JP2000012879A - Transparent electrode for photoelectric converter elements and photoelectric converter element using the same - Google Patents

Transparent electrode for photoelectric converter elements and photoelectric converter element using the same

Info

Publication number
JP2000012879A
JP2000012879A JP10177754A JP17775498A JP2000012879A JP 2000012879 A JP2000012879 A JP 2000012879A JP 10177754 A JP10177754 A JP 10177754A JP 17775498 A JP17775498 A JP 17775498A JP 2000012879 A JP2000012879 A JP 2000012879A
Authority
JP
Japan
Prior art keywords
thin film
photoelectric conversion
transparent electrode
oxide
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10177754A
Other languages
Japanese (ja)
Inventor
Yukihiro Kimura
幸弘 木村
Tomohito Kitamura
智史 北村
Kenzo Fukuyoshi
健蔵 福吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP10177754A priority Critical patent/JP2000012879A/en
Publication of JP2000012879A publication Critical patent/JP2000012879A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-resistance and low-reflectivity transparent electrode by using a three-layer transparent electrode having an Ag-based thin film sandwiched between oxide thin films for a transparent electrode on a photoelectric conversion layer. SOLUTION: A transparent electrode 16 formed on a photoelectric conversion layer 12 has a three-layer structure having an Ag-based thin film 14 sandwiched between a lower and upper oxide thin films 13, 15 made of a mixed oxide composed of two or more kinds of metal oxides, the Ag-based thin film 14 is of an Ag alloy contg. at least either Au or Cu 3 at.% or less, and the lower oxide thin film 13 contacting the photoelectric conversion layer 12 is formed thicker than the upper oxide thin film 15. Thus a low-resistance and low- reflectivity transparent electrode can be formed from such three-layer transparent electrode 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池等の光電
変換素子を構成する、光電変換層上に形成される透明電
極に関し、さらには、その透明電極を用いた光電変換素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent electrode formed on a photoelectric conversion layer which constitutes a photoelectric conversion element such as a solar cell, and further relates to a photoelectric conversion element using the transparent electrode.

【0002】[0002]

【従来の技術】現在、石油、石炭等の化石燃料は、採取
可能な埋蔵量をもとに計算すると、数十年後には枯渇す
ると予測されている。また、化石燃料の消費にともない
排出されるガス(二酸化炭素、硫化水素等)は、公害、
地球温暖化等の問題を引き起こすものといえる。これら
の問題を解決する手段として、光を電気エネルギーに変
換する、太陽電池等の光電変換素子が注目されている。
すなわち、光電変換素子は、ほぼ無限といえる太陽光を
電気エネルギーに変換できるため、無公害でクリーンな
エネルギー源といえる。
2. Description of the Related Art At present, fossil fuels such as petroleum and coal are expected to be depleted in a few decades when calculated based on recoverable reserves. In addition, the gas (carbon dioxide, hydrogen sulfide, etc.) emitted from fossil fuel consumption is polluted,
This can cause problems such as global warming. As means for solving these problems, a photoelectric conversion element such as a solar cell that converts light into electric energy has attracted attention.
That is, since the photoelectric conversion element can convert almost infinite sunlight into electric energy, it can be said that the photoelectric conversion element is a pollution-free and clean energy source.

【0003】現在、太陽電池等の光電変換素子は、光電
変換効率を高め、また、材料、製造プロセスを改善して
安価に供給し発電コストを下げるべく努力が行われてい
るものであり、一般家庭までの普及を目指して開発が進
められている。
[0003] At present, efforts are being made to increase the photoelectric conversion efficiency of photoelectric conversion elements such as solar cells, to improve materials and manufacturing processes, to supply them at low cost, and to reduce power generation costs. Development is underway to spread it to the home.

【0004】光電変換素子の光電変換効率を高める策と
して、光電変換素子を構成する光電変換層に用いられる
半導体の材質や構造の改良が挙げられる。また、光電変
換素子全体の構成を改善し、光電変換素子に入射する光
の有効利用を行なうことも、光電変換効率を高める策と
して有効といえる。すなわち、従来は、光電変換素子に
入射した光の一部は光電変換素子より反射し、利用(変
換)されていなかった。このため、光電変換素子の構造
を、例えばテクスチャー構造と呼称される構造等の、光
電変換素子に入射した光を素子内に閉じ込める効果を有
する構造とし、または、反射防止膜を形成し反射光を減
じることで、光電変換素子に入射する光を有効に利用で
き、光電変換効率を高めることが可能となるものであ
る。このように、現在、入射する光を有効に利用する方
法については、種々の検討が進められている。
[0004] As a measure for increasing the photoelectric conversion efficiency of the photoelectric conversion element, improvement of the material and structure of a semiconductor used for the photoelectric conversion layer constituting the photoelectric conversion element can be mentioned. Improving the configuration of the entire photoelectric conversion element and making effective use of light incident on the photoelectric conversion element can also be said to be effective as a measure for increasing the photoelectric conversion efficiency. That is, conventionally, a part of light incident on the photoelectric conversion element is reflected from the photoelectric conversion element and is not used (converted). For this reason, the structure of the photoelectric conversion element is a structure having an effect of confining light incident on the photoelectric conversion element in the element, such as a structure called a texture structure, or an anti-reflection film is formed to reflect reflected light. By reducing, the light incident on the photoelectric conversion element can be effectively used, and the photoelectric conversion efficiency can be increased. As described above, various studies are currently being conducted on a method of effectively using incident light.

【0005】ここで、光電変換素子を構成する要素とし
て光電変換層があげられるが、光電変換層上に透明電極
を形成する場合がある。透明電極の役割の一つは、光電
変換層が光から変換した電気を伝達するものである。透
明電極の材質として、ITO(酸化スズと酸化インジウ
ムからなる混合酸化物)、SnO2 (酸化スズ)、Zn
O(酸化亜鉛)および、酸化亜鉛とアルミ(Al)との
混合物等が挙げられる。透明電極には、電気を伝達する
際の伝達率の低下を防ぐため、低抵抗(例えば5Ω/□
程度)が要求される場合が多い。しかし、上述した材質
では低抵抗とするためには、例えば膜厚1μm程度と厚
く透明電極を形成しなければならなかった。透明電極の
膜厚を厚く形成すると、透明電極の透過率が低下し、光
電変換層に入る光が少なくなり変換効率が低下するとい
う問題が生じ、また、生産コストが高くなる、生産性が
低下する等の問題も生じていた。さらに、透明電極の厚
膜化により内部応力が増し、膜剥がれやクラックが生じ
る等、透明電極の品質上の問題をも生じていた。
Here, a photoelectric conversion layer may be mentioned as an element constituting the photoelectric conversion element, and a transparent electrode may be formed on the photoelectric conversion layer in some cases. One of the roles of the transparent electrode is to transmit electricity converted from light by the photoelectric conversion layer. As a material of the transparent electrode, ITO (a mixed oxide composed of tin oxide and indium oxide), SnO 2 (tin oxide), Zn
O (zinc oxide) and a mixture of zinc oxide and aluminum (Al) are exemplified. The transparent electrode has a low resistance (for example, 5Ω / □) in order to prevent a decrease in the transmission rate when transmitting electricity.
Degree) is often required. However, in order to make the resistance low with the above-mentioned materials, it is necessary to form a transparent electrode as thick as, for example, about 1 μm. When the thickness of the transparent electrode is formed to be large, the transmittance of the transparent electrode is reduced, the light entering the photoelectric conversion layer is reduced, and the conversion efficiency is reduced. In addition, the production cost is increased, and the productivity is reduced. And other problems. In addition, the thickness of the transparent electrode increases the internal stress, causing film peeling and cracking.

