JP2861806B2 - Metal oxide fine particle dispersed flake glass and method for producing the same - Google Patents

Metal oxide fine particle dispersed flake glass and method for producing the same

Info

Publication number
JP2861806B2
JP2861806B2 JP11784694A JP11784694A JP2861806B2 JP 2861806 B2 JP2861806 B2 JP 2861806B2 JP 11784694 A JP11784694 A JP 11784694A JP 11784694 A JP11784694 A JP 11784694A JP 2861806 B2 JP2861806 B2 JP 2861806B2
Authority
JP
Japan
Prior art keywords
weight
metal oxide
fine particles
glass
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11784694A
Other languages
Japanese (ja)
Other versions
JPH07315859A (en
Inventor
和宏 堂下
浩司 横井
和夫 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11784694A priority Critical patent/JP2861806B2/en
Publication of JPH07315859A publication Critical patent/JPH07315859A/en
Application granted granted Critical
Publication of JP2861806B2 publication Critical patent/JP2861806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Cosmetics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属酸化物微粒子分散
フレーク状ガラス、特に例えば高い紫外線遮蔽能を有
し、かつ可視光に対する透明性が高い紫外線遮蔽剤及び
化粧料に適した表面の平滑性が高い金属酸化物微粒子分
散フレーク状ガラス、それを用いた化粧料、および、有
機金属化合物を含む溶液を出発原料とし、表面が平滑な
金属酸化物微粒子分散フレーク状ガラスを製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flake-like glass in which metal oxide fine particles are dispersed, in particular, for example, an ultraviolet shielding agent having high ultraviolet shielding ability and high transparency to visible light, and a smooth surface suitable for cosmetics. TECHNICAL FIELD The present invention relates to a metal oxide fine particle-dispersed flake glass having high properties, a cosmetic using the same, and a method for producing a metal oxide fine particle-dispersed flake glass having a smooth surface using a solution containing an organic metal compound as a starting material.

【0002】[0002]

【従来の技術】現在、フレーク状ガラスはプラスチック
充填材、耐蝕ライニングあるいは塗料に使用されてい
る。このようなフレーク状ガラスは、組成的にはソーダ
石灰珪酸塩ガラス系が主で、約4ミクロンの厚さのもの
であり、溶融したガラスを風船の如く膨らませ、急冷、
粉砕して製造されている。ところが、このフレーク状ガ
ラスの内部に種々の物質を混入させ、新しい性能(例え
ば高耐熱性、紫外線遮蔽性、電磁遮蔽性等)を付与しよ
うとすると、1)高温溶融状態を経るために添加物質の
種類や量に制限がある、2)結晶化、分相等のために熱
処理等の工程が必要である、等の理由から、効率良く高
品質な製品を製造することは、事実上困難であった。
2. Description of the Prior Art Flake glass is currently used for plastic fillers, corrosion resistant linings or paints. Such flaked glass is mainly composed of soda-lime silicate glass, and has a thickness of about 4 microns. The molten glass is expanded like a balloon, quenched,
It is manufactured by grinding. However, if various substances are mixed into the glass flakes to give new performances (for example, high heat resistance, ultraviolet shielding properties, electromagnetic shielding properties, etc.), 1) the added substances due to high temperature melting state It is practically difficult to efficiently produce high-quality products because there are limitations on the type and amount of the compound, and 2) steps such as heat treatment are required for crystallization, phase separation, and the like. Was.

【0003】また別の製法として、加水分解および重縮
合が可能である有機金属化合物を含みかつ微粒子を分散
させた溶液を、基材上、好ましくは表面が平滑な基板上
に塗布し、乾燥して基材から剥離させた後、焼結する微
粒子分散フレーク状ガラスの製造方法が知られている。
(特開昭63−126818、特開平1−14382
1、特開平4−92832)この微粒子として酸化チタ
ンなどを用いて製造された金属酸化物微粒子分散フレー
ク状ガラスは塗料、プラスチックフィルム、プラスチッ
ク成型品、化粧料基材等に添加・配合され、透湿防止
剤、表面改質剤、紫外線遮蔽剤として利用されている。
As another production method, a solution containing an organometallic compound capable of hydrolysis and polycondensation and in which fine particles are dispersed is applied on a substrate, preferably a substrate having a smooth surface, and dried. There is known a method for producing a glass flake having fine particles dispersed therein, which is separated from a substrate by sintering.
(JP-A-63-126818, JP-A-1-14382)
The metal oxide fine particle dispersed flake glass produced using titanium oxide or the like as the fine particles is added and blended in paints, plastic films, plastic molded products, cosmetic base materials, and the like. It is used as a wetting inhibitor, surface modifier, and ultraviolet shielding agent.

【0004】[0004]

【発明が解決しようとする課題】この方法に従い製造さ
れた、酸化チタン、酸化亜鉛、酸化セリウム等の微粒子
分散フレーク状ガラスは、経時的に凝集することもな
く、のびも良いものの、金属酸化物微粒子が当初から凝
集体を形成しやすく、また特に要求されるフレーク状ガ
ラスの厚みが小さい場合には、その凝集体の直径が大き
くなって必然的にフレーク状ガラス表面から凝集体が突
出する傾向が大きくなり、次のような種々の問題を生じ
る。 (1)本来特徴として有するフレーク状ガラス表面の平
滑性、光沢性、すべり性が失われるので装飾性などを重
んじる用途においては好ましくない。(2)金属酸化物
微粒子として紫外線遮蔽作用を有する酸化チタンなどを
用いる場合、フレーク状ガラス表面から露出した酸化チ
タンがその光触媒作用により周囲の樹脂材料や肌(化粧
料の場合)を劣化させたり痛めたりするおそれが生じ
る。(3)可視光、紫外線、赤外線などの光を遮蔽また
は吸収する目的で金属酸化物微粒子を用いる場合、これ
が均一に分散分布しないため、効率的な光の遮蔽・吸収
が行えなくなり、多量の金属酸化物微粒子を使用しなけ
ればならなくなって経済的でない。(4)またフレーク
状ガラスに透明性・透視性がしばしば要求される場合が
あるが、金属酸化物微粒子の凝集体の発生により透明性
・透視性が失われやすい。
The glass flakes dispersed in fine particles such as titanium oxide, zinc oxide and cerium oxide produced according to this method do not agglomerate with time and have good spreadability, but they are good for metal oxides. When the fine particles easily form an aggregate from the beginning, and particularly when the thickness of the flake glass required is small, the diameter of the aggregate increases and the aggregate tends to protrude from the surface of the flake glass inevitably. And the following various problems occur. (1) The smoothness, glossiness, and slipperiness of the surface of the flaky glass, which are inherent characteristics, are lost, which is not preferable in applications that value decorativeness and the like. (2) In the case where titanium oxide having an ultraviolet shielding effect is used as the metal oxide fine particles, the titanium oxide exposed from the surface of the flake glass degrades a surrounding resin material or skin (in the case of cosmetics) due to its photocatalytic action. There is a risk of being hurt. (3) When metal oxide fine particles are used for shielding or absorbing light such as visible light, ultraviolet light, infrared light, etc., they are not uniformly dispersed and distributed. It is not economical to use oxide fine particles. (4) In some cases, the flake glass is required to have transparency and transparency, but the transparency and transparency are likely to be lost due to generation of aggregates of metal oxide fine particles.

【0005】本発明は上記の従来技術に鑑み、従来製造
が困難であった、金属酸化物微粒子が均一に分散分布
し、かつ表面の平滑性、透明度が高く、高い紫外線遮蔽
能を有する金属酸化物微粒子分散フレーク状ガラス、お
よびそれを簡単かつ効率的に製造することのできる方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above prior art, the present invention has been difficult to produce in the past. Metal oxide fine particles are uniformly dispersed and distributed, and have high surface smoothness, high transparency, and high ultraviolet shielding ability. It is an object of the present invention to provide a flake-like glass in which fine particles of an object are dispersed, and a method capable of easily and efficiently producing the glass.

【0006】[0006]

【課題を解決するための手段】本課題を解決するため、
本発明者らは、有機金属化合物と水を含む溶液に添加す
べき金属酸化物微粒子として表面に水酸基を有するもの
を用いることにより、より簡単かつ効率的に高品質な微
粒子分散フレーク状ガラスが製造できることを見いだし
た。
Means for Solving the Problems In order to solve this problem,
The present inventors have produced simpler and more efficient high-quality fine particle-dispersed glass flakes by using metal oxide fine particles having a hydroxyl group on the surface as metal oxide fine particles to be added to a solution containing an organometallic compound and water. I found what I could do.

【0007】すなわち本発明は、金属酸化物微粒子を内
部に分散したフレーク状ガラスにおいて、前記金属酸化
物微粒子が水酸基を有するコロイド粒子から由来してい
て1〜300nmの粒子径を有する酸化チタン微粒子か
らなり、かつその酸化チタン微粒子が前記ガラス中で凝
集することなく実質的に単粒子の形でその含有量が1〜
60重量%になるように分散しており、波長が400〜
800nmの可視光に対する透過率がその全域にわたっ
て80%以上である、表面が平滑な金属酸化物微粒子分
散フレーク状ガラスである。また本発明は、 (1)それぞれ含水金属酸化物、金属水酸化物、または表面に水酸基を有する 金属酸化物、のコロイド粒子(酸化物換算) 0.3〜20重量% (2)加水分解および重縮合が可能である有機金属化合物 5〜50重量% (3)アルコール 10〜50重量% (4)酸触媒 0.001〜5重量% (5)水 残部 ただし前記有機金属化合物(2)とアルコール(3)の
合計は90重量%以下、からなる溶液を、表面が平滑な
基板上に塗布し、これを乾燥させて塗布膜を剥離させ、
焼結することを特徴とする、金属酸化物微粒子分散フレ
ーク状ガラスの製造方法である。
That is, according to the present invention, there is provided a flake glass in which metal oxide fine particles are dispersed, wherein the metal oxide fine particles are derived from colloidal particles having a hydroxyl group and have a particle diameter of 1 to 300 nm .
And the content thereof is substantially 1 in the form of single particles without agglomeration of the titanium oxide fine particles in the glass .
60% by weight, and the wavelength is 400 to
The transmittance for 800 nm visible light is
Te is 80% or more, the surface is smooth metal oxide particulate dispersion glass flakes. The present invention relates to (1), respectively hydrous metal oxides, metal oxides having a hydroxyl group in the metal hydroxide or surface, of the colloidal particles (as oxide) 0.3 to 20 wt% (2) Hydrolysis and 5 to 50% by weight of an organometallic compound capable of polycondensation (3) 10 to 50% by weight of an alcohol (4) 0.001 to 5% by weight of an acid catalyst (5) Water The remainder except that the organometallic compound (2) and an alcohol (3)
A solution consisting of a total of 90% by weight or less, having a smooth surface
Apply on the substrate, dry this to peel off the coating film,
A metal oxide fine particle dispersion frame characterized by sintering.
This is a method for producing a glass-like glass.

