JPWO2012035648A1 - Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JPWO2012035648A1
JPWO2012035648A1 JP2012533799A JP2012533799A JPWO2012035648A1 JP WO2012035648 A1 JPWO2012035648 A1 JP WO2012035648A1 JP 2012533799 A JP2012533799 A JP 2012533799A JP 2012533799 A JP2012533799 A JP 2012533799A JP WO2012035648 A1 JPWO2012035648 A1 JP WO2012035648A1
Authority
JP
Japan
Prior art keywords
electrolyte secondary
active material
positive electrode
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012533799A
Other languages
Japanese (ja)
Inventor
本棒 英利
英利 本棒
正義 菅野
正義 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012035648A1 publication Critical patent/JPWO2012035648A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

ナトリウム塩を用いた可逆性に優れた非水電解液二次電池用活物質、およびこれを用いた非水電解液二次電池を提供する。正極活物質はNaを含有する複合金属酸化物の中で、MnとNiを含む酸化物が、イオン半径の大きなNaと安定な結晶構造を保持し、充放電におけるNaイオンの吸蔵放出反応の可逆性に特に優れ、更に、負極活物質は芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物がNaの金属析出が起きにくく、充放電反応の可逆性に優れ好適である。An active material for a non-aqueous electrolyte secondary battery using a sodium salt and excellent in reversibility, and a non-aqueous electrolyte secondary battery using the same are provided. The positive electrode active material is a complex metal oxide containing Na, and the oxide containing Mn and Ni retains a stable crystal structure with Na having a large ionic radius, and the reversibility of the storage and release reaction of Na ions during charge and discharge. Further, the compound having at least one aromatic carboxylic acid sodium salt structure is less likely to cause metal precipitation of Na, and the reversibility of the charge / discharge reaction is preferable.

Description

本発明は、ナトリウム塩を用いた非水電解液二次電池用活物質、およびこれを用いた非水電解液二次電池に関する。   The present invention relates to an active material for a non-aqueous electrolyte secondary battery using a sodium salt, and a non-aqueous electrolyte secondary battery using the same.

電解液にリチウム塩を用いたリチウムイオン電池は、高エネルギー密度など高出力密度を有することから、ノート型パーソナルコンピュータや携帯機器などの電源として広く使用されている。また、近年の環境問題を背景に、リチウムイオン電池を利用した電気自動車やハイブリッド自動車の開発が進められている。さらに、太陽光発電や風力発電など自然エネルギーの有効活用のため、リチウムイオン電池の蓄電システムへの応用が期待されている。しかしながら、リチウムイオン電池で用いられるリチウムやコバルトなどは資源量が少なく、かつ、産出国、地域が限定されるため、安定的に確保できる原料によって高性能の二次電池を開発する必要がある。   A lithium ion battery using a lithium salt as an electrolyte has a high output density such as a high energy density, and is therefore widely used as a power source for notebook personal computers and portable devices. In addition, against the background of environmental problems in recent years, development of electric vehicles and hybrid vehicles using lithium ion batteries is being promoted. Furthermore, in order to effectively use natural energy such as solar power generation and wind power generation, application to a storage system of a lithium ion battery is expected. However, since lithium, cobalt, and the like used in the lithium ion battery have a small amount of resources and are limited in the country of origin and region, it is necessary to develop a high performance secondary battery using a material that can be secured stably.

リチウム以外のアルカリ金属を用いた非水電解液二次電池として、特許文献1には負極活物質にナトリウム・鉛合金、および正極活物質にナトリウム・コバルト酸化物を用いたものが開示されている。   As a non-aqueous electrolyte secondary battery using an alkali metal other than lithium, Patent Document 1 discloses a negative electrode active material using sodium / lead alloy and a positive electrode active material using sodium / cobalt oxide. .

特開平4−6759号公報JP-A-4-6759

ナトリウムは資源が豊富であるため、ナトリウムをイオンキャリアとする二次電池は電気自動車やハイブリッド自動車、さらには太陽光発電や風力発電など、大型の電力貯蔵デバイスおよびシステムで幅広い応用が考えられる。これらの用途では二次電池の長寿命化が最も大きな課題となる。   Since sodium is abundant in resources, secondary batteries using sodium as an ion carrier can be widely used in large-scale power storage devices and systems such as electric vehicles, hybrid vehicles, solar power generation and wind power generation. In these applications, extending the life of secondary batteries is the biggest issue.

従って、本発明はリチウムイオンに比べイオン半径が大きいナトリウムイオンを安定的かつ可逆的に吸蔵放出できる新規の正極活物質と負極活物質を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel positive electrode active material and negative electrode active material capable of stably and reversibly occluding and releasing sodium ions having a larger ionic radius than lithium ions.

上記課題を解決するために本発明者らが鋭意検討した結果、Na、Mn及びNiを含む複合金属酸化物を正極活物質として使用することにより、イオン半径の大きなNaと安定な結晶構造を保持できること、及び充放電におけるNaイオンの吸蔵放出反応の可逆性に特に優れることを見出した。また、芳香族共役カルボン酸化合物のナトリウム塩や、芳香族共役カルボン酸を構成単位とする化合物のナトリウム塩を負極活物質として使用することにより、Naの金属析出が起きにくいこと、及び充放電反応の可逆性に優れることを見出した。   As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, by using a composite metal oxide containing Na, Mn and Ni as a positive electrode active material, it is possible to maintain Na having a large ionic radius and a stable crystal structure. It has been found that it is particularly excellent in reversibility of the absorption and release reaction of Na ions in charge and discharge. Further, by using sodium salt of aromatic conjugated carboxylic acid compound or sodium salt of compound having aromatic conjugated carboxylic acid as a structural unit as a negative electrode active material, Na metal precipitation is less likely to occur, and charge / discharge reaction It was found to be excellent in reversibility.

即ち、本発明は以下の発明を含む。   That is, the present invention includes the following inventions.

(1)Na、Ni及びMnを含む複合金属酸化物からなる非水電解液二次電池用正極活物質。 (1) A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite metal oxide containing Na, Ni and Mn.

(2)複合金属酸化物が一般式(I):
NaαNiβ−gMnγ−hM’g+h (I)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
αは0<α≦0.5の範囲内であり、
βは2/9≦β≦1/4の範囲内であり、
γは3/4≦γ≦7/9の範囲内であり、
gは0≦g≦0.045の範囲内であり、
hは0≦h≦0.045の範囲内であり、
β+γ+g+hは1である]
で表される、(1)に記載の非水電解液二次電池用正極活物質。
(2) The composite metal oxide has the general formula (I):
Na α Ni β-g Mn γ-h M ′ g + h O 2 (I)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
α is in the range of 0 <α ≦ 0.5,
β is in the range of 2/9 ≦ β ≦ 1/4,
γ is in the range of 3/4 ≦ γ ≦ 7/9,
g is in the range of 0 ≦ g ≦ 0.045,
h is in the range of 0 ≦ h ≦ 0.045,
β + γ + g + h is 1]
The positive electrode active material for nonaqueous electrolyte secondary batteries according to (1), represented by:

(3)複合金属酸化物が一般式(II):
Na4−aNi2−xMn7−yM’x+y18 (II)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
aは0≦a<4の範囲内であり、
xは0≦x≦0.4の範囲内であり、
yは0≦y≦0.4の範囲内である]
で表される、(2)に記載の非水電解液二次電池用正極活物質。
(3) The composite metal oxide has the general formula (II):
Na 4-a Ni 2-x Mn 7-y M ′ x + y O 18 (II)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
a is in the range of 0 ≦ a <4,
x is in the range of 0 ≦ x ≦ 0.4,
y is in the range of 0 ≦ y ≦ 0.4]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to (2), represented by:

(4)複合金属酸化物が一般式(III):
Na2−bNi1−pMn3−qM’p+q (III)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
bは0≦b<2の範囲内であり、
pは0≦p≦0.1の範囲内であり、
qは0≦q≦0.1の範囲内である]
で表される、(2)に記載の非水電解液二次電池用正極活物質。
(4) The composite metal oxide has the general formula (III):
Na 2-b Ni 1-p Mn 3-q M ′ p + q O 8 (III)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
b is in the range of 0 ≦ b <2,
p is in the range of 0 ≦ p ≦ 0.1,
q is within the range of 0 ≦ q ≦ 0.1]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to (2), represented by:

(5)(1)〜(4)のいずれかに記載の非水電解液二次電池用正極活物質を含む正極と、ナトリウムイオンを可逆的に吸蔵放出する負極とを有する非水電解液二次電池。 (5) Nonaqueous electrolyte solution 2 having a positive electrode containing the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of (1) to (4) and a negative electrode that reversibly occludes and releases sodium ions. Next battery.

(6)ナトリウムイオンを可逆的に吸蔵放出する負極が、負極活物質として、芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物を含む、(5)に記載の非水電解液二次電池。 (6) The nonaqueous electrolyte secondary battery according to (5), wherein the negative electrode reversibly occluding and releasing sodium ions includes a compound having at least one aromatic carboxylic acid sodium salt structure as a negative electrode active material.

(7)芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物が一般式(IV):
(CONa1+c (IV)
[式中、cは0≦c≦1の範囲内である]
で表される、(6)に記載の非水電解液二次電池。
(7) A compound having at least one aromatic carboxylic acid sodium salt structure is represented by the general formula (IV):
C 6 H 4 (CO 2 Na 1 + c ) 2 (IV)
[Wherein c is in the range of 0 ≦ c ≦ 1]
The nonaqueous electrolyte secondary battery according to (6), represented by:

(8)芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物からなる非水電解液二次電池用負極活物質。 (8) A negative electrode active material for a nonaqueous electrolyte secondary battery comprising a compound having at least one aromatic carboxylic acid sodium salt structure.

