JP5186071B2 - Silky luster pigment - Google Patents

Silky luster pigment Download PDF

Info

Publication number
JP5186071B2
JP5186071B2 JP2001102409A JP2001102409A JP5186071B2 JP 5186071 B2 JP5186071 B2 JP 5186071B2 JP 2001102409 A JP2001102409 A JP 2001102409A JP 2001102409 A JP2001102409 A JP 2001102409A JP 5186071 B2 JP5186071 B2 JP 5186071B2
Authority
JP
Japan
Prior art keywords
average particle
pigment
particle thickness
silky
feeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001102409A
Other languages
Japanese (ja)
Other versions
JP2002294098A (en
Inventor
昌人 倉谷
光彦 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2001102409A priority Critical patent/JP5186071B2/en
Publication of JP2002294098A publication Critical patent/JP2002294098A/en
Application granted granted Critical
Publication of JP5186071B2 publication Critical patent/JP5186071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はシルキー光沢顔料、特にその光沢の改良に関する。
【0002】
【従来の技術】
従来より、合成マイカ、及び天然雲母を基質とする光沢顔料は、パール様の意匠感を発現する顔料として多くの分野で使用されている。また、光沢顔料においては、高級感を表現するために天然の真珠のような深みのある落ち着いた全体的に輝くような緻密な輝き(シルキー感)が強く求められている。しかし、従来の光沢顔料は、光輝感が強く且つ粒子感を持ち、きらきらとした光沢感はあったものの、シルキー感を発現することはできなかった。
この問題点を解決するために粒度分布幅を改善した合成フッ素金雲母粒子に金属酸化物を被覆した顔料が開発された(特開2000−281932公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の顔料は平均粒子厚みのばらつきが大きく、完全なシルキー感の発現には至らなかった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は天然の真珠のような深みのある落ち着いた全体的に輝くような緻密な輝きを発現するシルキー光沢顔料を提供することにある。
【0004】
【課題を解決するための手段】
前記目的を達成するために本発明者らが鋭意検討を行った結果、粒子厚みの分布幅を改良した合成フッ素金雲母粒子に金属酸化物を被覆した顔料は、天然の真珠のようなシルキー感を発現できること見出し、本発明を完成するに至った。
【0005】
本発明の主題はすなわち、平均粒子厚みが0.2μm未満、粒子厚みの標準偏差が0.04以下、平均粒子径が3〜20μmである合成フッ素金雲母粒子に金属酸化物を被覆した顔料である。
前記顔料において、金属酸化物が二酸化チタンであることが好適である。
前記顔料において、二酸化チタンがルチル化していることが好適である。
【0006】
【発明の実施の形態】
以下、本発明の好適な実施形態を説明する。
本発明において、「シルキー感」とは、シルクのような深みのある落ち着いた輝きを意味する。具体的には天然の真珠のように、全体的に輝くような緻密感を持つ輝きを意味する。
【0007】
合成フッ素金雲母は、溶解合成法によって得ることができる。すなわち、酸化ケイ素、酸化アルミニウム、ケイフッ化物、及びフッ化物を混合して、約1500℃に加熱溶解後、冷却し結晶化させることにより得られる。
本発明において合成フッ素金雲母粒子は、電子顕微鏡観察写真を用いた画像解析装置での測定における平均粒子厚み、その標準偏差、及び平均粒子径を特定の範囲とする必要がある。なお、平均粒子厚み及びその標準偏差の測定は、n=20以上とし、母集団中のサンプルデータを使い、その集団の平均粒子厚み及びその標準偏差を推定して求めている。
【0008】
本発明にかかる合成フッ素金雲母粒子は、平均粒子厚みが0.2μm未満、粒子厚みの標準偏差が0.04以下、平均粒子径が3〜20μmであることが好適である。平均粒子径が3μm未満であると、白っぽくなりシルキー感が得られず、20μmを越えると、粒子感が出てしまう。平均粒子厚みが0.2μm以上であると、シルキー感が得られない。また、平均粒子厚みが0.2μm未満であっても、標準偏差が0.04を越えると、全体的な輝きにならず、緻密感がでない。
【0009】
粒子厚みの分布は平均粒子厚みが0.2μm未満、標準偏差が0.04以下であれば、ピークが1つであっても、又は2つ以上であってもよい。
【0010】
このような特定の範囲の粒子は、剥離しやすい合成マイカ結晶塊を微粉化することによって得られる。剥離しやすい合成マイカ結晶塊は合成マイカを溶融合成する際に合成マイカ融液に少なくとも1%以上の合成マイカ微粉体を添加して、凝固・結晶化させることによって得られる。得られた合成マイカ結晶塊を通常の破砕機で細片化し、ハンマーミル、ロールミル、及びボールミル等を用いて更に微粉化して、所望の粒度に分級する。平均粒子厚みを0.2μm未満とし、粒子厚みの標準偏差を0.04とするためには、さらに厚い粒子をカットする必要がある。
【0011】
分級の方法は湿式分級が好適である。湿式分級方法としては、自然沈降分級、ハイドロセパレータ、スパイラル分級、ドラム分級、ジェットサイザー、クラッシファイングサイザー、液体サイクロン分級、篩分級、弧状スクリーン等の方法を行うことで可能となり、これらを組み合わせて行うことがさらに好ましい。
【0012】
本発明において、合成フッ素金雲母粉体を金属酸化物で被覆し、シルキー光沢顔料を得るには、加水分解法、スパッタリング法等の公知の方法を適用することができる。例えば、酸化チタンで被覆するには、希薄なチタン酸水溶液中に合成マイカ粉体を懸濁させ、70〜100℃に加温し、チタン塩を加水分解して合成マイカ粉体上に水和酸化チタン粒子を析出させ、その後700〜1000℃の高温で焼成する方法で製造することができる。
使用する金属酸化物としては、チタン、ジルコニウム、鉄、クロム、バナジウム等の酸化物が挙げられる。中でも二酸化チタンが好適である。さらに二酸化チタンは塩化スズ等のルチル化剤でルチル化することが好ましい。
本発明のシルキー光沢顔料は従来の顔料と同様に、各種塗料に混合して塗料組成物としたり、各種プラスチックに練りこんで独特のシルキー感を持つプラスチックとしたり、化粧料、インキ等の着色剤とすることができる。
【0013】
【実施例】
以下、本発明の好適な実施例を詳述する。なお、本発明はこれにより限定されるものではない。実施例中、電子顕微鏡はJSM−T330ATM(日本電子社製)を使用し、画像解析装置にはCV−500TM(キーエンス社製)を使用した。
【0014】
本発明における顔料に好適な雲母粒子の平均粒子径・平均粒子厚み、粒子厚みの標準偏差、及び雲母の種類を、顔料の塗膜の性質を試験することにより、確認した。
(1)平均粒子径
▲1▼平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.04であり、平均粒子径がそれぞれ2、3、9、15、20、21μmである合成フッ素金雲母粒子各30gと水400mLとをそれぞれ1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)280mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。
▲2▼顔料を熱硬化性アクリルメラミン樹脂(アクリディック47−712TMとスーパーベッカミンG821−60TM:大日本インキ社製の重量比7:3の混合物)に約10重量%混合し、黒エナメル(スーパーラックF−47TM:日本ペイント社製)を下塗りした鋼鈑に吹き付け、ウェットオンウェットで熱硬化性アクリルメラミン樹脂(アクリディック44−179TMとスーパーベッカミンL117−60TM:大日本インキ社製の重量比7:3の混合物)トップクリヤーを吹き付け、140℃で18分間焼き付け塗膜の性質を調べた。
その結果を表1に示す。
【0015】
【表1】