【0008】本発明で用いるコロイドは、粒子表面に水
酸基を有しておれば良く、好ましくはコロイド構成組成
に水酸基を有しているものが良い。具体的には、含水金
属酸化物(MxOy(OH)z、例えばTiO(OH)2)、 金
属水酸化物(Mx(OH)y、例えばTi(OH)4)、 また
は粒子表面に水酸基を有している金属酸化物粒子が、単
成分あるいは二成分以上で用いられる。ただし、ここで
Mは各種金属原子、Oは酸素原子、Hは水素原子、x、y、z
は自然数を示す。MとしてTi、Sn、Si、Fe、Zr、Al、Z
n、Ce等が好ましく用いられる。このようなコロイド
は、高含水率の液体中での単分散性に優れており、上記
有機金属化合物と水を含む溶液中に、均一に分散する。
含水金属酸化物(MxOy(OH)z、例えばTiO(OH)2
および金属水酸化物(Mx(OH)y、例えばTi(OH)4
は一般に市販されており、また粒子表面に水酸基を有し
ている金属酸化物粒子は、金属化合物、例えば硝酸第2
鉄水溶液を沸騰水中に加えて加熱後、約30℃で数時間
養生させることによりα−Fe2O3(ヘマタイト)のコ
ロイド微粒子でその表面に水酸基を有しているものが得
られる。
The colloid used in the present invention may have a hydroxyl group on the particle surface, and preferably has a hydroxyl group in the composition of the colloid. Specifically, a hydrated metal oxide (MxOy (OH) z, for example, TiO (OH) 2 ), a metal hydroxide (Mx (OH) y, for example, Ti (OH) 4 ), or a particle having a hydroxyl group on its surface. Metal oxide particles are used as a single component or two or more components. However, here
M is various metal atoms, O is oxygen atom, H is hydrogen atom, x, y, z
Indicates a natural number. M, Ti, Sn, Si, Fe, Zr, Al, Z
n, Ce and the like are preferably used. Such a colloid is excellent in monodispersibility in a liquid having a high water content, and is uniformly dispersed in a solution containing the organometallic compound and water.
Hydrous metal oxide (MxOy (OH) z, for example TiO (OH) 2 )
And metal hydroxides (Mx (OH) y, such as Ti (OH) 4 )
Is generally commercially available, and metal oxide particles having a hydroxyl group on the surface of the particles are formed of a metal compound such as nitric acid
An aqueous iron solution is added to boiling water, heated, and then cured at about 30 ° C. for several hours to obtain colloidal particles of α-Fe 2 O 3 (hematite) having a hydroxyl group on the surface.

【0009】上記コロイドの分散質組成と、焼結後のフ
レーク状ガラスとなった時点での微粒子組成は必ずしも
同じである必要はなく、多くの場合、焼結温度にもよる
が、含水金属酸化物や金属水酸化物が、金属酸化物に変
化する。
The dispersoid composition of the colloid and the fine particle composition at the time of forming the flake glass after sintering are not necessarily the same. In many cases, depending on the sintering temperature, the hydrated metal oxide An object or a metal hydroxide changes into a metal oxide.

【0010】上記コロイドの粒径は、1nm以上1000nm 以
下、好ましくは1nm以上500nm以下が良い。粒径が1nm よ
り小さいと、フレーク状ガラスとなった時点での微粒子
径が大きくならない場合があり好ましくない。また粒径
が1000nmより大きいと、有機金属化合物と水を含む溶液
に安定に分散させることが難しくなり好ましくない。ま
た500nm より大きい粒径のコロイドを使用すると、フレ
ーク状ガラスとなった時点で、フレーク表面凹凸が大き
くなる、透明性が損なわれる、等の場合がある。これら
は、時によっては良くないので、500nm より大きいコロ
イドの使用はあまり好ましいとは言えない。特に微粒子
が酸化チタン微粒子である場合には、その直径は、1nm
以上、300nm以下である。1nm より小さいと微粒子によ
る光散乱効果が小さくなり、紫外線遮蔽効果が低減する
ので好ましくない。また、300nm より大きいと、可視光
に対する透明性が損なわれ、やはり好ましくない。
[0010] The particle size of the colloid is preferably from 1 nm to 1000 nm, more preferably from 1 nm to 500 nm. If the particle size is smaller than 1 nm, the particle size at the time of forming the flake glass may not be large, which is not preferable. On the other hand, if the particle size is larger than 1000 nm, it is difficult to stably disperse the solution in a solution containing an organic metal compound and water, which is not preferable. When a colloid having a particle diameter larger than 500 nm is used, the surface of the flakes may become large and irregular at the time when the flake-like glass is formed, or the transparency may be impaired. Since these are sometimes not good, the use of colloids larger than 500 nm is less preferred. Especially when the fine particles are titanium oxide fine particles, the diameter is 1 nm
Above, it is 300 nm or less. If it is smaller than 1 nm, the light scattering effect of the fine particles is reduced, and the ultraviolet shielding effect is reduced, which is not preferable. On the other hand, if it is larger than 300 nm, transparency to visible light is impaired, which is also not preferable.

【0011】上記コロイドの溶媒は、実質的にコロイド
粒子が安定に分散していれば、特に限定されないが、
水、メタノール、エタノール、プロパノール等の単体ま
たは混合体が好ましく、水がさらに好ましい。これら水
及び低級アルコールは、上記有機金属化合物と水を含む
溶液と簡単に混じり合い、また、フレーク化時及びフレ
ーク化後の熱処理によって簡単に除去できるので良い。
そのうち水は、上記フレーク状ガラス製造環境上最も好
ましい。
The colloid solvent is not particularly limited as long as the colloid particles are substantially stably dispersed.
A simple substance or a mixture of water, methanol, ethanol, propanol and the like are preferable, and water is more preferable. These water and lower alcohol are good because they can be easily mixed with a solution containing the organometallic compound and water, and can be easily removed by heat treatment at the time of flake formation and after flake formation.
Among them, water is most preferable in the flake glass production environment.

【0012】上記コロイド粒子の含有量は、フレーク状
ガラスとなった時点で、 0.1重量%以上、80重量%以下
である。0.1重量% より少ないと、実質的に微粒子を添
加した効果が現れず、また80重量%より多いと、ガラス
相が不連続になり、フレーク状ガラスが脆くなり、それ
ぞれ好ましくない。実用上好ましくは1重量%以上、60
重量%以下であるのが良い。特に酸化チタン微粒子含有
量は、1重量%以上、60重量%以下が良い。含有量が1重
量% より少ないと、紫外線遮蔽効果が充分でなく好ま
しくない。含有量が60重量%より多いとガラス相が不連
続になり、フレーク状ガラスが脆くなる傾向があり、ま
た可視光透明性も低くなるので好ましくない。
The content of the above colloidal particles is 0.1% by weight or more and 80% by weight or less when the flake glass is obtained. If it is less than 0.1% by weight, the effect of adding fine particles is not substantially exhibited, and if it is more than 80% by weight, the glass phase becomes discontinuous and the flake glass becomes brittle, which is not preferable. Practically preferably 1 wt% or more, 60
It is good that it is below weight%. In particular, the content of the titanium oxide fine particles is preferably 1% by weight or more and 60% by weight or less. If the content is less than 1% by weight, the effect of blocking ultraviolet rays is not sufficient, which is not preferable. If the content is more than 60% by weight, the glass phase becomes discontinuous, the flake-like glass tends to be brittle, and the transparency of visible light decreases, which is not preferable.

【0013】上記コロイドを、加水分解および重縮合が
可能である上記有機金属化合物と水を含む溶液に添加す
る際、分散助剤を添加しても良い。分散助剤は、特に限
定されず、一般に用いられる添加剤、例えば、リン酸ナ
トリウム、ヘキサメタリン酸ナトリウム、ピロリン酸カ
リウム、塩化アルミニウム、塩化鉄等の電解質、各種界
面活性剤、各種有機高分子、シランカップリング剤、チ
タンカップリング剤等が用いられ、その添加量は上記有
機金属化合物と水を含む溶液に対して通常 0.05〜5
重量%である。
When the above-mentioned colloid is added to a solution containing the above-mentioned organometallic compound capable of hydrolysis and polycondensation and water, a dispersing aid may be added. Dispersion aids are not particularly limited, and commonly used additives, for example, electrolytes such as sodium phosphate, sodium hexametaphosphate, potassium pyrophosphate, aluminum chloride, iron chloride, various surfactants, various organic polymers, and silane A coupling agent, a titanium coupling agent or the like is used, and the amount of the coupling agent is usually 0.05 to 5 with respect to the solution containing the organometallic compound and water.
% By weight.

【0014】上記コロイドを少なくとも表面に水酸基を
有する微粒子源とすることにより、上記コロイドが上記
有機金属化合物と水を含む溶液中に、均一に分散するの
で、最終的に得られるフレーク状ガラス中の微粒子分散
性が非常に高く、優れた特性を有するものが、簡単に製
造できる。
By using the colloid as a source of fine particles having a hydroxyl group on at least the surface, the colloid is uniformly dispersed in a solution containing the organometallic compound and water. Those having very high fine particle dispersibility and excellent properties can be easily produced.

【0015】本発明に用いる有機金属化合物は、加水分
解、脱水縮合を行うものであれば基本的にはどんな化合
物でも良いが、アルコキシル基を有する金属アルコキシ
ドが好ましい。具体的には、Si、Ti、Al、Zr等のメトキ
シド、エトキシド、プロポキシド、ブトキシド等が、単
体あるいは混合体として用いられる。通常は微粒子の金
属酸化物の金属の種類とは異なる金属の有機化合物が用
いられる。
The organic metal compound used in the present invention may be basically any compound as long as it undergoes hydrolysis and dehydration condensation, but a metal alkoxide having an alkoxyl group is preferred. Specifically, methoxide such as Si, Ti, Al, and Zr, ethoxide, propoxide, butoxide, and the like are used alone or as a mixture. Usually, an organic compound of a metal different from the kind of metal of the metal oxide of the fine particles is used.