(9)芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物が一般式(IV):
(CONa1+c (IV)
[式中、cは0≦c≦1の範囲内である]
で表される、(8)に記載の非水電解液二次電池用負極活物質。
(9) The compound having at least one aromatic carboxylic acid sodium salt structure is represented by the general formula (IV):
C 6 H 4 (CO 2 Na 1 + c ) 2 (IV)
[Wherein c is in the range of 0 ≦ c ≦ 1]
The negative electrode active material for a nonaqueous electrolyte secondary battery according to (8), represented by:

(10)(8)又は(9)に記載の非水電解液二次電池用負極活物質を含む負極と、ナトリウムイオンを可逆的に吸蔵放出する正極とを有する非水電解液二次電池。 (10) A nonaqueous electrolyte secondary battery comprising a negative electrode comprising the negative electrode active material for a nonaqueous electrolyte secondary battery according to (8) or (9) and a positive electrode capable of reversibly occluding and releasing sodium ions.

本発明によれば、ナトリウムを非水電解液のイオンキャリアとして用い、充放電の可逆性に優れた非水電解液二次電池用の活物質材料、およびこれを用いた非水電解液二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the active material material for nonaqueous electrolyte secondary batteries excellent in the reversibility of charging / discharging using sodium as an ion carrier of a nonaqueous electrolyte, and a nonaqueous electrolyte secondary using the same Battery can be provided.

円筒型の非水電解液二次電池を示す図である。It is a figure which shows a cylindrical nonaqueous electrolyte secondary battery. コイン型の非水電解液二次電池を示す図である。It is a figure which shows a coin type non-aqueous electrolyte secondary battery. 本実施例の非水電解液二次電池の充放電サイクルの経過にともなう定格容量に対する維持率を示す図である。It is a figure which shows the maintenance factor with respect to the rated capacity in connection with progress of the charging / discharging cycle of the nonaqueous electrolyte secondary battery of a present Example. 本実施例の非水電解液二次電池の充放電サイクルの経過にともなう定格容量に対する維持率を示す図である。It is a figure which shows the maintenance factor with respect to the rated capacity in connection with progress of the charging / discharging cycle of the nonaqueous electrolyte secondary battery of a present Example. 本実施例の非水電解液二次電池の充放電サイクルの経過にともなう定格容量に対する維持率を示す図である。It is a figure which shows the maintenance factor with respect to the rated capacity in connection with progress of the charging / discharging cycle of the nonaqueous electrolyte secondary battery of a present Example.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.正極活物質
本発明に係る非水電解液二次電池用正極活物質は、Na、Ni及びMnを含む複合金属酸化物であり、好ましくは一般式(I):
NaαNiβ−gMnγ−hM’g+h (I)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
αは0<α≦0.5の範囲内であり、
βは2/9≦β≦1/4の範囲内であり、
γは3/4≦γ≦7/9の範囲内であり、
gは0≦g≦0.045の範囲内であり、
hは0≦h≦0.045の範囲内であり、
β+γ+g+hは1である]
で表される複合金属酸化物である。
1. Cathode Active Material The cathode active material for a non-aqueous electrolyte secondary battery according to the present invention is a composite metal oxide containing Na, Ni and Mn, and preferably has the general formula (I):
Na α Ni β-g Mn γ-h M ′ g + h O 2 (I)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
α is in the range of 0 <α ≦ 0.5,
β is in the range of 2/9 ≦ β ≦ 1/4,
γ is in the range of 3/4 ≦ γ ≦ 7/9,
g is in the range of 0 ≦ g ≦ 0.045,
h is in the range of 0 ≦ h ≦ 0.045,
β + γ + g + h is 1]
It is a complex metal oxide represented by.

Naの量を表すαの値は充電・放電により変動する。即ち、充電によりNaイオンのデインターカレーションが起こり、αの値は小さくなり、放電によりNaイオンのインターカレーションが起こり、αの値は大きくなる。   The value of α representing the amount of Na varies depending on charge / discharge. That is, the deintercalation of Na ions occurs due to charging, and the value of α decreases, and the intercalation of Na ions occurs due to discharge, and the value of α increases.

本発明に係る非水電解液二次電池用正極活物質の一形態としては、一般式:
Na4−aNi2−xMn7−yM’x+y18 (II)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
aは0≦a<4の範囲内であり、
xは0≦x≦0.4の範囲内であり、
yは0≦y≦0.4の範囲内である]
で表される複合金属酸化物を挙げることができる。
As one form of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a general formula:
Na 4-a Ni 2-x Mn 7-y M ′ x + y O 18 (II)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
a is in the range of 0 ≦ a <4,
x is in the range of 0 ≦ x ≦ 0.4,
y is in the range of 0 ≦ y ≦ 0.4]
The composite metal oxide represented by these can be mentioned.

Na量を表わすaの値は充電、放電により変動する。即ち充電によりNaイオンのデインターカレーションが起こり、aの値は大きくなり、放電によりNaイオンのインターカレーションが起こり、aの値は小さくなる。   The value of a representing the amount of Na varies depending on charging and discharging. That is, Na ion deintercalation occurs due to charging, and the value of a increases, and Na ion intercalation occurs due to discharge, and the value of a decreases.

Na4−aNi2−xMn7−yM’x+y18は、Acta Crystallographica Section B 第24巻、1114から1120ページ(1968年)に報告されたNaMnTi18の斜方晶構造と類似である。この結晶は3価と4価の金属とNaの複合酸化物であり、結晶構造内には大きなトンネル空間を有する。本発明の正極活物質は、主としてNiとMn、さらに場合によっては結晶構造を安定化させるための金属M’を添加したNa含有複合金属酸化物であり、放電状態ではNiおよびMnはそれぞれ主に2価(Ni2+)および4価(Mn4+)と推測される。充電反応であるNaイオンのデインターカレーションではNiの価数が2価から4価(Ni4+)に変化すると考えられる。この時、Naイオンがこの結晶構造内の大きなトンネル空間を移動し、電解液側へ放出されると考えられる。一方、放電では逆にNiの価数が4価から2価に変化する反応が起きると考えられる。一方、4価のMnの価数は変化せず、したがってこのことによって大きなNaイオンに影響を受けない安定な結晶構造を保持すると考えられる。また、Niの酸化還元反応(Ni2+⇔Ni4++2e)の電位は高くかつ可逆性に優れるため、結果として高電圧で長寿命の二次電池が得られると考えられる。Na 4 -a Ni 2 -x Mn 7 -y M ' x + y O 18 is the diagonal of Na 4 Mn 4 Ti 5 O 18 reported in Acta Crystallographica Section B, Vol. 24, pages 1114 to 1120 (1968). Similar to crystal structure. This crystal is a complex oxide of trivalent and tetravalent metals and Na, and has a large tunnel space in the crystal structure. The positive electrode active material of the present invention is mainly a Ni-containing composite metal oxide to which Ni and Mn, and in some cases, a metal M ′ for stabilizing the crystal structure is added. Presumed to be divalent (Ni 2+ ) and tetravalent (Mn 4+ ). In the deintercalation of Na ions, which is a charging reaction, the valence of Ni is considered to change from divalent to tetravalent (Ni 4+ ). At this time, it is considered that Na ions move through the large tunnel space in the crystal structure and are released to the electrolyte side. On the other hand, in the discharge, it is considered that a reaction occurs in which the valence of Ni changes from tetravalent to divalent. On the other hand, the valence of tetravalent Mn does not change, and thus it is thought that this maintains a stable crystal structure that is not affected by large Na ions. Moreover, since the potential of Ni oxidation-reduction reaction (Ni 2+ ⇔Ni 4+ + 2e ) is high and reversible, it is considered that a secondary battery having a high voltage and a long life can be obtained as a result.

M’は上述の通り添加元素であり、Al、Mg及びCoから選択される少なくとも1種以上である。いずれも酸素との結合力が大きく、これらをNiまたはMnサイトの一部に置換することで結晶構造がより安定化し、望ましい。NiまたはMnサイトへの置換量を表すxおよびyの値は、0≦x≦0.4および0≦y≦0.4の範囲であることが望ましい。xまたはyの値が0.4を越える場合には、副生成物や未反応の原料など不純物が残留し、反って可逆性が損なわれてしまう。副生成物としては微量のNaMO2(M=Ni、Mn、Al、Co)を含んでいると考えられ、これは非常に微量であるため、粉末X線回折法で確認できないことがある。この場合には、透過型電子顕微鏡により確認することができる。M’の添加量を表わすx+yの値は0≦x+y≦0.8の範囲であることが望ましく、0≦x+y≦0.4の範囲であることがより望ましい。また、結晶構造を安定化させて充放電の可逆性を更に向上させるためには0<x+y≦0.8の範囲であることが望ましく、0<x+y≦0.4の範囲であることがより望ましい。M ′ is an additive element as described above, and is at least one selected from Al, Mg, and Co. In any case, the bonding strength with oxygen is large, and by substituting these with a part of the Ni or Mn site, the crystal structure becomes more stable, which is desirable. The values of x and y representing the substitution amount to the Ni or Mn site are preferably in the range of 0 ≦ x ≦ 0.4 and 0 ≦ y ≦ 0.4. When the value of x or y exceeds 0.4, impurities such as by-products and unreacted raw materials remain, and the reversibility is impaired. As a by-product, it is considered that a small amount of NaMO 2 (M = Ni, Mn, Al, Co) is contained. This is a very small amount and may not be confirmed by a powder X-ray diffraction method. In this case, it can be confirmed by a transmission electron microscope. The value of x + y representing the added amount of M ′ is preferably in the range of 0 ≦ x + y ≦ 0.8, and more preferably in the range of 0 ≦ x + y ≦ 0.4. In order to stabilize the crystal structure and further improve the reversibility of charge / discharge, the range of 0 <x + y ≦ 0.8 is desirable, and the range of 0 <x + y ≦ 0.4 is more desirable. desirable.