【0006】また、光電変換層に入射する光を多くし光
電変換素子の変換効率を高くするため、透明電極を高透
過率とすることを要求された場合、透明電極の光学的膜
厚(n×d、nは透明電極の屈折率、dは透明電極の膜
厚)をλ/4(λは、光電変換素子に入射する光の波長
中、光電変換素子の変換効率が最も高い波長)になるよ
う設定することが有効といえる。ちなみに、透明電極の
材質をITO(n=1.9)とした場合、高透過率を得
るためには、膜厚(d)を約70nmにて形成すること
が必要といえる。
When it is required to increase the transmittance of the transparent electrode in order to increase the light incident on the photoelectric conversion layer and increase the conversion efficiency of the photoelectric conversion element, the optical thickness of the transparent electrode (n × d, n is the refractive index of the transparent electrode, d is the thickness of the transparent electrode) to λ / 4 (λ is the wavelength at which the conversion efficiency of the photoelectric conversion element is the highest among the wavelengths of light incident on the photoelectric conversion element). It can be said that setting to be effective is effective. Incidentally, when the material of the transparent electrode is ITO (n = 1.9), it can be said that it is necessary to form the film with a film thickness (d) of about 70 nm in order to obtain a high transmittance.

【0007】しかし、透明電極の光学的膜厚(n×d)
をλ/4で形成すると、膜厚が薄くなるため透明電極の
抵抗値が、例えば30Ω/□〜40Ω/□程度と高くな
り伝達効率が低下し、かえって変換効率が低下するとい
う問題を生じるものである。
However, the optical thickness of the transparent electrode (nxd)
Is formed at λ / 4, the thickness of the film becomes thin, so that the resistance value of the transparent electrode becomes high, for example, about 30 Ω / □ to 40 Ω / □, which causes a problem that the transmission efficiency is lowered and the conversion efficiency is rather lowered. It is.

【0008】さらにまた、上述したITO等の素材にて
成膜を行なう場合、200℃以上の温度にて成膜すれば
低比抵抗な膜が得られることは周知の事実である。この
ため光電変換層上に透明電極を形成する場合、光電変換
素子を200℃以上に加熱して成膜が行われることがあ
る。しかし、樹脂フィルム等の耐熱性の無い基材(基
板)を使用した薄膜太陽電池等の光電変換素子では、加
熱を行なうと基材(基板)が炭化、変色、軟化等の変形
を生ずるため、200℃以上の加熱成膜が出来なかっ
た。このため、耐熱性の無い基材(基板)を使用した光
電変換素子では成膜の際に十分な加熱を行えず、光電変
換層上に成膜された透明電極は高比抵抗、高抵抗とな
り、変換効率の良い光電変換素子を得ることは困難であ
った。
It is a well-known fact that a film having a low specific resistance can be obtained if the film is formed at a temperature of 200 ° C. or higher when the film is formed from the above-mentioned materials such as ITO. Therefore, when a transparent electrode is formed on the photoelectric conversion layer, the photoelectric conversion element may be heated to 200 ° C. or higher to form a film. However, in a photoelectric conversion element such as a thin-film solar cell using a substrate (substrate) having no heat resistance such as a resin film, the substrate (substrate) undergoes deformation such as carbonization, discoloration, and softening when heated. Film formation by heating at 200 ° C. or higher could not be performed. For this reason, in a photoelectric conversion element using a substrate (substrate) having no heat resistance, sufficient heating cannot be performed during film formation, and the transparent electrode formed on the photoelectric conversion layer has high specific resistance and high resistance. It was difficult to obtain a photoelectric conversion element having good conversion efficiency.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した問
題点に鑑みなされたもので、その課題とするところは、
太陽電池等の光電変換素子を構成する、光電変換層上に
形成される透明電極において、低抵抗かつ低反射率の透
明電極を得、さらには、変換効率の向上した、透明電極
が形成された光電変換素子を得ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems.
Constituting a photoelectric conversion element such as a solar cell, in the transparent electrode formed on the photoelectric conversion layer, a transparent electrode having a low resistance and a low reflectance was obtained, and further, a transparent electrode with improved conversion efficiency was formed. It is intended to obtain a photoelectric conversion element.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を行った。その結果、本発明者ら
が先に特開平8−262466号公報等で提案した、酸
化物薄膜にて銀系薄膜を挟持した3層構成の透明電極
を、光電変換層上に形成する透明電極に用いれば、上記
課題を解決できうることを見いだし、本発明に至ったも
のである。すなわち、本発明の請求項1においては、光
電変換層上に形成される透明電極において、前記透明電
極を、下側酸化物薄膜と上側酸化物薄膜にて銀系薄膜を
挟持した3層構成とし、また、 酸化物薄膜を、2種類以上の金属酸化物よりなる混合
酸化物とし、 銀系薄膜を、Au(金)もしくはCu(銅)の少なく
とも一方を3at%(原子パーセント)以下含有する銀
合金とし、 光電変換層と接する下側酸化物薄膜の膜厚を、上側酸
化物薄膜の膜厚より厚く形成したことを特徴とする光電
変換素子用透明電極としたものである。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems. As a result, a transparent electrode having a three-layer structure in which a silver-based thin film is sandwiched between oxide thin films and formed on a photoelectric conversion layer was proposed by the present inventors in Japanese Patent Application Laid-Open No. 8-262466. It has been found that the above-mentioned problem can be solved by using this method, and the present invention has been accomplished. That is, in claim 1 of the present invention, in the transparent electrode formed on the photoelectric conversion layer, the transparent electrode has a three-layer structure in which a silver-based thin film is sandwiched between a lower oxide thin film and an upper oxide thin film. The oxide thin film is a mixed oxide composed of two or more metal oxides, and the silver thin film is silver containing at least one of Au (gold) or Cu (copper) at 3 at% (atomic percent) or less. A transparent electrode for a photoelectric conversion element, characterized in that the thickness of the lower oxide thin film in contact with the photoelectric conversion layer is formed larger than the thickness of the upper oxide thin film.

