JP2000003709A - Positive electrode material for lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery

Info

Publication number
JP2000003709A
JP2000003709A JP10165432A JP16543298A JP2000003709A JP 2000003709 A JP2000003709 A JP 2000003709A JP 10165432 A JP10165432 A JP 10165432A JP 16543298 A JP16543298 A JP 16543298A JP 2000003709 A JP2000003709 A JP 2000003709A
Authority
JP
Japan
Prior art keywords
lithium secondary
positive electrode
secondary battery
battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10165432A
Other languages
Japanese (ja)
Inventor
Jun Sugiyama
純 杉山
Iwao Sasaki
巌 佐々木
Kazumasa Takatori
一雅 鷹取
Naoyoshi Watanabe
直義 渡辺
Tatsuo Noritake
達夫 則竹
Tatsuya Hatanaka
達也 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10165432A priority Critical patent/JP2000003709A/en
Publication of JP2000003709A publication Critical patent/JP2000003709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the positive electrode material for lithium secondary battery stabilized in the high temperature condition and capable of preventing the lowering of capacity in the case of quick charging and discharging. SOLUTION: This positive electrode material for lithium secondary battery has a compound powder, composed of the oxide powder having the spinel structure expressed with the composition formula Li1+xMn2-xO4-x (0<=x<=0.3333, -0.1<=y<=0.2) and a LiV2O4 layer formed on the surface of the oxide powder. With this composition, rapid charging and discharging performance is improved, and elution of the manganese ion is restricted, and high-temperature stability of the battery is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
に利用できるスピネル構造を有するリチウム二次電池用
正極材料に関する。
The present invention relates to a positive electrode material for a lithium secondary battery having a spinel structure that can be used for a lithium secondary battery.

【0002】[0002]

【従来の技術】最近、充放電電圧が高くかつ充放電容量
も大きいという特徴のため、リチウム二次電池が注目さ
れている。そしてその正極材料としては、規則配列層状
岩塩構造のLiCoO2が用いられてきた。しかしLi
CoO2は資源量、価格の点から、その地位をスピネル
構造のLiMn24に置き換えられつつある。特にサイ
クル耐久性向上のため、僅かにリチウムを過剰にしたL
1+x Mn2-x 4(x〜0.03)が注目されている
(例えばY.Gao and J.R.Dahn,J.Electrochem.Soc.,14
3,100(1996))。サイクル耐久性向上の原因は、マンガ
ンサイトを部分的にリチウムで置換することにより、充
放電すなわちリチウムイオンの脱離・挿入に伴う結晶格
子の変化が減少するためと考えられている。
2. Description of the Related Art Recently, lithium secondary batteries have attracted attention because of their high charge / discharge voltage and large charge / discharge capacity. As the positive electrode material, LiCoO 2 having an ordered layered rock salt structure has been used. But Li
CoO 2 is being replaced by LiMn 2 O 4 having a spinel structure in terms of resources and price. Particularly, in order to improve the cycle durability, L with a slight excess of lithium is used.
Attention has been paid to i 1 + x Mn 2-x O 4 ( x to 0.03) (for example, Y. Gao and JR Dahn, J. Electrochem. Soc., 14).
3,100 (1996)). It is considered that the cycle durability is improved by partially replacing the manganese site with lithium, thereby reducing the change in the crystal lattice due to charge and discharge, that is, desorption and insertion of lithium ions.

【0003】[0003]

【発明が解決しようとする課題】正規組成のLiMn2
4 あるいはLiを過剰にしたLi1+x Mn2-x 4
正極活物質に用いたリチウム二次電池の電池性能を、L
iCoO2を正極活物質に用いたリチウム二次電池の電
池性能と比較すると、前者のリチウム二次電池は以下の
2つ重要な問題がある; 急速充放電における容量低下が大きい。
SUMMARY OF THE INVENTION LiMn 2 of a normal composition
The battery performance of a lithium secondary battery using Li 1 + x Mn 2-x O 4 containing O 4 or Li in excess as a positive electrode active material is expressed by L
Compared with the battery performance of a lithium secondary battery using iCoO 2 as a positive electrode active material, the former lithium secondary battery has the following two important problems; a rapid decrease in capacity during rapid charge and discharge.