【0016】上記有機金属化合物を含む溶液の溶媒は、
実質的に上記有機金属化合物を溶解すれば基本的に何で
も良いが、メタノール、エタノール、プロパノール、ブ
タノール等のアルコール類が最も好ましく、上記有機金
属化合物を1〜30重量%の濃度で含有させる。
The solvent of the solution containing the organometallic compound is
Any substance can be basically used as long as the organic metal compound is substantially dissolved, but alcohols such as methanol, ethanol, propanol, and butanol are most preferable, and the organic metal compound is contained at a concentration of 1 to 30% by weight.

【0017】上記有機金属化合物の加水分解には水が必
要である。これは、酸性、中性、塩基性の何れでも良い
が、加水分解を促進するためには、塩酸、硝酸、硫酸等
で酸性にした水を用いるのが好ましい。酸の添加量は特
に限定されないが、有機金属化合物に対してモル比で0.
001〜2が良い。添加酸量が、モル比で0.001 より少ない
と、有機金属化合物の加水分解の促進が充分でなく、ま
たモル比で2より多くても、もはや加水分解促進の効果
が向上せず、酸が過剰となり好ましくない。
Water is required for the hydrolysis of the organometallic compound. This may be acidic, neutral or basic, but it is preferable to use water acidified with hydrochloric acid, nitric acid, sulfuric acid or the like in order to promote hydrolysis. The amount of the acid added is not particularly limited, but may be 0.
001 ~ 2 is good. If the amount of the added acid is less than 0.001 in molar ratio, the promotion of the hydrolysis of the organometallic compound is not sufficient, and if the amount is more than 2, the effect of promoting the hydrolysis is no longer improved and the acid is excessive. Is not preferred.

【0018】また、この添加する水は、上記コロイドの
分散安定化のためにも必要である。水の添加量は、溶液
の10重量%以上、80重量%以下が良い。ただしここで言
う水分量は、上記コロイド中に含まれているものと、新
たに添加する水の総計である。水添加量が、溶液の10重
量%より少ないと、上記コロイドが安定に存在できなく
なる傾向が強く、好ましくない。また、水添加量が、溶
液の80重量%より多いと、溶液中の固形分換算濃度が低
くなりすぎて、フレークの収率が低くなり、好ましくな
い。
The added water is also necessary for stabilizing the dispersion of the colloid. The added amount of water is preferably 10% by weight or more and 80% by weight or less of the solution. However, the water content here is the sum of the amount of water contained in the colloid and the newly added water. If the amount of water added is less than 10% by weight of the solution, the colloid tends to be unable to stably exist, which is not preferable. On the other hand, if the amount of water added is more than 80% by weight of the solution, the concentration in terms of solids in the solution is too low, and the yield of flakes is low.

【0019】その他、上記溶液の特性を変化させるため
に、有機増粘剤等を添加しても良い。しかし、この添加
量が多いと、最終段階の加熱で炭化することがあるの
で、添加量は10重量%以下にとどめるべきである。
In addition, an organic thickener or the like may be added to change the properties of the solution. However, if this addition amount is large, carbonization may occur in the final stage of heating, so the addition amount should be kept at 10% by weight or less.

【0020】本発明で使用する基板は金属、ガラスある
いはプラスチック等の材質で、表面が平滑なものを用い
る。このような基板に、上記のコロイド、酸触媒、水、
有機金属化合物、および有機金属化合物の溶媒を含む液
体、このましくは次の組成の溶液、 (1)それぞれ含水金属酸化物、金属水酸化物、または表面に水酸基を有する 金属酸化物、のコロイド粒子(酸化物換算) 0.3〜20重量% (2)加水分解および重縮合が可能である有機金属化合物 5〜50重量% (3)アルコール 10〜50重量% (4)酸触媒 0.001〜5重量% (5)水 残部 を塗布し、0.06〜50ミクロンの薄い膜とする。この膜が
乾燥すると数分の1の膜厚みに収縮して、0.01〜5
μm 厚みの膜となるが、基板は収縮しないので、膜に
亀裂が発生し、フレーク状となる。基板と膜との剥離を
容易に起こさせるためには、基板と膜との間に強い結合
等の相互作用が少ない状態、例えば被塗布基材としてス
テンレスのような材質を用いることが好ましい。
The substrate used in the present invention is made of a material such as metal, glass or plastic and has a smooth surface. On such a substrate, the above colloid, acid catalyst, water,
A colloid of an organometallic compound and a liquid containing a solvent of the organometallic compound, preferably a solution having the following composition: (1) a hydrated metal oxide, a metal hydroxide, or a metal oxide having a hydroxyl group on its surface, respectively Particles (in terms of oxide) 0.3 to 20% by weight (2) Organometallic compound capable of hydrolysis and polycondensation 5 to 50% by weight (3) Alcohol 10 to 50% by weight (4) Acid catalyst 0.001 5% by weight (5) Apply the rest of water to form a thin film of 0.06 to 50 microns. When this film dries, it shrinks to a fraction of the film thickness, from 0.01 to 5
Although the film has a thickness of μm, since the substrate does not shrink, the film is cracked and formed into a flake shape. In order to easily cause separation between the substrate and the film, it is preferable to use a material such as stainless steel as a substrate to be coated in a state where interaction such as strong bonding between the substrate and the film is small.

【0021】上記基板表面に膜を形成する技術は、公知
の技術を用いればよく、例えば、上記のコロイド、水、
有機金属化合物を含む液体に基板を浸漬した後、引き上
げる方法や、基板上に上記液体を滴下し、基板を高速で
回転させる方法、基板上に上記液体を吹き付ける方法等
が用いられる。
As a technique for forming a film on the substrate surface, a known technique may be used. For example, the above-mentioned colloid, water,
A method of immersing the substrate in a liquid containing an organometallic compound and then lifting the substrate, a method of dropping the liquid on the substrate and rotating the substrate at a high speed, and a method of spraying the liquid on the substrate are used.

【0022】本発明で製造されるフレーク状ガラスの厚
みは、溶液あるいは製膜条件等によって変化するが、概
ね5ミクロンから0.05ミクロンの間である。5ミクロンよ
り厚いと、製膜後の自由表面と基板付近との乾燥速度の
差が大きくなりすぎ、基板に平行な方向での膜間剥離が
発生するようになる。逆に0.05ミクロンより薄いと、基
板と膜との付着力が大きくなりすぎ、膜が基板から剥離
しなくなる。
The thickness of the glass flakes produced in the present invention varies depending on the solution or film forming conditions, but is generally between 5 microns and 0.05 microns. If the thickness is more than 5 microns, the difference in drying speed between the free surface after film formation and the vicinity of the substrate becomes too large, and peeling between the films in a direction parallel to the substrate occurs. Conversely, if the thickness is less than 0.05 micron, the adhesion between the substrate and the film becomes too large, and the film does not peel off from the substrate.

【0023】焼結に関しては、その方法に特に制限はな
い。焼結温度および時間は、マトリックスのゲルからガ
ラスへの転移を確実にするような条件以上で、剥離後の
フレーク状ゲルを加熱することが好ましく、通常は300
〜1200℃で10分間〜5時間加熱する。使用する目的によ
っては、乾燥後の焼結を行わなくてもよい場合がある。
この燒結によってフレーク状ガラスの機械的強度は増大
するが、その厚みおよび寸法は更に3〜10%程度減少
する。
With respect to sintering, the method is not particularly limited. The sintering temperature and time are preferably at least as high as possible to ensure the transition of the matrix from gel to glass, and it is preferable to heat the flake gel after exfoliation.
Heat at ~ 1200 ° C for 10 minutes to 5 hours. Depending on the purpose of use, sintering after drying may not be required.
This sintering increases the mechanical strength of the flaked glass, but further reduces its thickness and dimensions by about 3 to 10%.

【0024】金属酸化物微粒子として表面に水酸基を有
する酸化チタンを用いた金属酸化物微粒子分散高透明フ
レーク状ガラスは、屈折率が1.3〜1.6の範囲にある媒質
中に分散した時、波長400〜800nmの可視光に対する透過
率が全域にわたって80%以上である。ただし、ここで言
う透過率はJISK0115の方法に従い、媒質のみの透過率を
100%として、分光光度計により測定した値である。
The metal oxide fine particle-dispersed highly transparent flake glass using titanium oxide having a hydroxyl group on the surface as the metal oxide fine particles has a wavelength of 400 to 400 when dispersed in a medium having a refractive index in the range of 1.3 to 1.6. The transmittance for 800 nm visible light is 80% or more over the entire region. However, the transmittance here is in accordance with the method of JISK0115, and the transmittance of the medium alone is
It is a value measured by a spectrophotometer as 100%.

【0025】本発明の表面が平滑な金属酸化物(特に酸
化チタン)微粒子分散フレーク状ガラスを用いた化粧料
には、上記酸化チタン微粒子分散フレーク状ガラスの
他、必要に応じ、通常用いられている顔料等を併用して
も、何等差し支えない。例えば、酸化チタン、酸化亜
鉛、酸化ジルコニウム、黄色酸化鉄、黒色酸化鉄、弁
柄、群青、紺青、酸化クロム、水酸化クロム等の無機顔
料、雲母チタン、オキシ塩化ビスマス等の真珠光沢顔
料、タール色素、天然色素、シリカビーズ、ナイロン、
アクリル等のプラスチックビーズ等の粉体、タルク、カ
オリン、マイカ、セリサイト、その他の雲母類、炭酸マ
グネシウム、炭酸カルシウム、珪酸アルミニウム、珪酸
マグネシウム、クレー類等が例示される。
In the cosmetic of the present invention using the flaky glass dispersed with metal oxide (particularly titanium oxide) fine particles having a smooth surface, in addition to the above-mentioned flaky glass dispersed with titanium oxide fine particles, the flaky glass may be used as required. It does not matter what kind of pigment is used. For example, titanium oxide, zinc oxide, zirconium oxide, yellow iron oxide, black iron oxide, red iron oxide, ultramarine, navy blue, chromium oxide, inorganic pigments such as chromium hydroxide, titanium mica, pearlescent pigments such as bismuth oxychloride, tar Dyes, natural dyes, silica beads, nylon,
Examples include powders of plastic beads such as acrylic, talc, kaolin, mica, sericite, other mica, magnesium carbonate, calcium carbonate, aluminum silicate, magnesium silicate, clays and the like.