【0011】本発明者らが提案した、酸化物薄膜にて銀
系薄膜を挟持する3層構成とした透明電極は、低反射率
かつ低抵抗の電極を実現できる。しかし、かかる構成と
すると、中間層である銀系薄膜中の銀が移動しマイグレ
ーションを生じやすく、透明電極の耐久性が悪いといえ
る。このため、銀系薄膜とする銀合金を、金もしくは銅
の少なくとも一方を3at%(原子パーセント)以下含
有させた銀合金とし、かつ、酸化物薄膜を、2種類以上
の金属酸化物よりなる混合酸化物とすれば、銀を安定さ
せ耐久性を向上させることができる。また、透明電極の
支持体となる光電変換層表面の屈折率が高いことから、
光電変換層表面における反射成分を抑えるため、下側酸
化物薄膜の膜厚を、上側酸化物薄膜の膜厚より厚く形成
することを提案するものである。
A transparent electrode having a three-layer structure in which a silver-based thin film is sandwiched between oxide thin films proposed by the present inventors can realize an electrode having low reflectance and low resistance. However, with such a configuration, it can be said that the silver in the silver-based thin film as the intermediate layer is likely to move and cause migration, and the durability of the transparent electrode is poor. For this reason, the silver alloy used as the silver-based thin film is a silver alloy containing 3 at% (atomic percent) or less of at least one of gold and copper, and the oxide thin film is made of a mixture of two or more metal oxides. If oxide is used, silver can be stabilized and durability can be improved. Further, since the refractive index of the photoelectric conversion layer surface serving as a support for the transparent electrode is high,
In order to suppress the reflection component on the surface of the photoelectric conversion layer, it is proposed that the thickness of the lower oxide thin film is formed to be larger than the thickness of the upper oxide thin film.

【0012】また、本発明者らは、透明電極の反射率を
低くしうる、透明電極を構成する各層の膜厚についても
検討を行ったものである。その結果、下側酸化物薄膜の
光学的膜厚(n×d、屈折率nと膜厚dとを掛けた値)
を150〜350に、銀系薄膜の光学的膜厚(n×d)
を、0.8〜3に、かつ、上側酸化物薄膜の光学的膜厚
(n×d)を60〜150の範囲で形成すれば、透明電
極の反射率を低くしうることを、光学設計の立場上およ
び経験的に得たものであり、これを提案するものであ
る。すなわち、請求項2に係わる発明は、下側酸化物薄
膜の光学的膜厚(n×d)を150〜350、銀系薄膜
の光学的膜厚(n×d)を0.8〜3、かつ、上側酸化
物薄膜の光学的膜厚(n×d)を60〜150としたこ
とを特徴とする光電変換素子用透明電極としたものであ
る。
The present inventors have also studied the thickness of each layer constituting the transparent electrode, which can lower the reflectance of the transparent electrode. As a result, the optical thickness of the lower oxide thin film (n × d, a value obtained by multiplying the refractive index n by the thickness d)
To 150 to 350, the optical thickness of the silver-based thin film (nxd)
Is set to 0.8 to 3 and the optical thickness (nxd) of the upper oxide thin film is set to a range of 60 to 150, the reflectance of the transparent electrode can be reduced. It was obtained from the standpoint of empirical and empirical suggestions. That is, in the invention according to claim 2, the optical thickness (nxd) of the lower oxide thin film is 150 to 350, the optical thickness (nxd) of the silver-based thin film is 0.8 to 3, and In addition, the transparent electrode for a photoelectric conversion element is characterized in that the optical film thickness (nxd) of the upper oxide thin film is 60 to 150.

【0013】次いで、光電変換層を構成し上記3層構成
の透明電極と接する、例えばa−Si(アモルファスシ
リコン)等の半導体は、屈折率(n)が例えば3以上と
高いものである。このため、酸化物薄膜の屈折率の高い
ほうが、高い透過率を確保できるといえる。本発明者ら
は、a−Siからなる光電変換層上に、酸化物薄膜の屈
折率を変えて3層構成の透明電極を形成し、各々反射率
の変化を調べたものであり、その結果、以下の図3に示
すように、酸化物薄膜の屈折率を1.9以上とすれば、
広い波長域で反射率を低くできうる、すなわち透過率を
高くしうることを経験的に見いだしこれを提案するもの
である。ここで、図3中、曲線Fは、酸化物薄膜の屈折
率が1.7であるときの分光反射率を、以下同様に、曲
線Gは、酸化物薄膜の屈折率が1.8であるときの分光
反射率、曲線Hは、酸化物薄膜の屈折率が1.9のとき
の分光反射率、曲線Iは、酸化物薄膜の屈折率が2.0
のときの分光反射率、曲線Jは、酸化物薄膜の屈折率が
2.1のときの分光反射率を示している。図3に示すよ
うに、酸化物薄膜の屈折率が1.9より高いと、太陽光
の光量の多い500〜700nmの波長の範囲で、90
%以上の透過率を確保することができる。なお図3中、
酸化物薄膜の屈折率(n)が変化した場合、光学的膜厚
(n×d)も変化させたが、いずれの光学的膜厚も上述
した請求項2の範囲内に収めている。
Next, a semiconductor such as a-Si (amorphous silicon), which constitutes the photoelectric conversion layer and is in contact with the transparent electrode having the three-layer structure, has a high refractive index (n) of, for example, 3 or more. For this reason, it can be said that a higher refractive index of the oxide thin film can ensure a higher transmittance. The present inventors formed a three-layer transparent electrode on the photoelectric conversion layer made of a-Si by changing the refractive index of the oxide thin film, and examined changes in the reflectance of each of the electrodes. As shown in FIG. 3 below, if the refractive index of the oxide thin film is 1.9 or more,
It is empirically found that the reflectance can be reduced in a wide wavelength range, that is, the transmittance can be increased, and this is proposed. Here, in FIG. 3, a curve F indicates a spectral reflectance when the refractive index of the oxide thin film is 1.7, and similarly, a curve G indicates a refractive index of the oxide thin film is 1.8. The spectral reflectance at the time, curve H is the spectral reflectance when the refractive index of the oxide thin film is 1.9, and the curve I is the refractive index of the oxide thin film at 2.0.
And the curve J indicates the spectral reflectance when the refractive index of the oxide thin film is 2.1. As shown in FIG. 3, when the refractive index of the oxide thin film is higher than 1.9, the refractive index of the oxide thin film is 90 in the wavelength range of 500 to 700 nm where the amount of sunlight is large.
% Or more can be secured. In FIG. 3,
When the refractive index (n) of the oxide thin film changes, the optical thickness (nxd) also changes, but all the optical thicknesses fall within the scope of claim 2 described above.