【0004】充填状態で60℃以上で保持すると、自
己放置が著しい。 の原因については、LiMn24 やLi1+x Mn
2-x 4の抵抗率が室温で50kΩcm程度で、LiC
oO2より1−2桁大きいためと考えられている。この
ため急速な充放電においては、金属集電体と正極活物質
の間で充分に電子が交換できないので、容量が大幅に低
下してしまう。
When the temperature is maintained at 60 ° C. or more in the filled state, self-standing is remarkable. About the cause of LiMn 2 O 4 and Li 1 + x Mn
The resistivity of 2-x O 4 is about 50 kΩcm at room temperature,
This is considered to be 1-2 orders of magnitude greater than oO 2 . For this reason, in rapid charge and discharge, electrons cannot be sufficiently exchanged between the metal current collector and the positive electrode active material, so that the capacity is significantly reduced.

【0005】LiMn24 やLi1+x Mn2-x 4は安
価であるために、この急速充放電における容量の低下を
容認していた。そして、リチウム二次電池は主として電
流をあまり必要としない小型電子機器の電源として使用
されていた。このため容量の低下は特に大きな問題とは
ならなかった。しかし今後、電気自動車用エネルギー源
に使用することを考えると; a.急速加速時に充分な容量が確保できない。
[0005] Since LiMn 2 O 4 and Li 1 + x Mn 2-x O 4 are inexpensive, a decrease in capacity during rapid charging and discharging has been accepted. Lithium secondary batteries have been mainly used as power supplies for small electronic devices that do not require much current. For this reason, the reduction in capacity did not become a particularly serious problem. However, in view of future use as an energy source for electric vehicles; a. Sufficient capacity cannot be secured during rapid acceleration.

【0006】b.減速時に運動エネルギーを電気エネル
ギーとして回生できない。 c.ガソリン補給並みの時間では充電できず、満充電に
数時間かかる。という重大な問題がある。 前記したの主な原因はマンガンイオンの電解液への溶
出にあると考えられている。特に高温ではマンガンの溶
出量が増加し、これが負極表面への望ましくない被膜の
形成を助長する。このため満充電状態の電池を60℃で
10日程度保存すると、ほぼ完全に放電してしまう。ま
た室温に戻して再充電しても、初期の半分以下の容量し
か充電できない。使用条件によっては、電気自動車は6
0℃で10日間以上放置される。あるいは過酷な運転状
況では、電池温度はより高温になることも予想される。
このような場合に電池容量が失われてしまうことは、電
気自動車の信頼性を著しく損ねることになる。
B. Kinetic energy cannot be regenerated as electric energy during deceleration. c. It cannot be charged in the same time as gasoline refueling, and it takes several hours to fully charge. There is a serious problem. It is believed that the main cause is that manganese ions are eluted into the electrolyte. Particularly at high temperatures, the amount of manganese eluted increases, which promotes formation of an undesired film on the negative electrode surface. Therefore, when a fully charged battery is stored at 60 ° C. for about 10 days, it is almost completely discharged. Also, even if the battery is returned to room temperature and recharged, only less than half of the initial capacity can be charged. Depending on the conditions of use, 6
Leave at 0 ° C. for more than 10 days. Alternatively, in severe operating conditions, the battery temperature is expected to be higher.
In such a case, the loss of the battery capacity significantly impairs the reliability of the electric vehicle.

【0007】本発明は前記した問題点を解決するもの
で、急速な充放電においても容量低下が少なく、かつ高
温においても安定なリチウム二次電池用の正極材料を提
供することを課題とする。
An object of the present invention is to provide a positive electrode material for a lithium secondary battery which has a small capacity reduction even in rapid charging and discharging and is stable even at a high temperature.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム二次電
池用正極材料は、組成式Li1+x Mn2-x 4-y(ここ
で0≦x≦0.3333、−0.1≦y≦0.2)で表
されるスピネル構造の酸化物粉末とその表面に形成され
たLIV24層とで構成される複合体粉末を有すること
を特徴とする。
The positive electrode material for a lithium secondary battery according to the present invention has a composition formula of Li 1 + x Mn 2-x O 4-y (where 0 ≦ x ≦ 0.3333, −0.1 .Ltoreq.y.ltoreq.0.2), which is characterized by having a composite powder composed of an oxide powder having a spinel structure represented by the formula: and a LIV 2 O 4 layer formed on the surface thereof.

【0009】リチウム二次電池の充放電では、リチウム
イオンが正極と負極の間を往復する。そして、リチウム
二次電池の電解液と正極界面および負極界面でのリチウ
ムイオンの交換速度は、電極構成の最適化によりかなり
速くすることができる。したがって、急速な充放電でも
電池容量が劣化しないようにするためには、金属集電体
と正極活物質の間でリチウムイオンの出入りに相当する
電子を素早く交換しなければならない。
In charging and discharging a lithium secondary battery, lithium ions reciprocate between a positive electrode and a negative electrode. Further, the exchange rate of lithium ions at the interface between the electrolyte and the positive electrode and the negative electrode of the lithium secondary battery can be considerably increased by optimizing the electrode configuration. Therefore, in order to prevent the battery capacity from being deteriorated even by rapid charge / discharge, electrons corresponding to the entry and exit of lithium ions must be quickly exchanged between the metal current collector and the positive electrode active material.