Figure 0005186071
【0016】
表1より、平均粒子径が3μmより小さい合成フッ素金雲母粉を使用した試験例1の顔料は、白っぽくなりシルキー感が発現されなかった。また、平均粒子径が20μmを越える合成フッ素金雲母粉を使用した試験例6の顔料は、粒子感が出て、シルキー感が発現されなかった。それに対して平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.04であり、平均粒子径が3〜20μmである合成フッ素金雲母粉を使用した試験例2〜5の顔料は緻密感があり、シルキー感が発現されることが示された。
【0017】
(2)平均粒子厚み
平均粒子径が18.4μm、粒子厚みの標準偏差が0.04であり、平均粒子厚みがそれぞれ0.10、0.15、0.20、0.25μmである合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造し、塗膜の性質を調べた。
その結果を表2に示す。
【0018】
【表2】
Figure 0005186071
【0019】
表2より、平均粒子厚みが0.20μm以上である合成フッ素金雲母粉を使用した試験例9、10の顔料は、シルクのような光沢が発現されなかった。それに対して平均粒子径が18.4μm、粒子厚みの標準偏差が0.04であり、平均粒子厚みが0.20μm未満である合成フッ素金雲母粉を使用した試験例7、8の顔料は緻密感があり、シルキー感が発現されることが示された。
【0020】
(3)粒子厚みの標準偏差
平均粒子径が18.4μm、平均粒子厚みが0.15μmであり、粒子厚みの標準偏差がそれぞれ0.02、0.04、0.05、0.07である合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造し、塗膜の性質を調べた。
その結果を表3に示す。
【0021】
【表3】
Figure 0005186071
【0022】
表3より、粒子厚みの標準偏差が0.04を越える合成フッ素金雲母粉を使用した試験例13、14の顔料は、緻密感に乏しく、シルキー感が発現されなかった。それに対して平均粒子径が18.4μm、平均粒子厚みが0.15であり、粒子厚みの標準偏差が0.04以下である合成フッ素金雲母粉を使用した試験例11、12の顔料は緻密感があり、シルキー感が発現されることが示された。
【0023】
(4)粒子厚み分布のピーク数
以下の顔料を使用し、(1)と同様にして塗膜の性質を調べた。
A. 平均粒子径が18.4μm、平均粒子厚みがそれぞれ0.12、0.18μm、粒子厚みの標準偏差が0.04である合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造した(試験例15)(試験例16)。
B. Aの2種類の合成フッ素金雲母粒子を等重量%混合した平均粒子径18.4μm、平均粒子厚み0.15μmであり、粒子厚みの標準偏差が0.04を越える合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造した(試験例17)。
C. Aの2種類の合成フッ素金雲母粒子を使用して、それぞれ(1)と同様にして顔料を製造した後、2種類の顔料を等重量%混合した(試験例18)。
D. Aの2種類の合成フッ素金雲母粒子を等重量%混合し、再度分級して平均粒子径18.4μm、平均粒子厚み0.15μm、粒子厚みの標準偏差が0.04である合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造した(試験例19)
E. 平均粒子径が18.4μm、平均粒子厚みが0.12μm、粒子厚みの標準偏差が0.04である合成フッ素金雲母粒子を使用して(1)と同様にして顔料を製造した後、任意の平均粒子径、平均粒子厚み、粒子厚みの標準偏差を持つ合成マイカを等重量%混合した(試験例20)。
その結果を表4に示す。
【0024】
【表4】
Figure 0005186071
【0025】
表5より、粒子厚みの標準偏差が0.04である2種類の合成フッ素金雲母粒子を金属酸化物で被覆する前に混合し使用した試験例17、及び金属酸化物で被覆した後に混合し使用した試験例18の顔料共に、緻密感に乏しく、シルキー感が発現されなかった。
それに対して2種類の合成フッ素金雲母粒子を金属酸化物で被覆する前に混合し再度分級して粒子厚みの標準偏差を0.04とした粒子厚み分布のピーク数が2つであるものを使用した試験例19は緻密感があり、シルキー感が発現された。 さらに試験例20より、本発明のシルキー光沢顔料は、金属酸化物で被覆した後であれば、任意の平均粒子径、平均粒子厚み、粒子厚みの標準偏差を持つ粉体と混合しても、シルキー感は損なわれないことが示された。
【0026】
(5)雲母の種類
平均粒子径が18.4μm、平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.03である合成フッ素金雲母粒子と天然白雲母を使用して(1)と同様にして顔料を製造し、塗膜の性質を調べた。
その結果を表5に示す。
【0027】
【表5】
Figure 0005186071
【0028】
表5より、天然白雲母粉を使用した試験例22の顔料は、黄味が出て、シルクの様な光沢が発現されなかった。それに対して合成フッ素金雲母粉を使用した試験例21の顔料は、緻密感があり、シルキー感が発現されることが示された。
【0029】
以上より、平均粒子径が3〜20μm、平均粒子厚みが0.2μm未満、粒子厚みの標準偏差が0.04以下である合成フッ素金雲母粒子に金属酸化物を被覆した本発明の顔料は、緻密感があり、シルキー感が発現されることがわかった。
【0030】
実施例1
平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.03で、レーザ−回析式粒度分布における平均粒子径が18.4μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)225mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、シルキー光沢顔料を得た。
顔料を熱硬化性アクリルメラミン樹脂(アクリディック47−712TMとスーパーベッカミンG821−60TM:大日本インキ社製の重量比7:3の混合物)に約10重量%混合し、黒エナメル(スーパーラックF−47TM:日本ペイント社製)を下塗りした綱鈑に吹き付け、ウェットオンウェットで熱硬化性アクリルメラミン樹脂(アクリディック44−179TMとスーパーベッカミンL117−60TM:大日本インキ社製の重量比7:3の混合物)トップクリヤーを吹き付け、140℃で18分間焼き付けた。得られた塗膜は、シルバー色で緻密感を有するシルキー感のあるものであった。
【0031】
実施例2
平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.04で、レーザ−回析式粒度分布における平均粒子径が12.8μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)280mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、シルキー光沢顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色で緻密感を有するシルキー感のあるものであった。
実施例3
平均粒子厚みが0.13μm、粒子厚みの標準偏差が0.02で、レーザ−回析式粒度分布における平均粒子径が7.0μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)353mLと塩化第一スズ0.8gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、シルキー光沢顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色で緻密感を有するシルキー感のあるものであった。
【0032】
実施例4
平均粒子厚みが0.14μm、粒子厚みの標準偏差が0.03で、レーザ−回析式粒度分布における平均粒子径が4.3μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)353mLと塩化第一スズ0.6gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、シルキー光沢顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色で緻密感を有するシルキー感のあるものであった。
実施例5
平均粒子厚みが0.10μm、粒子厚みの標準偏差が0.04で、レーザ−回析式粒度分布における平均粒子径が11.9μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)281mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、シルキー光沢顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色で緻密感を有するシルキー感のあるものであった。
【0033】
比較例1
平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.05で、レーザ−回析式粒度分布における平均粒子径が18.4μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)250mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色であるが緻密感に乏しくシルキー感がないものであった。
比較例2
平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.07で、レーザ−回析式粒度分布における平均粒子径が12.5μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)280mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色であるが緻密感に乏しくシルキー感がないものであった。
【0034】
比較例3
平均粒子厚みが0.20μm、粒子厚みの標準偏差が0.04で、レーザ−回析式粒度分布における平均粒子径が7.5μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)350mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色であるが光沢が弱くシルキー感がないものであった。
比較例4
平均粒子厚みが0.10μm、粒子厚みの標準偏差が0.04で、レーザ−回析式粒度分布における平均粒子径が21.5μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)200mLと塩化第一スズ0.5gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、シルバー色であるが粒子感が出て、シルキー感がないものであった。
【0035】
比較例5
平均粒子厚みが0.10μm、粒子厚みの標準偏差が0.04で、レーザ−回析式粒度分布における平均粒子径が2.0μmである合成フッ素金雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)550mLと塩化第一スズ0.8gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、 シルバー色であるが白っぽく、シルキー感がないものであった。
比較例6
平均粒子厚みが0.15μm、粒子厚みの標準偏差が0.03で、レーザ−回析式粒度分布における平均粒子径が4.6μmである天然白雲母粒子30gと水400mLとを1Lのガラス製容器中に入れて攪拌した。
この中に、硫酸チタニル溶液(TiO=80g/L)380mLと塩化第一スズ0.6gを添加して、急速に100℃に加熱し、反応を1時間継続した。
反応終了後、濾過、水洗し、110℃で乾燥した。続いて800℃で1時間焼成して、顔料を得た。この顔料を使用して実施例1と同様にして塗板を作成した。得られた塗膜は、黄味のあるシルバー色であり、シルキー感がないものであった。
【0036】
実施例6 塩化ビニルシート
実施例1で得られたシルキー光沢顔料4部を塩化ビニール樹脂約100部、ジオクチルフタレート40部及びステアリン酸亜鉛3部と混合し、165℃に加熱した混練二本ロールで3分間処理し、厚さ0.5mmのシート状に形成した。
この塩化ビニルシートは半透明で反射光がシルバー色であるシルキー感のあるものであった。
実施例7 口紅
実施例1で得られたシルキー光沢顔料15部、赤色226号1部、香料0.5部、ミツロウ15部、セチルアルコール3部、ラノリン15部、ひまし油62部、及び流動パラフィン5部を用いて、常法によって口紅を製造した。
この口紅は陰蔽性が高い鮮やかな艶のある赤色であり、且つシルキー感のある光沢を示すものであった。
【0037】
実施例8 固形アイシャドウ