【0014】すなわち、請求項3に係わる発明は、酸化
物薄膜の屈折率を、1.9より高くすることを特徴とす
る透明電極としたものである。
That is, the invention according to claim 3 is a transparent electrode characterized in that the refractive index of the oxide thin film is higher than 1.9.

【0015】次いで、酸化物薄膜は、粒界拡散を起こし
やすい銀の移動を抑制させるため、少なくとも結晶粒が
極めて小さく緻密な微結晶の酸化物薄膜であることが必
要であり、さらには、粒界の無いアモルファス(非晶
質)であることが望ましい。
Next, in order to suppress the movement of silver which easily causes grain boundary diffusion, the oxide thin film needs to be an oxide thin film of a dense microcrystal having at least very small crystal grains. It is desirable that the material be amorphous without a boundary (amorphous).

【0016】すなわち、請求項4に係わる発明は、酸化
物薄膜の基材を、酸化インジウムを含有する、非晶質な
いし微細結晶の混合酸化物とすることを特徴とする光電
変換素子用透明電極としたものである。
That is, a fourth aspect of the present invention is a transparent electrode for a photoelectric conversion element, wherein the base material of the oxide thin film is an amorphous or fine crystal mixed oxide containing indium oxide. It is what it was.

【0017】ここで、酸化インジウムを基材とする混合
酸化物の屈折率を上げるための添加材料として、酸化チ
タン、酸化セリウム、酸化タンタル、および酸化ジルコ
ニウム等、原子量の大きい金属の酸化物があげられる。
本発明者らは検討を行った結果、この中で、酸化インジ
ウムを基材とする混合酸化物の屈折率を上げる材料とし
て、酸化セリウムが最も好ましいことを見いだした。す
なわち、透明電極は、所定の形状とすべくエッチング加
工を行なう場合があるが、酸化インジウムと酸化セリウ
ムとの混合酸化物とすれば、適度なエッチング性と高い
屈折率を併せ持つことが可能となるためである。
Here, as an additive material for increasing the refractive index of the mixed oxide containing indium oxide as a base material, an oxide of a metal having a large atomic weight such as titanium oxide, cerium oxide, tantalum oxide, and zirconium oxide may be mentioned. Can be
As a result of the study, the present inventors have found that cerium oxide is most preferable as a material for increasing the refractive index of a mixed oxide containing indium oxide as a base material. That is, the transparent electrode may be subjected to an etching process to obtain a predetermined shape. However, if a mixed oxide of indium oxide and cerium oxide is used, it is possible to have both an appropriate etching property and a high refractive index. That's why.

【0018】すなわち、請求項5に係わる発明は、酸化
物薄膜に、酸化物薄膜の基材とする酸化物より屈折率の
高い酸化物を添加したことを特徴とする光電変換素子用
透明電極としたものであり、また、請求項6において
は、酸化物薄膜を、酸化インジウムを基材とする、酸化
セリウムを添加した混合酸化物の薄膜より構成したこと
を特徴とする光電変換素子用透明電極としたものであ
る。
That is, the invention according to claim 5 provides a transparent electrode for a photoelectric conversion element, characterized in that an oxide having a higher refractive index than an oxide used as a base material of the oxide thin film is added to the oxide thin film. 7. The transparent electrode for a photoelectric conversion element according to claim 6, wherein the oxide thin film is composed of a mixed oxide thin film containing indium oxide as a base and to which cerium oxide is added. It is what it was.

【0019】バルク状態での酸化セリウムの屈折率はお
よそ2.5であり、また、混合酸化物の基材となる酸化
インジウムの屈折率は1.9をやや超える程度であり、
混合酸化物への酸化セリウムの添加量に応じて混合酸化
物の屈折率は向上する。ここで、酸化セリウムの添加量
は、透明電極の使用目的に応じて調整すれば良いといえ
る。しかし、酸化インジウムに、数at%(原子パーセ
ント、酸素をカウントせず、金属元素のみのカウント)
という少量の酸化セリウムを添加してスパッタリングタ
ーゲットとすると、スパッタリングターゲットを用いた
スパッタリング等にて混合酸化物薄膜を成膜する際、導
入酸素の量に依存することなく安定したスパッタリング
レートが確保できる副次的効果が生じるため、例えば、
1〜40at%(原子パーセント、酸素をカウントせ
ず、金属元素のみのカウント)の範囲で酸化セリウムの
添加量を調節すれば良いといえる。なお、酸化インジウ
ムやITOの場合、導入酸素量が多くなるに従い、スパ
ッタリングレートが低下する傾向にあるため、導入酸素
量を変えるたびにスパッタリングレートをチェックし
て、成膜する膜厚の設定を行う必要がある。
The refractive index of cerium oxide in a bulk state is about 2.5, and the refractive index of indium oxide serving as a base material of the mixed oxide is slightly higher than 1.9.
The refractive index of the mixed oxide increases according to the amount of cerium oxide added to the mixed oxide. Here, it can be said that the amount of cerium oxide added may be adjusted according to the purpose of use of the transparent electrode. However, a few at% (atomic percent, not counting oxygen, counting only metal elements) in indium oxide
When a sputtering target is formed by adding a small amount of cerium oxide, when forming a mixed oxide thin film by sputtering or the like using a sputtering target, it is possible to secure a stable sputtering rate without depending on the amount of oxygen introduced. The following effects occur, for example,
It can be said that the addition amount of cerium oxide may be adjusted within the range of 1 to 40 at% (atomic percent, not counting oxygen, but counting only metal elements). In the case of indium oxide or ITO, the sputtering rate tends to decrease as the amount of introduced oxygen increases, so the sputtering rate is checked every time the amount of introduced oxygen is changed, and the film thickness to be formed is set. There is a need.

【0020】[0020]

【発明の実施の形態】以下に、本発明の実施形態の一例
につき、図面を基に説明する。 <実施例1>図1に示すように、本実施例1に係わる光
電変換素子17は、プラスチックフィルム10上に下部銀電
極11、a−Siを用いた光電変換層12および、透明電極
16を順次積層している。透明電極16は、光電変換層12と
接する面から、順次、下側酸化物薄膜層13、銀系薄膜層
14、および、上側酸化物薄膜層15を積層した3層構成と
している。なお、本実施例1においては、下側酸化物薄
膜層13の膜厚を 120nm、銀系薄膜層14の膜厚を10n
m、および、上側酸化物薄膜層15の膜厚を40nmとし
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. <Embodiment 1> As shown in FIG. 1, a photoelectric conversion element 17 according to the present embodiment 1 comprises a plastic film 10, a lower silver electrode 11, a photoelectric conversion layer 12 using a-Si, and a transparent electrode.
16 are sequentially stacked. The transparent electrode 16 is, in order from the surface in contact with the photoelectric conversion layer 12, a lower oxide thin film layer 13, a silver-based thin film layer.
14 and an upper oxide thin film layer 15 in a three-layer structure. In the first embodiment, the thickness of the lower oxide thin film layer 13 is 120 nm, and the thickness of the silver-based thin film layer 14 is 10 nm.
m and the thickness of the upper oxide thin film layer 15 were set to 40 nm.

