary particles was measured with a transmission electron microscope, the average particle size was 58 nm.

【0031】比較例1 40℃の0.1モル/リットル硫酸亜鉛水溶液9リット
ルに、40℃の0.2モル/リットル水酸化ナトリウム
水溶液9リットルを強撹拌下で300秒かけて加えて混
合し、pHを9.9に調整し、撹拌を続けた。混合開始
時より10分後、混合液より白色生成物を遠心分離によ
り分離し、この白色生成物を水で洗浄した後、30℃で
真空乾燥を24時間行い、6.8gの白色粉末が得られ
た。X線回折の結果、この白色粉体は酸化亜鉛であるこ
とがわかった。キレート滴定により亜鉛濃度を求めて酸
化亜鉛に換算したところ、酸化亜鉛純度は93.4%で
あった。透過型電子顕微鏡で241個の一次粒子の粒径
を測定すると平均粒径は138nmであった。
COMPARATIVE EXAMPLE 1 To 9 liters of a 0.1 mol / l aqueous solution of zinc sulfate at 40 ° C., 9 liters of a 0.2 mol / l aqueous solution of sodium hydroxide at 40 ° C. were added under strong stirring over 300 seconds and mixed. The pH was adjusted to 9.9 and stirring was continued. After 10 minutes from the start of mixing, a white product was separated from the mixture by centrifugation, and the white product was washed with water, and then vacuum-dried at 30 ° C. for 24 hours to obtain 6.8 g of a white powder. Was done. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 93.4%. The average particle size of the 241 primary particles measured by a transmission electron microscope was 138 nm.

【0032】比較例2 40℃の1モル/リットル硫酸亜鉛水溶液9リットル
に、40℃の2モル/リットル水酸化ナトリウム水溶液
13リットルを強撹拌下で300秒かけて加えて混合
し、pHを13.3に調整し、撹拌を続けた。混合開始
時より10分後、混合液より白色生成物を遠心分離によ
り分離し、この白色生成物を水で洗浄した後、30℃で
真空乾燥を24時間行い、70.3gの白色粉末が得ら
れた。X線回折の結果、この白色粉体は酸化亜鉛である
ことがわかった。キレート滴定により亜鉛濃度を求めて
酸化亜鉛に換算したところ、酸化亜鉛純度は98.8%
であった。透過型電子顕微鏡で211個の一次粒子の粒
径を測定すると平均粒径は430nmであった。
COMPARATIVE EXAMPLE 2 To 9 liters of a 1 mol / l aqueous solution of zinc sulfate at 40 ° C., 13 liters of a 2 mol / l aqueous sodium hydroxide solution at 40 ° C. were added under vigorous stirring for 300 seconds, and mixed. .3 and stirring was continued. After 10 minutes from the start of mixing, a white product was separated from the mixed solution by centrifugation, and the white product was washed with water, and then vacuum-dried at 30 ° C. for 24 hours to obtain 70.3 g of a white powder. Was done. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 98.8%.
Met. When the particle size of 211 primary particles was measured with a transmission electron microscope, the average particle size was 430 nm.

【0033】比較例3 40℃の0.1モル/リットル硫酸亜鉛水溶液9リット
ルに、40℃の0.2モル/リットル水酸化ナトリウム
水溶液10リットルを強撹拌下で1200秒をかけて加
えて混合し、pHを11.9に調整し、撹拌を続けた。
混合開始時より30分後、混合液より白色生成物を遠心
分離により分離し、この白色生成物を水で洗浄した後、
30℃で真空乾燥を24時間行い、7.0gの白色粉末
が得られた。X線回折の結果、この白色粉体は酸化亜鉛
であることがわかった。キレート滴定により亜鉛濃度を
求めて酸化亜鉛に換算したところ、酸化亜鉛純度は9
8.4%であった。透過型電子顕微鏡で219個の一次
粒子の粒径を測定すると平均粒径は142nmであっ
た。
Comparative Example 3 To 9 liters of a 0.1 mol / l aqueous solution of zinc sulfate at 40 ° C., 10 liters of a 0.2 mol / l aqueous sodium hydroxide solution at 40 ° C. were added over 1200 seconds with vigorous stirring and mixed. Then, the pH was adjusted to 11.9 and stirring was continued.
After 30 minutes from the start of mixing, a white product was separated from the mixture by centrifugation, and the white product was washed with water.
Vacuum drying was performed at 30 ° C. for 24 hours to obtain 7.0 g of a white powder. As a result of X-ray diffraction, this white powder was found to be zinc oxide. When the zinc concentration was determined by chelate titration and converted to zinc oxide, the zinc oxide purity was 9
It was 8.4%. The average particle size of the 219 primary particles measured by a transmission electron microscope was 142 nm.