【0010】しかし、活物質であるLi1+x Mn2-x
4-yは半導体でありその抵抗率は、室温で50kΩcm
程度なので、電子交換の速度は活物質および電極の容量
性(コンデンサ性)に起因する時定数で上限が決められ
てしまう。本発明では、活物質の抵抗率を大幅に低下さ
せるために、活物質のLi1+x Mn2-x 4-y粉末表面
に金属的な伝導性を有するLiV24層を設けた。この
LiV24層により電極での抵抗率と容量性(コンデン
サ性)を大幅に低減させて、急速充放電性能を向上させ
るものである。
However, the active material Li 1 + x Mn 2-x O
4-y is a semiconductor whose resistivity is 50 kΩcm at room temperature.
Therefore, the upper limit of the electron exchange rate is determined by a time constant caused by the capacitance (capacitance) of the active material and the electrode. In the present invention, in order to significantly lower the resistivity of the active material, a LiV 2 O 4 layer having metallic conductivity is provided on the surface of the Li 1 + x Mn 2-x O 4-y powder of the active material. . With this LiV 2 O 4 layer, the resistivity and capacitance (capacitance) of the electrode are greatly reduced, and the rapid charge / discharge performance is improved.

【0011】ここでLiV24層は、Li1+x Mn2-x
4-yと同様のスピネル構造を有し、リチウムイオン伝
導度も大きい。従って、LiV24層がLi1+x Mn
2-x 4-y粉末表面に存在しても、電子伝導・イオン伝
導ともに阻害されない。ここでLiV24はLi1+x
2-x 4-yと同様のスピネル構造を有し、格子定数も
ほぼ同一なので、Li1+x Mn2-x 4-yの表面上への
成長が容易である。また、Xが0.3333を超えると
スピネル構造化合物を合成できないので好ましくない。
Here, LiVTwoOFourThe layer is Li1 + xMn2-x
O4-yIt has the same spinel structure as
The conductivity is also large. Therefore, LiVTwoOFourLayer is Li1 + xMn
2-xO 4-yEven if present on the powder surface, electron and ion conduction
It is not hindered in both directions. Where LiVTwoOFourIs Li1 + xM
n2-xO4-yHas the same spinel structure as
Since they are almost the same, Li1 + xMn2-xO4-yOn the surface of
Easy to grow. Also, when X exceeds 0.3333,
It is not preferable because a spinel structure compound cannot be synthesized.

【0012】また、Yは−0.1≦y≦0.2の範囲で
あることがスピネル構造を保つため必要である。さら
に、LiV24層が活物質の表面に存在するため、活物
質中のマンガンイオンが電解液中へ溶出するのが抑制さ
れて、電池の高温安定性も大幅に向上させることができ
る。LiV24は活物質の表面全体に層状に形成されて
いなくてもよいが、全体に形成されている場合にはLi
1+x Mn2-x 4-yと電解液との直接接触を防止できる
ため、Mnの溶出をほぼ抑えることができる。
It is necessary that Y is in the range of -0.1≤y≤0.2 in order to maintain the spinel structure. Furthermore, since the LiV 2 O 4 layer exists on the surface of the active material, elution of manganese ions in the active material into the electrolytic solution is suppressed, and the high-temperature stability of the battery can be significantly improved. LiV 2 O 4 does not need to be formed in a layer on the entire surface of the active material.
Since direct contact between 1 + x Mn 2-x O 4-y and the electrolytic solution can be prevented, elution of Mn can be substantially suppressed.

