JP2002208441A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JP2002208441A
JP2002208441A JP2001003526A JP2001003526A JP2002208441A JP 2002208441 A JP2002208441 A JP 2002208441A JP 2001003526 A JP2001003526 A JP 2001003526A JP 2001003526 A JP2001003526 A JP 2001003526A JP 2002208441 A JP2002208441 A JP 2002208441A
Authority
JP
Japan
Prior art keywords
composite oxide
class
electrolyte secondary
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001003526A
Other languages
Japanese (ja)
Other versions
JP4626058B2 (en
Inventor
Chika Kanbe
千夏 神部
Tatsuji Numata
達治 沼田
Masahito Shirakata
雅人 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001003526A priority Critical patent/JP4626058B2/en
Publication of JP2002208441A publication Critical patent/JP2002208441A/en
Application granted granted Critical
Publication of JP4626058B2 publication Critical patent/JP4626058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell with big capacity and very high safety. SOLUTION: For the nonaqueous electrolyte secondary cell using a positive electrode containing one or more of 4 V class double oxide, chosen from 4 V class spinel type lithium.manganese double oxide, laminated LiNi double oxide, or laminated LiCo double oxide, a positive electrode is made to contain 5 V class double oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。更に詳細にはリチウム二次電池あるいはリ
チウムイオン二次電池に関わり、安全性を高めること及
び高温におけるサイクル寿命、容量保存特性・自己放電
性を改善した非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a lithium secondary battery or a lithium ion secondary battery, and relates to a non-aqueous electrolyte secondary battery having improved safety and improved cycle life at high temperatures, capacity storage characteristics, and self-discharge properties.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むに従い、小型、軽量でかつ高エネルギー密度を
有する非水電解液二次電池に対する期待が高まってい
る。またその一方で、エネルギーの問題や地球温暖化の
問題により、電池を用いた自動車システム等に対する期
待が非常に高まってきている。そのような用途では、大
容量かつ大電流で使用する電池が必要となっており、更
にこのような条件下での電池の安全性をより高める事が
重要である。
2. Description of the Related Art In recent years, as devices have become more portable and cordless, expectations are growing for non-aqueous electrolyte secondary batteries that are small, lightweight, and have a high energy density. On the other hand, due to the problem of energy and the problem of global warming, expectations for automobile systems and the like using batteries have been greatly increased. In such an application, a battery used with a large capacity and a large current is required, and it is important to further enhance the safety of the battery under such conditions.

【0003】大容量かつ大電流で使用する電池を実現す
る手段として、4V級の正極材料に3V級の正極材料を混
合することによって、広い電圧範囲で使用が可能であり
容量を増やすことができる旨の発明が、特開平9-180718
号において提案されている。
[0003] As a means for realizing a battery which can be used with a large capacity and a large current, by mixing a cathode material of 3V class with a cathode material of 4V class, it can be used in a wide voltage range and the capacity can be increased. The invention to the effect is described in JP-A-9-180718
No. is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の提案の
内容では、電池の安全性の向上には効果はない上に、平
均作動電圧が低いためにエネルギー密度が低くなるとい
った問題があった。
However, the above proposal has no effect on improving the safety of the battery and has a problem that the energy density is low due to a low average operating voltage.

【0005】また、4V級材料の中でスピネル型Mn酸
リチウムは安全性が高いと言われている。例えば、この
スピネル型Mn酸リチウムをポータブル用途の小型電池
の正極材料として用いた場合には、安全性にまったく問
題がないといわれている。一方、電気自動車、電力貯蔵
用などの大容量用途では、大電流での充放電を行うた
め、ポータブル用途より高い安全性が期待されているも
のの、スピネル型Mn酸リチウムをもってしても、安全
性に全く問題なしとは言えない状況であった。更に4V
級材料の中でも、LiNi層状複合酸化物やLiCo層状複合酸
化物は、スピネル型Mn酸リチウムよりも高い電気容量
を有しておち、電池のエネルギー密度を向上させ得る
が、その結晶構造が層状構造であるため、大容量用途で
の安全性の確保が困難であった。
[0005] Spinel-type lithium Mn oxide is said to be highly safe among 4V class materials. For example, when this spinel-type lithium manganate is used as a cathode material of a small battery for portable use, it is said that there is no problem in safety at all. On the other hand, in high-capacity applications such as electric vehicles and power storage, charging and discharging with a large current is expected to have higher safety than portable applications, but even with spinel-type lithium Mn oxide, safety is expected. However, there was no problem at all. Further 4V
Among the class materials, the LiNi layered composite oxide and the LiCo layered composite oxide have higher electric capacity than spinel-type lithium Mn oxide, and can improve the energy density of the battery. Therefore, it has been difficult to ensure safety in large-capacity applications.

【0006】本発明では、上記事情に鑑みてなされたも
のであって、大型電池においての安全性を高めることを
目的としている。大型電池においては、大電流での使用
やハイレートでの使用があるため過充電状態にさらされ
る可能性が高いため、本発明では、このような使用条件
下における安全性がより高い非水電解液二次電池を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to enhance the safety of a large battery. In a large battery, since there is a high possibility of being exposed to an overcharged state due to use at a high current or use at a high rate, the present invention provides a non-aqueous electrolyte having higher safety under such use conditions. It is intended to provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明の非水電
解液二次電池は、正極に4V級スピネル型リチウム・マ
ンガン複合酸化物、LiNi層状複合酸化物、LiCo
層状複合酸化物の中から選択される1以上の4V級複合
酸化物を含む電極を用いた非水電解液二次電池におい
て、その電極中に5V級複合酸化物を含むことを特徴と
する。また、本発明の非水電解液二次電池は、先に記載
の非水電解液二次電池であって、前記5V級複合酸化物
が、4.2V以上の過電圧領域においてバッファーとし
て機能することを特徴とする。また、本発明の非水電解
液二次電池は、先に記載の非水電解液二次電池であっ
て、前記5V級複合酸化物が、4.3V以上の過電圧領
域においてバッファーとして機能することを特徴とす
る。
In order to achieve the above object, the present invention employs the following constitution. The non-aqueous electrolyte secondary battery of the present invention comprises a 4V class spinel lithium-manganese composite oxide, a LiNi layered composite oxide, and a LiCo
In a non-aqueous electrolyte secondary battery using an electrode containing one or more 4V-class composite oxides selected from layered composite oxides, the electrode contains a 5V-class composite oxide. Further, the non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery described above, wherein the 5V-class composite oxide functions as a buffer in an overvoltage region of 4.2 V or more. It is characterized by. Further, the non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery described above, wherein the 5V-class composite oxide functions as a buffer in an overvoltage region of 4.3 V or more. It is characterized by.

【0008】更に、本発明の非水電解液二次電池は、先
に記載の非水電解液二次電池であって、前記5V級複合
酸化物が、スピネル型結晶材料であることを特徴とす
る。更にまた、本発明の非水電解液二次電池は、先に記
載の非水電解液二次電池であって、前記5V級複合酸化
物が、スピネル型リチウム・マンガン複合酸化物である
ことを特徴とする。
Further, a non-aqueous electrolyte secondary battery according to the present invention is the non-aqueous electrolyte secondary battery described above, wherein the 5V-class composite oxide is a spinel type crystal material. I do. Furthermore, the non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery described above, wherein the 5V-class composite oxide is a spinel-type lithium-manganese composite oxide. Features.

【0009】また、本発明の非水電解液二次電池は、先
に記載の非水電解液二次電池であって、前記5V級複合
酸化物が、下記の組成式で示されるものであることを特
徴とする。 LiNixMn2-x4 ただし、上記の組成比を示すxは原子比で0.2≦x≦
0.7の範囲である。
A non-aqueous electrolyte secondary battery according to the present invention is the above-described non-aqueous electrolyte secondary battery, wherein the 5V-class composite oxide is represented by the following composition formula. It is characterized by the following. LiNi x Mn 2-x O 4 wherein x indicating the above composition ratio is an atomic ratio of 0.2 ≦ x ≦
The range is 0.7.

【0010】上記の非水電解液二次電池によれば、電極
中に5V級複合酸化物を含むので、電池を過充電したと
しても、この5V級複合酸化物が充電反応に関与するの
で、正極電極と電解液との反応が起きることがなく、電
池の発熱が防止され、電池の安全性を高くすることがで
きる。尚、5V級複合酸化物とは、金属リチウム対極に
対して4.5〜5.2Vに充放電曲線のプラトー領域が
あるものと本発明では定義する。
According to the above nonaqueous electrolyte secondary battery, since the electrode contains the 5V-class composite oxide, even if the battery is overcharged, the 5V-class composite oxide participates in the charging reaction. The reaction between the positive electrode and the electrolyte does not occur, the heat generation of the battery is prevented, and the safety of the battery can be enhanced. In the present invention, a 5V-class composite oxide is defined as one having a plateau region of a charge / discharge curve at 4.5 to 5.2 V with respect to a metal lithium counter electrode.

【0011】また、5V級複合酸化物が、4.2V以
上、または4.3V以上の過電圧領域においてバッファ
ーとして機能するので、4V級スピネル型リチウム・マ
ンガン複合酸化物、LiNi層状複合酸化物、LiCo
層状複合酸化物等の4V級複合酸化物の充電電圧の上限
である4.2〜4.3V以上の過充電領域において、5
V級複合酸化物をバッファーとして機能させることがで
き、4V級材料の結晶構造に対するダメージをおさえ、
電池の安全性をより向上させることができる。
Further, since the 5V-class composite oxide functions as a buffer in an overvoltage region of 4.2V or more or 4.3V or more, a 4V-class spinel-type lithium-manganese composite oxide, a LiNi layered composite oxide, LiCo
In an overcharge region of 4.2 to 4.3 V or more, which is the upper limit of the charging voltage of a 4V-class composite oxide such as a layered composite oxide, 5
The V-class composite oxide can function as a buffer, suppressing damage to the crystal structure of the 4V-class material,
The safety of the battery can be further improved.

【0012】また5V級複合酸化物がスピネル型結晶材
料であり、このスピネル型結晶材料は充電状態において
も比較的安定なので、電池の安全性をより向上させるこ
とができる。更に5V級複合酸化物がスピネル型リチウ
ム・マンガン複合酸化物であり、このスピネル型リチウ
ム・マンガン複合酸化物は充電状態においても比較的安
定なので、電池の安全性をより向上させることができ
る。
Further, the 5V-class composite oxide is a spinel-type crystal material, which is relatively stable even in a charged state, so that the safety of the battery can be further improved. Further, the 5V-class composite oxide is a spinel-type lithium-manganese composite oxide, and since the spinel-type lithium-manganese composite oxide is relatively stable even in a charged state, the safety of the battery can be further improved.

【0013】上記の5V級複合酸化物として、LiNi
xMn2-x4を用いることにより、電池の安全性をより
向上させることができる。
As the above 5V class composite oxide, LiNi is used.
The use of x Mn 2-x O 4, it is possible to further improve the safety of the battery.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。本発明の非水電解液二次電池は、
正極に4V級スピネル型リチウム・マンガン複合酸化
物、LiNi層状複合酸化物、LiCo層状複合酸化物
の中から選択される1以上の4V級複合酸化物を含んだ
電極中に5V級複合酸化物を含むものである。ここで、
5V級複合酸化物とは、金属リチウム対極に対して4.
5〜5.2Vに充放電曲線のプラトー領域があるものと
本発明では定義する。また、4V級複合酸化物とは、金
属リチウム対極に対して3.5〜4.3Vに充放電曲線
のプラトー領域があるものと本発明では定義する。
Embodiments of the present invention will be described below with reference to the drawings. Non-aqueous electrolyte secondary battery of the present invention,
A 5V-class composite oxide is placed in an electrode containing at least one 4V-class composite oxide selected from among a 4V-class spinel-type lithium-manganese composite oxide, a LiNi layered composite oxide, and a LiCo layered composite oxide as a positive electrode. Including. here,
The 5V-class composite oxide is defined as 4.
In the present invention, the charge / discharge curve has a plateau region at 5 to 5.2 V. In the present invention, a 4V-class composite oxide is defined as one having a plateau region of a charge / discharge curve at 3.5 to 4.3 V with respect to a metal lithium counter electrode.

【0015】上記正極を用いた本発明の非水電解液二次
電池では、通常、充電時に4V級複合酸化物からリチウ
ムイオンが脱離し、このリチウムイオンが負極活物質に
挿入されることによって充電反応が進行する。そして、
正極の電位が金属リチウムに対して4.1〜4.3V程
度まで上昇した時点で充電が終了する。
In the non-aqueous electrolyte secondary battery of the present invention using the above-described positive electrode, lithium ions are usually released from the 4V-class composite oxide during charging, and the lithium ions are inserted into the negative electrode active material. The reaction proceeds. And
The charging is completed when the potential of the positive electrode rises to about 4.1 to 4.3 V with respect to the metal lithium.

【0016】このとき、何らかの原因により4.3Vを
越えても充電が終了しない場合には、電極中に含まれる
5V級複合酸化物が充電反応に関与し、5V級複合酸化
物からリチウムイオンが脱離して充電反応が進行する。
これにより、4V級複合酸化物は充放電反応に関与する
ことがなくなるので、4V級複合酸化物が過充電状態ま
で至ることがなく、結晶構造が破壊されることがない。
At this time, if the charging is not completed even when the voltage exceeds 4.3 V for some reason, the 5V-class composite oxide contained in the electrode participates in the charging reaction, and lithium ions are generated from the 5V-class composite oxide. The charge reaction proceeds by desorption.
Thus, the 4V-class composite oxide does not participate in the charge / discharge reaction, so that the 4V-class composite oxide does not reach an overcharged state and the crystal structure is not destroyed.

【0017】この5V級複合酸化物は、4.2V以上若
しくは4.3V以上の過電圧領域においてバッファーと
して機能する。4V級スピネル型リチウム・マンガン複
合酸化物等の4V級複合酸化物は、充電電圧の上限がお
およそ4.2〜4.3Vとされ、これ以上の電圧が印加
されると過充電状態となる。本発明の5V級複合酸化物
は、4.2〜4.3V以上の過充電領域において、バッ
ファーとして機能させることができる。即ち、4V級複
合酸化物に代わって充電反応に関与することになる。こ
れにより、4V級複合酸化物の結晶構造に対するダメー
ジをおさえ、電池の安全性をより向上させることができ
る。
The 5V-class composite oxide functions as a buffer in an overvoltage region of 4.2 V or more or 4.3 V or more. The upper limit of the charging voltage of a 4V-class composite oxide such as a 4V-class spinel-type lithium-manganese composite oxide is approximately 4.2 to 4.3 V, and when a voltage higher than this is applied, the battery is overcharged. The 5V class composite oxide of the present invention can function as a buffer in an overcharge region of 4.2 to 4.3 V or more. That is, it is involved in the charging reaction in place of the 4V-class composite oxide. Thereby, damage to the crystal structure of the 4V-class composite oxide can be suppressed, and the safety of the battery can be further improved.

【0018】上記の5V級複合酸化物として、スピネル
型結晶材料を例示できるが、スピネル型結晶材料のなか
でも特にスピネル型リチウム・マンガン複合酸化物が好
ましい。このスピネル型リチウム・マンガン複合酸化物
は、結晶中からリチウムが離脱した状態、即ち充電状態
において比較的安定なので、電池の安全性をより向上さ
せることができる。
As the above 5V-class composite oxide, a spinel-type crystal material can be exemplified, and among the spinel-type crystal materials, a spinel-type lithium-manganese composite oxide is particularly preferable. This spinel-type lithium-manganese composite oxide is relatively stable in a state in which lithium is separated from the crystal, that is, in a charged state, so that the safety of the battery can be further improved.

【0019】特に、スピネル型リチウム・マンガン複合
酸化物のなかでも、下記の組成式で示されるものが、電
池の安全性をより向上させることができる点で好まし
い。LiNixMn2-x4ただし、上記の組成比を示す
xは原子比で0.2≦x≦0.7の範囲である。
In particular, among the spinel-type lithium-manganese composite oxides, those represented by the following composition formula are preferable in that the safety of the battery can be further improved. LiNi x Mn 2-x O 4 However, x indicating the above composition ratio is in the range of 0.2 ≦ x ≦ 0.7 in atomic ratio.

【0020】また、4V級スピネル型リチウム・マンガ
ン複合酸化物としては、たとえばLi1+y1Mn2-y14
(上記の組成比を示すy1は原子比で0.05≦y1≦
0.182の範囲)を例示できる。また、LiNi層状
複合酸化物としては、例えば、Liz1Ni2ーz2z22
(上記の組成比を示すz1及びz2は原子比で0≦z1≦
1、0<z2≦0.4の範囲であり、MはCo、Mn、
Alのうちの少なくとも1つ)を例示できる。更に、L
iCo層状複合酸化物としては、LiCoO2を例示で
きる。上記の組成式はあくまで例示であり、上記の4V
級スピネル型リチウム・マンガン複合酸化物、LiNi
層状複合酸化物及びLiCo層状複合酸化物は上記の組
成式で示されるものに限定されるものではない。
Examples of the 4V class spinel type lithium-manganese composite oxide include Li 1 + y1 Mn 2-y1 O 4
(Y1 representing the above composition ratio is 0.05 ≦ y1 ≦
0.182). Examples of the LiNi layered composite oxide include, for example, Li z1 Ni 2 -z 2 M z2 O 2
(The above composition ratios z1 and z2 are atomic ratios of 0 ≦ z1 ≦
1, 0 <z2 ≦ 0.4, M is Co, Mn,
Al). Furthermore, L
As the iCo layered composite oxide, LiCoO 2 can be exemplified. The above composition formula is merely an example, and the above 4V
Class spinel type lithium-manganese composite oxide, LiNi
The layer composite oxide and the LiCo layer composite oxide are not limited to those represented by the above composition formula.

【0021】4V級複合酸化物と5V級複合酸化物の配
合比は重量比で、4V級複合酸化物:5V級複合酸化物
=99.5:0.5〜90:10の範囲が好ましい。こ
の範囲より5V級複合酸化物の配合比が低下すると、過
充電時にバッファーとして機能する5V級複合酸化物の
量が不足して非水電解液二次電池の安全性が損なわれる
ので好ましくない。また、上記の範囲よりも5V級複合
酸化物の配合比が高くなると、4V級複合酸化物の配合
比が相対的に低下し、非水電解液二次電池のエネルギー
密度が低下してしまうので好ましくない。
The compounding ratio of the 4V-class composite oxide to the 5V-class composite oxide is preferably in the range of 4V-class composite oxide: 5V-class composite oxide = 99.5: 0.5 to 90:10. If the compounding ratio of the 5V-class composite oxide falls below this range, the amount of the 5V-class composite oxide that functions as a buffer during overcharge becomes insufficient, and the safety of the nonaqueous electrolyte secondary battery is impaired. Further, when the compounding ratio of the 5V-class composite oxide is higher than the above range, the compounding ratio of the 4V-class composite oxide is relatively reduced, and the energy density of the nonaqueous electrolyte secondary battery is reduced. Not preferred.

【0022】また、本発明に係る正極電極には炭素材料
等の導電助材や、結着材等が含有されていても良い。
The positive electrode according to the present invention may contain a conductive material such as a carbon material, a binder, and the like.

【0023】[0023]

【実施例】以下、本発明を実施例によりさらに説明する
が、本発明はこれらに限定するものではない。 (実施例1〜4)4V級複合酸化物であるマンガン酸リ
チウムの合成は、出発原料として炭酸リチウム(Li2
CO3)および電解二酸化マンガン(EMD)を用い
た。上記の出発原料の混合の前段階として、Li2CO3
の粉砕およびEMDの分級を行った。このプロセスの目
的とするところは、反応性の向上と目的粒径を有するマ
ンガン酸リチウムの確保である。通常の固相反応合成法
では、マンガン酸リチウムの粒径は、焼成前のEMDの
粒径によりほぼ決定される。すなわち、目的粒径のマン
ガン酸リチウムの合成は、焼成前のEMDの目的粒径で
の分級によって確保される。マンガン酸リチウムは電池
の正極活物質として用いる場合、反応の均一性確保、ス
ラリー作製の容易さ、安全性等の兼ね合いにより、5〜
30μmの平均粒径が好ましい。そこでEMDの粒径は
マンガン酸リチウムの目的粒径と同じ5〜30μmとし
た。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. (Examples 1 to 4) The synthesis of lithium manganate, which is a 4V-class composite oxide, was performed using lithium carbonate (Li 2
CO 3 ) and electrolytic manganese dioxide (EMD) were used. Prior to mixing the starting materials described above, Li 2 CO 3
And EMD classification. The purpose of this process is to improve the reactivity and secure lithium manganate having the desired particle size. In the ordinary solid-phase reaction synthesis method, the particle size of lithium manganate is substantially determined by the particle size of EMD before firing. That is, the synthesis of lithium manganate having the target particle size is ensured by classification of the EMD before firing at the target particle size. When lithium manganate is used as a positive electrode active material of a battery, it may be 5 to 5 due to the balance of ensuring reaction uniformity, ease of slurry preparation, and safety.
An average particle size of 30 μm is preferred. Therefore, the particle size of EMD is set to 5 to 30 μm, which is the same as the target particle size of lithium manganate.

【0024】Li2CO3は平均粒径D50が1.4μmと
なるように粉砕を行い、[Li]/[Mn]=1.05
/2(モル比)となるように混合した。これは均一反応
の確保のためには5μm以下の粒径が望ましいと考えら
れるからである。
Li 2 CO 3 is pulverized so that the average particle diameter D 50 becomes 1.4 μm, and [Li] / [Mn] = 1.05.
/ 2 (molar ratio). This is because it is considered that a particle size of 5 μm or less is desirable for ensuring a uniform reaction.

【0025】この混合粉を酸素フローの雰囲気下、80
0℃で焼成した。次いで、得られたマンガン酸リチウム
の粒子中の粒径1μm以下の微小粒子を空気分級器によ
り除去した。この時、得られたマンガン酸リチウムの比
表面積は約0.9m2/gであった。また、タップ密度
は2.17g/cc、真密度は4.09g/cc、平均
粒径D50は17.2μm、格子定数は8.236Åとい
う粉体特性であった。
The mixed powder is mixed under an oxygen flow atmosphere at 80
Baking at 0 ° C. Next, fine particles having a particle size of 1 μm or less in the obtained lithium manganate particles were removed by an air classifier. At this time, the specific surface area of the obtained lithium manganate was about 0.9 m 2 / g. Further, a tap density of 2.17 g / cc, true density 4.09 g / cc, an average particle diameter D 50 is 17.2Myuemu, lattice constant was powder characteristics of 8.236A.

【0026】上記で合成したマンガン酸リチウムと5V
級スピネルLiNi0.5Mn1.54を100−α:α
(重量% ただしα=0.1,0.5,1.5,5.
0)の混合比で混合した正極を用いて直径18mm、高
さ65mmの円筒セルを試作した。まずマンガン酸リチ
ウム、LiNi0.5Mn1.54および導電助材を乾式混
合し、得られた混合粉を、結着材であるPVDFを溶解
させたN−メチル−2−ピロリドン(NMP)中に均一
に分散させスラリーを作製した。そのスラリーを厚さ2
5μmのアルミ金属箔上に塗布後、NMPを蒸発させる
ことにより正極シートとした。正極中の固形分比率はマ
ンガン酸リチウム:LiNi0.5Mn1.54:導電助
材:PVDF=80−α:α:10:10(重量%)で
あった。
The lithium manganate synthesized above and 5 V
Grade spinel LiNi 0.5 Mn 1.5 O 4 with 100-α: α
(% By weight, where α = 0.1, 0.5, 1.5, 5.
A cylindrical cell having a diameter of 18 mm and a height of 65 mm was prototyped using the positive electrode mixed at a mixing ratio of 0). First, lithium manganate, LiNi 0.5 Mn 1.5 O 4 and a conductive additive are dry-mixed, and the obtained mixed powder is uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder is dissolved. To prepare a slurry. Thick the slurry 2
After coating on a 5 μm aluminum metal foil, NMP was evaporated to form a positive electrode sheet. The solid content ratio in the positive electrode was lithium manganate: LiNi 0.5 Mn 1.5 O 4 : conductive additive: PVDF = 80-α: α: 10: 10 (% by weight).

【0027】一方、負極シートはカーボン:PVDF=
90:10(重量%)の比率となるように混合してこれ
らをNMPに分散させ、厚さ20μmの銅箔上に塗布し
て作製した。以上のように作製した正極および負極の電
極シートを厚さ25μmのポリエチレン多孔膜セパレー
ターを介し巻き上げて円筒電池とした。
On the other hand, the negative electrode sheet is made of carbon: PVDF =
They were mixed at a ratio of 90:10 (% by weight), dispersed in NMP, and applied to a copper foil having a thickness of 20 μm. The electrode sheets of the positive electrode and the negative electrode prepared as described above were rolled up through a polyethylene porous membrane separator having a thickness of 25 μm to obtain a cylindrical battery.

【0028】電解液は1MのLiPF6を支持塩とし、
プロピレンカーボネート(PC):ジエチルカーボネー
ト(DEC)=50:50(体積%)を溶媒とした。こ
のようにして、実施例1〜4の非水電解液二次電池を製
造した。
The electrolyte uses 1M LiPF 6 as a supporting salt,
Propylene carbonate (PC): diethyl carbonate (DEC) = 50: 50 (vol%) was used as a solvent. Thus, the non-aqueous electrolyte secondary batteries of Examples 1 to 4 were manufactured.

【0029】(比較例1)正極中にLiNi0.5Mn1.5
4を含まず、固形分比率をマンガン酸リチウム:導電
助材:PVDF=80:10:10(重量%)とした以
外は実施例1と同様にして直径30mm、高さ120m
mの円筒セルを試作した。このようにして、比較例1の
非水電解液二次電池を製造した。
(Comparative Example 1) LiNi 0.5 Mn 1.5
30 mm in diameter and 120 m in height in the same manner as in Example 1 except that O 4 was not contained and the solid content ratio was changed to lithium manganate: conductive additive: PVDF = 80: 10: 10 (% by weight).
m prototype cell was produced. Thus, a non-aqueous electrolyte secondary battery of Comparative Example 1 was manufactured.

【0030】(比較評価例1)実施例1および比較例1
で作製した円筒セルを用いて、過充電試験を行った。過
充電試験は充電電圧12V、充電電流3C、室温条件下
での過充電を行った。その際、電池長さ方向中央部の表
面温度の計測を行った。尚、初期充電は1Aで4.2V
まで、放電は5Aで3.0Vまで行った。表1に実施例
1〜4および比較例1の円筒セルの20℃での過電圧試
験時の最大発熱温度を示す。実施例1〜4の円筒セルの
方が比較例1よりも過電圧試験時の発熱が少ないことが
分かる。
(Comparative Evaluation Example 1) Example 1 and Comparative Example 1
An overcharge test was performed using the cylindrical cell prepared in the above. In the overcharge test, overcharge was performed under the conditions of a charging voltage of 12 V, a charging current of 3 C, and room temperature. At that time, the surface temperature at the center in the battery length direction was measured. The initial charge is 4.2V at 1A
The discharge was performed up to 3.0 V at 5 A. Table 1 shows the maximum heat generation temperature of the cylindrical cells of Examples 1 to 4 and Comparative Example 1 during an overvoltage test at 20 ° C. It can be seen that the cylindrical cells of Examples 1 to 4 generate less heat during the overvoltage test than Comparative Example 1.

【0031】 [0031]

【0032】また、図1に4V級複合酸化物であるマン
ガン酸リチウム単独(比較例1)の充放電曲線を示し、
図2にLiNi0.5Mn1.54の単独の充放電曲線を示
す。更に図3に、実施例1の電池の充放電曲線を示す。
図1(a)充電曲線では、充電の進行に伴って電圧が徐
々に高くなっており、充電曲線がある一定の電圧のとき
に平坦になるプラトー部は特に見られない。これは、図
1(b)の放電曲線でも同様である。一方、図2(a)
及び図2(b)から明らかなように、5V級複合酸化物
であるLiNi0.5Mn1.54の充放電曲線のそれぞれ
には、4.5〜4.8V付近にプラトー部が存在するこ
とがわかる。このLiNi0.5Mn1.54のプラトー部
は、図3(a)及び図3(b)に示す実施例1の電池の
充放電曲線にも見いだすことができる。従って、過充電
によって実施例1の電池の充電電圧が上昇した場合で
も、4.5〜4.8V付近にプラトー部が存在すること
により、実施例1の電池の電圧の急激な増加を抑えるこ
とができ、電池の発熱量が低減されて安全性が確保され
ることがわかる。
FIG. 1 shows a charge-discharge curve of lithium manganate alone (Comparative Example 1) which is a 4V-class composite oxide.
FIG. 2 shows a charge / discharge curve of LiNi 0.5 Mn 1.5 O 4 alone. FIG. 3 shows a charge / discharge curve of the battery of Example 1.
In the charging curve of FIG. 1A, the voltage gradually increases with the progress of charging, and there is no particular plateau portion that becomes flat when the charging curve has a certain voltage. This is the same for the discharge curve in FIG. On the other hand, FIG.
As is clear from FIG. 2B and FIG. 2B, each of the charge / discharge curves of LiNi 0.5 Mn 1.5 O 4 , which is a 5V-class composite oxide, has a plateau around 4.5 to 4.8 V. Understand. This plateau of LiNi 0.5 Mn 1.5 O 4 can also be found in the charge / discharge curves of the battery of Example 1 shown in FIGS. 3 (a) and 3 (b). Therefore, even when the charging voltage of the battery of the first embodiment increases due to overcharging, the rapid increase of the voltage of the battery of the first embodiment is suppressed by the presence of the plateau around 4.5 to 4.8 V. This indicates that the calorific value of the battery is reduced and safety is ensured.

【0033】[0033]

【発明の効果】以上の説明から明らかなように本発明に
よれば、正極に5V級複合酸化物を添加することにより
非水電解液二次電池の安全性が向上した。大容量電池に
おいてその安全性を考えたとき、5V級複合酸化物をを
混合することで更に安全性が向上することは非常に有効
で、その工業的価値は極めて大きいことが判明した。
As is apparent from the above description, according to the present invention, the safety of the nonaqueous electrolyte secondary battery is improved by adding a 5V-class composite oxide to the positive electrode. Considering the safety of a large-capacity battery, it has been found that it is very effective to further improve the safety by mixing a 5V-class composite oxide, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 比較例1の非水電解液二次電池の充放電曲
線を示すグラフであって、(a)は充電曲線を示すグラ
フであり、(b)は放電曲線を示すグラフである。
FIG. 1 is a graph showing a charge / discharge curve of a non-aqueous electrolyte secondary battery of Comparative Example 1, in which (a) is a graph showing a charge curve, and (b) is a graph showing a discharge curve.

【図2】 LiNi0.5Mn1.54の充放電曲線を示す
グラフであって、(a)は充電曲線を示すグラフであ
り、(b)は放電曲線を示すグラフである。
2 is a graph showing a charge / discharge curve of LiNi 0.5 Mn 1.5 O 4 , wherein (a) is a graph showing a charge curve, and (b) is a graph showing a discharge curve.

【図3】 実施例1の非水電解液二次電池の充放電曲
線を示すグラフであって、(a)は充電曲線を示すグラ
フであり、(b)は放電曲線を示すグラフである。
3 is a graph showing a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 1, (a) is a graph showing a charge curve, and (b) is a graph showing a discharge curve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白方 雅人 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AJ12 AK03 AK18 AL08 AM03 AM05 AM07 HJ02 HJ18 5H050 AA07 AA08 AA09 AA15 BA17 CA08 CA09 CA29 HA02 HA18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masato Shirakata 5-7-1 Shiba, Minato-ku, Tokyo F-term in NEC Corporation (Reference) 5H029 AJ03 AJ04 AJ05 AJ12 AK03 AK18 AL08 AM03 AM05 AM07 HJ02 HJ18 5H050 AA07 AA08 AA09 AA15 BA17 CA08 CA09 CA29 HA02 HA18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極に4V級スピネル型リチウム・マ
ンガン複合酸化物、LiNi層状複合酸化物、LiCo
層状複合酸化物の中から選択される1以上の4V級複合
酸化物を含む電極を用いた非水電解液二次電池におい
て、その電極中に5V級複合酸化物を含むことを特徴と
する非水電解液二次電池。
1. A 4 V class spinel type lithium-manganese composite oxide, LiNi layered composite oxide, LiCo
A non-aqueous electrolyte secondary battery using an electrode containing one or more 4V-class composite oxides selected from layered composite oxides, wherein the electrode contains a 5V-class composite oxide. Water electrolyte secondary battery.
【請求項2】 前記5V級複合酸化物が、4.2V以
上の過電圧領域においてバッファーとして機能すること
を特徴とする請求項1に記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 5V-class composite oxide functions as a buffer in an overvoltage region of 4.2 V or more.
【請求項3】 前記5V級複合酸化物が、4.3V以
上の過電圧領域においてバッファーとして機能すること
を特徴とする請求項1に記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 5V-class composite oxide functions as a buffer in an overvoltage region of 4.3 V or more.
【請求項4】 前記5V級複合酸化物が、スピネル型
結晶材料であることを特徴とする請求項1ないし請求項
3のいずれかに記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 5V-class composite oxide is a spinel-type crystal material.
【請求項5】 前記5V級複合酸化物が、スピネル型
リチウム・マンガン複合酸化物であることを特徴とする
請求項1ないし請求項4のいずれかに記載の非水電解液
二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 5V-class composite oxide is a spinel-type lithium-manganese composite oxide.
【請求項6】 前記5V級複合酸化物が、下記の組成
式で示されるものであることを特徴とする請求項1ない
し請求項5のいずれかに記載の非水電解液二次電池。 LiNixMn2-x4 ただし、上記の組成比を示すxは原子比で0.2≦x≦
0.7の範囲である。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 5V-class composite oxide is represented by the following composition formula. LiNi x Mn 2-x O 4 wherein x indicating the above composition ratio is an atomic ratio of 0.2 ≦ x ≦
The range is 0.7.
JP2001003526A 2001-01-11 2001-01-11 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4626058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003526A JP4626058B2 (en) 2001-01-11 2001-01-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003526A JP4626058B2 (en) 2001-01-11 2001-01-11 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002208441A true JP2002208441A (en) 2002-07-26
JP4626058B2 JP4626058B2 (en) 2011-02-02

Family

ID=18871857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003526A Expired - Lifetime JP4626058B2 (en) 2001-01-11 2001-01-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4626058B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063275A1 (en) * 2002-01-08 2003-07-31 Sony Corporation Positive plate active material and nonaqueous electrolyte secondary cell using same
WO2003075376A1 (en) * 2002-03-01 2003-09-12 Matsushita Electric Industrial Co., Ltd. Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7309546B2 (en) 2002-01-24 2007-12-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery
KR100842142B1 (en) 2006-04-12 2008-06-27 마쯔시다덴기산교 가부시키가이샤 Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP2009295397A (en) * 2008-06-04 2009-12-17 Denso Corp Organic radical secondary battery, charge/discharge control method of the organic radical secondary battery, and charge/discharge control device of the organic radical secondary battery
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
JP2012018775A (en) * 2010-07-06 2012-01-26 Toyota Motor Corp Lithium ion secondary battery and battery pack
WO2015019729A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043859A (en) * 1999-08-02 2001-02-16 Toyota Motor Corp Lithium secondary battery
JP2001357851A (en) * 2000-06-15 2001-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043859A (en) * 1999-08-02 2001-02-16 Toyota Motor Corp Lithium secondary battery
JP2001357851A (en) * 2000-06-15 2001-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
WO2003063275A1 (en) * 2002-01-08 2003-07-31 Sony Corporation Positive plate active material and nonaqueous electrolyte secondary cell using same
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
US7309546B2 (en) 2002-01-24 2007-12-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery
WO2003075376A1 (en) * 2002-03-01 2003-09-12 Matsushita Electric Industrial Co., Ltd. Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
KR100842142B1 (en) 2006-04-12 2008-06-27 마쯔시다덴기산교 가부시키가이샤 Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP2009295397A (en) * 2008-06-04 2009-12-17 Denso Corp Organic radical secondary battery, charge/discharge control method of the organic radical secondary battery, and charge/discharge control device of the organic radical secondary battery
JP2012018775A (en) * 2010-07-06 2012-01-26 Toyota Motor Corp Lithium ion secondary battery and battery pack
WO2015019729A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries

Also Published As

Publication number Publication date
JP4626058B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
CN109216688B (en) Ternary lithium battery material, preparation method thereof and lithium ion battery
JP5153156B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP2022009746A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2000277116A (en) Lithium secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP6350376B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JPWO2012035648A1 (en) Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery
JP2006344509A (en) Lithium secondary battery
JP2005196992A (en) Positive pole material for lithium secondary battery and battery
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2001176546A (en) Film-sheathed non-aqueous electrolyte secondary batatery
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2010199077A (en) Non-aqueous electrolyte secondary battery and method of charging the same
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JPH11339802A (en) Manufacture of positive active material for lithium secondary battery
WO2020086718A1 (en) Active material for electrode and method of manufacturing thereof
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2023021107A (en) Positive active material, method for preparing the same, and lithium secondary battery comprising the same
JP2007087941A (en) Lithium ion secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term