【0026】上記酸化チタン微粒子分散フレーク状ガラ
スの配合量としては、その目的とする化粧料の種類によ
り異なるが、顔料等の固体成分に対して1〜80重量% の
範囲で用いられ、特に2〜50重量% の範囲が好ましい。
これ以下の含有量では、紫外線遮蔽効果が顕著に発揮さ
れないし、逆に上限より多くのフレーク状ガラスを添加
しても、紫外線遮蔽効果は上がらず、他の顔料成分が減
少し、色調を整えたり、皮膚への付着性を上げることが
困難になる。
The amount of the flaky glass in which the titanium oxide fine particles are dispersed varies depending on the type of the intended cosmetic, but is used in the range of 1 to 80% by weight based on the solid components such as pigments. It is preferably in the range of ~ 50% by weight.
If the content is less than this, the ultraviolet shielding effect is not remarkably exhibited, and conversely, even if more flake glass is added than the upper limit, the ultraviolet shielding effect does not increase, other pigment components decrease, and the color tone is adjusted. Or it is difficult to increase the adhesion to the skin.

【0027】また、本発明で用いる酸化チタン微粒子分
散フレーク状ガラスの化粧料中での分散性を向上させた
り、感触を良くするために、このフレーク状ガラスの表
面処理を施して、改質することは何等差し支えない。例
えば、メチルハイドロジェンポリシロキサン、反応性ア
ルキルポリシロキサン、金属石鹸の他、水素添加レシチ
ン、アシルアミノ酸、アシル化コラーゲンのアルミニウ
ム、マグネシウム、カルシウム、チタン、亜鉛、ジルコ
ニウム、鉄より選ばれた金属塩等の、いわゆる疎水化剤
で表面処理を行うと、フレーク状ガラスの表面は親水性
から疎水性に変わるため、化粧料の調合時に添加する油
剤との馴染みが良くなり、感触の良い化粧料となる。
Further, in order to improve the dispersibility of the titanium oxide fine particle dispersed flake glass used in the present invention in cosmetics and to improve the feel, the flake glass is subjected to a surface treatment to be modified. You can do nothing at all. For example, in addition to methyl hydrogen polysiloxane, reactive alkyl polysiloxane, metal soap, hydrogenated lecithin, acyl amino acid, metal salt selected from aluminum, magnesium, calcium, titanium, zinc, zirconium, iron of acylated collagen, etc. When surface treatment is performed with a so-called hydrophobizing agent, the surface of the flaked glass changes from hydrophilic to hydrophobic, so that the familiarity with the oil agent added at the time of preparation of the cosmetic is improved, and the cosmetic has a good feel. .

【0028】[0028]

【実施例】以下に実施例を示す。 実施例-1 市販の含水酸化チタンコロイド TiO(OH)2(商
品名:チタニアゾルCS-N、石原産業(株)製、二酸化チタ
ン換算含有量約30重量%、 粒子径30〜60nm、水分散)6
00ml、0.2規定の硝酸9500ml、分散助剤としてのヘキサ
メタリン酸ナトリウム20g、シリコンテトラメトキシド
5400ml、エタノール3380ml、2-プロパノール3380mlを混
合し、35℃で約70時間養生して塗布液とした。この液
に、表面を研磨して平滑にした厚さ0.5mmのステンレ
ス板を浸漬し、 約30cm/minの速度で引き上げた。(浸
漬塗布厚みは約10μm) これを100℃で乾燥して、ゲ
ル膜を剥離し、1000℃ で3時間焼結し、平均粒径が約1
00μmの燒結フィルムが得られた。この焼結フィルム
をx線回折法で調べたところ、アナターゼ型二酸化チタ
ンが検出されたのみであり、マトリックスはシリカガラ
ス状態であった。化学分析の結果、二酸化チタンの含有
量は、約9.5重量%であった。 透過型電子顕微鏡でフレ
ークを観察したところ、図1に示すように直径が30〜
60nmの二酸化チタン微粒子が、シリカガラスマトリ
ックス中に平均的に分散して位置しているのが観察され
た。
Examples are shown below. Example-1 Commercially available hydrous titanium oxide colloid TiO (OH) 2 (trade name: titania sol CS-N, manufactured by Ishihara Sangyo Co., Ltd., content in terms of titanium dioxide: about 30% by weight, particle diameter: 30 to 60 nm, water dispersion) 6
00 ml, 9500 ml of 0.2 N nitric acid, 20 g of sodium hexametaphosphate as a dispersing aid, silicon tetramethoxide
5400 ml, 3380 ml of ethanol and 3380 ml of 2-propanol were mixed and cured at 35 ° C. for about 70 hours to obtain a coating solution. A 0.5 mm-thick stainless steel plate whose surface was polished and smoothed was immersed in this liquid, and pulled up at a speed of about 30 cm / min. (The thickness of the dip coating is about 10 μm.) This is dried at 100 ° C., the gel film is peeled off, and sintered at 1000 ° C. for 3 hours.
A sintered film of 00 μm was obtained. When this sintered film was examined by an x-ray diffraction method, only anatase type titanium dioxide was detected, and the matrix was in a silica glass state. As a result of chemical analysis, the content of titanium dioxide was about 9.5% by weight. When the flakes were observed with a transmission electron microscope, the diameter was 30 to
It was observed that titanium dioxide fine particles of 60 nm were located in an average dispersed state in the silica glass matrix.

【0029】この焼結フレークをジェットミルで粉砕、
分級して、平均粒径約10μmとした。走査型電子顕微
鏡でこのフレークを観察したところ、図2に示すように
フレークの表面は非常に平滑であり、フレーク厚みは
約0.6μm(600nm)であった。
The sintered flakes are pulverized by a jet mill,
The particles were classified to have an average particle size of about 10 μm. When the flakes were observed with a scanning electron microscope, the surface of the flakes was very smooth as shown in FIG.
It was about 0.6 μm (600 nm).

【0030】このフレークをビニル系樹脂 (硬化後の
屈折率が約1.5)中に約10重量%混入分散させた塗料を
基板の上に塗布乾燥して、 約0.15mm厚みのフィル
ムとして、分光光度計で透過率を測定したところ、波長
400〜800nmの可視光透過率が、全域にわたって95%以上
であり、かつ波長350nm以下の紫外線透過率が5%以下で
あり、可視光に対して透明で紫外線を有効に遮蔽するフ
レーク状ガラスであることが確認された。
A coating obtained by mixing and dispersing about 10% by weight of the flakes in a vinyl resin (having a refractive index of about 1.5 after curing) is applied on a substrate and dried to form a film having a thickness of about 0.15 mm. When the transmittance was measured with a photometer, the wavelength
A flake glass that has a visible light transmittance of 400 to 800 nm of 95% or more over the entire area and an ultraviolet transmittance of 350 nm or less of 5% or less, and is transparent to visible light and effectively blocks ultraviolet light. It was confirmed that there was.

【0031】実施例-2 実施例1に用いたものと同じ含水酸化チタンコロイド
TiO(OH)2(チタニアゾルCS-N)5520ml、2.3規定
の硝酸9900ml、シリコンテトラメトキシド4300ml、エタ
ノール1100ml、2-プロパノール1100mlを混合し、50℃
で約40時間養生して塗布液とした。この塗布液を用い
て、実施例-1と同様な方法で焼結フレークを得た。この
フレークを、x線回折法で調べたところ、アナターゼ型
二酸化チタンが検出されたのみであり、化学分析の結
果、焼結フレーク中の二酸化チタンの含有量は、約55重
量%であった。透過型電子顕微鏡でフレークを観察した
ところ、30〜80nmの大きさの二酸化チタン微粒子が、シ
リカガラスマトリックス中に単分散しているのが観察さ
れた。また走査型電子顕微鏡でフレークを観察したとこ
ろ、その表面は非常に平滑であり、フレークの厚みは約
0.8μm(800nm)であった。
Example-2 The same hydrous titanium oxide colloid as used in Example 1
5520 ml of TiO (OH) 2 (titania sol CS-N), 9900 ml of 2.3N nitric acid, 4300 ml of silicon tetramethoxide, 1100 ml of ethanol and 1100 ml of 2-propanol were mixed, and the mixture was mixed at 50 ° C.
For about 40 hours to obtain a coating solution. Using this coating solution, sintered flakes were obtained in the same manner as in Example 1. When this flake was examined by x-ray diffraction, only anatase-type titanium dioxide was detected. As a result of chemical analysis, the content of titanium dioxide in the sintered flake was about 55% by weight. Observation of the flakes with a transmission electron microscope showed that titanium dioxide fine particles having a size of 30 to 80 nm were monodispersed in a silica glass matrix. When the flakes were observed with a scanning electron microscope, the surface was very smooth, and the thickness of the flakes was about 0.8 μm (800 nm).

【0032】実施例-3 0.1mol/lのチタンイソブトキシドの無水エタノール溶液
に、2規定塩酸を滴下して、攪拌養生し、水酸化チタン
ゾルを得た。これを限外濾過法で濃縮し、二酸化チタン
換算含有量約10重量%、粒子径30〜80nmの水酸化チタン
コロイドを得た。この水酸化チタンコロイド2500ml、0.
02規定の硝酸8000ml、シリコンテトラメトキシド5400m
l、エタノール2350ml、2-プロパノール3850mlを混合
し、40℃で約55時間養生して塗布液とした。
Example 3 2N hydrochloric acid was added dropwise to a 0.1 mol / l solution of titanium isobutoxide in anhydrous ethanol, and the mixture was aged and aged to obtain a titanium hydroxide sol. This was concentrated by ultrafiltration to obtain a titanium hydroxide colloid having a content of about 10% by weight in terms of titanium dioxide and a particle diameter of 30 to 80 nm. 2500 ml of this titanium hydroxide colloid, 0.
02 8000 ml of specified nitric acid, 5400 m of silicon tetramethoxide
l, 2350 ml of ethanol and 3850 ml of 2-propanol were mixed and cured at 40 ° C. for about 55 hours to obtain a coating solution.