【0021】また、酸化物薄膜層(下側酸化物薄膜層13
および、上側酸化物薄膜層15)は、酸化インジウムおよ
び酸化セリウムからなる混合酸化物にて形成した。混合
酸化物の組成は、酸化インジウムを66.7at%(原子パ
ーセント)、酸化セリウムを33.3at%(原子パーセン
ト)とした。なお、上記割合は、酸素元素をカウントし
ない、金属元素の割合である。
The oxide thin film layer (lower oxide thin film layer 13)
The upper oxide thin film layer 15) was formed of a mixed oxide composed of indium oxide and cerium oxide. The composition of the mixed oxide was 66.7 at% (atomic percent) for indium oxide and 33.3 at% (atomic percent) for cerium oxide. Note that the above ratio is a ratio of a metal element which does not count an oxygen element.

【0022】また、銀系薄膜14は、銀(Ag)に金(A
u)および銅(Cu)を混合した銀合金にて形成し、そ
の組成は、銀98.5at%(原子パーセント)、金 1.0a
t%(原子パーセント)、銅 0.5at%(原子パーセン
ト)の原子比とした。
The silver-based thin film 14 is composed of silver (Ag) and gold (A
u) and copper (Cu), and the composition is as follows: silver 98.5 at% (atomic percent), gold 1.0 a
The atomic ratio was t% (atomic percent) and copper 0.5 at% (atomic percent).

【0023】次いで、本実施例1に係わる透明電極16
は、以下に記す製造プロセスにて形成した。まず、プラ
スチックフィルム10上に下部銀電極11および、光電変換
層12を形成した後、プラスチックフィルム10を、スパッ
タリング装置内に投入し、しかる後、装置内を真空排気
した。装置内の真空度が5×10-4Paに到達した時点
で、Ar(アルゴン)ガスおよびO2 (酸素)ガスを導
入し、装置内のガス圧を0.4Paとした。なおこのと
き、O2 (酸素)ガスは全ガス量の1.5%となるよう
調整した。
Next, the transparent electrode 16 according to the first embodiment is
Was formed by the manufacturing process described below. First, after the lower silver electrode 11 and the photoelectric conversion layer 12 were formed on the plastic film 10, the plastic film 10 was put into a sputtering device, and then the device was evacuated. When the degree of vacuum in the apparatus reached 5 × 10 −4 Pa, Ar (argon) gas and O 2 (oxygen) gas were introduced, and the gas pressure in the apparatus was set to 0.4 Pa. At this time, the O 2 (oxygen) gas was adjusted to be 1.5% of the total gas amount.

【0024】次いで、装置内に載置した、上述した組成
とした混合酸化物ターゲットに放電電圧を印加すること
で、プラスチックフィルム10上の光電変換層12表面に下
側酸化物薄膜層13を形成した。
Next, a lower oxide thin film layer 13 is formed on the surface of the photoelectric conversion layer 12 on the plastic film 10 by applying a discharge voltage to the mixed oxide target having the above-mentioned composition and placed in the apparatus. did.

【0025】下側酸化物薄膜層13の形成が終了した時点
で、放電および、ガスの導入を停止した。しかる後、装
置内を5×10-4Paまで排気した時点でAr(アルゴ
ン)ガスを導入し、装置内のガス圧を0.4Paに調整
した。次いで、装置内に載置した、上述した組成とした
銀合金ターゲットに放電電圧を印加することで、下側酸
化物薄膜層13上に銀系薄膜層14を形成した。
When the formation of the lower oxide thin film layer 13 was completed, the discharge and the introduction of gas were stopped. Thereafter, when the inside of the apparatus was evacuated to 5 × 10 −4 Pa, Ar (argon) gas was introduced, and the gas pressure in the apparatus was adjusted to 0.4 Pa. Next, a silver-based thin film layer 14 was formed on the lower oxide thin film layer 13 by applying a discharge voltage to a silver alloy target having the above-described composition and placed in the apparatus.

【0026】銀系薄膜層14の形成が終了した時点で、放
電および、ガスの導入を停止した。しかる後、装置内を
再度排気し、装置内の真空度が5×10-4Paに到達し
た時点で、Ar(アルゴン)ガスおよびO2 (酸素)ガ
スを導入し、装置内のガス圧を0.4Paとした。なお
このときも、O2 (酸素)ガスは全ガス量の1.5%と
なるよう調整した。
When the formation of the silver-based thin film layer 14 was completed, the discharge and the introduction of gas were stopped. Thereafter, the inside of the apparatus is evacuated again, and when the degree of vacuum in the apparatus reaches 5 × 10 −4 Pa, Ar (argon) gas and O 2 (oxygen) gas are introduced, and the gas pressure in the apparatus is reduced. 0.4 Pa. Also at this time, the O 2 (oxygen) gas was adjusted to be 1.5% of the total gas amount.

【0027】次いで、装置内に載置した、上述した組成
とした混合酸化物ターゲットに放電電圧を印加すること
で、銀系薄膜層14上に上側酸化物薄膜層15を形成し、本
実施例1に係わる3層構成の透明電極16を得た。
Next, an upper oxide thin film layer 15 is formed on the silver-based thin film layer 14 by applying a discharge voltage to the mixed oxide target having the above-mentioned composition and placed in the apparatus. Thus, a transparent electrode 16 having a three-layer structure related to 1 was obtained.

【0028】上述した一連の成膜工程は、装置内のプラ
スチックフィルム10に加熱を行なわずに実施したもので
あり、また、装置内の真空度を上述した数値に保ちつつ
連続して成膜を行った。
The above-described series of film forming steps are performed without heating the plastic film 10 in the apparatus, and the film formation is continuously performed while maintaining the degree of vacuum in the apparatus at the above-mentioned value. went.