上記の一般式(II)で表される正極活物質を合成するに当たり、各原料を混合し焼成する過程でナトリウムが飛散することが懸念される。そのため、場合によっては各原料の仕込み組成の中で、ナトリウム原料となる炭酸ナトリウム、酸化ナトリウムあるいは水酸化ナトリウムなどを化学量論比に対しわずかに過剰とする。但し、これらが原因で上述の副生成物が僅かに生じる可能性があるため、焼成後の生成物組成を勘案し、原料仕込みを決定することが望ましい。   In synthesizing the positive electrode active material represented by the above general formula (II), there is a concern that sodium may be scattered in the course of mixing and firing each raw material. Therefore, in some cases, sodium carbonate, sodium oxide, sodium hydroxide, or the like, which is a sodium raw material, is slightly excessive with respect to the stoichiometric ratio in the charged composition of each raw material. However, since the above-mentioned by-products may be slightly generated due to these reasons, it is desirable to determine the raw material charge in consideration of the product composition after firing.

本発明に係る非水電解液二次電池用正極活物質の他の形態としては、一般式(III):
Na2−bNi1−pMn3−qM’p+q (III)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
bは0≦b<2の範囲内であり、
pは0≦p≦0.1の範囲内であり、
qは0≦q≦0.1の範囲内である]
で表される複合金属酸化物を挙げることができる。
As another form of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the general formula (III):
Na 2-b Ni 1-p Mn 3-q M ′ p + q O 8 (III)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
b is in the range of 0 ≦ b <2,
p is in the range of 0 ≦ p ≦ 0.1,
q is within the range of 0 ≦ q ≦ 0.1]
The composite metal oxide represented by these can be mentioned.

Na量を表わすbの値は充電、放電により変動する。即ち充電によりNaイオンのデインターカレーションが起こり、bの値は大きくなり、放電によりNaイオンのインターカレーションが起こり、bの値は小さくなる。   The value of b representing the amount of Na varies depending on charging and discharging. That is, deintercalation of Na ions occurs due to charging, the value of b increases, and intercalation of Na ions occurs due to discharge, and the value of b decreases.

Na2−bNi1−pMn3−qM’p+qはスピネル型の結晶構造であり、主としてNiとMnを含有し、さらに場合によっては結晶構造を安定化させるための金属M’を添加したNa含有複合金属酸化物である。前記と同様に、イオン半径の大きなNaとの複合酸化物を得るため、安定な4価のMnと複合酸化物を形成する金属として、Niを組み合わせることが望ましい。Na 2-b Ni 1-p Mn 3-q M ′ p + q O 8 has a spinel crystal structure, mainly containing Ni and Mn, and in some cases, a metal M ′ for stabilizing the crystal structure. This is an added Na-containing composite metal oxide. Similarly to the above, in order to obtain a complex oxide with Na having a large ionic radius, it is desirable to combine Ni as a metal that forms a complex oxide with stable tetravalent Mn.

Niは放電状態で、主に2価(Ni2+)と推測され、充電反応であるNaイオンのデインターカレーションではNiの価数の2価から4価(Ni4+)に変化すると考えられる。放電では逆にNiの価数が4価から2価に変化する反応が起きると考えられる。このような酸化還元反応(Ni2+⇔Ni4++2e)は反応電位が高くかつ可逆性に優れ、結果として高電圧で長寿命の二次電池が得られる。一方、Mnは4価(Mn4+)と推測され、充放電反応で不活性であるため4価を維持し、したがって結晶構造の安定化に寄与すると考えられる。Ni is presumed to be mainly divalent (Ni 2+ ) in a discharged state, and it is considered that the deintercalation of Na ions, which is a charging reaction, changes from divalent to tetravalent (Ni 4+ ). In discharge, conversely, it is considered that a reaction occurs in which the valence of Ni changes from tetravalent to divalent. Such an oxidation-reduction reaction (Ni 2+ ⇔Ni 4+ + 2e ) has a high reaction potential and excellent reversibility, and as a result, a secondary battery having a high voltage and a long life can be obtained. On the other hand, Mn is presumed to be tetravalent (Mn 4+ ), and is inactive in the charge / discharge reaction, so that it maintains tetravalence and thus contributes to stabilization of the crystal structure.

また、前述の通りM’は添加元素であり、Al、Mg及びCoから選択される少なくとも1種以上である。いずれも酸素との結合力が大きく、これらをNiまたはMnサイトの一部に置換することで結晶構造がより安定化し、望ましい。NiまたはMnサイトへの置換量を表すpおよびqの値は、0≦p≦0.1および0≦q≦0.1の範囲であることが望ましい。pまたはqの値が0.1を越える場合には、副生成物や未反応の原料など不純物が残留し、反って可逆性が損なわれてしまう。副生成物としては微量のNaMO2(M=Ni、Mn、Al、Co)を含んでいると考えられ、これは非常に微量であるため、粉末X線回折法で確認できないことがある。この場合には、透過型電子顕微鏡により確認することができる。M’の添加量を表わすp+qの値は0≦p+q≦0.2の範囲であることが望ましい。また、結晶構造を安定化させて充放電の可逆性を更に向上させるためには0<p+q≦0.2の範囲であることが望ましい。As described above, M ′ is an additive element and is at least one selected from Al, Mg and Co. In any case, the bonding strength with oxygen is large, and by substituting these with a part of the Ni or Mn site, the crystal structure becomes more stable, which is desirable. The values of p and q representing the substitution amount to the Ni or Mn site are desirably in the range of 0 ≦ p ≦ 0.1 and 0 ≦ q ≦ 0.1. When the value of p or q exceeds 0.1, impurities such as by-products and unreacted raw materials remain, and the reversibility is impaired. As a by-product, it is considered that a small amount of NaMO 2 (M = Ni, Mn, Al, Co) is contained. This is a very small amount and may not be confirmed by a powder X-ray diffraction method. In this case, it can be confirmed by a transmission electron microscope. The value of p + q representing the amount of M ′ added is preferably in the range of 0 ≦ p + q ≦ 0.2. In order to stabilize the crystal structure and further improve the reversibility of charge / discharge, it is desirable that the range is 0 <p + q ≦ 0.2.

上記の一般式(III)で表される正極活物質を合成するに当たり、各原料を混合し焼成する過程でナトリウムが飛散したり、焼成の後の降温の際に脱酸素反応が起きるなどが懸念される。そのため、場合によっては各原料の仕込み組成の中で、ナトリウム原料となる炭酸ナトリウム、酸化ナトリウムあるいは水酸化ナトリウムなどを化学量論比に対しわずかに過剰とすること、あるいは、酸素分圧が高い酸化性雰囲気で焼成を行うなどする。但し、これらが原因で上述の副生成物が僅かに生じる可能性があるため、焼成後の生成物組成を勘案し、原料仕込みを決定することが望ましい。   When synthesizing the positive electrode active material represented by the above general formula (III), there is a concern that sodium is scattered in the process of mixing and firing each raw material, or that a deoxygenation reaction occurs when the temperature is lowered after firing. Is done. Therefore, in some cases, in the charge composition of each raw material, sodium carbonate, sodium oxide or sodium hydroxide, which is a sodium raw material, is slightly excessive with respect to the stoichiometric ratio, or oxidation with a high oxygen partial pressure. Firing is performed in a sexual atmosphere. However, since the above-mentioned by-products may be slightly generated due to these reasons, it is desirable to determine the raw material charge in consideration of the product composition after firing.

2.負極活物質
本発明に係る非水電解液二次電池用負極活物質は、芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物から構成される。ここで「芳香族カルボン酸ナトリウム塩構造」とは、芳香環にカルボキシル基が直接結合し、且つカルボキシル基がナトリウム塩を形成している構造を意味する。
2. Nonaqueous electrolyte negative active material for a secondary battery according to the anode active material present invention is composed of a compound having at least one aromatic carboxylic acid sodium salt structure. Here, the “aromatic carboxylic acid sodium salt structure” means a structure in which a carboxyl group is directly bonded to an aromatic ring and the carboxyl group forms a sodium salt.

芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物は、前記構造を1〜10有していることが好ましく、1〜5有していることがより好ましく、1つ有していることが特に好ましい。   The compound having at least one aromatic sodium carboxylate structure preferably has 1 to 10, more preferably 1 to 5, and particularly preferably one. preferable.

芳香環としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレンなどの芳香族炭化水素環や、ピリジン、ピラジン、ピリミジンなどの芳香族複素環を挙げることができる。   Examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, phenanthrene, tetracene, and pyrene, and aromatic heterocycles such as pyridine, pyrazine, and pyrimidine.

芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物は、芳香環上にカルボキシル基のナトリウム塩が偶数個(特に2個)置換されていることが好ましい。また、偶数個(特に2個)のカルボキシル基の間隔(つまり、1つのカルボキシル基ともう1つのカルボキシル基との間に存在する炭素原子の数)は、置換されている炭素原子を含めて、偶数個であることが好ましく、2個、4個又は6個であることが特に好ましい。   In the compound having at least one aromatic carboxylic acid sodium salt structure, an even number (particularly two) of sodium salts of carboxyl groups are preferably substituted on the aromatic ring. In addition, the distance between even number (particularly two) carboxyl groups (that is, the number of carbon atoms present between one carboxyl group and another carboxyl group) includes the carbon atoms substituted, An even number is preferable, and 2, 4, or 6 is particularly preferable.

カルボキシル基のナトリウム塩(−C(=O)ONa)のC=O部は芳香環と共役化し、Naと結合・解離する。即ち、カルボキシル基のナトリウム塩のC=O部とNaとが結合・解離して、
−C(=O)ONa+Na+e ⇔ =C(ONa)
の反応が可逆的に起きることで、Naイオンを吸蔵放出することになる。このときの反応電位は、Na金属の平衡電位より約1.0V貴電位であるためNaの析出が起こり難い特長がある。負極活物質として用いる場合、金属Naが析出してしまうと可逆性が極端に悪くなるが、本発明の負極活物質ではこのような副反応が起こらず優れた可逆性をもつ。
The C═O part of a sodium salt of a carboxyl group (—C (═O) ONa) is conjugated with an aromatic ring, and binds and dissociates with Na. That is, the C = O part of the sodium salt of the carboxyl group and Na are bound and dissociated,
−C (═O) ONa + Na + + e ⇔ = C (ONa) 2
When this reaction occurs reversibly, Na ions are occluded and released. Since the reaction potential at this time is about 1.0 V noble potential from the equilibrium potential of Na metal, there is a feature that precipitation of Na hardly occurs. When used as a negative electrode active material, the reversibility becomes extremely worse when metal Na is deposited, but the negative electrode active material of the present invention does not cause such a side reaction and has excellent reversibility.

芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物としては、例えば、以下の式:

Figure 2012035648
Examples of the compound having at least one aromatic carboxylic acid sodium salt structure include, for example, the following formula:
Figure 2012035648

[式中、
lは1以上の整数であり、好ましくは1〜10の整数であり、より好ましくは1〜5の整数であり、特に好ましくは1であり;
R1及びR2は、互いに独立して、水素、アルキル基、アリール基、又はアルコキシル基であり、好ましくは、水素、C1−3アルキル基、フェニル基、又はC1−3アルコキシル基であり、特に好ましくは、水素である]

Figure 2012035648
[Where
l is an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 5, particularly preferably 1.
R1 and R2 are independently of each other hydrogen, an alkyl group, an aryl group, or an alkoxyl group, preferably hydrogen, a C1-3 alkyl group, a phenyl group, or a C1-3 alkoxyl group, especially Preferred is hydrogen]
Figure 2012035648

[式中、
mは1以上の整数であり、好ましくは1〜10の整数であり、より好ましくは1〜5の整数であり、特に好ましくは1であり;
R3及びR4は、互いに独立して、水素、アルキル基、アリール基、又はアルコキシル基であり、好ましくは、水素、C1−3アルキル基、フェニル基、又はC1−3アルコキシル基であり、特に好ましくは、水素である]

Figure 2012035648
[Where
m is an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 5, particularly preferably 1.
R3 and R4, independently of each other, are hydrogen, an alkyl group, an aryl group, or an alkoxyl group, preferably hydrogen, a C1-3 alkyl group, a phenyl group, or a C1-3 alkoxyl group, particularly Preferred is hydrogen]
Figure 2012035648

[式中、
nは1以上の整数であり、好ましくは1〜10の整数であり、より好ましくは1〜5の整数であり、特に好ましくは1であり;
R5及びR6は、互いに独立して、水素、アルキル基、アリール基、又はアルコキシル基であり、好ましくは、水素、C1−3アルキル基、フェニル基、又はC1−3アルコキシル基であり、特に好ましくは、水素である]
で表される化合物を挙げることができる。
[Where
n is an integer greater than or equal to 1, Preferably it is an integer of 1-10, More preferably, it is an integer of 1-5, Most preferably, it is 1.
R5 and R6 are independently of each other hydrogen, an alkyl group, an aryl group, or an alkoxyl group, preferably hydrogen, a C1-3 alkyl group, a phenyl group, or a C1-3 alkoxyl group, especially Preferred is hydrogen]
The compound represented by these can be mentioned.

特に、化学式C(CONa1+c(0≦c≦1)で示される負極活物質が、可逆性に優れ、且つNa吸蔵放出容量が大きく、特に望ましい。ここでNa量を表わすcの値は充電、放電により変動する。即ち、充電によりNaイオンが結合する場合cの値は大きくなり、放電によりNaイオンが解離する場合cの値は小さくなる。In particular, a negative electrode active material represented by the chemical formula C 6 H 4 (CO 2 Na 1 + c ) 2 (0 ≦ c ≦ 1) is particularly desirable because of its excellent reversibility and large Na storage / release capacity. Here, the value of c representing the amount of Na varies depending on charging and discharging. That is, the value of c is increased when Na ions are bound by charging, and the value of c is decreased when Na ions are dissociated by discharging.

3.非水電解液二次電池
本発明に係る非水電解液二次電池は、本願発明に係る上記正極活物質を含む正極と、本願発明に係る上記負極活物質を含む負極のいずれか一方のみを正極又は負極として有していてもよく、また、正極及び負極の両電極が本願発明に係る活物質を含んでいてもよい。
3. Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery according to the present invention includes only one of a positive electrode including the positive electrode active material according to the present invention and a negative electrode including the negative electrode active material according to the present invention. You may have as a positive electrode or a negative electrode, and both the positive electrode and negative electrode may contain the active material which concerns on this invention.

本発明に係る非水電解液二次電池に使用する電解液としては特別のものを使用する必要はなく、例えば、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、メチルアセテート(MA)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、ジメトキシエタン(DME)などの溶媒に、電解質として6フッ化リン酸ナトリウム(NaPF6)、4フッ化ホウ酸ナトリウム(NaBF4)、過塩素酸ナトリウム(NaClO4)などを溶解させたものを使用することができる。電解質濃度は0.5〜1.5M(mol/l)が望ましい。It is not necessary to use a special electrolyte as the electrolyte used in the non-aqueous electrolyte secondary battery according to the present invention. For example, diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), methyl acetate (MA), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), dimethoxyethane (DME), etc., and sodium hexafluorophosphate (NaPF) as an electrolyte 6), tetrafluoride sodium borate (NaBF 4), can be used after dissolved, sodium perchlorate (NaClO 4). The electrolyte concentration is preferably 0.5 to 1.5 M (mol / l).

本発明の可逆的に充放電が可能な電池の用途は、特に限定されないが、例えばノートパソコン、ペン入力パソコン、ポケットパソコン、ノート型ワープロ、ポケットワープロ、電子ブックプレーヤ、携帯電話、コードレスフォン子機、ページャ、ハンディターミナル、携帯コピー、電子手帳、電卓、液晶テレビ、電気シェーバ、電動工具、電子翻訳機、自動車電話、トランシーバ、音声入力機器、メモリカード、バックアップ電源、テープレコーダ、ラジオ、ヘッドホンステレオ、携帯プリンタ、ハンディクリーナ、ポータブルCD、ビデオムービ、ナビゲーションシステムなどの機器用の電源や、冷蔵庫、エアコン、テレビ、ステレオ、温水器、オーブン電子レンジ、食器洗い器、洗濯機、乾燥器、ゲーム機器、照明機器、玩具、ロードコンディショナ、医療機器、自動車、電気自動車、ゴルフカート、電動カート、電力貯蔵システムなどの電源として使用することができる。また、民生用の他、軍需用、宇宙用としても用いることができる。   The use of the reversibly chargeable / dischargeable battery according to the present invention is not particularly limited. , Pager, handy terminal, portable copy, electronic notebook, calculator, LCD TV, electric shaver, electric tool, electronic translator, car phone, transceiver, voice input device, memory card, backup power supply, tape recorder, radio, headphone stereo, Power supplies for portable printers, handy cleaners, portable CDs, video movies, navigation systems, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, game machines, lighting Equipment, toys, roadco Conditioners, medical equipment, automobiles, electric automobiles, golf carts, electric carts, can be used as a power source such as a power storage system. It can also be used for civilian use, military use, and space use.

図1は、円筒型の非水電解液二次電池の概略を示す図である。図1中、10は正極、11はセパレータ、12は負極、13は電池缶、14は正極タブ、15は負極タブ、16は内蓋、17は内圧開放弁、18はガスケット、19はPTC素子、20は外蓋である。   FIG. 1 is a diagram showing an outline of a cylindrical nonaqueous electrolyte secondary battery. In FIG. 1, 10 is a positive electrode, 11 is a separator, 12 is a negative electrode, 13 is a battery can, 14 is a positive electrode tab, 15 is a negative electrode tab, 16 is an inner lid, 17 is an internal pressure release valve, 18 is a gasket, and 19 is a PTC element. , 20 is an outer lid.

図2は、コイン型の非水電解液二次電池の概略を示す図である。図2中、21は正極、22は負極、23はセパレータ、24はコインケース、25は上蓋、26はガスケットである。   FIG. 2 is a diagram showing an outline of a coin-type non-aqueous electrolyte secondary battery. In FIG. 2, 21 is a positive electrode, 22 is a negative electrode, 23 is a separator, 24 is a coin case, 25 is an upper lid, and 26 is a gasket.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to this.