【0033】この塗布液を用いて、実施例-1と同様な方
法で焼結フレークを得た。このフレークを、x線回折法
で調べたところ、アナターゼ型二酸化チタンが検出され
たのみであり、マトリックスはガラス状態であった。化
学分析の結果、二酸化チタンの含有量は、約9.5重量%
であった。 透過型電子顕微鏡でフレークを観察したと
ころ、30〜80nmの直径の二酸化チタン微粒子が、シリカ
ガラスマトリックス中に単分散しているのが観察され
た。また走査型電子顕微鏡でフレークを観察したとこ
ろ、表面は非常に平滑であり、厚みは約0.6ミクロン
(600nm)であった。
Using this coating solution, sintered flakes were obtained in the same manner as in Example 1. When this flake was examined by an x-ray diffraction method, only anatase-type titanium dioxide was detected, and the matrix was in a glassy state. As a result of chemical analysis, the content of titanium dioxide was about 9.5% by weight.
Met. Observation of the flakes with a transmission electron microscope showed that titanium dioxide fine particles having a diameter of 30 to 80 nm were monodispersed in a silica glass matrix. When the flakes were observed with a scanning electron microscope, the surface was very smooth and the thickness was about 0.6 microns.
(600 nm).

【0034】実施例-4 0.35mol/lの硝酸鉄水溶液5000mlを加熱して
沸騰させ、2規定の水酸化カリウム水溶液を滴下して、
pHを7にした。室温に戻した後、生じた赤色沈殿物を
分離、水洗し、150℃のオートクレーブ中で10時間
養生した。pHが9の水と、イオン交換水によって洗浄
し、pHが2の硝酸を含む水で希釈して、約20重量%
のヘマタイト(α−Fe23)コロイドを得た。動的光
散乱法で、コロイド粒子径を測定したところ、平均粒子
直径は約110nmであった。
Example 4 5000 ml of a 0.35 mol / l aqueous solution of iron nitrate was heated to boiling, and a 2N aqueous solution of potassium hydroxide was added dropwise.
The pH was set to 7. After returning to room temperature, the resulting red precipitate was separated, washed with water, and cured in an autoclave at 150 ° C. for 10 hours. After washing with water having a pH of 9 and ion-exchanged water and diluting with water containing nitric acid having a pH of 2, about 20% by weight
Hematite (α-Fe 2 O 3 ) colloid was obtained. When the colloid particle diameter was measured by the dynamic light scattering method, the average particle diameter was about 110 nm.

【0035】このヘマタイトコロイド2000ml、シリ
コンテトラメトキシド2200ml、エタノール1000
ml、2-プロパノール1000mlを混合し、40℃で約6
0時間養生して塗布液とした。この液の中に、 表面を
研磨して平滑にした厚さ0.5mmのステンレス板を浸
漬し、30cm/minの速度で引き上げた。 これを150℃で乾
燥して、板表面のゲル膜を剥離し、950℃で1時間焼
結した。 焼結後、X線回折法で調べたところ、シャープ
なヘマタイトのピークが検出されたのみであり、マトリ
ックスはガラス状態であった。化学分析の結果、ヘマタ
イトの含有量は、約30重量%であった。透過型電子顕
微鏡でフレークを観察したところ、約80〜140nm
大のヘマタイト微粒子が、シリカガラスマトリックス中
に単分散しているのが観察された。また走査型電子顕微
鏡でフレークを観察したところ、表面は非常に平滑であ
り、厚みは約0.6ミクロンであった。この焼結フレーク
をジェットミルで粉砕、分級して、平均粒径約10ミクロ
ンとし、透明なビニル系樹脂(硬化後の屈折率が約1.
5) 中に約5重量%分散して、約0.15mm厚みの樹脂フィ
ルムとして、分光光度計で透過率を測定したところ、波
長700〜800nmの可視光透過率が、波長全域にわた
って85%以上であり、かつ波長350nm以下の紫外線透
過率が5%以下 であり、可視光に対する透明性が高
く、紫外線を有効に遮蔽する赤褐色フレーク状ガラスで
あることが確認された。
2000 ml of this hematite colloid, 2200 ml of silicon tetramethoxide, 1000 ethanol
and 2-propanol (1000 ml) at 40 ° C.
After curing for 0 hour, a coating solution was obtained. A 0.5 mm-thick stainless steel plate whose surface was polished and smoothed was immersed in this solution, and pulled up at a speed of 30 cm / min. This was dried at 150 ° C., the gel film on the plate surface was peeled off, and sintered at 950 ° C. for 1 hour. After sintering, when examined by X-ray diffraction, only a sharp peak of hematite was detected, and the matrix was in a glassy state. As a result of chemical analysis, the content of hematite was about 30% by weight. Observation of the flakes with a transmission electron microscope revealed that the flakes were about 80 to 140 nm.
Large hematite fine particles were observed to be monodispersed in the silica glass matrix. When the flakes were observed with a scanning electron microscope, the surface was very smooth and the thickness was about 0.6 μm. The sintered flakes are pulverized and classified with a jet mill to an average particle size of about 10 microns, and a transparent vinyl resin (having a refractive index of about 1.
5) A resin film having a thickness of about 0.15 mm dispersed in about 5% by weight and measured for transmittance with a spectrophotometer. As a result, the visible light transmittance at a wavelength of 700 to 800 nm is 85% or more over the entire wavelength range. It was confirmed that it was a reddish-brown flaky glass having a transmittance of 5% or less for ultraviolet rays having a wavelength of 350 nm or less, having high transparency to visible light, and effectively shielding ultraviolet rays.

【0036】実施例-5 約3000mlの沸騰水中に、1規定の硝酸第二鉄水溶液600ml
を加え、加熱し、約20分間沸騰させた。引続き、60℃で
5時間、30℃で30時間養生させ、水で2倍に希釈して、赤
褐色のコロイドを得た。 コロイドの組成をX線回折等の
技術を利用して解析したところ、α-Fe2O3(Hematite)
とFeO(OH)(含水酸化鉄)及びFe(OH)3(水酸化
鉄)のそれぞれの粒子の混合物であることがわかった。
動的光散乱法により粒子径を測定したところ、粒子径
は50〜120nmであった。
Example-5 600 ml of a 1N aqueous ferric nitrate solution in about 3000 ml of boiling water
Was added, heated and boiled for about 20 minutes. Continue at 60 ° C
Cured for 5 hours at 30 ° C. for 30 hours and diluted 2-fold with water to obtain reddish brown colloid. Analysis of the colloid composition using techniques such as X-ray diffraction showed that α-Fe2O3 (Hematite)
And FeO (OH) (containing iron hydroxide) and Fe (OH) 3 (iron hydroxide).
When the particle diameter was measured by the dynamic light scattering method, the particle diameter was 50 to 120 nm.

【0037】このコロイド8600ml、シリコンテトラメト
キシド4900ml、エタノール3000ml、2-プロパノール3000
mlを混合し、35℃で約70時間養生して塗布液とした。こ
の液の中に、表面を研磨して平滑にした厚さ0.5mmの
ステンレス板を浸漬し、30cm/minの速度で引き上げた。
これを150℃で乾燥して、板表面のゲル膜を剥離し、100
0℃で5時間焼結した。焼結後、X線回折法で調べたとこ
ろ、シャープなα-Fe2O3(Hematite)のピークが検出さ
れたのみであり、マトリックスはガラス状態であった。
化学分析の結果、ヘマタイトの含有量は、約6.3重量%
であった。 透過型電子顕微鏡でフレークを観察したと
ころ、 約40〜120nm大のヘマタイト微粒子が、シリカガ
ラスマトリックス中に単分散しているのが観察された。
また走査型電子顕微鏡でフレークを観察したところ、表
面は非常に平滑であり、厚みは 約0.6ミクロンであっ
た。
8600 ml of this colloid, 4900 ml of silicon tetramethoxide, 3000 ml of ethanol and 3000 of 2-propanol
The mixture was mixed and cured at 35 ° C. for about 70 hours to obtain a coating solution. A 0.5 mm-thick stainless steel plate whose surface was polished and smoothed was immersed in this liquid, and pulled up at a speed of 30 cm / min.
This is dried at 150 ° C, and the gel film on the plate surface is peeled off.
Sintered at 0 ° C. for 5 hours. After sintering, when examined by X-ray diffraction, only a sharp peak of α-Fe2O3 (Hematite) was detected, and the matrix was in a glassy state.
As a result of chemical analysis, the content of hematite was about 6.3% by weight.
Met. Observation of the flakes with a transmission electron microscope showed that hematite fine particles having a size of about 40 to 120 nm were monodispersed in a silica glass matrix.
Observation of the flakes with a scanning electron microscope showed that the surface was very smooth and about 0.6 microns thick.

【0038】実施例-6 酸化セリウム換算で0.5重量%となる塩化セリウム水溶
液に、15% アンモニア水をpHが9になるまで、ゆっくり
と添加し、 含水酸化セリウムの沈降ゲルを得た。この
沈降ゲルを、遠心分離器で分離、脱水、洗浄後、沈降ゲ
ル500gに35%過酸化水素水600gと水130gとを加え、80℃
に加熱して、透明なゾルを得た。このゾルを酸化セリウ
ム換算で0.2重量%となるように、 水で希釈後、95℃で
オートクレーブで50時間加熱養生して、酸化セリウムと
含水酸化セリウムの混合コロイドを得た。このコロイド
を真空蒸発法で酸化セリウム換算濃度が10重量%となる
まで濃縮した。得られたコロイドは粒子径10〜30nmであ
った。
Example -6 An aqueous 15% ammonia solution was slowly added to an aqueous cerium chloride solution of 0.5% by weight in terms of cerium oxide until the pH reached 9, to obtain a precipitated gel of hydrous cerium oxide. The sedimented gel was separated by a centrifugal separator, dehydrated, and washed, and 500 g of the sedimented gel was added with 600 g of 35% hydrogen peroxide solution and 130 g of water, and then heated at 80 ° C
To obtain a transparent sol. This sol was diluted with water so as to be 0.2% by weight in terms of cerium oxide, and then heat-cured at 95 ° C. in an autoclave for 50 hours to obtain a mixed colloid of cerium oxide and hydrated cerium oxide. The colloid was concentrated by a vacuum evaporation method until the concentration in terms of cerium oxide became 10% by weight. The obtained colloid had a particle size of 10 to 30 nm.