実施例1で得られたシルキー光沢顔料30部、合成マイカ20部、タルク35部、酸化チタン5部、流動パラフィン6部、メチルポリシロキサン2部、ソルビタンセスキオレート2部を用いて、前記処方物中の粉体をブレンダーで混合した後、結合剤を均一に溶解させた液体を添加、混合後、粉砕機で粉砕し圧縮成型して固形アイシャドウを製造した。
この固形アイシャドウはシルキー感があり、仕上がりの優れたものであった。
実施例9 インキ
グラビアインキメジウム100部に対し、実施例1で得られたシルキー光沢顔料15部を加え、充分混合してグラビアシルキーインキを得た。このインキはシルキー感があり高級感に満ちたシルバー色を示すものであった。
【0038】
【発明の効果】
以上説明したように本発明にかかるシルキー光沢顔料によれば、天然の真珠のような深みのある落ち着いた全体的に輝くような緻密な輝きを発現するシルキー光沢顔料を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silky luster pigments, and in particular to improving their gloss.
[0002]
[Prior art]
Conventionally, glossy pigments using synthetic mica and natural mica as a substrate have been used in many fields as pigments that exhibit a pearl-like design feeling. In addition, glossy pigments are strongly required to have a deep, calm and precise shine (silky feeling) like natural pearls in order to express a high-class feeling. However, the conventional luster pigment has a strong luster and a particle feeling, and although it has a shiny luster, it cannot exhibit a silky feeling.
In order to solve this problem, a pigment in which a synthetic oxide phlogopite mica particle having an improved particle size distribution width is coated with a metal oxide has been developed (Japanese Patent Laid-Open No. 2000-281932).
[0003]
[Problems to be solved by the invention]
However, the above-mentioned pigments have a large variation in average particle thickness, and did not reach a complete silky feeling.
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a silky luster pigment that expresses a deep, calm and dense shine like natural pearls. is there.
[0004]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors in order to achieve the above object, a pigment obtained by coating a metal oxide with synthetic fluorine phlogopite particles having an improved particle thickness distribution width has a silky feeling like natural pearls. The present invention has been completed.
[0005]
The subject of the present invention is a pigment in which a synthetic oxide phlogopite mica particle having an average particle thickness of less than 0.2 μm, a standard deviation of the particle thickness of 0.04 or less, and an average particle diameter of 3 to 20 μm is coated with a metal oxide. is there.
In the pigment, the metal oxide is preferably titanium dioxide.
In the pigment, titanium dioxide is preferably rutile.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, “silky feeling” means a deep and calm shine like silk. Specifically, it means a brilliant sensation that shines like a natural pearl.
[0007]
Synthetic fluorine phlogopite can be obtained by a melt synthesis method. That is, it is obtained by mixing silicon oxide, aluminum oxide, silicofluoride, and fluoride, heating and dissolving at about 1500 ° C., cooling and crystallizing.
In the present invention, the synthetic fluorine phlogopite particles need to have an average particle thickness, a standard deviation, and an average particle diameter in a specific range as measured by an image analyzer using an electron microscope observation photograph. The average particle thickness and the standard deviation thereof are measured by setting n = 20 or more and using the sample data in the population to estimate the average particle thickness and the standard deviation of the population.
[0008]
The synthetic fluorine phlogopite particles according to the present invention preferably have an average particle thickness of less than 0.2 μm, a standard deviation of the particle thickness of 0.04 or less, and an average particle diameter of 3 to 20 μm. When the average particle size is less than 3 μm, the color becomes whitish and silky feeling cannot be obtained, and when it exceeds 20 μm, the particle feeling appears. When the average particle thickness is 0.2 μm or more, silky feeling cannot be obtained. Further, even if the average particle thickness is less than 0.2 μm, if the standard deviation exceeds 0.04, the overall brightness is not achieved, and a dense feeling is not obtained.
[0009]
The distribution of the particle thickness may be one peak or two or more if the average particle thickness is less than 0.2 μm and the standard deviation is 0.04 or less.
[0010]
Such a specific range of particles can be obtained by finely pulverizing a synthetic mica crystal lump that easily peels. A synthetic mica crystal lump that is easy to peel off is obtained by adding at least 1% or more of synthetic mica fine powder to the synthetic mica melt when the synthetic mica is melt-synthesized, and solidifying and crystallizing. The obtained synthetic mica crystal lump is fragmented with a normal crusher, further pulverized using a hammer mill, roll mill, ball mill or the like, and classified to a desired particle size. In order to make the average particle thickness less than 0.2 μm and the standard deviation of the particle thickness to 0.04, it is necessary to cut even thicker particles.
[0011]
As the classification method, wet classification is suitable. Wet classification methods can be performed by methods such as natural sedimentation classification, hydro-separator, spiral classification, drum classification, jet sizer, crashing sizer, liquid cyclone classification, sieve classification, arc screen, etc. More preferably it is performed.
[0012]
In the present invention, a known method such as a hydrolysis method or a sputtering method can be applied to obtain a silky luster pigment by coating the synthetic fluorophlogopite powder with a metal oxide. For example, to coat with titanium oxide, the synthetic mica powder is suspended in a dilute titanic acid aqueous solution, heated to 70 to 100 ° C., and the titanium salt is hydrolyzed to hydrate on the synthetic mica powder. The titanium oxide particles can be precipitated and then manufactured by firing at a high temperature of 700 to 1000 ° C.