<正極活物質の作製>
以下の実施例、比較例及び参考例で作成した正極活物質の組成は誘導結合プラズマ法(ICP)により測定した。
<Preparation of positive electrode active material>
The composition of the positive electrode active material prepared in the following examples, comparative examples and reference examples was measured by an inductively coupled plasma method (ICP).

実施例1
本実施例のNaMnTi18型の斜方晶構造の正極活物質の原料には、NaCO、NiO、およびMnO2を用いた。NaCO、NiO、およびMnO2を21.9:15.4:62.7の重量比(wt%)で混合し、ボールミルを使用して室温で15h混合した。これを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で1050℃、20h保持して焼成した。得られた正極活物質の組成はNaNiMn18である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が11μmの実施例1の正極活物質を得た。
Example 1
Na 2 CO 3 , NiO, and MnO 2 were used as raw materials for the Na 4 Mn 4 Ti 5 O 18 type orthorhombic positive electrode active material of this example. Na 2 CO 3 , NiO, and MnO 2 were mixed at a weight ratio (wt%) of 21.9: 15.4: 62.7 and mixed at room temperature for 15 h using a ball mill. This was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then fired in an oxygen atmosphere at 1050 ° C. for 20 h. The composition of the obtained positive electrode active material is Na 4 Ni 2 Mn 7 O 18 . Then, the positive electrode active material of Example 1 whose average particle diameter is 11 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例2
実施例1で合成した正極活物質にAl、Mg、Coのそれぞれを置換元素として添加した。実施例1のNaCO、NiO、およびMnO2に加え、原料としてAl(OH)、MgO、あるいはCoを用いた。先ず、NaCO、NiO、MnO2を22.7:16.0:61.4の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とAl(OH)、MgO、あるいはCoを、それぞれ96.8:3.2、98.3:1.7、あるいは96.7:3.3のいずれも重量比(wt%)で混合し、3種類の置換元素添加混合原料を調製した。それぞれを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で1050℃、20h保持して焼成した。得られた3種類の正極活物質の組成は、NaNiMn6.6Al0.418、NaNiMn6.6Mg0.418、あるいはNaNiMn6.6Co0.418である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が10μmの実施例2の正極活物質を得た。
Example 2
Each of Al, Mg, and Co was added as a substitution element to the positive electrode active material synthesized in Example 1. In addition to Na 2 CO 3 , NiO, and MnO 2 of Example 1, Al (OH) 3 , MgO, or Co 3 O 4 was used as a raw material. First, Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 22.7: 16.0: 61.4, and mixed at room temperature for 15 hours using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Al (OH) 3 , MgO, or Co 3 O 4 were mixed at a weight ratio (wt%) of 96.8: 3.2, 98.3: 1.7, or 96.7: 3.3, respectively, and three types The substitution element addition mixed raw material of this was prepared. Each was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then calcined by holding at 1050 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained three types of positive electrode active materials is Na 4 Ni 2 Mn 6.6 Al 0.4 O 18 , Na 4 Ni 2 Mn 6.6 Mg 0.4 O 18 , or Na 4 Ni 2 Mn 6.6 Co 0.4 O 18 . Then, the positive electrode active material of Example 2 whose average particle diameter is 10 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例3
実施例2と同様にして正極活物質を合成した。先ず、NaCO、NiO、MnO2を22.5:12.7:64.7の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とAl(OH)、MgO、あるいはCoを、それぞれ96.8:3.2、98.3:1.7、あるいは96.7:3.3のいずれも重量比(wt%)で混合し、3種類の置換元素添加混合原料を調製した。それぞれを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で1050℃、20h保持して焼成した。得られた3種類の正極活物質の組成は、NaNi1.6MnAl0.418、Na4Ni1.6Mn7Mg0.418、あるいはNaNi1.6MnCo0.418である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が11μmの実施例3の正極活物質を得た。
Example 3
A positive electrode active material was synthesized in the same manner as in Example 2. First, Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 22.5: 12.7: 64.7, and mixed at room temperature for 15 hours using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Al (OH) 3 , MgO, or Co 3 O 4 were mixed at a weight ratio (wt%) of 96.8: 3.2, 98.3: 1.7, or 96.7: 3.3, respectively, and three types The substitution element addition mixed raw material of this was prepared. Each was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then calcined by holding at 1050 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained three types of positive electrode active materials is Na 4 Ni 1.6 Mn 7 Al 0.4 O 18 , Na 4 Ni 1.6 Mn 7 Mg 0.4 O 18 , or Na 4 Ni 1.6 Mn 7 Co 0.4 O 18 . Then, the positive electrode active material of Example 3 whose average particle diameter is 11 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例4
実施例2と同様にして正極活物質を合成した。NaCO、NiO、MnO2を21.9:15.4:62.7の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とCoを、それぞれ96.7:3.3および93.4:6.6の重量比(wt%)で混合し、2種類の置換元素添加混合原料を調製した。それぞれを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で1050℃、20h保持して焼成した。得られた2種類の正極活物質の組成は、NaNi1.8Mn6.8Co0.418およびNaNi1.6Mn6.6Co0.818である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が9μmの実施例4の正極活物質を得た。
Example 4
A positive electrode active material was synthesized in the same manner as in Example 2. Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 21.9: 15.4: 62.7, and mixed for 15 h at room temperature using a ball mill to prepare a mixed raw material. Next, the mixed raw material and Co 3 O 4 were mixed at a weight ratio (wt%) of 96.7: 3.3 and 93.4: 6.6, respectively, to prepare two kinds of mixed element addition mixed raw materials. Each was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then calcined by holding at 1050 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained two types of positive electrode active materials is Na 4 Ni 1.8 Mn 6.8 Co 0.4 O 18 and Na 4 Ni 1.6 Mn 6.6 Co 0.8 O 18 . Then, the positive electrode active material of Example 4 whose average particle diameter is 9 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

比較例1
NaCO、NiO、MnO2を21.9:15.4:62.7の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とCoを91.7:8.3の重量比(wt%)で混合し、置換元素添加混合原料を調製した。大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で1050℃、20h保持して焼成した。得られた正極活物質の組成は、NaNi1.5Mn6.5Co1.018である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が11μmの比較例1の正極活物質を得た。
Comparative Example 1
Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 21.9: 15.4: 62.7, and mixed for 15 h at room temperature using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Co 3 O 4 were mixed at a weight ratio (wt%) of 91.7: 8.3 to prepare a mixed element-added mixed raw material. After holding at 150 ° C. for 1 hour in an air atmosphere and further holding at 470 ° C. for 5 hours, firing was carried out by holding at 1050 ° C. for 20 hours in an oxygen atmosphere. The composition of the obtained positive electrode active material is Na 4 Ni 1.5 Mn 6.5 Co 1.0 O 18 . Then, the positive electrode active material of the comparative example 1 whose average particle diameter is 11 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例5
本実施例のスピネル型の正極活物質の原料には、NaCO、NiO、およびMnO2を用いた。NaCO、NiO、およびMnO2を24.0:16.9:59.1の重量比(wt%)で混合し、ボールミルを使用して室温で15h混合した。これを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で750℃、20h保持して焼成した。得られた正極活物質の組成はNaNiMn18である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が9μmの実施例5の正極活物質を得た。
Example 5
Na 2 CO 3 , NiO, and MnO 2 were used as raw materials for the spinel-type positive electrode active material of this example. Na 2 CO 3 , NiO, and MnO 2 were mixed at a weight ratio (wt%) of 24.0: 16.9: 59.1 and mixed at room temperature for 15 h using a ball mill. This was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then calcined by holding at 750 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained positive electrode active material is Na 4 Ni 2 Mn 7 O 18 . Then, the positive electrode active material of Example 5 whose average particle diameter is 9 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例6
実施例5で合成した正極活物質にAl、Mg、Coのそれぞれを置換元素として添加した。実施例5のNaCO、NiO、およびMnO2に加え、原料としてAl(OH)、MgO、あるいはCoを用いた。先ず、NaCO、NiO、MnO2を24.5:17.3:58.3の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とAl(OH)、MgO、あるいはCoを、それぞれ98.2:1.8、99.1:0.9、あるいは98.2:1.8のいずれも重量比(wt%)で混合し、3種類の置換元素添加混合原料を調製した。それぞれを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で750℃、20h保持して焼成した。得られた3種類の正極活物質の組成は、NaNiMn2.9Al0.1、NaNiMn2.9Mg0.1、あるいはNaNiMn2.9Co0.1である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が8μmの実施例6の正極活物質を得た。
Example 6
Each of Al, Mg, and Co was added as a substitution element to the positive electrode active material synthesized in Example 5. In addition to Na 2 CO 3 , NiO, and MnO 2 of Example 5, Al (OH) 3 , MgO, or Co 3 O 4 was used as a raw material. First, Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 24.5: 17.3: 58.3, and mixed at room temperature for 15 hours using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Al (OH) 3 , MgO, or Co 3 O 4 were mixed at a weight ratio (wt%) of 98.2: 1.8, 99.1: 0.9, or 98.2: 1.8, respectively, and three types were mixed. The substitution element addition mixed raw material of this was prepared. Each was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then fired by holding at 750 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained three types of positive electrode active materials is Na 2 NiMn 2.9 Al 0.1 O 8 , Na 2 NiMn 2.9 Mg 0.1 O 8 , or Na 2 NiMn 2.9 Co 0.1 O 8 . Then, the positive electrode active material of Example 6 whose average particle diameter is 8 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例7
実施例6と同様にして正極活物質を合成した。先ず、NaCO、NiO、MnO2を24.4:15.5:60.1の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とAl(OH)、MgO、あるいはCoを、それぞれ98.2:1.8、99.1:0.9、あるいは98.2:1.8のいずれも重量比(wt%)で混合し、3種類の置換元素添加混合原料を調製した。それぞれを大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で750℃、20h保持して焼成した。得られた3種類の正極活物質の組成は、NaNi0.9MnAl0.1、NaNi0.9MnMg0.1、あるいはNaNi0.9MnCo0.1である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が9μmの実施例7の正極活物質を得た。
Example 7
A positive electrode active material was synthesized in the same manner as in Example 6. First, Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 24.4: 15.5: 60.1, and mixed at room temperature for 15 hours using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Al (OH) 3 , MgO, or Co 3 O 4 were mixed at a weight ratio (wt%) of 98.2: 1.8, 99.1: 0.9, or 98.2: 1.8, respectively, and three types were mixed. The substitution element addition mixed raw material of this was prepared. Each was held at 150 ° C. for 1 h in the air atmosphere and further held at 470 ° C. for 5 h, and then fired by holding at 750 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained three types of positive electrode active materials is Na 2 Ni 0.9 Mn 3 Al 0.1 O 8 , Na 2 Ni 0.9 Mn 3 Mg 0.1 O 8 , or Na 2 Ni 0.9 Mn 3 Co 0.1 O 8 . Then, the positive electrode active material of Example 7 whose average particle diameter is 9 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