【0013】[0013]

【発明の実施の形態】本発明の複合体粉末は、固相反応
法、噴霧燃焼法などにより製造することができる。固相
反応法は、例えば、炭酸リチウムと2酸化マンガンを所
定のモル比で湿式混合し、ペレット状に成形した後、酸
化性雰囲気中で焼成することによりLi1+x Mn2-x
4-y粒子が得られる。このLi1+x Mn2-x 4-y粒子の
表面にLiV24層を形成するには、5酸化バナジウム
を水酸化リチウム水溶液に溶解した溶液を調製し、この
溶液に上記の方法で合成した上記粒子を含浸させ、さら
に乾燥後、窒素雰囲気でおよそ500〜850℃の温度
で焼成することにより得られる。 噴霧燃焼法は、例え
ば、5酸化バナジウムを水酸化リチウム水溶液に溶解し
た溶液に前記のLi1+x Mn2-x 4-y粒子を添加し、
これに乳化剤、灯油などを添加してO/W型エマルジョ
ンを形成する。そしてこのエマルジョンを噴霧燃焼させ
ることにより、Li1+x Mn2-x 4-y粒子表面にLi
24層を形成した複合体微粉末状を合成することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The composite powder of the present invention can be produced by a solid phase reaction method, a spray combustion method or the like. In the solid-phase reaction method, for example, lithium carbonate and manganese dioxide are wet-mixed at a predetermined molar ratio, formed into pellets, and then fired in an oxidizing atmosphere to obtain Li 1 + x Mn 2-x O 2.
4-y particles are obtained. In order to form a LiV 2 O 4 layer on the surface of the Li 1 + x Mn 2-x O 4-y particles, a solution prepared by dissolving vanadium pentoxide in an aqueous solution of lithium hydroxide is prepared, and the solution described above is added to the solution. Impregnated with the particles synthesized in the above, further dried, and then calcined at a temperature of about 500 to 850 ° C. in a nitrogen atmosphere. The spray combustion method is, for example, adding the above Li 1 + x Mn 2-x O 4-y particles to a solution of vanadium pentoxide in an aqueous solution of lithium hydroxide,
An O / W emulsion is formed by adding an emulsifier, kerosene and the like thereto. By spray-burning this emulsion, Li 1 + x Mn 2-x O 4-y particles
A composite fine powder having a V 2 O 4 layer can be synthesized.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 (Li1+x Mn2-x 4-y粒子:活物質の製造)炭酸リ
チウム(Li2CO3)と2酸化マンガン(MnO2)を
モル比でLi:Mn=1.03:1.97の割合になる
ようによく混合した。混合はエタノールを溶媒として、
遊星ボールミルで行った。この混合粒子を乾燥した後、
ペレット状にプレス成形して、650℃、8時間、酸素
気流中で保持した。その後室温まで1℃/分で炉冷し
た。
The present invention will be specifically described below with reference to examples. (Li 1 + x Mn 2-x O 4-y Particle: Production of Active Material) Li: Mn = 1.03: 1. Lithium carbonate (Li 2 CO 3 ) and manganese dioxide (MnO 2 ) in molar ratio. The mixture was mixed well to give a ratio of 97. Mixing using ethanol as a solvent,
I went with a planetary ball mill. After drying the mixed particles,
It was press-formed into a pellet and kept at 650 ° C. for 8 hours in an oxygen stream. Thereafter, the furnace was cooled to room temperature at 1 ° C./min.

【0015】このペレットを充分に粉砕してLi1.03
1.974 試料を得た。この試料はX線回折によりスピ
ネル構造を有することを確認した。この試料を比較例C
1とした。 (実施例1)Li1+x Mn2-x 4-y粒子の表面にLi
24層の形成(固相反応法)2gの5酸化バナジウム
(V25)を200mlの1Nの硝酸水溶液に溶解させ
た。この溶液に0.8gの硝酸リチウム(LiNO3
を溶解し、さらにアンモニア水溶液を添加して溶液のp
Hを7〜8に調整した。この溶液に10gの上記で製造
した比較例C1を1時間含浸させ、その後200℃で1
0時間乾燥した。得られた粉末を700℃、8時間、窒
素気流中で保持した。その後室温で1℃/分で炉冷し
た。これを本実施例試料1とした。
The pellets are sufficiently pulverized to obtain Li 1.03 M
An n 1.97 O 4 sample was obtained. This sample was confirmed to have a spinel structure by X-ray diffraction. This sample was prepared as Comparative Example C
It was set to 1. (Example 1) Li 1 + x Mn 2-x O 4-y
Formation of V 2 O 4 Layer (Solid State Reaction Method) 2 g of vanadium pentoxide (V 2 O 5 ) was dissolved in 200 ml of 1N nitric acid aqueous solution. 0.8 g of lithium nitrate (LiNO 3 ) was added to this solution.
Is dissolved, and an aqueous ammonia solution is further added to add p to the solution.
H was adjusted to 7-8. This solution was impregnated with 10 g of the above prepared comparative example C1 for 1 hour and then at 200 ° C. for 1 hour.
Dried for 0 hours. The obtained powder was kept at 700 ° C. for 8 hours in a nitrogen stream. Thereafter, the furnace was cooled at room temperature at 1 ° C./min. This was designated as sample 1 of this example.