【0039】このコロイド2500ml、0.05規定の硝酸8000
ml、シリコンテトラメトキシド5400ml、エタノール3500
ml、2-プロパノール3500mlを混合し、40℃で約55時間養
生して塗布液とした。
2500 ml of this colloid, 8000 of 0.05 N nitric acid
ml, silicon tetramethoxide 5400ml, ethanol 3500
The mixture was mixed with 3500 ml of 2-propanol and cured at 40 ° C. for about 55 hours to obtain a coating solution.

【0040】この塗布液を用いて、実施例-1と同様な方
法で焼結フレークを得た。このフレークを、X線回折法
で調べたところ、 酸化セリウムが検出されたのみであ
り、マトリックスはガラス状態であった。化学分析の結
果、酸化セリウムの含有量は、約9.5重量%であった。
透過型電子顕微鏡でフレークを観察したところ、10〜40
nm大の酸化セリウム微粒子が、 シリカガラスマトリッ
クス中に単分散しているのが観察された。また走査型電
子顕微鏡でフレークを観察したところ、表面は非常に平
滑であり、厚みは約0.4ミクロンであった。
Using this coating solution, sintered flakes were obtained in the same manner as in Example 1. When this flake was examined by X-ray diffraction, only cerium oxide was detected, and the matrix was in a glassy state. As a result of chemical analysis, the content of cerium oxide was about 9.5% by weight.
When the flakes were observed with a transmission electron microscope, 10 to 40
It was observed that cerium oxide fine particles having a size of nm were monodispersed in a silica glass matrix. When the flakes were observed with a scanning electron microscope, the surface was very smooth and the thickness was about 0.4 μm.

【0041】また上記ゾルの95℃50時間加熱養生に代え
て95℃で500時間加熱養生したところ、酸化セリウ
ム単体のコロイドが得られた。その後上記と全く同じ処
理をしたところ、10〜40nm大の酸化セリウム微粒子が、
シリカガラスマトリックス中に単分散しているのが観察
された。また走査型電子顕微鏡でフレークを観察したと
ころ、表面は非常に平滑であり、厚みは約0.4ミクロン
であった。
When the above sol was heated and cured at 95 ° C. for 500 hours instead of heating at 95 ° C. for 50 hours, a colloid of cerium oxide alone was obtained. Then, when the same treatment as above was performed, cerium oxide fine particles of 10 to 40 nm in size were obtained.
Monodispersion was observed in the silica glass matrix. When the flakes were observed with a scanning electron microscope, the surface was very smooth and the thickness was about 0.4 μm.

【0042】比較例-1 市販の微粒子酸化チタン(商品名:MT-500B、テイカ
(株)製、一次粒子径20〜50nm、ルチル型)を、市販のペ
イントシェーカーを用いて、10重量% となるように水
に分散させた。この懸濁液2500ml、0.24規定の硝酸8000
ml、シリコンテトラメトキシド5400ml、エタノール3380
ml、2-プロパノール3380mlを混合し、35℃で約70時間養
生して塗布液とした。この塗布液中の二酸化チタン濃度
は、実施例-1の塗布液中の二酸化チタン換算濃度とほぼ
同じである。
Comparative Example-1 Commercially available fine particle titanium oxide (trade name: MT-500B, Teica
(Primary particle size: 20 to 50 nm, rutile type) was dispersed in water to a concentration of 10% by weight using a commercially available paint shaker. 2500 ml of this suspension, 8000 of 0.24 N nitric acid
ml, silicon tetramethoxide 5400ml, ethanol 3380
The mixture was mixed with 3380 ml of 2-propanol and cured at 35 ° C. for about 70 hours to obtain a coating solution. The concentration of titanium dioxide in this coating solution is almost the same as the concentration of titanium dioxide in the coating solution of Example-1.

【0043】この塗布液を用いて、実施例-1と同様な方
法で焼結フレークを得た。化学分析の結果、二酸化チタ
ンの含有量は、約4.8重量%であった。 これは、塗布液
中で二酸化チタン微粒子が沈降したためであると見なさ
れる。透過型電子顕微鏡でフレークを観察したところ、
図3に示すようにシリカガラスマトリックス中に単分散
している微粒子は少なく、微粒子が1万個ないし数万個
凝集して直径が数ミクロン程度の凝集体を形成している
のが観察された。また走査型電子顕微鏡でフレークを観
察したところ、表面に、二酸化チタン凝集体の凹凸が認
められ、平滑性は悪かった。焼結フレーク厚みは約0.6
ミクロンであった。 この表面の凹凸は二酸化チタン微
粒子の凝集体の直径(数ミクロン)がシリカガラスマト
リックスのフレークの厚み(約0.6μm) よりも上回
っていることの当然の帰結でもある。
Using this coating solution, sintered flakes were obtained in the same manner as in Example 1. As a result of chemical analysis, the content of titanium dioxide was about 4.8% by weight. This is considered to be because the titanium dioxide fine particles settled in the coating solution. When the flakes were observed with a transmission electron microscope,
As shown in FIG. 3, the number of fine particles monodispersed in the silica glass matrix was small, and it was observed that 10,000 to tens of thousands of fine particles aggregated to form an aggregate having a diameter of about several microns. . When the flakes were observed with a scanning electron microscope, irregularities of titanium dioxide aggregates were observed on the surface, and the smoothness was poor. The sintered flake thickness is about 0.6
Micron. This unevenness of the surface is a natural consequence of the fact that the diameter (several microns) of the aggregate of the titanium dioxide fine particles exceeds the thickness of the flakes of the silica glass matrix (about 0.6 μm).

【0044】この焼結フレークをジェットミルで粉砕、
分級して、平均粒径約10ミクロンとし、透明なビニル系
樹脂(硬化後の屈折率が約1.5) 中に約10重量%分散し
て、約0.15mm厚みの樹脂フィルムとして、分光光度計で
透過率を測定したところ、波長400〜800nmの可視光透過
率が、40〜50%であり、 波長350nm以下の紫外線透過率
が2%以下であった。すなわち、紫外線遮蔽性能は高い
ものの、 可視光に対する透明性がかなり低下したフレ
ーク状ガラスであることが確認された。このような低い
可視光透明性は焼結フレーク内部および表面に突出した
二酸化チタン凝集体による可視光の散乱・吸収によるも
のと考えられる。 比較例-2 市販の微粒子酸化鉄(商品名:ナノタイト、昭和電工
(株)製、一次粒子径40〜60nm、Hematite)を、 市販の
ペイントシェーカーを用いて、3.2重量%となるように
水に分散させた。この懸濁液4300ml、0.3規定硝酸4300m
l、 シリコンテトラメトキシド4900ml、エタノール3000
ml、2-プロパノール3000mlを混合し、35℃で約70時間養
生して塗布液とした。この塗布液中の酸化鉄濃度は、実
施例-3の塗布液中の酸化鉄換算濃度とほぼ同じである。
The sintered flakes are pulverized by a jet mill,
Classify to an average particle size of about 10 microns, disperse about 10% by weight in a transparent vinyl resin (refractive index after curing is about 1.5), and use a spectrophotometer as a resin film about 0.15 mm thick. When the transmittance was measured, the visible light transmittance at a wavelength of 400 to 800 nm was 40 to 50%, and the ultraviolet transmittance at a wavelength of 350 nm or less was 2% or less. That is, it was confirmed that the flake glass had high ultraviolet shielding performance, but had considerably reduced transparency to visible light. It is considered that such low visible light transparency is due to scattering and absorption of visible light by titanium dioxide aggregates protruding inside and on the surface of the sintered flake. Comparative Example-2 Commercially available fine iron oxide particles (trade name: Nanotite, Showa Denko
(Primary particle size: 40-60 nm, Hematite) was dispersed in water to a concentration of 3.2% by weight using a commercially available paint shaker. 4300 ml of this suspension, 4300 m of 0.3 N nitric acid
l, silicon tetramethoxide 4900ml, ethanol 3000
The mixture was mixed with 3,000 ml of 2-propanol and cured at 35 ° C. for about 70 hours to obtain a coating solution. The concentration of iron oxide in this coating solution was almost the same as the concentration in terms of iron oxide in the coating solution of Example-3.

【0045】この塗布液を用いて、実施例-3と同様な方
法で焼結フレークを得た。化学分析の結果、ヘマタイト
の含有量は、約2.1重量%であった。これは、 塗布液中
で酸化鉄微粒子が沈降したためであると見なされる。透
過型電子顕微鏡でフレークを観察したところ、シリカガ
ラスマトリックス中に単分散している微粒子は少なく、
数ミクロン程度の凝集体を形成しているのが観察され
た。また走査型電子顕微鏡でフレークを観察したとこ
ろ、表面に酸化鉄微粒子凝集体の凹凸が認められ、平滑
性は悪かった。厚みは約0.6ミクロンであった。
Using this coating solution, sintered flakes were obtained in the same manner as in Example 3. As a result of chemical analysis, the content of hematite was about 2.1% by weight. This is considered to be because iron oxide fine particles settled in the coating solution. Observation of the flakes with a transmission electron microscope revealed that there were few fine particles monodispersed in the silica glass matrix,
It was observed that aggregates of about several microns were formed. When the flakes were observed with a scanning electron microscope, irregularities of the iron oxide fine particle aggregates were observed on the surface, and the smoothness was poor. The thickness was about 0.6 microns.