実施例8
実施例6と同様にして正極活物質を合成した。NaCO、NiO、MnO2を24.0:16.9:59.1の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とCoを96.4:3.6の重量比(wt%)で混合し、置換元素添加混合原料を調製した。大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で750℃、20h保持して焼成した。得られた正極活物質の組成は、NaNi0.9Mn2.9Co0.2である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が10μmの実施例8の正極活物質を得た。
Example 8
A positive electrode active material was synthesized in the same manner as in Example 6. Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 24.0: 16.9: 59.1 and mixed at room temperature for 15 h using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Co 3 O 4 were mixed at a weight ratio (wt%) of 96.4: 3.6 to prepare a mixed element-added mixed raw material. After holding at 150 ° C. for 1 hour in the air atmosphere and further holding at 470 ° C. for 5 hours, firing was carried out at 750 ° C. for 20 hours in an oxygen atmosphere. The composition of the obtained positive electrode active material is Na 2 Ni 0.9 Mn 2.9 Co 0.2 O 8 . Then, the positive electrode active material of Example 8 whose average particle diameter is 10 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

比較例2
NaCO、NiO、MnO2を24.0:16.9:59.1の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。次に、この混合原料とCoを92.7:7.3の重量比(wt%)で混合し、置換元素添加混合原料を調製した。大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で750℃、20h保持して焼成した。得られた正極活物質の組成は、NaNi0.8Mn2.8Co0.4である。この後、ボールミルで粉砕、篩で分級することで平均粒子径が10μmの比較例2の正極活物質を得た。
Comparative Example 2
Na 2 CO 3 , NiO, and MnO 2 were combined at a weight ratio (wt%) of 24.0: 16.9: 59.1 and mixed at room temperature for 15 h using a ball mill to prepare a mixed raw material. Next, this mixed raw material and Co 3 O 4 were mixed at a weight ratio (wt%) of 92.7: 7.3 to prepare a mixed element-added mixed raw material. After holding at 150 ° C. for 1 hour in the air atmosphere and further holding at 470 ° C. for 5 hours, firing was carried out by holding at 750 ° C. for 20 hours in an oxygen atmosphere. The composition of the obtained positive electrode active material is Na 2 Ni 0.8 Mn 2.8 Co 0.4 O 8 . Then, the positive electrode active material of the comparative example 2 whose average particle diameter is 10 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

参考例1
NaCOとCoを30.7:69.3の重量比(wt%)で合わせ、ボールミルを使用して室温で15h混合し混合原料を調製した。大気雰囲気中で150℃、1h保持、更に470℃で5h保持した後、酸素雰囲気中で650℃、20h保持して焼成した。得られた正極活物質の組成は、Na0.67CoOである。この後、ボールミルで粉砕、篩で分級することで平均粒子径が10μmの参考例1の正極活物質を得た。
Reference example 1
Na 2 CO 3 and Co 3 O 4 were combined at a weight ratio (wt%) of 30.7: 69.3, and mixed at room temperature for 15 h using a ball mill to prepare a mixed raw material. After holding at 150 ° C. for 1 h in the air atmosphere and further holding at 470 ° C. for 5 h, firing was carried out at 650 ° C. for 20 h in an oxygen atmosphere. The composition of the obtained positive electrode active material is Na 0.67 CoO 2 . Then, the positive electrode active material of the reference example 1 whose average particle diameter is 10 micrometers was obtained by grind | pulverizing with a ball mill and classifying with a sieve.

<正極の作製>
実施例1から8、比較例1および2、参考例1のそれぞれに、導電材として黒鉛、結着剤としてポリフッ化ビニリデン(PVDF)を重量比で88:7:5となるように秤量、らいかい機で1時間混煉し、それぞれの正極合材スラリーを調製した。その後、厚さ15μのアルミニウム箔の片面、または両面にそれぞれの正極合材スラリーを塗布し、120℃で十分乾燥した。乾燥塗布電極を、圧力100MPaでプレス成型し、実施例1から8、比較例1および2、参考例1の正極とした。
<Preparation of positive electrode>
In each of Examples 1 to 8, Comparative Examples 1 and 2, and Reference Example 1, a conductive material, graphite, and a binder, polyvinylidene fluoride (PVDF), were weighed to a weight ratio of 88: 7: 5. The mixture was mixed with a paddle for 1 hour to prepare each positive electrode mixture slurry. Then, each positive mix slurry was apply | coated to the single side | surface or both surfaces of 15-micrometer-thick aluminum foil, and it dried sufficiently at 120 degreeC. The dry-coated electrode was press-molded at a pressure of 100 MPa to obtain positive electrodes of Examples 1 to 8, Comparative Examples 1 and 2, and Reference Example 1.

<負極の作製>
実施例9
負極活物質として、テレフタル酸二ナトリウム(化学式:C6H4(CO2Na)2、アルドリッチ製)を用いた。これに、導電材としてアセチレンブラック、結着材としてPVDFを重量比で88:7:5となるように秤量、らいかい機で30分混煉し、負極合材スラリーを調製した。その後、厚さ10μの銅箔の片面、または両面にそれぞれの負極合材スラリーを塗布し、120℃で十分乾燥した。乾燥塗布電極を圧力100MPaでプレス成型し、実施例9の負極を得た。
<Production of negative electrode>
Example 9
As the negative electrode active material, disodium terephthalate (chemical formula: C 6 H 4 (CO 2 Na) 2 , manufactured by Aldrich) was used. To this, acetylene black as a conductive material and PVDF as a binder were weighed to a weight ratio of 88: 7: 5 and mixed with a rake machine for 30 minutes to prepare a negative electrode mixture slurry. Thereafter, each negative electrode mixture slurry was applied to one side or both sides of a 10 μm thick copper foil and sufficiently dried at 120 ° C. The dry coated electrode was press-molded at a pressure of 100 MPa to obtain a negative electrode of Example 9.

実施例10
1,5−ナフタレンジカルボン酸(化学式:C10H6(CO2H)2、アルドリッチ製)を、等量換算で5%過剰の水酸化ナトリウムを含む水溶液に加え、Naイオン交換を行った。大過剰量のメタノールにこの溶液を加え、1,5−ナフタレンジカルボン酸ナトリウムを再沈殿させた。さらに、メタノールで十分洗浄し80℃で真空乾燥した。これを負極活物質として用い、実施例9と同様にして、実施例10の負極を得た。
Example 10
1,5-naphthalenedicarboxylic acid (chemical formula: C 10 H 6 (CO 2 H) 2 , manufactured by Aldrich) was added to an aqueous solution containing an excess of 5% sodium hydroxide in terms of equivalent amount, and Na ion exchange was performed. This solution was added to a large excess of methanol to reprecipitate sodium 1,5-naphthalenedicarboxylate. Further, it was thoroughly washed with methanol and vacuum-dried at 80 ° C. Using this as a negative electrode active material, a negative electrode of Example 10 was obtained in the same manner as Example 9.

実施例11
2,6−ナフタレンジカルボン酸(化学式:C10H6(CO2H)2、アルドリッチ製)を用い、実施例9と同様にして、実施例11の負極を得た。
Example 11
A negative electrode of Example 11 was obtained in the same manner as Example 9 using 2,6-naphthalenedicarboxylic acid (chemical formula: C 10 H 6 (CO 2 H) 2 , manufactured by Aldrich).

参考例2
負極活物質として非晶質炭素(呉羽化学製、カーボトロンP(登録商標))を用い、実施例9と同様にして、参考例2の負極を得た。
Reference example 2
A negative electrode of Reference Example 2 was obtained in the same manner as Example 9 using amorphous carbon (manufactured by Kureha Chemical, Carbotron P (registered trademark)) as the negative electrode active material.

<電池の作製>
実施例12
実施例1で作製した正極活物質を片面塗布した正極と、参考例2で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を以下の手順で作製した。正極と負極をそれぞれ直径15mmに打ち抜き、120℃、真空の条件で乾燥した。セパレータに微多孔性ポリプロピレン製フィルムを用い、正極、セパレータ、負極の順序でコインケースに納めた。非水電解液の溶媒として、エチレンカーボネートとエチルメチルカーボネートを1:3の体積比で混合したもの、ナトリウム塩としてNaPFを用い、ナトリウム濃度を1mol/lに調製した。これを上記の正極、セパレータ、負極に十分含浸させた後、コインケースの上蓋をかしめ合わせて完全密封し、実施例12の非水電解液二次電池を得た。これを用いて、0.5mAおよび4.0Vの定電流定電圧で終止条件を5時間とした充電条件、0.5mAの定電流で終止条件を2.0Vとした放電条件で充放電サイクルを繰り返し、サイクル可逆性を評価した。リチウムイオン電池と同様に、初期サイクルでは負極の副反応が生じるため5サイクル目を定格容量と定義した。図3に、サイクル経過に伴う定格容量に対する維持率の変化を示す。実施例12の非水電解液二次電池は優れた可逆性を示し、50サイクル後の容量維持率は75%であった。
<Production of battery>
Example 12
A coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 is manufactured by the following procedure by combining the positive electrode coated on one side with the positive electrode active material prepared in Example 1 and the negative electrode coated on one side prepared in Reference Example 2. did. The positive electrode and the negative electrode were each punched out to a diameter of 15 mm and dried under the conditions of 120 ° C. and vacuum. A microporous polypropylene film was used for the separator, and the positive electrode, the separator, and the negative electrode were placed in a coin case in this order. As a solvent for the non-aqueous electrolyte, a mixture of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3, NaPF 6 as a sodium salt, and a sodium concentration of 1 mol / l were prepared. After sufficiently impregnating the above positive electrode, separator, and negative electrode, the upper lid of the coin case was caulked and completely sealed to obtain a nonaqueous electrolyte secondary battery of Example 12. Using this, charge and discharge cycles were repeated under a charging condition with a constant current of 0.5 mA and 4.0 V and a termination condition of 5 hours with a constant current of 0.5 mA and a discharge condition of 2.0 V with a termination condition of 0.5 mA. Sex was evaluated. As with the lithium ion battery, the negative electrode side reaction occurs in the initial cycle, so the fifth cycle is defined as the rated capacity. FIG. 3 shows the change in the maintenance rate with respect to the rated capacity as the cycle progresses. The nonaqueous electrolyte secondary battery of Example 12 showed excellent reversibility, and the capacity retention rate after 50 cycles was 75%.

実施例13
実施例5で作製した正極活物質を片面塗布した正極と、参考例2で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例12と同様にして、サイクル経過に伴う定格容量に対する維持率の変化を調べた。図3に示すように、実施例13の非水電解液二次電池は優れた可逆性を示し、50サイクル後の容量維持率は79%であった。
Example 13
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 was combined with the positive electrode on which the positive electrode active material prepared in Example 5 was applied on one side and the negative electrode on the single side applied in Reference Example 2 as in Example 12. It produced similarly. Further, in the same manner as in Example 12, the change in the maintenance ratio with respect to the rated capacity with the progress of the cycle was examined. As shown in FIG. 3, the nonaqueous electrolyte secondary battery of Example 13 exhibited excellent reversibility, and the capacity retention rate after 50 cycles was 79%.

実施例14
実施例9で作製した片面塗布の負極と、参考例1で作製した正極活物質を片面塗布した正極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。実施例9で作製した負極はNaイオンの吸蔵放出の反応電位が、Na金属の平衡電位より約1.0V貴電位であるためNaの析出が起こり難い特長がある。実施例12とは作動電位が異なるため、充放電条件を0.5mAおよび3.5Vの定電流定電圧で5時間終止とした充電、0.5mAの定電流で1.0V終止とした放電に変更して、その他は実施例12と同様にして、 サイクル経過に伴う定格容量に対する維持率の変化を調べた。図4に示すように、実施例14の非水電解液二次電池は優れた可逆性を示し、50サイクル後の容量維持率は83%であった。
Example 14
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 was combined with the negative electrode with a single-side coating produced in Example 9 and the positive electrode with a single-sided coating of the positive electrode active material produced in Reference Example 1 together with Example 12 It produced similarly. The negative electrode produced in Example 9 has a feature that Na precipitation is unlikely to occur because the reaction potential of occlusion and release of Na ions is about 1.0 V noble potential from the equilibrium potential of Na metal. Since the operating potential is different from that of Example 12, the charging / discharging conditions were changed to charging at 0.5 mA and 3.5 V constant current constant voltage for 5 hours and discharging at 0.5 mA constant current at 1.0 V termination. Other than that, in the same manner as in Example 12, the change in the maintenance ratio with respect to the rated capacity as the cycle progressed was examined. As shown in FIG. 4, the nonaqueous electrolyte secondary battery of Example 14 showed excellent reversibility, and the capacity retention rate after 50 cycles was 83%.

実施例15
実施例10で作製した片面塗布の負極と、参考例1で作製した正極活物質を片面塗布した正極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。実施例10で作製した負極はNaイオンの吸蔵放出の反応電位が、Na金属の平衡電位より約1.0V貴電位であるためNaの析出が起こり難い特長がある。以下、実施例14と同様にして、サイクル経過に伴う定格容量に対する維持率の変化を調べた。図4に示すように、実施例15の非水電解液二次電池は優れた可逆性を示し、50サイクル後の容量維持率は78%であった。
Example 15
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 was combined with the negative electrode with a single-side coating produced in Example 10 and the positive electrode with a single-sided coating of the positive electrode active material produced in Reference Example 1 as in Example 12. It produced similarly. The negative electrode produced in Example 10 has a feature that Na precipitation is unlikely to occur because the reaction potential of occlusion and release of Na ions is about 1.0 V noble potential from the equilibrium potential of Na metal. Hereinafter, in the same manner as in Example 14, the change in the maintenance ratio with respect to the rated capacity with the progress of the cycle was examined. As shown in FIG. 4, the nonaqueous electrolyte secondary battery of Example 15 showed excellent reversibility, and the capacity retention rate after 50 cycles was 78%.

実施例16
実施例11で作製した片面塗布の負極と、参考例1で作製した正極活物質を片面塗布した正極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。実施例11で作製した負極はNaイオンの吸蔵放出の反応電位が、Na金属の平衡電位より約1.0V貴電位であるためNaの析出が起こり難い特長がある。以下、実施例14と同様にして、サイクル経過に伴う定格容量に対する維持率の変化を調べた。図4に示すように、実施例16の非水電解液二次電池は優れた可逆性を示し、50サイクル後の容量維持率は80%であった。
Example 16
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 is combined with the negative electrode with the single-side coating prepared in Example 11 and the positive electrode with the single-side coating of the positive electrode active material manufactured in Reference Example 1 as in Example 12. It produced similarly. The negative electrode produced in Example 11 has a feature that the reaction potential of the storage and release of Na ions is about 1.0 V noble potential from the equilibrium potential of Na metal, so that precipitation of Na hardly occurs. Hereinafter, in the same manner as in Example 14, the change in the maintenance ratio with respect to the rated capacity with the progress of the cycle was examined. As shown in FIG. 4, the nonaqueous electrolyte secondary battery of Example 16 showed excellent reversibility, and the capacity retention rate after 50 cycles was 80%.

実施例17
実施例1で作製した正極活物質を片面塗布した正極と、実施例9で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例14と同様にして、サイクル経過に伴う定格容量に対する維持率の変化を調べた。図5に示すように、実施例17の非水電解液二次電池は優れた可逆性を示し、100サイクル後の容量維持率は70%であった。
Example 17
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 was combined with the positive electrode obtained by applying the positive electrode active material prepared in Example 1 on one side and the single-sided negative electrode prepared in Example 9 with Example 12. It produced similarly. Further, in the same manner as in Example 14, the change in the maintenance ratio with respect to the rated capacity with the progress of the cycle was examined. As shown in FIG. 5, the nonaqueous electrolyte secondary battery of Example 17 showed excellent reversibility, and the capacity retention rate after 100 cycles was 70%.

実施例18
実施例5で作製した正極活物質を片面塗布した正極と、実施例9で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例14と同様にして、サイクル経過に伴う定格容量に対する維持率の変化を調べた。図5に示すように、実施例18の非水電解液二次電池は優れた可逆性を示し、100サイクル後の容量維持率は79%であった。
Example 18
The coin-type non-aqueous electrolyte secondary battery shown in FIG. 2 is combined with the positive electrode on which the positive electrode active material manufactured in Example 5 is applied on one side and the negative electrode on the single side applied in Example 9 as in Example 12. It produced similarly. Further, in the same manner as in Example 14, the change in the maintenance ratio with respect to the rated capacity with the progress of the cycle was examined. As shown in FIG. 5, the nonaqueous electrolyte secondary battery of Example 18 exhibited excellent reversibility, and the capacity retention rate after 100 cycles was 79%.

実施例19
置換元素を添加し作製した、実施例2および3のそれぞれ3種、実施例4の2種、計8種類の正極活物質を片面塗布した正極と、実施例9で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例14と同様にして充放電試験を行い、100サイクル経過後の定格容量に対する維持率を調べた。
Example 19
A positive electrode formed by adding one substitution element to each of three types of Examples 2 and 3, two types of Example 4, and a total of eight types of positive electrode active materials, and a single-sided negative electrode prepared in Example 9 In combination, the coin-type non-aqueous electrolyte secondary battery shown in FIG. Further, a charge / discharge test was conducted in the same manner as in Example 14 to examine the maintenance ratio relative to the rated capacity after 100 cycles.