【0016】(実施例2)3.6gの5酸化バナジウム
(V25)を200mlの0.1Nの水酸化リチウム
(LiOH)水溶液に溶解させた。この溶液に少量のL
iOHを添加して溶液pHを7〜8に調整した。この溶
液に10g の前記比較例C1を1時間含浸させ、その後
200℃で10時間乾燥した。得られた粉末を700
℃、8時間、窒素気流中で保持した。その後室温まで1
℃/分で炉冷した。これを本実施例2とした。(実施例
3) (噴霧燃焼法)LiOHとV25をモル比でLi:V=
1:2の割合になるように溶解した水溶液を、リチウム
イオン濃度で0.1モル/リットルになるように調整し
た。この溶液に少量のLiOHを添加して溶液pHを7
〜8に調整した。この溶液に約1μmの粒径を有するL
1.03Mn1.974 微粒子を1リットル当たりに48.
9gを加えて、混合・分散させた。次にこの微粒子を分
散させた原料水溶液に、乳化剤としてのグリセリン脂肪
酸エステルを溶かした灯油中に懸濁させて、超音波ホモ
ジナイザーを用いて、エマルジョンを作製した。
Example 2 3.6 g of vanadium pentoxide (V 2 O 5 ) was dissolved in 200 ml of 0.1N aqueous solution of lithium hydroxide (LiOH). Add a small amount of L
The pH of the solution was adjusted to 7-8 by adding iOH. This solution was impregnated with 10 g of the above-mentioned Comparative Example C1 for 1 hour, and then dried at 200 ° C. for 10 hours. The obtained powder is 700
C. for 8 hours in a nitrogen stream. Then to room temperature 1
The furnace was cooled at a rate of ° C / min. This was designated as Example 2. Example 3 (Spray Combustion Method) LiOH and V 2 O 5 in a molar ratio of Li: V =
The aqueous solution dissolved at a ratio of 1: 2 was adjusted to have a lithium ion concentration of 0.1 mol / liter. A small amount of LiOH was added to the solution to bring the solution pH to 7
Adjusted to ~ 8. The solution has a particle size of about 1 μm.
i 1.03 Mn 1.97 O 4 fine particles per liter.
9 g was added and mixed and dispersed. Next, in a raw material aqueous solution in which the fine particles were dispersed, glycerin fatty acid ester as an emulsifier was suspended in kerosene, and an emulsion was prepared using an ultrasonic homogenizer.

【0017】このエマルジョンをアトマイザより噴霧
し、酸素気流中で燃焼させた。燃焼雰囲気が若干還元雰
囲気になるように、酸素供給量を調整した。燃焼によっ
て合成された酸化物粉末を回収後、300℃の大気中で
乾燥させた。これを本実施例3とした。 (実施例4)実施例3の試料を700℃の温度で、8時
間、窒素気流中で保持し、その後室温まで1℃/分で炉
冷した。これを本実施例4とした。
This emulsion was sprayed from an atomizer and burned in an oxygen stream. The oxygen supply was adjusted so that the combustion atmosphere was slightly reduced. After recovering the oxide powder synthesized by combustion, it was dried in the air at 300 ° C. This was designated as Example 3. (Example 4) The sample of Example 3 was kept in a nitrogen stream at a temperature of 700 ° C for 8 hours, and then cooled in a furnace at room temperature at 1 ° C / minute. This was designated as Example 4.

【0018】(比較例C2)実施例3の試料を900℃
の温度で、8時間、窒素気流中で保持し、その後室温ま
で1℃/分で炉冷した。これを比較例C2とした。 (電池の評価)次に正極材料に本実施例1〜4と比較例
C1および比較例C2をそれぞれ用いたリチウム二次電
池を試験用セルを用いて組み立て、そのリチウム二次電
池の特性を評価した。
(Comparative Example C2) A sample of Example 3 was heated at 900 ° C.
, And kept in a nitrogen stream for 8 hours, and then cooled in a furnace at a rate of 1 ° C./min to room temperature. This was designated as Comparative Example C2. (Evaluation of Battery) Next, lithium secondary batteries using each of Examples 1 to 4 and Comparative Examples C1 and C2 as positive electrode materials were assembled using test cells, and the characteristics of the lithium secondary batteries were evaluated. did.

【0019】このリチウム二次電池は、その正極を次の
ようにして製造したものである。まず、本実施例1〜
4、比較例C1および比較例C2の1種を70wt%、
導電剤であるカーボンを25wt%、結着剤であるトリ
フルオロエチレン(TrFE)を5wt%をよく混合し
た。この混合粉末約10mgをSUS製のメッシュの金
網に0.1ton/cm2 で圧着して正極とした。
In this lithium secondary battery, the positive electrode was manufactured as follows. First, Examples 1 to
4, 70% by weight of one of Comparative Examples C1 and C2,
25 wt% of carbon as a conductive agent and 5 wt% of trifluoroethylene (TrFE) as a binder were mixed well. About 10 mg of this mixed powder was pressed against a SUS mesh wire net at 0.1 ton / cm 2 to form a positive electrode.

【0020】また負極には、厚さ0.4mmの金属Li
箔を1枚用いた。これら正極と負極との間に設けたセパ
レータにはポリプロピレン不織布を用いた。さらに上記
リチウム2次電池における電解液は1規定のLiPF6
溶液を採用し、その溶媒はエチレンカーボネートとジエ
チルカーボネートの1:1混合液とした。次に、このリ
チウム二次電池の、急速放電性能を比較するための充放
電条件について説明する。
The negative electrode is made of a metal Li having a thickness of 0.4 mm.
One foil was used. A polypropylene nonwoven fabric was used for the separator provided between the positive electrode and the negative electrode. Further, the electrolyte in the lithium secondary battery is 1N LiPF 6
A solution was employed, and the solvent was a 1: 1 mixture of ethylene carbonate and diethyl carbonate. Next, charge / discharge conditions for comparing the rapid discharge performance of the lithium secondary battery will be described.

【0021】各リチウム二次電池を、4.5Vまで1m
A/cm2 の定電流で充電した。電圧が4.5Vに到達
後、4.5Vの定電圧でさらに充電を行った。なお以上
の充電時間の合計は2時間であった。次いでこの充電終
了後に放電を開始した。放電電流密度度1mA/cm2
の定電流で3.5Vに到達するまで放電した。その直後
に再度充電を開始した。以上を1サイクルとし、3サイ
クル同様の充放電を行った。同様に充電後、放電電流密
度を2mA/cm2 から20mA/cm2 まで順次変化
させて3.5Vに到達するまで放電した。各放電電流密
度で充放電を3サイクルずつ行った。
[0021] Each lithium secondary battery is 1 m up to 4.5V.
The battery was charged at a constant current of A / cm 2 . After the voltage reached 4.5 V, charging was further performed at a constant voltage of 4.5 V. The total of the above charging times was 2 hours. Next, after the completion of the charging, the discharging was started. Discharge current density 1mA / cm 2
At a constant current of 3.5 V until the voltage reached 3.5 V. Immediately after that, charging was started again. The above was regarded as one cycle, and the same charge / discharge was performed in three cycles. Similarly, after charging, the battery was discharged until the voltage reached 3.5 V while the discharge current density was sequentially changed from 2 mA / cm 2 to 20 mA / cm 2 . Charge / discharge was performed three cycles at each discharge current density.

【0022】次にこのリチウム二次電池の、高温耐久性
を比較するための充放電条件について説明する。各リチ
ウム二次電池を60℃の高温槽内に配置し、4.5Vま
で1mA/cm 2 の定電流で充電した。次いでこの充電
終了後に放電を開始した。放電電流密度1mA/cm2
の定電流で3.5Vに到達するまで放電した。その直後
に再度充電を開始した。以上を1サイクルとした。
Next, the high-temperature durability of this lithium secondary battery
Will be described. Each Lichi
Battery in a high-temperature bath at 60 ° C and up to 4.5V.
At 1mA / cm TwoThe battery was charged at a constant current of Then this charge
After the termination, the discharge was started. Discharge current density 1mA / cmTwo
At a constant current of 3.5 V until the voltage reached 3.5 V. Immediately after
Charging was started again. The above was regarded as one cycle.

【0023】図1に本実施例1〜4と比較例C1および
比較例C2を正極としたリチウム二次電池の放電電流密
度と放電容量の関係を示す。比較例C1と比較すると、
本実施例1〜4を用いたリチウム二次電池では、高電流
密度での放電容量の低下が極めて少ないことが分かる。
一方比較例C2の結果は比較例C1の結果とほとんど差
がない。これは後熱処理温度が900℃と高かったた
め、Vが粒子内に均一拡散して活物質表面のLiV24
膜が消失したためと考えられる。
FIG. 1 shows the relationship between the discharge current density and the discharge capacity of a lithium secondary battery using Examples 1 to 4 and Comparative Examples C1 and C2 as positive electrodes. When compared with Comparative Example C1,
It can be seen that in the lithium secondary batteries using Examples 1 to 4, the decrease in the discharge capacity at a high current density is extremely small.
On the other hand, the result of Comparative Example C2 hardly differs from the result of Comparative Example C1. This is because the post heat treatment temperature was as high as 900 ° C., so that V diffused uniformly into the particles and LiV 2 O 4 on the active material surface.
This is probably because the film disappeared.

【0024】図2に本実施例1〜4と比較例C1および
比較例C2を正極としたリチウム二次電池の充電電流密
度と放電容量の関係を示す。比較例C1と比較すると、
本実施例1ー4を用いたリチウム二次電池では、高電流
密度での充電容量の低下が極めて少ないことが分かる。
一方、図1の場合と同様に、比較例C2の結果は比較例
C1の結果とほとんど差がなかった。
FIG. 2 shows the relationship between the charge current density and the discharge capacity of the lithium secondary batteries using Examples 1 to 4 and Comparative Examples C1 and C2 as positive electrodes. When compared with Comparative Example C1,
It can be seen that in the lithium secondary battery using Examples 1-4, the decrease in the charge capacity at a high current density is extremely small.
On the other hand, as in the case of FIG. 1, the result of Comparative Example C2 was hardly different from the result of Comparative Example C1.

【0025】次に図3に60℃での本実施例1〜4と比
較例C1および比較例C2を正極としたリチウム二次電
池の放電容量とサイクル数の関係を示す。比較例C1と
比較すると、本実施例試料1〜4用いたリチウム二次電
池では、60℃でのサイクル耐久性が大幅に向上してい
ることが理解できる。一方比較例C2の結果は比較例C
1の結果とほとんど差がなかった。
Next, FIG. 3 shows the relationship between the discharge capacity and the number of cycles at 60 ° C. of the lithium secondary batteries using Examples 1 to 4 and Comparative Examples C1 and C2 as positive electrodes. As compared with Comparative Example C1, it can be understood that the cycle durability at 60 ° C. is significantly improved in the lithium secondary batteries using the present example samples 1 to 4. On the other hand, the result of Comparative Example C2 is Comparative Example C
There was almost no difference from the result of 1.

【0026】なお詳細な説明は割愛したが、粒子表面で
のVの分布は連続的に変化しても良い。すなわち組成を
Li V2-x Mnx 4と表した場合に、粒子表面から
中心部へ向かってxが2から0へと連続的に変化して
も、上述したものとほぼ同様の効果が得られる。
Although the detailed description has been omitted, the distribution of V on the particle surface may be changed continuously. That the composition when expressed as Li V 2-x Mn x O 4, be continuously varied from 2 x is toward the center from the particle surface to 0, almost the same effects as those described above can get.

【0027】[0027]

【発明の効果】急速な充放電でも電池容量が劣化しない
ためには、金属集電体と活物質間でLiイオンの出入り
に相当する電子を素早く交換する必要がある。本発明で
は活物質のLi1+x Mn2-x 4-yの表面に金属的な伝
導性を有するLiV24層を形成することにより、活物
質の電気抵抗率を大幅に低下させ、急速充放電性能を向
上させることができた。
According to the present invention, it is necessary to rapidly exchange electrons corresponding to the entrance and exit of Li ions between the metal current collector and the active material so that the battery capacity is not deteriorated even by rapid charge and discharge. In the present invention, the electrical resistivity of the active material is significantly reduced by forming a metallic conductive LiV 2 O 4 layer on the surface of the active material Li 1 + x Mn 2-x O 4-y. , Rapid charge and discharge performance could be improved.

【0028】また、LiV24層が活物質の表面に存在
するのでマンガンイオンの溶出が抑制され、電池の高温
安定性が向上した。
Further, since the LiV 2 O 4 layer exists on the surface of the active material, elution of manganese ions was suppressed, and the high-temperature stability of the battery was improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例1〜4と比較例C1および比較例C2
を正極としたリチウム二次電池の放電電流密度と放電容
量の関係のグラフである。
FIG. 1 shows Examples 1 to 4 and Comparative Examples C1 and C2.
4 is a graph showing a relationship between a discharge current density and a discharge capacity of a lithium secondary battery having a positive electrode as a positive electrode.

【図2】本実施例1〜4と比較例C1および比較例C2
を正極としたリチウム二次電池の放電電流密度と放電容
量の関係を示すグラフである。
FIG. 2 shows Examples 1 to 4 and Comparative Examples C1 and C2.
4 is a graph showing a relationship between a discharge current density and a discharge capacity of a lithium secondary battery having a positive electrode as a positive electrode.

【図3】本実施例1〜4と比較例C1および比較例C2
を正極としたリチウム二次電池の、60℃での放電容量
とサイクル数の関係を示すグラフである。
FIG. 3 shows Examples 1-4 and Comparative Examples C1 and C2.
4 is a graph showing the relationship between the discharge capacity at 60 ° C. and the number of cycles of a lithium secondary battery having a positive electrode as a positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷹取 一雅 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 渡辺 直義 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 則竹 達夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 畑中 達也 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 5H003 AA00 AA01 BB05 BC01 BC05 BC06 BD03 5H014 AA02 EE10 HH01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuma Takatori 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory, Inc. (72) Inventor Naoyoshi Watanabe Nagakute-cho, Aichi-gun, Aichi Prefecture Inside 41 Toyota Chuo R & D Co., Ltd., No. 41, Chuchu Yokomichi (72) Inventor Tatsuo Noritake No. 41, Toyota Chuo R & D Laboratories Co., Ltd. 41 F-term in Toyota Central R & D Laboratories Co., Ltd. 41 No. 41, Chuchu-shi, Nagakute-cho, Aichi-gun, Aichi-gun 5H003 AA00 AA01 BB05 BC01 BC05 BC06 BD03 5H014 AA02 EE10 HH01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式Li1+x Mn2-x 4-y(ここで0
≦x≦0.3333、−0.1≦y≦0.2)で表され
るスピネル構造の酸化物粉末とその表面に形成されたL
iV24層とで構成される複合体粉末を有することを特
徴とするリチウム二次電池用正極材料。
A composition formula Li 1 + x Mn 2-x O 4-y (where 0
.Ltoreq.x.ltoreq.0.3333, -0.1.ltoreq.y.ltoreq.0.2) and an oxide powder having a spinel structure and L formed on the surface thereof.
A positive electrode material for a lithium secondary battery, comprising a composite powder composed of an iV 2 O 4 layer.
JP10165432A 1998-06-12 1998-06-12 Positive electrode material for lithium secondary battery Pending JP2000003709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10165432A JP2000003709A (en) 1998-06-12 1998-06-12 Positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10165432A JP2000003709A (en) 1998-06-12 1998-06-12 Positive electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000003709A true JP2000003709A (en) 2000-01-07

Family

ID=15812325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10165432A Pending JP2000003709A (en) 1998-06-12 1998-06-12 Positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000003709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123251A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014063732A (en) * 2012-08-30 2014-04-10 Jgc Catalysts & Chemicals Ltd Positive electrode for all-solid-state lithium ion battery, mixture for obtaining the positive electrode, method for manufacturing them, and all-solid-state lithium ion battery
KR20160103272A (en) 2015-02-24 2016-09-01 주식회사 포스코이에스엠 Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123251A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014063732A (en) * 2012-08-30 2014-04-10 Jgc Catalysts & Chemicals Ltd Positive electrode for all-solid-state lithium ion battery, mixture for obtaining the positive electrode, method for manufacturing them, and all-solid-state lithium ion battery
KR20160103272A (en) 2015-02-24 2016-09-01 주식회사 포스코이에스엠 Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same

Similar Documents

Publication Publication Date Title
CN103855380B (en) Positive active material, methods for making them and the lithium secondary battery comprising it
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
WO2017025007A1 (en) Positive electrode active material for lithium-ion secondary battery and preparation method and use thereof
JP3896058B2 (en) Battery active material and method for producing the same
CN105047906B (en) Lithium cobalt positive polar material and preparation method thereof
JP2903469B1 (en) Method for producing anode material for lithium ion battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2003100296A (en) Active material for battery and manufacturing method thereof
WO2014040410A1 (en) Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery
JP6163701B2 (en) Lithium secondary battery containing mixed cathode active material with improved output characteristics
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
CN106784655A (en) A kind of coating modification method for improving lithium-rich manganese-based anode material performance
JP2015529943A (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN105098192A (en) Cathode material, preparation method thereof and lithium ion battery containing same
KR101223482B1 (en) Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof
CN113845153A (en) Multi-element high-entropy solid solution cathode material and preparation method and application thereof
CN111900359A (en) High-voltage lithium cobalt oxide positive electrode active substance and preparation method and application thereof
JP2001243950A (en) Manufacturing method of lithium secondary battery and negative electrode material
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
JPH11121006A (en) Positive electrode active material for lithium secondary battery
EP3723173A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
CN115064674A (en) High-rate long-cycle ternary cathode material, and preparation method and application thereof
JP2002208441A (en) Nonaqueous electrolyte secondary cell