【0029】上記実施例1で得られた3層構成とした透
明電極16を形成した光電変換素子17の分光反射率を、図
2中の曲線Aに示す。図2より明らかなように、上記実
施例1の透明電極16を形成したときの反射率(曲線A)
は、500nmから700nmまでの広い波長範囲で1
0%以下であり、また、抵抗値も5Ω/□と、低抵抗の
透明電極となっている。なお、図2において、縦軸に反
射率(%)を、横軸に波長(nm)を記しており、ま
た、参考のため、従来のITO(酸化スズと酸化インジ
ウムからなる混合酸化物)で形成した単層の透明電極と
したときの分光反射率を合わせて記している。なお、図
2中の一点鎖線Bは、膜厚が2300オングストローム
のITOとしたときの分光反射率を示し、以下同様に、
破線Cは、膜厚が10000オングストロームのITO
としたときの分光反射率を示し、二点鎖線Dは、膜厚が
700オングストロームのITOとしたときの分光反射
率を示している。
The curve A in FIG. 2 shows the spectral reflectance of the photoelectric conversion element 17 on which the transparent electrode 16 having the three-layer structure obtained in Example 1 is formed. As is clear from FIG. 2, the reflectance when the transparent electrode 16 of Example 1 was formed (curve A).
Is 1 in a wide wavelength range from 500 nm to 700 nm.
It is 0% or less, and the resistance value is 5 Ω / □, which is a low-resistance transparent electrode. In FIG. 2, the vertical axis represents the reflectance (%) and the horizontal axis represents the wavelength (nm). For reference, conventional ITO (a mixed oxide composed of tin oxide and indium oxide) is used. The spectral reflectance of the formed single-layer transparent electrode is also shown. The dashed line B in FIG. 2 indicates the spectral reflectance when the film thickness is 2300 Å of ITO.
The dashed line C indicates the ITO having a thickness of 10,000 Å.
The two-dot chain line D indicates the spectral reflectance when the thickness of the ITO is 700 angstroms.

【0030】<実施例2>本実施例2においても、上述
した実施例1と同様に、プラスチックフィルム10上に、
下部銀電極11、a−Siからなる光電変換層12および、
3層構成とした透明電極16を積層し、光電変換素子17と
した。また、実施例1と同様に、光電変換層12と接する
面から、順次、下側酸化物薄膜層13、銀系薄膜層14、お
よび、上側酸化物薄膜層15を積層し透明電極16とした。
<Embodiment 2> In Embodiment 2, as in Embodiment 1 described above, a plastic film 10
A lower silver electrode 11, a photoelectric conversion layer 12 made of a-Si, and
The transparent electrodes 16 having a three-layer structure were stacked to form a photoelectric conversion element 17. Further, in the same manner as in Example 1, the lower oxide thin film layer 13, the silver-based thin film layer 14, and the upper oxide thin film layer 15 were sequentially laminated from the surface in contact with the photoelectric conversion layer 12, thereby forming a transparent electrode 16. .

【0031】本実施例2において、酸化物薄膜層(下側
酸化物薄膜層13および、上側酸化物薄膜層15)は、酸化
インジウム、酸化セリウムおよび、酸化亜鉛からなる混
合酸化物を用いた。その組成は、酸化インジウムを68.1
at%(原子パーセント)、酸化セリウムを14.3at%
(原子パーセント)、酸化亜鉛を17.6at%(原子パー
セント)、とした。なお、上記割合は、酸素元素をカウ
ントしない、金属元素の割合である。
In Example 2, mixed oxides composed of indium oxide, cerium oxide, and zinc oxide were used for the oxide thin film layers (the lower oxide thin film layer 13 and the upper oxide thin film layer 15). Its composition is 68.1 indium oxide.
at% (atomic percent), 14.3 at% cerium oxide
(Atomic percent) and zinc oxide at 17.6 at% (atomic percent). Note that the above ratio is a ratio of a metal element which does not count an oxygen element.

【0032】また、銀系薄膜層14は、銀(Ag)に金
(Au)および銅(Cu)を混合した銀合金にて形成
し、その組成は、銀98.5at%(原子パーセント)、金
1.0at%(原子パーセント)、銅 0.5at%(原子パ
ーセント)の原子比とした。
The silver-based thin film layer 14 is formed of a silver alloy in which silver (Ag) is mixed with gold (Au) and copper (Cu), and has a composition of 98.5 at% (atomic percent) of silver and gold.
The atomic ratio was 1.0 at% (atomic percent) and 0.5 at% (atomic percent) copper.

【0033】次いで、本実施例2に係わる透明電極16
は、以下に記す製造プロセスにて形成した。まず、プラ
スチックフィルム10上に下部銀電極11および、光電変換
層12を形成した後、プラスチックフィルム10を、スパッ
タリング装置内に投入し、しかる後、装置内を真空排気
した。装置内の真空度が5×10-4Paに到達した時点
で、Ar(アルゴン)ガスを導入し、装置内のガス圧を
0.4Paに調整した。
Next, the transparent electrode 16 according to the second embodiment
Was formed by the manufacturing process described below. First, after the lower silver electrode 11 and the photoelectric conversion layer 12 were formed on the plastic film 10, the plastic film 10 was put into a sputtering device, and then the device was evacuated. When the degree of vacuum in the apparatus reached 5 × 10 −4 Pa, Ar (argon) gas was introduced, and the gas pressure in the apparatus was adjusted to 0.4 Pa.

【0034】本実施例2においては、スパッタリング装
置内を所定の速度で搬送される上記プラスチックフィル
ム10に下側酸化物薄膜層13、銀系薄膜層14、および、上
側酸化物薄膜層15を流れ作業的に連続して形成したもの
である。スパッタリング装置内に予め載置した各ターゲ
ット(混合酸化物ターゲットおよび銀合金ターゲット)
は、各成膜工程中に他のターゲットを汚染しないよう、
スパッタリング装置内で所定の間隔をとり、また、シー
ルドして載置している。さらに、ターゲットおよびプラ
スチックフィルム10への不要な汚染防止のため、十分な
排気を行った。なお、本実施例2においては、下側酸化
物薄膜層13、および、上側酸化物薄膜層15の形成時に
は、装置内にAr(アルゴン)ガスに加えて1.5%の
酸素ガスを導入したものであり、銀系薄膜層14の形成時
には、Ar(アルゴン)ガスのみを導入した。また、ス
パッタリング中は上記プラスチックフィルム10への加熱
は行わなかった。
In the second embodiment, the lower oxide thin film layer 13, the silver-based thin film layer 14, and the upper oxide thin film layer 15 flow through the plastic film 10 conveyed at a predetermined speed in the sputtering apparatus. It is formed continuously in operation. Each target (mixed oxide target and silver alloy target) placed beforehand in the sputtering device
Will not contaminate other targets during each deposition step.
A predetermined interval is set in the sputtering apparatus, and the apparatus is placed in a shielded state. Further, sufficient exhaust was performed to prevent unnecessary contamination of the target and the plastic film 10. In the second embodiment, at the time of forming the lower oxide thin film layer 13 and the upper oxide thin film layer 15, 1.5% oxygen gas was introduced into the apparatus in addition to Ar (argon) gas. In forming the silver-based thin film layer 14, only Ar (argon) gas was introduced. During the sputtering, the plastic film 10 was not heated.