【0046】実施例-6及び比較例-3 以下の配合でパウダーファンデーションを作製した。 成分-1 配合量(重量%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例-1で作製した本発明のフレーク状ガラス 5.0 タルク 74.7 マイカ 9.1 酸化チタン(一次粒子径200〜250nm) 3.8 微粒子酸化チタン(一次粒子径30〜50nm) 1.9 ステアリン酸マグネシウム 2.9 弁柄 0.5 黄色酸化鉄 0.8 黒色酸化鉄 0.1 シルクパウダー 0.5Example-6 and Comparative Example-3 A powder foundation was prepared with the following composition. Component-1 Amount (% by weight) of the present invention produced in Example-1 Flake glass 5.0 Talc 74.7 Mica 9.1 Titanium oxide (primary particle size 200 to 250 nm) 3.8 Fine particle titanium oxide (primary particle size 30 to 50 nm) 1.9 Magnesium stearate 2.9 Petals 0.5 Yellow iron oxide 0.8 Black iron oxide 0.1 Silk powder 0.5

【0047】 成分-2 配合量(重量%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− スクワラン 0.5 セスキオレイン酸ソルビタン 0.1 成分-3 配合量(重量%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 香料 0.1Component-2 Compounding amount (% by weight) ----------------------------------------------------------- Squalane 0.5 Sorbitan sesquioleate 0.1 Ingredient-3 Compounding amount (% by weight)------------------------------Fragrance 0.1

【0048】成分-1をヘンシェルミキサーを用いて、5
分間攪拌した。 これに、70℃にて均一に溶融した成分-
2を滴下しながら、攪拌混合を行った。さらに、成分-3
を添加後、1分間攪拌混合し、アトマイザーにより粉砕
して製品-1(実施例-6)を得た。成分-1中の本発明フ
レーク状ガラスを添加しなかった以外は、上記と全く同
じ方法で製品-2(比較例-3)を得た。
Using a Henschel mixer, add Component-1 to 5
Stirred for minutes. In addition, the components that are uniformly melted at 70 ° C
While dropwise adding 2, stirring and mixing were performed. In addition, component-3
Was added, and the mixture was stirred and mixed for 1 minute, and pulverized with an atomizer to obtain a product-1 (Example-6). Product-2 (Comparative Example-3) was obtained in the same manner as described above, except that the flake glass of the present invention in Component-1 was not added.

【0049】製品-1及び製品-2のそれぞれ0.22gを採取
し、被験者5人の背中の中央部の皮膚4cm×5cmに均一
に、隣接して塗布し、8月の伊豆で午前11時から午後
2時の間で30分〜3時間直射日光に晒した後、その日
焼け程度を観察した。
0.22 g of each of Product-1 and Product-2 was collected and applied uniformly and adjacently to the skin at the center of the back of the five subjects, 4 cm x 5 cm, and from 11 am in Izu in August. After being exposed to direct sunlight for 30 minutes to 3 hours between 2 pm, the degree of sunburn was observed.

【0050】表-1は、その結果を示したものである。 5
人の被験者の日焼けの程度の平均値を次の分類で判定し
た 1;ほとんど日焼けせず 2;日焼けしたことが判る 3;やや赤く日焼けした 4;かなり赤く日焼けした 5;激しい日焼けし、後に皮膚が剥離した 30分経過後、目視ではほとんど差が認められなかった
が、 1時間経過後から顕著な差が認められるようにな
り、本発明の酸化チタン微粒子分散フレーク状ガラスを
配合した粉体(製品-1、実施例-6)を塗布した皮膚の
日焼けは、 上記フレーク状ガラスを配合しなかった粉
体(製品-2、比較例-3) を塗布した場合に比較して、
大幅に低減されていた。
Table 1 shows the results. Five
The average value of the degree of sunburn of a human subject was determined according to the following classification: 1; hardly sunburned; 2; sunburn was found; 3; sunburned slightly red; 4; After a lapse of 30 minutes from the peeling of the powder, almost no difference was visually observed, but after 1 hour, a remarkable difference was observed, and the powder containing the flaky glass dispersed with titanium oxide fine particles of the present invention ( The sunburn of the skin to which Product-1 and Example-6) were applied was compared to the case where the powder (Product-2 and Comparative Example-3) which did not contain the flaky glass was applied.
It had been greatly reduced.

【0051】[0051]

【表1】 表-1 ================================== 本発明の粉体(製品-1) 比較の粉体(製品-2) (実施例-6) (比較例-3) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 30分後 1 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1時間後 1 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2時間後 1 5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 3時間後 2 5 ==================================Table 1 Table 1 ================================= Powder of the present invention (product-1) ) Comparative powder (product-2) (Example-6) (Comparative example-3) --------------------------------------------------------------------------- −−−−−− 30 minutes later 11 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 hour later 13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− After 2 hours 15 −−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−− 3 hours later 25 ======================= ============

【0052】上記2種の製品を、女性パネラー20名に10
日間使用させ、最高点を5点、最低点を1点とする5段
階法にて、評価した官能テストの平均点の結果を表-2に
示す。
The above two products were given to 20 female panelists 10 times.
Table 2 shows the results of the average points of the sensory tests evaluated using a 5-point scale with the highest score being 5 points and the lowest score being 1 point.

【0053】[0053]

【表2】 表-2 ================================ 項目 本発明の粉体(製品-1) 比較の粉体(製品-2) (実施例-6) (比較例-3) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− のび 4.8 1.6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− つき 4.6 3.8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 透明感 4.8 3.5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 光沢感 4.4 2.8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 色感 4.3 3.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 性能持続性 4.8 2.0 ================================[Table 2] Table 2 =============================== Item Powder of the present invention (product-1) Comparative powder (product-2) (Example-6) (Comparative example-3) --------------------------------------------------------------------------- −−− Noby 4.8 1.6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− With 4.63.8 − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Transparent 4.8 3.5 −−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−− Gloss 4.4 2.8 −−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− Color sense 4.3 3.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− -Performance Sustainability 4.8 2.0 ============== ===================

【0054】このように、本発明の化粧料は、のびやつ
き(付着性)が良く、透明感、光沢感が良好で、発色に
優れ、色あせしにくいことが、確認された。
As described above, it was confirmed that the cosmetic of the present invention had good spreadability (adhesiveness), good transparency and glossiness, excellent color development, and did not easily fade.

【0055】実施例-7 市販の含水酸化チタンコロイド(商品名:チタニアゾル
CS-N、石原産業(株)製、二酸化チタン換算含有量約30重
量%、粒子径30〜60nm、水分散) 175ml、0.01規定の硝
酸6430ml、シリコンテトラメトキシド5390ml、エタノー
ル5000ml、2-プロパノール5000mlを混合し、超音波照射
を行いながらヘキサメタリン酸ナトリウム3gを添加し、
35℃で約70時間養生して塗布液とした。
Example-7 Commercially available hydrous titanium oxide colloid (trade name: titania sol)
CS-N, manufactured by Ishihara Sangyo Co., Ltd., titanium dioxide equivalent content: about 30% by weight, particle size: 30-60 nm, water dispersion) 175 ml, 0.01N nitric acid 6430 ml, silicon tetramethoxide 5390 ml, ethanol 5000 ml, 2-propanol Mix 5000 ml, add 3 g of sodium hexametaphosphate while performing ultrasonic irradiation,
After curing at 35 ° C. for about 70 hours, a coating solution was obtained.

【0056】この塗布液を用いて、実施例-1と同様な方
法で焼結フレークを得た。化学分析の結果、二酸化チタ
ンの含有量は、約3重量%であった。 透過型電子顕微鏡
でフレークを観察したところ、10〜50nm大の二酸化チタ
ン微粒子が、シリカガラスマトリックス中に単分散して
いるのが観察された。また走査型電子顕微鏡でフレーク
を観察したところ、表面は非常に平滑であり、 厚みは
約0.5ミクロンであった。
Using this coating solution, sintered flakes were obtained in the same manner as in Example 1. As a result of chemical analysis, the content of titanium dioxide was about 3% by weight. Observation of the flakes with a transmission electron microscope showed that titanium dioxide fine particles having a size of 10 to 50 nm were monodispersed in a silica glass matrix. Observation of the flakes with a scanning electron microscope revealed that the surface was very smooth and about 0.5 micron thick.

【0057】焼結フレークをジェットミルで粉砕、分級
して、平均粒径約10ミクロンとし、ビニル系樹脂(硬化
後の屈折率が約1.5)中に約20重量%分散して、約0.3mm
厚みのフィルムとして、分光光度計で透過率を測定した
ところ、波長400〜800nmの可視光透過率が、全域にわた
って95%以上であり、かつ波長330nm以下 の紫外線透過
率が5%以下であり、 可視光に対して透明で紫外線を有
効に遮蔽するフレーク状ガラスであることが確認され
た。
The sintered flakes are pulverized and classified by a jet mill to have an average particle diameter of about 10 μm, and dispersed in a vinyl resin (having a refractive index of about 1.5 after curing) of about 20% by weight.
When the transmittance of a thick film was measured with a spectrophotometer, the visible light transmittance at a wavelength of 400 to 800 nm was 95% or more over the entire region, and the ultraviolet transmittance at a wavelength of 330 nm or less was 5% or less. It was confirmed that the flake glass was transparent to visible light and effectively blocked ultraviolet rays.

【0058】比較例-4 市販の微粒子酸化チタン(商品名:MT-500B、テイカ
(株)製、一次粒子径20〜50nm、ルチル型)を、市販のペ
イントシェーカーを用いて、 ビニル系樹脂(硬化後の
屈折率が約1.5)中に約0.6重量%分散し、 約0.3mm厚み
のフィルムとして、分光光度計で透過率を測定したとこ
ろ、波長400〜800nmの可視光透過率が約90%であり、波
長330nm以下の紫外線透過率が約70%であった。ビニル
系樹脂中に約6重量%分散した同厚みのフィルムでは、
波長400〜800nmの可視光透過率が、45〜55%であり、か
つ波長350nm以下の紫外線透過率が5%以下であった。
Comparative Example-4 Commercially available fine particle titanium oxide (trade name: MT-500B, Teica
Using a commercially available paint shaker, a primary particle diameter of 20 to 50 nm (rutile type) is dispersed in a vinyl resin (refractive index after curing is about 1.5) by about 0.6% by weight, and about 0.3 mm When the transmittance of the thick film was measured by a spectrophotometer, the visible light transmittance at a wavelength of 400 to 800 nm was about 90%, and the ultraviolet transmittance at a wavelength of 330 nm or less was about 70%. In a film of the same thickness dispersed about 6% by weight in a vinyl resin,
The visible light transmittance at a wavelength of 400 to 800 nm was 45 to 55%, and the ultraviolet transmittance at a wavelength of 350 nm or less was 5% or less.