【0034】[0034]

【発明の効果】本発明によれば、紫外線遮蔽性や分散性
及び可視光線透過性に優れ、光触媒活性が小さい、平均
粒径が100nm以下の酸化亜鉛微粉末を安価に製造す
ることができる。
According to the present invention, it is possible to produce inexpensively zinc oxide fine powder having excellent ultraviolet shielding properties, dispersibility and visible light transmittance, low photocatalytic activity and an average particle diameter of 100 nm or less.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G047 AA02 AB02 AC03 AD04 4J002 AA001 AB011 BB031 BB121 BC031 BD121 BD151 BG001 CC031 CC181 CD001 CF001 CF181 CL001 CP031 DE106 FD016 FD206  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G047 AA02 AB02 AC03 AD04 4J002 AA001 AB011 BB031 BB121 BC031 BD121 BD151 BG001 CC031 CC181 CD001 CF001 CF181 CL001 CP031 DE106 FD016 FD206

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 混合終了時点でのpHが11〜13とな
る、亜鉛含有液の所定量とアルカリ水溶液の所定量とを
0.1秒〜600秒の間で攪拌しながら混合し、次いで
混合液中の酸化亜鉛微粉末を熟成することを特徴とする
酸化亜鉛微粉末の製造方法。
1. A predetermined amount of a zinc-containing solution and a predetermined amount of an aqueous alkaline solution are mixed with stirring at a time of 0.1 to 600 seconds so that the pH at the end of mixing is 11 to 13. A method for producing zinc oxide fine powder, which comprises aging the zinc oxide fine powder in the liquid.
【請求項2】 請求項1記載の製造方法によって得られ
た平均粒径100nm以下の酸化亜鉛微粉末。
2. A zinc oxide fine powder having an average particle diameter of 100 nm or less obtained by the production method according to claim 1.
【請求項3】 請求項2記載の酸化亜鉛微粉末を含有す
る樹脂組成物。
3. A resin composition containing the zinc oxide fine powder according to claim 2.
JP2001092682A 2001-03-28 2001-03-28 Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it Pending JP2002284527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092682A JP2002284527A (en) 2001-03-28 2001-03-28 Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092682A JP2002284527A (en) 2001-03-28 2001-03-28 Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it

Publications (1)

Publication Number Publication Date
JP2002284527A true JP2002284527A (en) 2002-10-03

Family

ID=18947102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092682A Pending JP2002284527A (en) 2001-03-28 2001-03-28 Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it

Country Status (1)

Country Link
JP (1) JP2002284527A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023259A (en) * 2005-06-13 2007-02-01 Daiichi Kasei Kogyo Kk Colored material and method for producing the same
JP2007161539A (en) * 2005-12-14 2007-06-28 Sumitomo Metal Mining Co Ltd Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent
WO2008062871A1 (en) * 2006-11-22 2008-05-29 Shiseido Company Ltd. Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
JP2010195672A (en) * 2009-01-30 2010-09-09 Fujifilm Corp Star-shaped zinc oxide particle and method for producing the same
JP4768633B2 (en) * 2004-01-24 2011-09-07 エボニック デグサ ゲーエムベーハー Dispersion and coating composition containing nanoscale zinc oxide
JP2012176860A (en) * 2011-02-25 2012-09-13 Kao Corp Method of manufacturing flaky zinc oxide powder
WO2021220453A1 (en) 2020-04-30 2021-11-04 住友大阪セメント株式会社 Surface-modified zinc oxide particles, liquid dispersion, and cosmetic
WO2021220454A1 (en) 2020-04-30 2021-11-04 住友大阪セメント株式会社 Surface-modified zinc oxide particles, dispersion solution, and cosmetic
WO2022177004A1 (en) 2021-02-22 2022-08-25 住友大阪セメント株式会社 Surface-modified zinc oxide paprticles, dispersion liquid, cosmetic preparation, and method for producing surface-modified zinc oxide particles