【0035】また、本実施例2では、上述した方法にて
3層構成の透明電極16をプラスチックフィルム10(すな
わち、光電変換層12)上に形成し光電変換素子17とした
後、光電変換素子17に200℃の加熱を1時間行うベー
ク処理を行った。これにより、最終的に、下側酸化物薄
膜層13の膜厚が120nm、銀系薄膜層14の膜厚が10
nm、および、上側酸化物薄膜層15の膜厚が40nmと
なった3層構成の透明電極16を得た。
In the second embodiment, the transparent electrode 16 having a three-layer structure is formed on the plastic film 10 (that is, the photoelectric conversion layer 12) by the above-described method to form the photoelectric conversion element 17, and then the photoelectric conversion element 17 is formed. 17 was subjected to a baking treatment of heating at 200 ° C. for one hour. Thereby, finally, the thickness of the lower oxide thin film layer 13 is 120 nm, and the thickness of the silver-based thin film layer 14 is 10 nm.
A transparent electrode 16 having a three-layer structure in which the thickness of the upper oxide thin film layer 15 was 40 nm was obtained.

【0036】本実施例2に係わる透明電極16の反射率を
測定したところ、500nm〜700nmの波長で10
%以下の低反射率となた。また、抵抗値を測定したとこ
ろ、5Ω/□と低抵抗であった。
When the reflectance of the transparent electrode 16 according to the second embodiment was measured, it was found that the reflectance was 10 at a wavelength of 500 nm to 700 nm.
% Or less. Further, when the resistance value was measured, it was as low as 5 Ω / □.

【0037】[0037]

【発明の効果】太陽電池等の光電変換素子を構成する、
光電変換層上に形成する透明電極において、ITO、S
nO2 、ZnOおよび、酸化亜鉛とアルミとの混合物等
からなる従来の透明電極は、低抵抗とするためには膜厚
を厚くせざるをえず、その場合、反射率が高くなり光電
変換素子の変換効率を低下させていた。また、光電変換
素子の変換効率を向上させるため、透明電極を薄膜とす
ると透明電極の抵抗値が高くなり所望する低抵抗を得ら
れなかった。
The present invention constitutes a photoelectric conversion element such as a solar cell.
In the transparent electrode formed on the photoelectric conversion layer, ITO, S
A conventional transparent electrode made of nO 2 , ZnO, a mixture of zinc oxide and aluminum, and the like, has to be thickened in order to reduce the resistance, in which case the reflectance increases and the photoelectric conversion element Conversion efficiency was reduced. Further, when the transparent electrode is made thin in order to improve the conversion efficiency of the photoelectric conversion element, the resistance value of the transparent electrode becomes high and a desired low resistance cannot be obtained.

【0038】しかるに、上述した3層構成とした本発明
の透明電極においては、低反射率であり、また、従来用
いられていた透明電極の5分の1程度の膜厚で例えば5
Ω/□程度の低抵抗を得ることができる。すなわち、本
発明の透明電極を光電変換層上に形成することで、光の
利用効率と、変換した電気輸送の効率とが上がり、変換
効率が向上した光電変換素子とすることが可能となる。
However, the transparent electrode of the present invention having the above-mentioned three-layer structure has a low reflectance, and has a film thickness of, for example, about 1/5 that of a conventionally used transparent electrode.
A low resistance of about Ω / □ can be obtained. That is, by forming the transparent electrode of the present invention on the photoelectric conversion layer, the efficiency of light utilization and the efficiency of converted electric transport are increased, and a photoelectric conversion element with improved conversion efficiency can be obtained.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換素子用透明電極の一実施例を
示す断面説明図。
FIG. 1 is an explanatory cross-sectional view showing one embodiment of a transparent electrode for a photoelectric conversion element of the present invention.

【図2】本発明の光電変換素子用透明電極と従来の透明
電極とで得られた分光反射率の一例を示すグラフ図。
FIG. 2 is a graph showing an example of spectral reflectance obtained by a transparent electrode for a photoelectric conversion element of the present invention and a conventional transparent electrode.

【図3】3層構成とした透明電極において酸化物薄膜の
屈折率を変化させた場合の反射率の変化を示すグラフ
図。
FIG. 3 is a graph showing a change in reflectance when the refractive index of an oxide thin film is changed in a transparent electrode having a three-layer structure.

【符号の説明】[Explanation of symbols]

10 プラスチックフィルム 11 下部銀電極 12 光電変換層 13 下側酸化物薄膜層 14 銀系薄膜層 15 上側酸化物薄膜層 16 透明電極 17 光電変換素子 10 Plastic film 11 Lower silver electrode 12 Photoelectric conversion layer 13 Lower oxide thin film layer 14 Silver-based thin film layer 15 Upper oxide thin film layer 16 Transparent electrode 17 Photoelectric conversion element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光電変換素子を構成する、光電変換層上に
形成される透明電極において、前記透明電極を、下側酸
化物薄膜と上側酸化物薄膜にて銀系薄膜を挟持した3層
構成とし、また、 酸化物薄膜を、2種類以上の金属酸化物よりなる混合
酸化物とし、 銀系薄膜を、Au(金)もしくはCu(銅)の少なく
とも一方を3at%(原子パーセント)以下含有した銀
合金とし、 光電変換層と接する下側酸化物薄膜の膜厚を、上側酸
化物薄膜の膜厚より厚く形成したことを特徴とする光電
変換素子用透明電極。
1. A transparent electrode formed on a photoelectric conversion layer constituting a photoelectric conversion element, wherein the transparent electrode is a three-layer structure in which a silver-based thin film is sandwiched between a lower oxide thin film and an upper oxide thin film. In addition, the oxide thin film is a mixed oxide composed of two or more metal oxides, and the silver-based thin film contains at least one of Au (gold) or Cu (copper) at 3 at% (atomic percent) or less. A transparent electrode for a photoelectric conversion element, comprising a silver alloy, wherein a thickness of a lower oxide thin film in contact with a photoelectric conversion layer is formed to be larger than a thickness of an upper oxide thin film.
【請求項2】下側酸化物薄膜の光学的膜厚(n×d)を
150〜350、銀系薄膜の光学的膜厚(n×d)を
0.8〜3、かつ、上側酸化物薄膜の光学的膜厚(n×
d)を60〜150としたことを特徴とする請求項1に
記載の光電変換素子用透明電極。
2. The lower oxide thin film has an optical thickness (nxd) of 150 to 350, the silver-based thin film has an optical thickness (nxd) of 0.8 to 3, and the upper oxide thin film has an optical thickness (nxd) of 0.8 to 3. Optical thickness of thin film (nx
The transparent electrode for a photoelectric conversion element according to claim 1, wherein d) is set to 60 to 150.
【請求項3】酸化物薄膜の屈折率を1.9より高くした
ことを特徴とする請求項1または2に記載の光電変換素
子用透明電極。
3. The transparent electrode for a photoelectric conversion element according to claim 1, wherein the refractive index of the oxide thin film is higher than 1.9.
【請求項4】酸化物薄膜の基材を、酸化インジウムを含
有する、非晶質ないし微細結晶の混合酸化物とすること
を特徴とする請求項1、2または3に記載の光電変換素
子用透明電極。
4. The photoelectric conversion element according to claim 1, wherein the base material of the oxide thin film is an amorphous or microcrystalline mixed oxide containing indium oxide. Transparent electrode.
【請求項5】酸化物薄膜に、酸化物薄膜の基材とする酸
化物より屈折率の高い酸化物を添加したことを特徴とす
る請求項1、2、3または4に記載の光電変換素子用透
明電極。
5. The photoelectric conversion element according to claim 1, wherein an oxide having a higher refractive index than an oxide used as a base material of the oxide thin film is added to the oxide thin film. For transparent electrodes.
【請求項6】酸化物薄膜を、酸化インジウムを基材とす
る、酸化セリウムを添加した混合酸化物の薄膜より構成
したことを特徴とする請求項1、2、3、4または5に
記載の光電変換素子用透明電極。
6. The oxide thin film according to claim 1, wherein the oxide thin film is composed of a mixed oxide thin film containing indium oxide as a base material and to which cerium oxide is added. Transparent electrode for photoelectric conversion element.
【請求項7】基材上に少なくとも光電変換層と透明電極
とを積層する構成とした光電変換素子において、光電変
換層上に形成する透明電極を、上記請求項1から6に記
載の光電変換素子用透明電極としたことを特徴とする光
電変換素子。
7. A photoelectric conversion element having a structure in which at least a photoelectric conversion layer and a transparent electrode are laminated on a base material, wherein the transparent electrode formed on the photoelectric conversion layer is the photoelectric conversion element according to any one of claims 1 to 6. A photoelectric conversion element comprising a transparent electrode for an element.
JP10177754A 1998-06-24 1998-06-24 Transparent electrode for photoelectric converter elements and photoelectric converter element using the same Pending JP2000012879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177754A JP2000012879A (en) 1998-06-24 1998-06-24 Transparent electrode for photoelectric converter elements and photoelectric converter element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177754A JP2000012879A (en) 1998-06-24 1998-06-24 Transparent electrode for photoelectric converter elements and photoelectric converter element using the same