Examples of the metal oxide to be used include oxides such as titanium, zirconium, iron, chromium and vanadium. Of these, titanium dioxide is preferred. Further, the titanium dioxide is preferably rutiled with a rutile agent such as tin chloride.
As with conventional pigments, the silky luster pigment of the present invention is mixed with various paints to form a paint composition, kneaded into various plastics to form a plastic with a unique silky feeling, or a colorant such as cosmetics or inks. It can be.
[0013]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited by this. In the examples, JSM-T330A TM (manufactured by JEOL Ltd.) was used as the electron microscope, and CV-500 TM (manufactured by Keyence Corporation) was used as the image analysis apparatus.
[0014]
The average particle diameter / average particle thickness of the mica particles suitable for the pigment in the present invention, the standard deviation of the particle thickness, and the type of mica were confirmed by examining the properties of the pigment coating film.
(1) Average particle diameter (1) Synthetic fluorogold having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.04, and an average particle diameter of 2, 3, 9, 15, 20, and 21 μm, respectively. Each 30 g of mica particles and 400 mL of water were placed in a 1 L glass container and stirred.
To this, 280 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment.
(2) The pigment was mixed with thermosetting acrylic melamine resin (Acridic 47-712 TM and Super Becamine G821-60 TM : a mixture of Dainippon Ink Co., Ltd. in a weight ratio of 7: 3) in an amount of about 10% by weight. Sprayed on an undercoated steel sheet with enamel (Super Lac F-47 : Nippon Paint Co., Ltd.), wet-on-wet and thermosetting acrylic melamine resin (Acridic 44-179 and Superbecamine L117-60 : Dainippon A mixture of 7: 3 by weight manufactured by Ink Co., Ltd.) Top clear was sprayed and baked at 140 ° C. for 18 minutes to examine properties of the coating film.
The results are shown in Table 1.
[0015]
[Table 1]
Figure 0005186071
[0016]
From Table 1, the pigment of Test Example 1 using a synthetic fluorophlogopite powder having an average particle size of less than 3 μm became whitish and silky feeling was not expressed. Further, the pigment of Test Example 6 using the synthetic fluorine phlogopite powder having an average particle diameter exceeding 20 μm exhibited a particle feeling and no silky feeling. On the other hand, the pigments of Test Examples 2 to 5 using synthetic fluorophlogopite powder having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.04, and an average particle diameter of 3 to 20 μm are dense. It was shown that a silky feeling was expressed.
[0017]
(2) Average particle thickness Synthetic fluorine having an average particle diameter of 18.4 μm, a standard deviation of the particle thickness of 0.04, and an average particle thickness of 0.10, 0.15, 0.20, and 0.25 μm, respectively. Using phlogopite particles, a pigment was produced in the same manner as (1), and the properties of the coating film were examined.
The results are shown in Table 2.
[0018]
[Table 2]
Figure 0005186071
[0019]
From Table 2, the pigments of Test Examples 9 and 10 using synthetic fluorine phlogopite mica powder having an average particle thickness of 0.20 μm or more did not exhibit silky luster. On the other hand, the pigments of Test Examples 7 and 8 using synthetic fluorophlogopite powder having an average particle diameter of 18.4 μm, a standard deviation of the particle thickness of 0.04, and an average particle thickness of less than 0.20 μm are dense. There was a feeling, and it was shown that a silky feeling was expressed.
[0020]
(3) The standard deviation average particle diameter of the particle thickness is 18.4 μm, the average particle thickness is 0.15 μm, and the standard deviation of the particle thickness is 0.02, 0.04, 0.05, and 0.07, respectively. Using synthetic fluorine phlogopite particles, a pigment was produced in the same manner as in (1), and the properties of the coating film were examined.
The results are shown in Table 3.
[0021]
[Table 3]
Figure 0005186071
[0022]
From Table 3, the pigments of Test Examples 13 and 14 using synthetic fluorine phlogopite mica powder having a standard deviation of the particle thickness exceeding 0.04 have poor denseness and no silky feeling. On the other hand, the pigments of Test Examples 11 and 12 using synthetic fluorophlogopite powder having an average particle diameter of 18.4 μm, an average particle thickness of 0.15, and a standard deviation of the particle thickness of 0.04 or less are dense. There was a feeling, and it was shown that a silky feeling was expressed.
[0023]
(4) The properties of the coating film were examined in the same manner as in (1), using a pigment having a peak number or less of the particle thickness distribution.
A. A synthetic fluorophlogopite particle having an average particle diameter of 18.4 μm, an average particle thickness of 0.12 and 0.18 μm, and a standard deviation of the particle thickness of 0.04 was used in the same manner as in (1). Manufactured (Test Example 15) (Test Example 16).
B. A synthetic fluorine phlogopite mica particle having an average particle diameter of 18.4 μm, an average particle thickness of 0.15 μm and a standard deviation of the particle thickness exceeding 0.04 is used. Then, a pigment was produced in the same manner as in (1) (Test Example 17).
C. Using the two types of synthetic fluorine phlogopite particles of A, pigments were produced in the same manner as in (1), and then the two types of pigments were mixed in an equal weight percentage (Test Example 18).
D. Two types of synthetic fluorine phlogopite particles of A are mixed by equal weight%, and are classified again. The synthetic fluorine phlogopite with an average particle diameter of 18.4 μm, an average particle thickness of 0.15 μm, and a standard deviation of the particle thickness of 0.04 Using the particles, a pigment was produced in the same manner as in (1) (Test Example 19).
E. After producing a pigment in the same manner as in (1) using synthetic fluorine phlogopite particles having an average particle diameter of 18.4 μm, an average particle thickness of 0.12 μm, and a standard deviation of the particle thickness of 0.04, any Synthetic mica having an average particle diameter, an average particle thickness, and a standard deviation of the particle thickness was mixed in an equal weight% (Test Example 20).
The results are shown in Table 4.
[0024]
[Table 4]
Figure 0005186071
[0025]
From Table 5, Test Example 17 in which two types of synthetic fluorine phlogopite particles having a standard deviation of the particle thickness of 0.04 were mixed before coating with metal oxide, and mixed after coating with metal oxide were mixed. Both of the pigments of Test Example 18 used were not dense and silky feeling was not expressed.
On the other hand, two kinds of synthetic fluorine phlogopite particles are mixed before being coated with a metal oxide and classified again, and the number of peaks of the particle thickness distribution is two with the standard deviation of the particle thickness being 0.04. Test Example 19 used had a dense feeling and a silky feeling. Furthermore, from Test Example 20, if the silky luster pigment of the present invention is coated with a metal oxide, it can be mixed with a powder having an arbitrary average particle diameter, average particle thickness, standard deviation of particle thickness, It was shown that the silky feeling is not impaired.
[0026]
(5) Mica type Using synthetic fluorine phlogopite particles and natural muscovite with an average particle diameter of 18.4 μm, an average particle thickness of 0.15 μm, and a standard deviation of the particle thickness of 0.03, and (1) Similarly, pigments were produced and the properties of the coating film were examined.
The results are shown in Table 5.
[0027]
[Table 5]
Figure 0005186071
[0028]
From Table 5, the pigment of Test Example 22 using natural muscovite powder showed a yellowish color and did not exhibit silky luster. On the other hand, it was shown that the pigment of Test Example 21 using synthetic fluorophlogopite powder has a dense feeling and a silky feeling.
[0029]
From the above, the pigment of the present invention in which a synthetic oxide phlogopite mica particle having an average particle diameter of 3 to 20 μm, an average particle thickness of less than 0.2 μm, and a standard deviation of the particle thickness of 0.04 or less is coated with a metal oxide, It was found that there was a dense feeling and a silky feeling was expressed.
[0030]
Example 1
1 L of glass with 30 g of synthetic fluorophlogopite particles having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.03, and an average particle size of 18.4 μm in the laser diffraction particle size distribution and 400 mL of water. It stirred in the container made.
To this, 225 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, it was calcined at 800 ° C. for 1 hour to obtain a silky luster pigment.
About 10% by weight of the pigment is mixed with a thermosetting acrylic melamine resin (Acridic 47-712 TM and Super Becamine G821-60 TM : a 7: 3 weight ratio manufactured by Dainippon Ink Co., Ltd.), and black enamel (Super A rack F-47 TM (manufactured by Nippon Paint Co., Ltd.) is sprayed onto a rope that has been primed, and wet-on-wet and thermosetting acrylic melamine resin (Acridick 44-179 TM and Super Becamine L117-60 TM : manufactured by Dainippon Ink, Inc.) The mixture was sprayed with a top clear and baked at 140 ° C. for 18 minutes. The obtained coating film was silvery and had a silky feeling having a dense feeling.
[0031]
Example 2
1 L of glass with 30 g of synthetic fluorophlogopite particles having an average particle thickness of 0.15 μm, a standard deviation of particle thickness of 0.04, and an average particle size of 12.8 μm in the laser-diffraction particle size distribution and 400 mL of water. It stirred in the container made.
To this, 280 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, it was calcined at 800 ° C. for 1 hour to obtain a silky luster pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film was silvery and had a silky feeling having a dense feeling.
Example 3
1 L of glass with 30 g of synthetic fluorine phlogopite particles having an average particle thickness of 0.13 μm, a standard deviation of the particle thickness of 0.02, and an average particle size of 7.0 μm in the laser diffraction particle size distribution and 400 mL of water. It stirred in the container made.
Into this, 353 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.8 g of stannous chloride were added, rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, it was calcined at 800 ° C. for 1 hour to obtain a silky luster pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film was silvery and had a silky feeling having a dense feeling.
[0032]
Example 4
1 L of glass with 30 g of synthetic fluorophlogopite particles having an average particle thickness of 0.14 μm, a standard deviation of the particle thickness of 0.03, and an average particle size of 4.3 μm in the laser-diffraction particle size distribution and 400 mL of water. It stirred in the container made.
Into this, 353 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.6 g of stannous chloride were added, rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, it was calcined at 800 ° C. for 1 hour to obtain a silky luster pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film was silvery and had a silky feeling having a dense feeling.
Example 5
Synthetic fluorine phlogopite particles having an average particle thickness of 0.10 μm, a standard deviation of the particle thickness of 0.04, and an average particle size of 11.9 μm in the laser-diffraction type particle size distribution and 400 mL of water are added to 1 L of glass. It stirred in the container made.
To this, 281 mL of a titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added, rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, it was calcined at 800 ° C. for 1 hour to obtain a silky luster pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film was silvery and had a silky feeling having a dense feeling.
[0033]
Comparative Example 1
Synthetic fluorine phlogopite particles 30 g and 400 mL of water having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.05, and an average particle size of 18.4 μm in the laser-diffraction particle size distribution are added to 1 L of glass. It stirred in the container made.
To this, 250 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, it was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film had a silver color but lacked a dense feeling and no silky feeling.
Comparative Example 2
Synthetic fluorine phlogopite particles having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.07, and an average particle size of 12.5 μm in the laser-diffraction particle size distribution and 400 mL of water are added to 1 L of glass. It stirred in the container made.
To this, 280 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film had a silver color but lacked a dense feeling and no silky feeling.
[0034]
Comparative Example 3
1 L of glass with 30 g of synthetic fluorophlogopite particles having an average particle thickness of 0.20 μm, a standard deviation of particle thickness of 0.04, and an average particle size of 7.5 μm in the laser-diffraction particle size distribution and 400 mL of water. It stirred in the container made.
To this, 350 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film had a silver color but had a low gloss and no silky feeling.
Comparative Example 4
Synthetic fluorine phlogopite particles having an average particle thickness of 0.10 μm, a standard deviation of the particle thickness of 0.04, and an average particle size of 21.5 μm in the laser-diffraction type particle size distribution and 400 mL of water are added to 1 L of glass. It stirred in the container made.
To this, 200 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.5 g of stannous chloride were added, rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film had a silver color but a particle feeling and no silky feeling.
[0035]
Comparative Example 5
Synthetic fluorine phlogopite particles 30 g having an average particle thickness of 0.10 μm, a standard deviation of the particle thickness of 0.04, and an average particle size of 2.0 μm in the laser-diffraction particle size distribution and 400 mL of water are added to 1 L of glass. It stirred in the container made.
To this, 550 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.8 g of stannous chloride were added and rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film was silver but whitish and had no silky feeling.
Comparative Example 6
30 g of natural muscovite particles having an average particle thickness of 0.15 μm, a standard deviation of the particle thickness of 0.03, and an average particle size of 4.6 μm in the laser diffraction particle size distribution and 400 mL of water are made of 1 L of glass. It stirred in the container.
To this, 380 mL of titanyl sulfate solution (TiO 2 = 80 g / L) and 0.6 g of stannous chloride were added, rapidly heated to 100 ° C., and the reaction was continued for 1 hour.
After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. Subsequently, the mixture was baked at 800 ° C. for 1 hour to obtain a pigment. Using this pigment, a coated plate was prepared in the same manner as in Example 1. The obtained coating film had a yellowish silver color and had no silky feeling.
[0036]
Example 6 Vinyl chloride sheet 4 parts of the silky luster pigment obtained in Example 1 were mixed with about 100 parts of vinyl chloride resin, 40 parts of dioctyl phthalate and 3 parts of zinc stearate and kneaded at 165C. It processed for 3 minutes with two rolls, and formed in the sheet form of thickness 0.5mm.
This vinyl chloride sheet was translucent and had a silky feeling that the reflected light was silver.
Example 7 Lipstick 15 parts silky luster pigment obtained in Example 1, 1 part red 226, 0.5 part fragrance, 15 parts beeswax, 3 parts cetyl alcohol, 15 parts lanolin, 62 parts castor oil, And using 5 parts of liquid paraffin, lipstick was produced by a conventional method.
The lipstick had a bright glossy red color with a high shading property, and showed a silky gloss.
[0037]
Example 8 Solid eye shadow 30 parts of silky luster pigment obtained in Example 1, 20 parts of synthetic mica, 35 parts of talc, 5 parts of titanium oxide, 6 parts of liquid paraffin, 2 parts of methylpolysiloxane, sorbitan sesquiski Using 2 parts of oleate, the powder in the formulation is mixed with a blender, then a liquid in which the binder is uniformly dissolved is added, mixed, pulverized with a pulverizer, and compression molded to produce a solid eye shadow. did.
This solid eye shadow had a silky feeling and an excellent finish.
Example 9 Ink To 100 parts of the gravure ink medium, 15 parts of the silky luster pigment obtained in Example 1 was added and mixed well to obtain a graviacyl key ink. This ink had a silky feeling and exhibited a silver color full of luxury.
[0038]
【Effect of the invention】
As described above, according to the silky luster pigment according to the present invention, it is possible to obtain a silky luster pigment that expresses a deep, calm and dense shine like a natural pearl.

Claims (3)

平均粒子厚みが0.2μm未満、粒子厚みの標準偏差が0.04以下、平均粒子径が10μmより大きく20μm以下である合成フッ素金雲母粒子に金属酸化物を被覆したシルキー光沢顔料。A silky luster pigment in which a synthetic fluorophlogopite particle having an average particle thickness of less than 0.2 μm, a standard deviation of particle thickness of 0.04 or less, and an average particle diameter of greater than 10 μm and 20 μm or less is coated with a metal oxide. 請求項1記載の顔料において、金属酸化物が二酸化チタンであることを特徴とするシルキー光沢顔料。  2. The silky luster pigment according to claim 1, wherein the metal oxide is titanium dioxide. 請求項2記載の顔料において、二酸化チタンがルチル化していることを特徴とするシルキー光沢顔料。  3. The silky luster pigment according to claim 2, wherein the titanium dioxide is rutile.
JP2001102409A 2001-03-30 2001-03-30 Silky luster pigment Expired - Lifetime JP5186071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102409A JP5186071B2 (en) 2001-03-30 2001-03-30 Silky luster pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102409A JP5186071B2 (en) 2001-03-30 2001-03-30 Silky luster pigment

Publications (2)

Publication Number Publication Date
JP2002294098A JP2002294098A (en) 2002-10-09
JP5186071B2 true JP5186071B2 (en) 2013-04-17

Family

ID=18955611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102409A Expired - Lifetime JP5186071B2 (en) 2001-03-30 2001-03-30 Silky luster pigment

Country Status (1)

Country Link
JP (1) JP5186071B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564261B1 (en) 2004-02-09 2016-05-25 Merck Patent GmbH Interference pigments
DE102004052544A1 (en) * 2004-02-09 2005-08-25 Merck Patent Gmbh Interference pigment for, e.g. paint, contains low-refractive-index, transparent, flake substrate coated with high-refractive-index coating containing titanium (IV) oxide and optionally further coated with outer protective layer
DE102006027025A1 (en) * 2006-06-08 2007-12-13 Merck Patent Gmbh Silver-white effect pigments
EP2123721B1 (en) * 2008-04-15 2013-11-27 Eckart GmbH Pearlescent pigment based on fine, thin substrates
WO2010113899A1 (en) * 2009-03-31 2010-10-07 富士フイルム株式会社 Cosmetic
DE102009031266A1 (en) 2009-06-30 2011-01-13 Eckart Gmbh Inkjet ink containing pearlescent pigments based on fine and thin substrates
JP2011046695A (en) * 2009-07-30 2011-03-10 Fujifilm Corp Cosmetic
DE102009049413A1 (en) 2009-10-14 2011-04-21 Eckart Gmbh Pearlescent pigments based on fine and thin synthetic substrates
JP6675186B2 (en) * 2015-12-02 2020-04-01 東洋アルミニウム株式会社 Scale-like composite particles, resin composition and coated product containing the same, and method for producing scale-like composite particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934819B2 (en) * 1999-04-01 2007-06-20 トピー工業株式会社 Silky luster pigment and coating composition, cosmetic, ink and plastic containing the pigment

Also Published As

Publication number Publication date
JP2002294098A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP4647494B2 (en) Black bright pigment and cosmetics, coating composition, resin composition and ink composition containing the same
JP6012626B2 (en) Glittering pigment, cosmetics containing it, coating composition and resin composition, and method for producing glittering pigment
US7318861B2 (en) Effect pigment
JP2004511644A (en) Method for producing pearlescent pigment by coating metal oxide on synthetic mica
JP5563732B2 (en) Smooth flaky powder, highly bright pigment and method for producing the same
JP3934819B2 (en) Silky luster pigment and coating composition, cosmetic, ink and plastic containing the pigment
JP5186071B2 (en) Silky luster pigment
JP6116602B2 (en) Method for producing iron oxide-coated layered silicate pigment
JPS61295234A (en) Metal oxide-coated flakelike titanium oxide
JP2889837B2 (en) Pall gloss pigment and coating composition, cosmetic, ink and plastic containing the pigment
EP1697468B1 (en) Colored metal pigments, method for the production thereof, use of the colored metal pigments in cosmetics, and cosmetic containing these
JP2922148B2 (en) Novel pearlescent pigments and coating compositions, cosmetics, inks and plastics containing the pigments
JP4624333B2 (en) Mica-based composite material and method for producing the same
WO2004061012A2 (en) Improved effect pigment comprising a mixture of at least 2 substrate materials
JP2002226732A (en) Lustrous pigment, and coating composition, resin molded article, cosmetic and ink composition containing the same
JP2646454B2 (en) Coated pigment
JP4190174B2 (en) High iris color titanium oxide and its manufacturing method
JPS63254169A (en) Coating pigment and production thereof
JP2006291156A (en) Production method of pearlescent pigment having high brilliance and pearlescent pigment produced by the production method
JP2004224964A (en) Luster pigment and method for producing the same
JPH0611872B2 (en) Titanium dioxide coated silica beads, production method and use thereof
JP3884526B2 (en) Mica-based composite material and method for producing the same
JP3884534B2 (en) Cosmetics
JP3044949B2 (en) Decorative pigments
JPS61293906A (en) Finishing cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110913

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5186071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

EXPY Cancellation because of completion of term