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768633B2 (en) * 2004-01-24 2011-09-07 エボニック デグサ ゲーエムベーハー Dispersion and coating composition containing nanoscale zinc oxide
JP2007023259A (en) * 2005-06-13 2007-02-01 Daiichi Kasei Kogyo Kk Colored material and method for producing the same
JP4702615B2 (en) * 2005-12-14 2011-06-15 住友金属鉱山株式会社 Method for producing zinc oxide fine particles for ultraviolet shielding, dispersion for forming ultraviolet shielding using the fine particles, and ultraviolet shielding
JP2007161539A (en) * 2005-12-14 2007-06-28 Sumitomo Metal Mining Co Ltd Method for producing zinc oxide fine particle for ultraviolet shielding, and liquid dispersion for forming ultraviolet shielding agent using the fine particle and ultraviolet shielding agent
JPWO2008062871A1 (en) * 2006-11-22 2010-03-04 株式会社資生堂 Method for producing fine particle zinc oxide powder and cosmetic containing the same
WO2008062871A1 (en) * 2006-11-22 2008-05-29 Shiseido Company Ltd. Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
US8168157B2 (en) 2006-11-22 2012-05-01 Shiseido Company Ltd. Production method of fine particle zinc oxide powder and cosmetics containing the same
JP2010195672A (en) * 2009-01-30 2010-09-09 Fujifilm Corp Star-shaped zinc oxide particle and method for producing the same
JP2012176860A (en) * 2011-02-25 2012-09-13 Kao Corp Method of manufacturing flaky zinc oxide powder
WO2021220453A1 (en) 2020-04-30 2021-11-04 住友大阪セメント株式会社 Surface-modified zinc oxide particles, liquid dispersion, and cosmetic
WO2021220454A1 (en) 2020-04-30 2021-11-04 住友大阪セメント株式会社 Surface-modified zinc oxide particles, dispersion solution, and cosmetic
KR20230002539A (en) 2020-04-30 2023-01-05 스미토모 오사카 세멘토 가부시키가이샤 Surface-modified zinc oxide particles, dispersions, cosmetics
KR20230002538A (en) 2020-04-30 2023-01-05 스미토모 오사카 세멘토 가부시키가이샤 Surface-modified zinc oxide particles, dispersions, cosmetics
WO2022177004A1 (en) 2021-02-22 2022-08-25 住友大阪セメント株式会社 Surface-modified zinc oxide paprticles, dispersion liquid, cosmetic preparation, and method for producing surface-modified zinc oxide particles
KR20230147093A (en) 2021-02-22 2023-10-20 스미토모 오사카 세멘토 가부시키가이샤 Surface-modified zinc oxide particles, dispersions, cosmetics, manufacturing method of surface-modified zinc oxide particles

Similar Documents

Publication Publication Date Title
KR101233703B1 (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
JPS6411670B2 (en)
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP3713077B2 (en) Method for producing metal oxide or hydroxide sol
JP2009521394A (en) Method for producing metal oxide nanoparticles having controlled properties, and nanoparticles and preparations produced by the method
JP5253095B2 (en) Method for producing zirconia sol
CN108033432A (en) A kind of cage structure material g-C3N4Preparation method and applications
JP2002284527A (en) Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it
WO2016136765A1 (en) Method for producing organic solvent dispersion of titanium oxide particles
US5552083A (en) Sol and fine powder of sodium magnesium fluoride and processes for their production
JP5258447B2 (en) Dispersion of titanium oxide composite particles and method for producing the dispersion
JP2013139378A (en) Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
US5338354A (en) Composite pigmentary material
JPH1111948A (en) Stable anatase type titanium dioxide
WO2009017458A1 (en) Solution of particles containing titanium dioxide and peroxo-titanium complex, and its preparation
KR20080036109A (en) Composite titanic acid coating film and composite titanic acid-coated resin substrate
JPH10130020A (en) Production of cubic calcium carbonate having controlled particle diameter
CN1884395A (en) Low infrared emittance sheet-like pigment and method for preparing same
JPH09156924A (en) Barium sulfate and its production and resin composition
JPH04164814A (en) Production of ultra-fine zinc oxide powder having excellent dispersibility
TWI460130B (en) Process for the production of a storage-stable barium sulphate having good dispersibility
JPH01153760A (en) Production of pearl gloss pigment composed of bismuth oxychloride
KR101517369B1 (en) Process for preparing zirconia sol
JPH04164813A (en) Production of zinc oxide powder
JP2017509567A (en) Method for producing single crystal TiO2 flakes