Publications (1)

Publication Number Publication Date
JP2000012879A true JP2000012879A (en) 2000-01-14

Family

ID=16036551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177754A Pending JP2000012879A (en) 1998-06-24 1998-06-24 Transparent electrode for photoelectric converter elements and photoelectric converter element using the same

Country Status (1)

Country Link
JP (1) JP2000012879A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064273A (en) * 2003-08-13 2005-03-10 Idemitsu Kosan Co Ltd Electrode for photoelectromotive force element and photoelectromotive force element employing the same
DE102005027961A1 (en) * 2005-06-16 2007-01-04 Siemens Ag Semitransparent multilayer electrode
DE102007024152A1 (en) * 2007-04-18 2008-10-23 Osram Opto Semiconductors Gmbh Organic optoelectronic component
DE102004025578B4 (en) * 2004-05-25 2009-04-23 Applied Materials Gmbh & Co. Kg Method for producing organic, light-emitting surface elements and use of this method
JP2010534930A (en) * 2007-07-27 2010-11-11 サン−ゴバン グラス フランス Solar cell front substrate and usage of solar cell front substrate
ES2364309A1 (en) * 2010-02-19 2011-08-31 Institut De Ciencies Fotoniques, Fundacio Privada Transparent electrode based on combination of transparent conductive oxides, metals and oxides
JP5895144B2 (en) * 2009-09-17 2016-03-30 パナソニックIpマネジメント株式会社 Transparent conductive film and apparatus provided with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064273A (en) * 2003-08-13 2005-03-10 Idemitsu Kosan Co Ltd Electrode for photoelectromotive force element and photoelectromotive force element employing the same
DE102004025578B4 (en) * 2004-05-25 2009-04-23 Applied Materials Gmbh & Co. Kg Method for producing organic, light-emitting surface elements and use of this method
DE102005027961A1 (en) * 2005-06-16 2007-01-04 Siemens Ag Semitransparent multilayer electrode
DE102007024152A1 (en) * 2007-04-18 2008-10-23 Osram Opto Semiconductors Gmbh Organic optoelectronic component
US8400054B2 (en) 2007-04-18 2013-03-19 Osram Opto Semiconductors Gmbh Organic optoelectronic component
JP2010534930A (en) * 2007-07-27 2010-11-11 サン−ゴバン グラス フランス Solar cell front substrate and usage of solar cell front substrate
JP2010534929A (en) * 2007-07-27 2010-11-11 サン−ゴバン グラス フランス Method for using solar cell front substrate and solar cell front substrate
JP2010534928A (en) * 2007-07-27 2010-11-11 サン−ゴバン グラス フランス Use of solar cell front substrate and substrate used for solar cell front
JP5895144B2 (en) * 2009-09-17 2016-03-30 パナソニックIpマネジメント株式会社 Transparent conductive film and apparatus provided with the same
ES2364309A1 (en) * 2010-02-19 2011-08-31 Institut De Ciencies Fotoniques, Fundacio Privada Transparent electrode based on combination of transparent conductive oxides, metals and oxides
WO2011101338A3 (en) * 2010-02-19 2012-04-19 Institut De Ciencies Fotoniques, Fundacio Privada Transparent electrode based on combination of transparent conductive oxides, metals and oxides

Similar Documents

Publication Publication Date Title
KR101000057B1 (en) Solar Cell Having Multiple Transparent Conducting Layers And Manufacturing Method Thereof
US5221854A (en) Protective layer for the back reflector of a photovoltaic device
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
JPH02202068A (en) Light transmitting conductive laminate film
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
CN111916523A (en) Heterojunction solar cell, assembly thereof and preparation method
JP2003243676A (en) Thin-film photoelectric converting device
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
US8093490B2 (en) Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP4889623B2 (en) Transparent conductive film and solar cell using transparent conductive film
JPH09139515A (en) Transparent conducting film electrode
JP2000012879A (en) Transparent electrode for photoelectric converter elements and photoelectric converter element using the same
US4665278A (en) Heat-resistant photoelectric converter
EP2273559A1 (en) Solar cell
JP2016127179A (en) Thin film solar cell and manufacturing method thereof
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH10190028A (en) High refractive index transparent conductive film and solar cell
JP2001060707A (en) Photoelectric transfer device
JPH11274528A (en) Photovoltaic device
JP5542025B2 (en) Photoelectric conversion device
JP2846508B2 (en) Photovoltaic element
JP3196155B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007