【0059】すなわち、微粒子酸化チタンは、均一に分
散するのが困難であり、少量添加では、紫外線遮蔽が充
分でない。多量に添加した場合には、紫外線遮蔽能が向
上するが、粒子凝集による隠蔽性が現れ、可視光透明性
が低くなる。
That is, it is difficult to uniformly disperse the fine particle titanium oxide, and if added in a small amount, the ultraviolet shielding is not sufficient. When added in a large amount, the ability to block ultraviolet rays is improved, but hiding properties due to particle aggregation appear, and the transparency to visible light is reduced.

【0060】[0060]

【発明の効果】本発明によれば、粒子表面に水酸基を有
するコロイドと水と有機金属化合物を含む溶液を用いる
ことにより、簡単に微粒子の単分散状態を得られ、表面
の平滑性が高い高品質な微粒子分散フレーク状ガラス、
および高い紫外線遮蔽能を有し、かつ可視光に対する透
明性が高い、紫外線遮蔽剤としての酸化チタン微粒子分
散フレーク状ガラスが得られこれを配合した化粧料は、
酸化チタン微粒子分散フレーク状ガラスの可視光透明性
が高く、経時的な変化もないので、発色性の良い安定な
製品となる。また、酸化チタン微粒子分散フレーク状ガ
ラスが、互いに凝集することもなく、良好なすべり性を
示すことから、伸展性(のび)が良く、使用触感に優れ
た製品となる。またこれらの微粒子分散フレーク状ガラ
スをより簡単かつ効率的に製造することができる。
According to the present invention, a monodispersed state of fine particles can be easily obtained by using a solution containing a colloid having a hydroxyl group on the particle surface, water and an organometallic compound, and the surface has a high smoothness. Quality fine particle dispersed flake glass,
And a titanium oxide fine particle dispersed flake glass as an ultraviolet ray shielding agent is obtained as a ultraviolet ray shielding agent having a high ultraviolet ray shielding ability and a high transparency to visible light.
Since the flaky glass in which titanium oxide fine particles are dispersed has high transparency in visible light and does not change with time, a stable product having good coloring properties can be obtained. In addition, since the flaky glass in which titanium oxide fine particles are dispersed does not agglomerate with each other and exhibits good sliding properties, a product having good extensibility (spreadability) and excellent feeling in use can be obtained. In addition, it is possible to more easily and efficiently produce these flake-like glass particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の金属酸化物微粒子分散フレーク状ガ
ラスの電子顕微鏡写真(高倍率)
FIG. 1 is an electron micrograph (high magnification) of a flake glass in which metal oxide fine particles are dispersed according to the present invention.

【図2】 本発明の金属酸化物微粒子分散フレーク状ガ
ラスの他の電子顕微鏡写真
FIG. 2 is another electron micrograph of the flake glass in which the metal oxide fine particles are dispersed according to the present invention.

【図3】 比較のための金属酸化物微粒子分散フレーク
状ガラスの電子顕微鏡写真
FIG. 3 is an electron micrograph of flake glass in which metal oxide fine particles are dispersed for comparison.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C03C 12/00 C03C 12/00 (56)参考文献 特開 平6−116520(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 37/00 - 37/16 C03C 1/00 - 14/00────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI C03C 12/00 C03C 12/00 (56) References JP-A-6-116520 (JP, A) (58) Fields investigated (Int. .Cl. 6 , DB name) C03B 37/00-37/16 C03C 1/00-14/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属酸化物微粒子を内部に分散したフレ
ーク状ガラスにおいて、前記金属酸化物微粒子が水酸基
を有するコロイド粒子から由来していて1〜300nm
の粒子径を有する酸化チタン微粒子からなり、かつその
酸化チタン微粒子が前記ガラス中で凝集することなく実
質的に単粒子の形でその含有量が1〜60重量%になる
ように分散しており、波長が400〜800nmの可視
光に対する透過率がその全域にわたって80%以上であ
る、表面が平滑な金属酸化物微粒子分散フレーク状ガラ
ス。
1. A flake glass in which metal oxide fine particles are dispersed, wherein the metal oxide fine particles are derived from colloid particles having a hydroxyl group and have a particle size of 1 to 300 nm.
Consisting of titanium oxide fine particles having a particle size of
The content of the titanium oxide fine particles is substantially 1 to 60% by weight in the form of single particles without agglomeration in the glass.
Visible dispersed and a wavelength of 400~800nm as
Light transmittance of 80% or more over the entire area
That, the surface is smooth metal oxide particulate dispersion glass flakes.
【請求項2】 波長が350nm以下の紫外線透過率が
5%以下である請求項1記載の金属酸化物微粒子分散フ
レーク状ガラス。
2. The transmittance of ultraviolet light having a wavelength of 350 nm or less is obtained.
5% der Ru claim 1, wherein the metal oxide particulate dispersion glass flakes.
【請求項3】 請求項1または2記載の前記金属酸化物
微粒子分散フレーク状ガラスを配合してある化粧料。
3. The metal oxide according to claim 1 , wherein:
Cosmetics containing glass flakes dispersed in fine particles .
【請求項4】 (1)それぞれ含水金属酸化物、金属水酸化物、または表面に水酸基を有する 金属酸化物、のコロイド粒子(酸化物換算) 0.3〜20重量% (2)加水分解および重縮合が可能である有機金属化合物 5〜50重量% (3)アルコール 10〜50重量% (4)酸触媒 0.001〜5重量% (5)水 残部 ただし前記有機金属化合物(2)とアルコール(3)の
合計は90重量%以下、からなる溶液を、表面が平滑な
基板上に塗布し、これを乾燥させて塗布膜を剥離させ、
焼結することを特徴とする、金属酸化物微粒子分散フレ
ーク状ガラスの製造方法。
4. Colloidal particles (in terms of oxide) of (1) a hydrated metal oxide, a metal hydroxide, or a metal oxide having a hydroxyl group on its surface, respectively, in an amount of 0.3 to 20% by weight. Organic metal compound capable of polycondensation 5 to 50% by weight (3) Alcohol 10 to 50% by weight (4) Acid catalyst 0.001 to 5% by weight (5) Water balance However, the above-mentioned organic metal compound (2) and alcohol A total of 90% by weight or less of the solution of (3) is applied on a substrate having a smooth surface, and the applied solution is dried to peel off the applied film;
A method for producing flake glass in which metal oxide fine particles are dispersed, characterized by sintering.
【請求項5】 前記コロイド粒子は含水酸化チタン(メ
タチタン酸)である請求項4記載の金属酸化物微粒子分
散フレーク状ガラスの製造方法。
5. The method according to claim 4, wherein the colloidal particles are hydrous titanium oxide (meta titanate).
JP11784694A 1994-05-31 1994-05-31 Metal oxide fine particle dispersed flake glass and method for producing the same Expired - Fee Related JP2861806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11784694A JP2861806B2 (en) 1994-05-31 1994-05-31 Metal oxide fine particle dispersed flake glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11784694A JP2861806B2 (en) 1994-05-31 1994-05-31 Metal oxide fine particle dispersed flake glass and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07315859A JPH07315859A (en) 1995-12-05
JP2861806B2 true JP2861806B2 (en) 1999-02-24

Family

ID=14721726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11784694A Expired - Fee Related JP2861806B2 (en) 1994-05-31 1994-05-31 Metal oxide fine particle dispersed flake glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2861806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010230A1 (en) 2012-07-10 2014-01-16 日本板硝子株式会社 Method for producing particles containing metal oxide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120022A (en) * 1997-01-16 2003-02-12 Yissum Res Dev Co Sunscreens for protection from sun radiation
JP3455066B2 (en) * 1997-06-30 2003-10-06 花王株式会社 UV reflective powder and cosmetic containing it
DE60311094T2 (en) * 2002-05-24 2007-07-05 Nippon Sheet Glass Co., Ltd. SHAGGY PARTICLES AND THE COSMETIC THEREOF, COATING COMPOSITION, RESIN COMPOSITION AND INK COMPOSITION
DE102004039754A1 (en) * 2004-08-17 2006-02-23 Merck Patent Gmbh Pigments based on cylinders or prisms
JP5491742B2 (en) * 2009-02-02 2014-05-14 ポーラ化成工業株式会社 Makeup cosmetics
KR20110133493A (en) 2009-03-31 2011-12-12 후지필름 가부시키가이샤 Cosmetic
JP5653697B2 (en) 2010-03-29 2015-01-14 富士フイルム株式会社 Base makeup cosmetic and method for producing the same
US9272915B2 (en) 2011-01-11 2016-03-01 Nippon Sheet Glass Company, Limited Flaky mesoporous particles, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010230A1 (en) 2012-07-10 2014-01-16 日本板硝子株式会社 Method for producing particles containing metal oxide
US9260317B2 (en) 2012-07-10 2016-02-16 Nippon Sheet Glass Company, Limited Method for producing granular material containing metal oxide

Also Published As

Publication number Publication date
JPH07315859A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
US6432535B1 (en) Pigment in thin flakes and a method for manufacturing the same
US8409342B2 (en) Magnetic pigments and process of enhancing magnetic properties
CA2155957C (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JPH1072210A (en) Coated sio2 particles
JP2004511644A (en) Method for producing pearlescent pigment by coating metal oxide on synthetic mica
JP2861806B2 (en) Metal oxide fine particle dispersed flake glass and method for producing the same
JP2001098186A (en) Flaky pigment and method for preparing the same
JP2784261B2 (en) Flaky fine powder, method for producing the same and cosmetics
JP2549691B2 (en) Method for producing titanium oxide coated body
JP3934819B2 (en) Silky luster pigment and coating composition, cosmetic, ink and plastic containing the pigment
JPS61295234A (en) Metal oxide-coated flakelike titanium oxide
JPH06116507A (en) Iridescent luster pigment
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP2717904B2 (en) Iron-containing ultrafine rutile titanium dioxide and method for producing the same
JP3656313B2 (en) Flaked metal oxide
JP4053617B2 (en) Colored flaky glass, method for producing the same, and cosmetics containing the same
JP3427195B2 (en) Composite mica powder with ultraviolet blocking action
CN109847662B (en) Titanium dioxide nano composite material and preparation method and application thereof
JP2697611B2 (en) Flake glass, method for producing the same, and cosmetics incorporating the same
JPH07501566A (en) Pigments with improved gloss
JP5186071B2 (en) Silky luster pigment
JP4190174B2 (en) High iris color titanium oxide and its manufacturing method
JP2845131B2 (en) Iron oxide fine particle dispersed flake glass and cosmetics containing the same
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091211

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees