JP2010199077A - Non-aqueous electrolyte secondary battery and method of charging the same - Google Patents

Non-aqueous electrolyte secondary battery and method of charging the same Download PDF

Info

Publication number
JP2010199077A
JP2010199077A JP2010095341A JP2010095341A JP2010199077A JP 2010199077 A JP2010199077 A JP 2010199077A JP 2010095341 A JP2010095341 A JP 2010095341A JP 2010095341 A JP2010095341 A JP 2010095341A JP 2010199077 A JP2010199077 A JP 2010199077A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095341A
Other languages
Japanese (ja)
Other versions
JP5241766B2 (en
Inventor
Masato Iwanaga
征人 岩永
Nobumichi Nishida
伸道 西田
Hidetoshi Inoue
英俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010095341A priority Critical patent/JP5241766B2/en
Publication of JP2010199077A publication Critical patent/JP2010199077A/en
Application granted granted Critical
Publication of JP5241766B2 publication Critical patent/JP5241766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery which has a high capacity, superior cycle characteristics, and superior safety at high temperature. <P>SOLUTION: The non-aqueous electrolyte secondary battery has a structure in which a positive electrode active material is a mixture of a lithium cobalt composite oxide represented by Li<SB>a</SB>Co<SB>1-x-y-z</SB>Zr<SB>x</SB>Mg<SB>y</SB>M<SB>z</SB>O<SB>2</SB>(wherein M is at least one of Al, Ti, and Sn; 0<a≤1.1; 0.0001≤x; 0.0001≤y; and x+y+z≤0.03) with a lithium nickel manganese composite oxide having a lamellar structure represented by Li<SB>b</SB>Mn<SB>s</SB>Ni<SB>t</SB>Co<SB>u</SB>X<SB>v</SB>O<SB>2</SB>(wherein X is at least one of Zr, Mg, Al, Ti, and Sn; 0<b≤1.1; 0.1≤s≤0.5; 0.1≤t≤0.5; v=0 or 0.0001≤v≤0.03; and s+t+u+v=1), a potential of the positive electrode active material is 4.4 to 4.6 V based on lithium, an air permeability of a separator is ≥60 seconds/100 ml and ≤400 seconds/100 ml, and a porosity is less than 60%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放電容量及びサイクル特性の向上を目的とする非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery intended to improve discharge capacity and cycle characteristics.

携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源として、高いエネルギー密度を有し、高容量である非水電解質二次電池が広く利用されている。   Mobile information terminals such as mobile phones, notebook computers, and PDAs are rapidly becoming smaller and lighter, and non-aqueous electrolyte secondary batteries with high energy density and high capacity are widely used as drive power sources. Has been.

近年では電池のさらなる高容量化が求められており、より高い電位となるまで充電して使用することにより、正極活物質の利用率を高めることが試みられている。   In recent years, a further increase in capacity of a battery has been demanded, and attempts have been made to increase the utilization rate of the positive electrode active material by charging and using the battery until a higher potential is reached.

しかし、従来より正極活物質として用いられているコバルト酸リチウム(リチウム含有コバルト複合酸化物)を、リチウム基準で4.3Vよりも高い電位まで充電すると、化合物としての安定性の低下を招き、化合物が劣化し、サイクル特性が低下するという問題がある。   However, when lithium cobaltate (lithium-containing cobalt composite oxide) conventionally used as a positive electrode active material is charged to a potential higher than 4.3 V on the basis of lithium, the stability as a compound is reduced. Deteriorates and the cycle characteristics deteriorate.

この問題を解決するため、ジルコニウム、マグネシウム等の異種金属をコバルト酸リチウムに添加することにより、化合物の高い電位での安定性を高めることが提案されている。しかし、この技術は、高電位での熱安定性が十分ではない。   In order to solve this problem, it has been proposed to increase the stability of a compound at a high potential by adding a different metal such as zirconium or magnesium to lithium cobalt oxide. However, this technique does not have sufficient thermal stability at high potential.

このような非水電解質二次電池のセパレータとしては、非水電解質との反応性の低いポリオレフィン製の微多孔膜が用いられている。このセパレータとしては、放電特性を高めるために、リチウムイオンの透過性が高いものが用いられている。   As a separator for such a non-aqueous electrolyte secondary battery, a polyolefin microporous film having low reactivity with the non-aqueous electrolyte is used. As this separator, a separator having high lithium ion permeability is used in order to improve discharge characteristics.

そして、セパレータのイオン透過性の指標としては、透気度(100mlの空気を透過させるために要する時間)や気孔率(セパレータ単位体積に占める気孔体積の割合)が用いられており、透気度の値が小さいほど、また気孔率の値が大きいほど、優れたイオン透過性を示し、高い放電特性が得られる。   And, as an indicator of the ion permeability of the separator, air permeability (time required to allow 100 ml of air to permeate) and porosity (ratio of pore volume to separator unit volume) are used. The smaller the value of and the larger the porosity value, the better the ion permeability and the higher the discharge characteristics.

ところで、非水電解質二次電池のセパレータに関する技術としては、特許文献1〜3が提案されている。   Incidentally, Patent Documents 1 to 3 have been proposed as techniques relating to the separator of the nonaqueous electrolyte secondary battery.

特開2000−348703号公報(特許請求の範囲、段落0011−0013)JP 2000-348703 A (Claims, paragraphs 0011-0013) 特開2001−319695号公報(特許請求の範囲、段落0005−0007)JP 2001-319695 A (claims, paragraphs 0005-0007) 特開2002−237330号公報(特許請求の範囲、段落0004−0007)JP 2002-237330 A (claims, paragraphs 0004-0007)

特許文献1は、極大孔径0.02〜3μm、空孔率30〜85%、膜厚5〜100μm、透気度30〜2000秒/100cc、105℃で2時間処理した際のフィルム幅方向の熱収縮率が+3%以下であるセパレータを用いる技術であり、この技術によると、低い温度領域で迅速に熱閉塞することにより、ヒューズ機能を高めることができるとされる。   In Patent Document 1, the maximum pore diameter is 0.02 to 3 μm, the porosity is 30 to 85%, the film thickness is 5 to 100 μm, the air permeability is 30 to 2000 seconds / 100 cc, and the film width direction is treated at 105 ° C. for 2 hours. This technique uses a separator having a thermal shrinkage rate of + 3% or less, and according to this technique, it is said that the fuse function can be enhanced by rapidly closing the heat in a low temperature region.

特許文献2は、透気度が25℃において200秒/100cc以下のセパレータを用いる技術であり、この技術によると、出力特性及び高率放電特性を向上できるとされる。   Patent Document 2 is a technique using a separator having an air permeability of 200 seconds / 100 cc or less at 25 ° C. According to this technique, output characteristics and high-rate discharge characteristics can be improved.

特許文献3は、厚みが20μm以下、透気度が200秒以下、平均孔径が0.1μm以上のセパレータを用いる技術であり、この技術によると、過充電時の安全性を高めることができるとされる。   Patent Document 3 is a technique using a separator having a thickness of 20 μm or less, an air permeability of 200 seconds or less, and an average pore diameter of 0.1 μm or more. According to this technique, safety during overcharge can be improved. Is done.

本発明者らは、非水電解質二次電池の電池容量を更に大きくするために、正極活物質の電位を上げて活物質の利用率を高める手段について鋭意研究を行った。その結果、高電位の正極活物質を有する正極には、従来と異なる特性のセパレータを組み合わせるのがよいことを知った。   In order to further increase the battery capacity of the nonaqueous electrolyte secondary battery, the present inventors have conducted intensive research on means for increasing the potential of the positive electrode active material to increase the utilization factor of the active material. As a result, it was found that a positive electrode having a positive electrode active material with a high potential should be combined with a separator having different characteristics from the conventional one.

本発明は、この知見に基づき完成されたものであって、高容量で、サイクル特性及び高温での安全性に優れた非水電解質二次電池を提供することを目的とする。   The present invention has been completed based on this finding, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a high capacity, excellent cycle characteristics and high-temperature safety.

上記課題を解決するための非水電解質二次電池に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0<a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0<b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、前記セパレータの透気度が60秒/100ml以上400秒/100ml以下であり、前記セパレータの気孔率が60%未満であることを特徴とする。 The present invention relating to a non-aqueous electrolyte secondary battery for solving the above problems includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. In the non-aqueous electrolyte secondary battery provided, the positive electrode active material is Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 <a ≦ 1.1,0.0001 ≦ x, and lithium-cobalt composite oxide of zirconium and magnesium are added, represented by 0.0001 ≦ y, x + y + z ≦ 0.03), Li b Mn s Ni t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 <b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, v = 0 or 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1) Lithium nickel manganese composite oxide having a layered structure represented by a mass ratio of 51:49 to 90:10, and the positive electrode active material has a potential of 4.4 to 4. 6 V, air permeability of the separator is 60 seconds / 100 ml or more and 400 seconds / 100 ml or less, and the porosity of the separator is less than 60%.

上記構成では、正極活物質としてジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物を有しており、この化合物は高電位(リチウム基準で4.4〜4.6V)での安定性に優れる。さらに、この化合物とともに、高電位での熱安定性に優れた層状構造を有するリチウムニッケルマンガン複合酸化物が配合されているため、高電位での熱安定性にも優れる。   In the said structure, it has lithium cobalt complex oxide with which zirconium and magnesium were added as a positive electrode active material, and this compound is excellent in stability in high potential (4.4-4.6V on lithium basis). . Furthermore, since the lithium nickel manganese composite oxide having a layered structure excellent in thermal stability at high potential is blended with this compound, thermal stability at high potential is also excellent.

上記ジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物は、LiaCo1−x−y−zZrMg2(MはAl,Ti,Snの少なくとも一種であり、0<a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で示されるものである。また、層状リチウムニッケルマンガン複合酸化物は、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0<b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、v=0または0.0001≦v≦0.03、s+t+u+v=1)で示されるものである。これらの化合物には、コバルト・ニッケル・マンガン等の合計モル数に対するリチウムのモル数を大きくできるので、充放電に寄与するリチウム量を十分に大きくすることができる。 The lithium cobalt composite oxide to which zirconium and magnesium are added is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03). Further, the layered lithium-nickel-manganese composite oxide, Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, v = 0 or 0.0001 ≦ v ≦ 0.03, and s + t + u + v = 1). Since these compounds can increase the number of moles of lithium relative to the total number of moles of cobalt, nickel, manganese, etc., the amount of lithium contributing to charge / discharge can be sufficiently increased.

上記構成では、セパレータの透気度が60秒/100ml以上400秒/100ml以下に規制されている。充放電サイクルを行うと、非水電解質が電極等と反応して、分解、重合するのであるが、この反応による生成物がセパレータの孔の一部を閉塞し、セパレータのイオン透過性を低下させる。ここで、透気度が400秒/100mlより大きい(イオン透過性が低い)と、この影響が極めて大きくなるため、サイクル特性が大きく劣化する。   In the above configuration, the air permeability of the separator is regulated to 60 seconds / 100 ml or more and 400 seconds / 100 ml or less. When the charge / discharge cycle is performed, the non-aqueous electrolyte reacts with the electrode and decomposes and polymerizes, but the product of this reaction closes part of the pores of the separator and reduces the ion permeability of the separator. . Here, when the air permeability is larger than 400 seconds / 100 ml (low ion permeability), this influence becomes extremely large, and the cycle characteristics are greatly deteriorated.

また、セパレータの透気度が60秒/100ml未満である場合においても、サイクル劣化が生じる。この理由は定かではないが、高電位での充放電サイクルにより、正極活物質である層状リチウムニッケルマンガン複合酸化物から遷移金属元素が溶出し、該溶出遷移金属元素が透気度の低い(イオン透過性の高い)セパレータを通過し、負極に析出することにより、負極での充放電反応が阻害されるためと考えられる。   Further, even when the air permeability of the separator is less than 60 seconds / 100 ml, cycle deterioration occurs. The reason for this is not clear, but the transition metal element is eluted from the layered lithium nickel manganese composite oxide, which is the positive electrode active material, by the charge / discharge cycle at a high potential, and the eluted transition metal element has low air permeability (ion It is considered that the charge / discharge reaction at the negative electrode is hindered by passing through the separator having high permeability and depositing on the negative electrode.

また、セパレータの気孔率が60%以上である場合においても、サイクル劣化が生じる。この理由もまた定かではないが、セパレータの透気度が60秒/100ml未満である場合と同様の理由によるものと考えられる。このため、セパレータの気孔率は60%未満であることが好ましい。   Further, even when the porosity of the separator is 60% or more, cycle deterioration occurs. The reason for this is also not clear, but is considered to be due to the same reason as when the air permeability of the separator is less than 60 seconds / 100 ml. For this reason, the porosity of the separator is preferably less than 60%.

なお、本願発明の効果を十分に得るためには、ジルコニウムの添加量は、LiaCo1−x−y−zZrMgにおいて、0.0001≦xとする。また、本願発明の効果を十分に得るためには、マグネシウムの添加量は、0.0001≦yとする。また、ジルコニウム、マグネシウム以外に、Al,Ti,Snが0.0002≦zの割合で添加されていてもよいが、添加金属の合計x+y+zが0.03より大きくなると、電池容量が低下するため好ましくない。 In order to sufficiently obtain the effects of the present invention, the amount of zirconium is set to 0.0001 ≦ x in Li a Co 1-xyz Zr x Mg y M z O 2 . In order to sufficiently obtain the effects of the present invention, the amount of magnesium added is 0.0001 ≦ y. Further, in addition to zirconium and magnesium, Al, Ti, and Sn may be added in a ratio of 0.0002 ≦ z. However, if the total x + y + z of the added metals is larger than 0.03, the battery capacity is decreased, which is preferable. Absent.

また、本願発明の効果を十分に得るためには、LiMnNiCoにおいて、ニッケルの含有量は0.1≦s≦0.5とし、マンガンの含有量は0.1≦t≦0.5とする。また、高い熱安定性を得るためには、ニッケルとマンガンとの比s/tが0.95〜1.05の範囲内であることが好ましい。また、化合物の熱安定性をさらに高めるために、Zr,Mg,Al,Ti,Sn等の異種元素が、0.0001≦v≦0.03の割合で添加されていてもよい。 Further, in order to obtain the effect of the present invention sufficiently, Li b Mn s Ni t Co u X v in O 2, the nickel content was set to 0.1 ≦ s ≦ 0.5, the manganese content is 0 .1 ≦ t ≦ 0.5. Further, in order to obtain high thermal stability, it is preferable that the ratio s / t of nickel to manganese is in the range of 0.95 to 1.05. Further, in order to further increase the thermal stability of the compound, a different element such as Zr, Mg, Al, Ti, or Sn may be added at a ratio of 0.0001 ≦ v ≦ 0.03.

また、正極活物質中のリチウムコバルト複合酸化物の含有量が51質量%より少ないと、電池容量、サイクル特性、保存特性が低下するおそれがあり、また、層状構造のリチウムニッケルマンガン複合酸化物の含有量が10質量%未満であると、正極活物質の高電位での熱安定性の向上効果が十分に得られない。このため、リチウムコバルト複合酸化物と、層状リチウムニッケルマンガン複合酸化物の質量比は、51:49〜90:10とし、より好ましくは70:30〜80:20とする。   In addition, when the content of the lithium cobalt composite oxide in the positive electrode active material is less than 51% by mass, the battery capacity, cycle characteristics, and storage characteristics may be deteriorated, and the lithium nickel manganese composite oxide having a layered structure may be deteriorated. When the content is less than 10% by mass, the effect of improving the thermal stability of the positive electrode active material at a high potential cannot be sufficiently obtained. For this reason, the mass ratio of the lithium cobalt composite oxide and the layered lithium nickel manganese composite oxide is 51:49 to 90:10, and more preferably 70:30 to 80:20.

上記構成においては、前記負極活物質が、炭素質物からなるもの、とすることができる。   In the above configuration, the negative electrode active material may be made of a carbonaceous material.

電池電圧は、正極の電位と負極の電位との差で示されるが、電池電圧を大きくすることにより、電池の容量を大きくすることができるが、負極活物質として電位の低い炭素質物(リチウム基準で約0.1V)を用いると、電池電圧が高く、正極活物質の利用率の高い電池が得られる。   The battery voltage is indicated by the difference between the positive electrode potential and the negative electrode potential. By increasing the battery voltage, the battery capacity can be increased, but the negative electrode active material is a low-potential carbonaceous material (lithium reference). About 0.1 V), a battery having a high battery voltage and a high utilization rate of the positive electrode active material can be obtained.

上記炭素質物としては、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合したものが使用できる。   As the carbonaceous material, natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or one or a mixture of these fired bodies can be used.

また、上記構成においては、前記非水電解質にさらに、ビニレンカーボネートを0.5〜5質量%含めることができる。   Moreover, in the said structure, 0.5-5 mass% of vinylene carbonate can further be included in the said nonaqueous electrolyte.

ビニレンカーボネートを非水電解質に添加すると、サイクル特性が向上する。しかし、添加量が過小であると十分な効果が得られない一方、過大であると初期容量の低下と高温時に、特に角形電池において電池厚みの膨れをまねく。このため、添加量は非水電解質全質量に対し、好ましくは0.5〜5質量%とし、より好ましくは1〜3質量%とする。   When vinylene carbonate is added to the nonaqueous electrolyte, cycle characteristics are improved. However, if the added amount is too small, a sufficient effect cannot be obtained. On the other hand, if the added amount is too large, the initial capacity is lowered and the battery thickness swells particularly at a rectangular battery. For this reason, the addition amount is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass with respect to the total mass of the nonaqueous electrolyte.

また、上記構成においては、前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含むものとすることができる。   Moreover, in the said structure, the said lithium nickel manganese complex oxide shall contain cobalt in the crystal structure.

リチウムニッケルマンガン複合酸化物の結晶構造中にコバルトが含まれると、このコバルトが放電特性を向上させるように作用する点で好ましい。その添加量は、上記化学式において好ましくは0.1≦u≦0.8とする。   When cobalt is contained in the crystal structure of the lithium nickel manganese composite oxide, this cobalt is preferable in that it acts to improve discharge characteristics. The amount added is preferably 0.1 ≦ u ≦ 0.8 in the above chemical formula.

また、上記課題を解決するための非水電解質二次電池の充電方法に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0<a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0<b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記セパレータの透気度が60秒/100ml以上400秒/100ml以下であり、前記セパレータの気孔率が60%未満である非水電解質二次電池の充電方法であって、前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電することを特徴とする。 Further, the present invention relating to a method for charging a non-aqueous electrolyte secondary battery for solving the above-described problem is a non-aqueous electrolyte having a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a non-aqueous solvent, and an electrolyte salt. A positive electrode active material, wherein Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 <a ≦ 1) .1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), and a lithium cobalt composite oxide to which zirconium and magnesium are added, and Li b Mn s N t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 <b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, v = 0 or 0.0001 ≦ v ≦ 0.03, layer represented by s + t + u + v = 1) Lithium nickel manganese composite oxide having a structure is mixed at a mass ratio of 51:49 to 90:10, and the air permeability of the separator is 60 seconds / 100 ml or more and 400 seconds / 100 ml or less, A method for charging a non-aqueous electrolyte secondary battery in which the porosity of the separator is less than 60%, wherein charging is performed until the potential of the positive electrode active material is 4.4 to 4.6 V based on lithium. To do.

上記方法を採用することにより、容量が高く、高電位でのサイクル特性に優れた非水電解質二次電池を充電することができる。   By adopting the above method, it is possible to charge a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics at a high potential.

上記に説明したように、本発明によると、リチウム基準で4.4〜4.6Vの高い電位で安定的に機能し、且つ高い電位における高温サイクル劣化を抑制でき得た、高容量で安全性に優れた非水電解質二次電池を提供できるという顕著な効果を奏する。   As described above, according to the present invention, it is possible to stably function at a high potential of 4.4 to 4.6 V on the basis of lithium and to suppress high-temperature cycle deterioration at a high potential, and to have a high capacity and safety. It is possible to provide a non-aqueous electrolyte secondary battery that is excellent in performance.

本発明を実施するための最良の形態を、実施例を用いて詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   The best mode for carrying out the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
〈正極の作製〉
コバルト(Co)に対して0.2mol%のジルコニウム(Zr)と、コバルトに対して0.5mol%のマグネシウム(Mg)とを共沈させ、熱分解反応させて、ジルコニウム、マグネシウム含有四酸化三コバルトを得た。この四酸化三コバルトと炭酸リチウムとを混合し、空気雰囲気中で850℃で24時間焼成し、その後乳鉢で平均粒径が14μmとなるまで粉砕して、ジルコニウム、マグネシウム含有リチウムコバルト複合酸化物(正極活物質A)を得た。
Example 1
<Preparation of positive electrode>
Co-precipitation of 0.2 mol% of zirconium (Zr) with respect to cobalt (Co) and 0.5 mol% of magnesium (Mg) with respect to cobalt, followed by thermal decomposition reaction, gave zirconium and magnesium-containing trioxide. Cobalt was obtained. This tricobalt tetroxide and lithium carbonate are mixed, calcined in an air atmosphere at 850 ° C. for 24 hours, and then pulverized in a mortar until the average particle size becomes 14 μm. A positive electrode active material A) was obtained.

炭酸リチウムと、Ni0.33Mn0.33Co0.34(OH)2で示される共沈水酸化物とを混合し、空気雰囲気中で1000℃で20時間焼成し、その後乳鉢で平均粒径が5μmとなるまで粉砕して、コバルト含有リチウムニッケルマンガン複合酸化物(正極活物質B)を得た。なお、この正極活物質BのX線結晶構造回析を行ったところ、層状構造であることが確認された。 Lithium carbonate and a coprecipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 are mixed, baked at 1000 ° C. for 20 hours in an air atmosphere, and then ground in an mortar until the average particle size becomes 5 μm. Thus, a cobalt-containing lithium nickel manganese composite oxide (positive electrode active material B) was obtained. In addition, when the X-ray crystal structure diffraction of this positive electrode active material B was performed, it was confirmed that it is a layered structure.

正極活物質Aと正極活物質Bとを質量比7:3で混合した正極活物質94質量部と、導電剤としての炭素粉末3質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量部と、N−メチルピロリドンとを混合して正極活物質スラリーとした。この正極活物質スラリーをアルミニウム製の正極集電体(厚み15μm)の両面に塗布し、乾燥・圧延して正極を作製した。   94 parts by mass of a positive electrode active material obtained by mixing the positive electrode active material A and the positive electrode active material B at a mass ratio of 7: 3, 3 parts by mass of carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) 3 as a binder Mass parts and N-methylpyrrolidone were mixed to obtain a positive electrode active material slurry. This positive electrode active material slurry was applied on both sides of an aluminum positive electrode current collector (thickness 15 μm), dried and rolled to produce a positive electrode.

〈負極の作製〉
負極活物質としての黒鉛95質量部と、増粘剤としてのカルボキシメチルセルロース3質量部と、結着剤としてのスチレンブタジエンゴム2質量部と、水とを混合して負極活物質スラリーとした。この負極活物質スラリーを銅製の負極集電体(厚み8μm)の両面に塗布し、乾燥・圧延して負極を作製した。
<Preparation of negative electrode>
A negative electrode active material slurry was prepared by mixing 95 parts by mass of graphite as a negative electrode active material, 3 parts by mass of carboxymethyl cellulose as a thickener, 2 parts by mass of styrene butadiene rubber as a binder, and water. This negative electrode active material slurry was applied to both sides of a copper negative electrode current collector (thickness 8 μm), dried and rolled to produce a negative electrode.

なお、黒鉛の電位はリチウム基準で0.1Vである。また、正極及び負極の活物質充填量は、設計基準となる正極活物質の電位(本実施例ではリチウム基準で4.4Vであり、電池電圧は4.3V)において、正極と負極の充電容量比(負極充電容量/正極充電容量)を1.1となるように調整した。   The potential of graphite is 0.1 V with respect to lithium. The positive electrode and negative electrode active material filling amounts are the positive electrode and negative electrode charge capacities at the potential of the positive electrode active material which is a design standard (in this example, 4.4 V based on lithium and the battery voltage is 4.3 V). The ratio (negative electrode charge capacity / positive electrode charge capacity) was adjusted to 1.1.

〈セパレータの作製〉
ポリエチレン混合物と、無機微粉体と、可塑剤と、を混練・加熱溶融しながら、シート状に成形した後、上記無機微粉体及び上記可塑剤を抽出除去した後、乾燥させた。この後、延伸して、透気度が60秒/100ml、気孔率が50%であるセパレータを作製した。
<Preparation of separator>
The polyethylene mixture, the inorganic fine powder, and the plasticizer were formed into a sheet shape while kneading and heating and melting, and then the inorganic fine powder and the plasticizer were extracted and removed, and then dried. Thereafter, the separator was stretched to produce a separator having an air permeability of 60 seconds / 100 ml and a porosity of 50%.

〔透気度の測定〕
透気度の測定は、東洋精機社製ガーレ式デンソメータを用いて、JIS P−8117に準じて、100mlの空気が通過する時間(秒)を測定した。
(Measurement of air permeability)
The air permeability was measured by measuring the time (seconds) for 100 ml of air to pass according to JIS P-8117, using a Toyo Seiki Gurley Densometer.

[気孔率の測定]
セパレータを10cm角に切り出し、その厚みtと重さWを測定した。そして、セパレータ材料の密度をpとして、気孔率(%)を下記式により算出した。(ポリエチレンの場合、p=0.95g/cm3
[Measurement of porosity]
The separator was cut into 10 cm square, and its thickness t and weight W were measured. And the density (%) of the separator material was set to p, and porosity (%) was computed by the following formula. (In the case of polyethylene, p = 0.95 g / cm 3 )

気孔率(%)={1−(W/p)/(10×10×t)}×100   Porosity (%) = {1- (W / p) / (10 × 10 × t)} × 100

〈電極体の作製〉
上記正極及び負極を、上記セパレータを介して巻回することにより、電極体を作製した。
<Production of electrode body>
An electrode body was produced by winding the positive electrode and the negative electrode through the separator.

〈非水電解質の調整〉
非水溶媒としてのエチレンカーボネート(EC)とジエチルカーボネート(DEC)とメチルエチルカーボネート(MEC)とを体積比20:30:50(25℃)で混合し、電解質塩としてのLiPF6を1M(モル/リットル)となるように溶解して、電解液を調整した。この電解液100質量部に対してビニレンカーボネートを2質量部添加して、非水電解質となした。
<Adjustment of non-aqueous electrolyte>
Ethylene carbonate (EC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) as a nonaqueous solvent are mixed at a volume ratio of 20:30:50 (25 ° C.), and LiPF 6 as an electrolyte salt is mixed with 1 M (mol). / Liter) to prepare an electrolyte solution. 2 parts by mass of vinylene carbonate was added to 100 parts by mass of this electrolytic solution to obtain a nonaqueous electrolyte.

〈電池の組み立て〉
外装缶に上記電極体を挿入した後、上記非水電解質を注液し、外装缶の開口部を封口することにより、実施例1に係る非水電解質二次電池(幅34mm×高さ43mm×厚み5mm、放電容量800mAh)を作製した。
<Assembly of battery>
After the electrode body is inserted into the outer can, the nonaqueous electrolyte is injected, and the opening of the outer can is sealed, whereby the nonaqueous electrolyte secondary battery according to Example 1 (width 34 mm × height 43 mm × A thickness of 5 mm and a discharge capacity of 800 mAh) were produced.

(実施例2)
透気度が200秒/100ml、気孔率が44%のセパレータを用いたこと以外は、上記実施例1と同様にして、実施例2に係る非水電解質二次電池を作製した。
(Example 2)
A nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 except that a separator having an air permeability of 200 seconds / 100 ml and a porosity of 44% was used.

(実施例3)
透気度が400秒/100ml、気孔率が45%のセパレータを用いたこと以外は、上記実施例1と同様にして、実施例3に係る非水電解質二次電池を作製した。
(Example 3)
A nonaqueous electrolyte secondary battery according to Example 3 was produced in the same manner as in Example 1 except that a separator having an air permeability of 400 seconds / 100 ml and a porosity of 45% was used.

(比較例1)
透気度が50秒/100ml、気孔率が55%のセパレータを用いたこと以外は、上記実施例1と同様にして、比較例1に係る非水電解質二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that a separator having an air permeability of 50 seconds / 100 ml and a porosity of 55% was used.

(比較例2)
透気度が500秒/100ml、気孔率が48%のセパレータを用いたこと以外は、上記実施例1と同様にして、比較例2に係る非水電解質二次電池を作製した。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that a separator having an air permeability of 500 seconds / 100 ml and a porosity of 48% was used.

(比較例3)
正極活物質として正極活物質A単独で用いたこと以外は、上記実施例1と同様にして、比較例3に係る非水電解質二次電池を作製した。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that the positive electrode active material A alone was used as the positive electrode active material.

(比較例4)
正極活物質として正極活物質A単独で用いたこと以外は、上記実施例2と同様にして、比較例4に係る非水電解質二次電池を作製した。
(Comparative Example 4)
A nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same manner as in Example 2 except that the positive electrode active material A alone was used as the positive electrode active material.

(比較例5)
正極活物質として正極活物質A単独で用いたこと以外は、上記実施例3と同様にして、比較例5に係る非水電解質二次電池を作製した。
(Comparative Example 5)
A nonaqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same manner as in Example 3 except that the positive electrode active material A alone was used as the positive electrode active material.

(比較例6)
正極活物質として正極活物質A単独で用いたこと以外は、上記比較例1と同様にして、比較例6に係る非水電解質二次電池を作製した。
(Comparative Example 6)
A nonaqueous electrolyte secondary battery according to Comparative Example 6 was produced in the same manner as Comparative Example 1 except that the positive electrode active material A alone was used as the positive electrode active material.

(比較例7)
正極活物質として正極活物質A単独で用いたこと以外は、上記比較例2と同様にして、比較例7に係る非水電解質二次電池を作製した。
(Comparative Example 7)
A nonaqueous electrolyte secondary battery according to Comparative Example 7 was produced in the same manner as Comparative Example 2 except that the positive electrode active material A alone was used as the positive electrode active material.

(比較例8)
透気度が60秒/100ml、気孔率が60%のセパレータを用いたこと以外は、上記実施例1と同様にして、比較例8に係る非水電解質二次電池を作製した。
(Comparative Example 8)
A nonaqueous electrolyte secondary battery according to Comparative Example 8 was produced in the same manner as in Example 1 except that a separator having an air permeability of 60 seconds / 100 ml and a porosity of 60% was used.

(比較例9)
正極活物質として正極活物質A単独で用いたこと以外は、上記比較例8と同様にして、比較例9に係る非水電解質二次電池を作製した。
(Comparative Example 9)
A nonaqueous electrolyte secondary battery according to Comparative Example 9 was produced in the same manner as Comparative Example 8 except that the positive electrode active material A alone was used as the positive electrode active material.

なお、セパレータの物性は、無機微粉体の添加量・粒径や延伸条件を変更することによって制御した。   The physical properties of the separator were controlled by changing the addition amount / particle size of the fine inorganic powder and stretching conditions.

〔電池特性試験〕
上記各電池について、下記の条件で高温サイクル特性試験及び加熱試験を行った。この結果を下記表1に示す。
[Battery characteristics test]
About each said battery, the high temperature cycling characteristic test and the heating test were done on condition of the following. The results are shown in Table 1 below.

〔高温サイクル特性試験〕
充電条件:定電流 1It(800mA)で4.4Vまで、定電圧4.4Vで1/50It(16mA)まで、25℃
放電条件:定電流 1It、終止電圧 3.0V、45℃
高温サイクル特性(%):(200サイクル目放電容量/1サイクル目放電容量)×100
[High-temperature cycle characteristics test]
Charging conditions: Constant current 1 It (800 mA) up to 4.4 V, constant voltage 4.4 V up to 1/50 It (16 mA), 25 ° C.
Discharge conditions: constant current 1 It, end voltage 3.0 V, 45 ° C.
High temperature cycle characteristics (%): (200th cycle discharge capacity / 1st cycle discharge capacity) × 100

[加熱試験]
充電条件:定電流 1It(800mA)で4.4Vまで、定電圧4.4Vで1/50It(16mA)まで、25℃
加熱条件:オーブンで25℃から5℃/分の速度で150℃となるまで、その後150℃で10分放置
評価:電池が全て燃焼したものを不可(×)、全て燃焼しなかったものを良(○)
n(検体数)=3。
[Heating test]
Charging conditions: Constant current 1 It (800 mA) up to 4.4 V, constant voltage 4.4 V up to 1/50 It (16 mA), 25 ° C.
Heating conditions: From 25 ° C. to 150 ° C. at a rate of 5 ° C./min in an oven, then left at 150 ° C. for 10 minutes Evaluation: Impossible to burn all batteries (x), good not to burn all (○)
n (number of specimens) = 3.

Figure 2010199077
Figure 2010199077

上記表1から、正極活物質としてジルコニウム、マグネシウム添加リチウムコバルト複合酸化物(正極活物質A)のみを用いた比較例3〜7、比較例9では、加熱試験結果が全て不可であるのに対し、正極活物資として、正極活物質Aと層状リチウムニッケルマンガン複合酸化物(正極活物質B)との混合物を用いた実施例1〜3、比較例1、比較例2、比較例8では、加熱試験結果が全て良であることがわかる。   From Table 1 above, in Comparative Examples 3 to 7 and Comparative Example 9 using only zirconium and magnesium-added lithium cobalt composite oxide (positive electrode active material A) as the positive electrode active material, all the heating test results are not possible. In Examples 1 to 3, Comparative Example 1, Comparative Example 2, and Comparative Example 8 using a mixture of the positive electrode active material A and the layered lithium nickel manganese composite oxide (positive electrode active material B) as the positive electrode active material, heating is performed. It turns out that all the test results are good.

このことは、次のように考えられる。ジルコニウム、マグネシウム添加リチウムコバルト複合酸化物は、高電位での熱安定性が十分ではなく、高電位(リチウム基準で4.5V)で且つ150℃という異常な高温条件での保存によって活物質が劣化する。これにより、非水電解質と正極との反応が促進され、電池内部での発熱量が増大して、比較例3〜7、比較例9に係る電池は燃焼する。   This is considered as follows. Zirconium and magnesium-added lithium-cobalt composite oxides do not have sufficient thermal stability at high potential, and the active material deteriorates due to storage at an abnormally high temperature of 150 ° C at a high potential (4.5 V on a lithium basis). To do. Thereby, reaction with a nonaqueous electrolyte and a positive electrode is accelerated | stimulated, the emitted-heat amount inside a battery increases, and the battery which concerns on Comparative Examples 3-7 and Comparative Example 9 burns.

他方、正極活物質に層状構造を有するリチウムニッケルマンガン複合酸化物(正極活物質B)を含ませると、この化合物が、高電位での熱安定性を飛躍的に向上させるように作用する。このため、実施例1〜3、比較例1、比較例2、比較例8では、活物質の劣化が起こらず、電池内部の発熱が抑制され、燃焼することがない。   On the other hand, when the lithium nickel manganese composite oxide (positive electrode active material B) having a layered structure is included in the positive electrode active material, this compound acts to drastically improve the thermal stability at a high potential. For this reason, in Examples 1-3, Comparative Example 1, Comparative Example 2, and Comparative Example 8, the active material does not deteriorate, heat generation inside the battery is suppressed, and combustion does not occur.

また、正極活物質Aのみを用い、且つ気孔率が60%未満のセパレータを用いた比較例3〜7では、セパレータの透気度が小さくなるに伴い、サイクル特性が向上する傾向にあることがわかる。   In Comparative Examples 3 to 7 using only the positive electrode active material A and using a separator with a porosity of less than 60%, the cycle characteristics may tend to improve as the air permeability of the separator decreases. Recognize.

他方、正極活物質として、正極活物質Aと正極活物質Bとを混合したものを用い、且つ気孔率が55%以下のセパレータと用いた実施例1〜3、比較例1、比較例2においては、透気度が60〜500秒/100mlの範囲内では、比較例3〜7と同様の傾向が見られるものの、透気度が50秒/100mlとなると高温サイクル特性が43%(比較例1)と、透気度が60〜400秒/100mlの範囲内での63〜68%(実施例1〜3、比較例2)よりも劣化していることがわかる。   On the other hand, in Examples 1 to 3, Comparative Example 1 and Comparative Example 2 using a mixture of positive electrode active material A and positive electrode active material B as a positive electrode active material and a separator having a porosity of 55% or less In the range of 60 to 500 seconds / 100 ml of air permeability, the same tendency as in Comparative Examples 3 to 7 is observed, but when the air permeability becomes 50 seconds / 100 ml, the high temperature cycle characteristics are 43% (Comparative Example). It can be seen that 1) and the air permeability is inferior to 63 to 68% (Examples 1 to 3 and Comparative Example 2) in the range of 60 to 400 seconds / 100 ml.

このことは次のように考えられる。ジルコニウム、マグネシウム含有リチウムコバルト複合酸化物は、高電位での高温充放電サイクルにより結晶中から遷移金属元素が溶出しにくいが、層状リチウムニッケルマンガン複合酸化物は、高電位での高温充放電サイクルにより、遷移金属元素(Co、Ni、Mn)が結晶から抜けやすくなる。ここで、セパレータの透気度が50秒/100mlであると、透気度が低くイオン透過性が高いために、溶出遷移金属元素もまたセパレータの孔を通過し、負極に移動して負極表面に析出する。これにより充放電反応が阻害され、サイクル劣化が起こる。   This is considered as follows. Zirconium and magnesium-containing lithium cobalt composite oxides are difficult to elute transition metal elements from the crystals due to high-temperature charge / discharge cycles at high potentials. , Transition metal elements (Co, Ni, Mn) are easily removed from the crystal. Here, when the air permeability of the separator is 50 seconds / 100 ml, since the air permeability is low and the ion permeability is high, the eluted transition metal element also passes through the pores of the separator and moves to the negative electrode to move to the negative electrode surface. It precipitates in. As a result, the charge / discharge reaction is hindered and cycle deterioration occurs.

また、透気度が60秒/mlのセパレータを用いた実施例1、比較例4、比較例8、比較例9では、正極活物質として正極活物質Aと正極活物質Bとを混合したものを用い、気孔率が60%のセパレータを用いた比較例8の高温サイクル特性が32%と、気孔率が50%以下のセパレータ及び/又は正極活物質として正極活物質Aのみを用いた実施例1、比較例4、比較例9の68〜79%よりも大きく劣化していることがわかる。   In Example 1, Comparative Example 4, Comparative Example 8, and Comparative Example 9 using a separator having an air permeability of 60 seconds / ml, a mixture of positive electrode active material A and positive electrode active material B as the positive electrode active material Example of using only positive electrode active material A as a separator and / or positive electrode active material having a high temperature cycle characteristic of 32% and a porosity of 50% or less in Comparative Example 8 using a separator having a porosity of 60% 1, Comparative Example 4 and Comparative Example 9 are found to be degraded more than 68-79%.

このことは、層状リチウムニッケルマンガン複合酸化物では、高電位での高温充放電サイクルにより、セパレータの気孔率が60%以上である場合においても、透気度が50秒/100ml以下である場合と同様に、遷移金属元素が結晶から抜けやすくなり、上述した問題が生じるためと考えられる。   This is because, in the layered lithium nickel manganese composite oxide, the air permeability is 50 seconds / 100 ml or less even when the porosity of the separator is 60% or more due to a high temperature charge / discharge cycle at a high potential. Similarly, it is considered that the transition metal element easily escapes from the crystal and causes the above-described problem.

(その他の事項)
本発明においては、電池形状は限定されないので、角型外装缶以外に、円筒型外装缶、コイン型外装体、ラミネート外装体を用いることができる。
(Other matters)
In the present invention, since the battery shape is not limited, a cylindrical outer can, a coin outer body, and a laminated outer body can be used in addition to the rectangular outer can.

また、非水溶媒としてはジエチルカーボネート(DEC)以外に、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等を用いることができる。   In addition to diethyl carbonate (DEC), propylene carbonate, γ-butyrolactone, dimethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, diethyl ether and the like are used as the nonaqueous solvent. be able to.

また、電解質塩としては、上記LiPF6以外に、LiN(C25SO22、LiN(CF3SO22、LiClO4、LiBF4等の一種または複数種の混合物が使用できる。 As the electrolyte salt, in addition to the above LiPF 6 , one kind or a mixture of plural kinds such as LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiBF 4 can be used.

また、上記実施例ではセパレータ材料としてポリエチレンを用いたが、他のオレフィン系材料(例えばポリプロピレン)を用いてもよい。また、ポリマーアロイや複数種のポリマーの積層体を用いてもよい。   Moreover, in the said Example, although polyethylene was used as a separator material, you may use another olefin type material (for example, polypropylene). Further, a polymer alloy or a laminate of a plurality of types of polymers may be used.

以上に説明したように、本発明によれば、高電位での正極活物質の安定性が高く、サイクル特性に優れた非水電解質二次電池を実現することができる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to realize a nonaqueous electrolyte secondary battery in which the positive electrode active material is highly stable at a high potential and has excellent cycle characteristics. Therefore, industrial applicability is great.

Claims (5)

正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0<a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0<b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、
前記セパレータの透気度が60秒/100ml以上400秒/100ml以下であり、
前記セパレータの気孔率が60%未満である、
ことを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 <a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, v = 0 or 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1),
Are mixed at a mass ratio of 51:49 to 90:10,
The positive electrode active material has a potential of 4.4 to 4.6 V based on lithium,
The air permeability of the separator is 60 seconds / 100 ml or more and 400 seconds / 100 ml or less,
The separator has a porosity of less than 60%,
A non-aqueous electrolyte secondary battery.
請求項1に記載の非水電解質二次電池において、
前記非水電解質が、ビニレンカーボネートを0.5〜5質量%含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The non-aqueous electrolyte contains 0.5 to 5% by mass of vinylene carbonate,
A non-aqueous electrolyte secondary battery.
請求項1または2に記載の非水電解質二次電池において、
前記負極活物質が、炭素質物からなる、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2,
The negative electrode active material is made of a carbonaceous material,
A non-aqueous electrolyte secondary battery.
請求項1、2または3に記載の非水電解質二次電池において、
前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, 2 or 3,
The lithium nickel manganese composite oxide contains cobalt in its crystal structure,
A non-aqueous electrolyte secondary battery.
正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0<a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0<b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記セパレータの透気度が60秒/100ml以上400秒/100ml以下であり、
前記セパレータの気孔率が60%未満である非水電解質二次電池の充電方法であって、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電する、
ことを特徴とする非水電解質二次電池の充電方法。
A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 <a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, v = 0 or 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1),
Are mixed at a mass ratio of 51:49 to 90:10,
The air permeability of the separator is 60 seconds / 100 ml or more and 400 seconds / 100 ml or less,
A method for charging a non-aqueous electrolyte secondary battery, wherein the porosity of the separator is less than 60%,
Charging until the potential of the positive electrode active material is 4.4 to 4.6 V with respect to lithium;
A non-aqueous electrolyte secondary battery charging method.
JP2010095341A 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof Active JP5241766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095341A JP5241766B2 (en) 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095341A JP5241766B2 (en) 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004379302A Division JP4530844B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2010199077A true JP2010199077A (en) 2010-09-09
JP5241766B2 JP5241766B2 (en) 2013-07-17

Family

ID=42823566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095341A Active JP5241766B2 (en) 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof

Country Status (1)

Country Link
JP (1) JP5241766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590234B2 (en) 2012-10-30 2017-03-07 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2021132208A1 (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Electricity storage element
JP7451994B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451996B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451995B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
JP2004055253A (en) * 2002-07-18 2004-02-19 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic device using the same
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
JP2004055253A (en) * 2002-07-18 2004-02-19 Hitachi Maxell Ltd Nonaqueous secondary battery and electronic device using the same
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590234B2 (en) 2012-10-30 2017-03-07 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2021132208A1 (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Electricity storage element
JP7451994B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451996B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451995B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element

Also Published As

Publication number Publication date
JP5241766B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US11637277B2 (en) Positive-electrode active material and battery
TWI423503B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
WO2015136881A1 (en) Nonaqueous-electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2006286599A (en) Anode for nonaqueous secondary battery
US10497928B2 (en) Positive-electrode active material and battery
JP2009217981A (en) Non-aqueous electrolyte secondary battery
JP6660599B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2022501789A (en) Positive electrode active material for secondary batteries, its manufacturing method and lithium secondary batteries containing it
JPWO2012081518A1 (en) Nonaqueous electrolyte secondary battery
JP7177277B2 (en) Electrodes for lithium secondary batteries
WO2007029659A1 (en) Nonaqueous electrolyte secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
CN106558725B (en) Lithium ion secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
WO2015045254A1 (en) Lithium-titanium compound oxide
JP2013137939A (en) Nonaqueous secondary battery
JP7117539B2 (en) Negative electrode active material and battery
WO2013125465A1 (en) Positive electrode active material
JP5036174B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5241766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350