比較例3
置換元素を過剰添加し作製した、比較例1の正極活物質を片面塗布した正極と、参考例2で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例12と同様にして充放電試験を行い、50サイクル経過後の定格容量に対する維持率を調べた。
Comparative Example 3
A coin-type non-aqueous electrolyte secondary solution shown in FIG. 2 is formed by combining the positive electrode active material of Comparative Example 1 coated on one side and the single-sided coated negative electrode fabricated in Reference Example 2 produced by adding a substitution element in excess. A battery was produced in the same manner as in Example 12. Further, a charge / discharge test was conducted in the same manner as in Example 12, and the maintenance rate relative to the rated capacity after 50 cycles was examined.

表1に、実施例19の8種類の非水電解液二次電池と、比較例3の非水電解液二次電池のサイクル経過後の定格容量に対する維持率の比較を示す。実施例19の8種類の非水電解液二次電池は、いずれも、実施例17より100サイクル経過後の維持率が高く望ましいことが分かった。一方、比較例3の非水電解液二次電池は、実施例12より50サイクル経過後の維持率が低いことが分かった。すなわち、置換元素を適切な範囲で添加することで可逆性をより向上させることができる。   Table 1 shows a comparison of the maintenance rates with respect to the rated capacities after the elapse of cycles of the eight types of nonaqueous electrolyte secondary batteries of Example 19 and the nonaqueous electrolyte secondary battery of Comparative Example 3. It was found that all of the eight types of nonaqueous electrolyte secondary batteries of Example 19 had a higher retention rate after 100 cycles than Example 17 and were desirable. On the other hand, the non-aqueous electrolyte secondary battery of Comparative Example 3 was found to have a lower maintenance rate after 50 cycles than Example 12. That is, reversibility can be further improved by adding a substitution element in an appropriate range.

Figure 2012035648
Figure 2012035648

実施例20
置換元素を添加し作製した、実施例6および7のそれぞれ3種類、実施例8の1種類、計7種類の正極活物質を片面塗布した正極と、実施例9で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例14と同様にして充放電試験を行い、100サイクル経過後の定格容量に対する維持率を調べた。
Example 20
A positive electrode formed by adding one substitution element to each of three types of Examples 6 and 7, one type of Example 8, and a total of seven types of positive electrode active materials, and a single-sided negative electrode prepared in Example 9 In combination, the coin-type non-aqueous electrolyte secondary battery shown in FIG. Further, a charge / discharge test was conducted in the same manner as in Example 14 to examine the maintenance ratio relative to the rated capacity after 100 cycles.

比較例4
置換元素を過剰添加し作製した、比較例2の正極活物質を片面塗布した正極と、参考例2で作製した片面塗布の負極を組み合わせて、図2に示すコイン型の非水電解液二次電池を、実施例12と同様にして作製した。さらに、実施例12と同様にして充放電試験を行い、50サイクル経過後の定格容量に対する維持率を調べた。
Comparative Example 4
A coin-type non-aqueous electrolyte secondary shown in FIG. 2 is formed by combining the positive electrode active material of Comparative Example 2 coated on one side and the single-sided coated negative electrode fabricated in Reference Example 2 prepared by adding a substitution element in excess. A battery was produced in the same manner as in Example 12. Further, a charge / discharge test was conducted in the same manner as in Example 12, and the maintenance rate relative to the rated capacity after 50 cycles was examined.

表2に、実施例20の7種類の非水電解液二次電池と、比較例4の非水電解液二次電池のサイクル経過後の定格容量に対する維持率の比較を示す。実施例20の7種類の非水電解液二次電池は、いずれも、実施例18より維持率が高く望ましいことが分かった。一方、比較例4の非水電解液二次電池は、実施例13より維持率が低いことが分かった。すなわち、置換元素を適切な範囲で添加することで可逆性をより向上させることができる。   Table 2 shows a comparison of the maintenance ratio with respect to the rated capacity after the cycle of the seven types of nonaqueous electrolyte secondary batteries of Example 20 and the nonaqueous electrolyte secondary battery of Comparative Example 4. It was found that all of the seven types of nonaqueous electrolyte secondary batteries of Example 20 had a higher maintenance rate than Example 18 and were desirable. On the other hand, the nonaqueous electrolyte secondary battery of Comparative Example 4 was found to have a lower maintenance rate than Example 13. That is, reversibility can be further improved by adding a substitution element in an appropriate range.

Figure 2012035648
Figure 2012035648

実施例21
実施例5で作製した正極活物質を両面塗布した正極と、実施例9で作製した両面塗布の負極を組み合わせて、図1に示す円筒型の非水電解液二次電池を以下の手順で作製した。正極および負極を短冊状とし、それぞれの片端に正極タブおよび負極タブを溶接し、さらに、120℃、真空の条件で乾燥した。セパレータに微多孔性ポリプロピレン製フィルムを用い、正極、セパレータ、負極、セパレータの順序で渦巻状に捲回し、電池缶に挿入した。負極タブは電池缶に、正極タブは内蓋に溶接した。非水電解液の溶媒として、エチレンカーボネートとエチルメチルカーボネートを1:3の体積比で混合したもの、ナトリウム塩としてNaPFを用い、ナトリウム濃度を1mol/lに調製した。これを上記の正極、セパレータ、負極に十分含浸させた後、電池蓋をかしめ合わせて完全密封し、直径14mm、高さ50mmの非水電解液二次電池を得た。
Example 21
The cylindrical non-aqueous electrolyte secondary battery shown in FIG. 1 is manufactured by the following procedure by combining the positive electrode coated on both sides of the positive electrode active material prepared in Example 5 and the negative electrode coated on both sides manufactured in Example 9. did. The positive electrode and the negative electrode were formed into strips, and the positive electrode tab and the negative electrode tab were welded to one end of each, and further dried under conditions of 120 ° C. and vacuum. A microporous polypropylene film was used as a separator, and the film was wound in the order of a positive electrode, a separator, a negative electrode, and a separator, and inserted into a battery can. The negative electrode tab was welded to the battery can, and the positive electrode tab was welded to the inner lid. As a solvent for the non-aqueous electrolyte, a mixture of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3, NaPF 6 as a sodium salt, and a sodium concentration of 1 mol / l were prepared. After sufficiently impregnating the above positive electrode, separator, and negative electrode, the battery lid was caulked and completely sealed to obtain a nonaqueous electrolyte secondary battery having a diameter of 14 mm and a height of 50 mm.

実施例21の非水電解液電池を用いて、以下に示す試験を行った。   Using the non-aqueous electrolyte battery of Example 21, the following tests were conducted.

<パルス充放電サイクル試験>
以下の条件でパルス充放電サイクル試験を行った。
<Pulse charge / discharge cycle test>
A pulse charge / discharge cycle test was conducted under the following conditions.

(1)充放電の中心電圧:2.4V
(2)放電パルス:電流12CA(0.083時間率電流)、時間30秒とする。
(1) Charging / discharging center voltage: 2.4V
(2) Discharge pulse: current 12CA (0.083 hour rate current), time 30 seconds.

(3)充電パルス:電流6CA(0.167時間率電流)、時間15秒とする。 (3) Charge pulse: Current 6CA (0.167 hour rate current), time 15 seconds.

(4)放電と充電の間の休止時間:30秒とする。 (4) Pause time between discharge and charge: 30 seconds.

(5)中心電圧が変動するため、1000パルス毎に2.4Vで定電圧充電または定電圧放電を行い、中心電圧を2.4Vに調整する。 (5) Since the center voltage fluctuates, constant voltage charge or constant voltage discharge is performed at 2.4 V every 1000 pulses, and the center voltage is adjusted to 2.4 V.

(6)周囲環境温度は50℃とした。 (6) The ambient temperature was 50 ° C.

<直流抵抗と出力密度測定>
以下の方法によって電池の直流抵抗と出力密度を求めた。50℃の環境下で、電流4CA、8CA、12CA、16CAの順で10秒間放電した。そのときの放電電流と10秒目の電圧の関係をプロットし、得られた直線の傾きより直流抵抗を求めた。また、直線の1.0Vにおける電流値を求め、1.0Vとその電流値の積に電池重量を除して、出力密度を求めた。
<Measurement of DC resistance and output density>
The direct current resistance and power density of the battery were determined by the following method. In an environment of 50 ° C., discharge was performed for 10 seconds in the order of currents 4CA, 8CA, 12CA, and 16CA. The relationship between the discharge current at that time and the voltage at 10 seconds was plotted, and the DC resistance was determined from the slope of the obtained straight line. Also, the current value at 1.0 V on the straight line was obtained, and the power density was obtained by dividing the battery weight by the product of 1.0 V and the current value.

初期出力密度と5万パルスサイクル後の抵抗上昇率(初期抵抗を100とした。)は、それぞれ2300W/kおよび108%で、高出力かつ優れた寿命特性を有することが分かった。   The initial power density and the rate of increase in resistance after 50,000 pulse cycles (initial resistance was taken as 100) were 2300 W / k and 108%, respectively, and it was found that they had high output and excellent life characteristics.

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。   All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

10 正極
11 セパレータ
12 負極
13 電池缶
14 正極タブ
15 負極タブ
16 内蓋
17 内圧開放弁
18 ガスケット
19 PTC素子
20 外蓋
21 正極
22 負極
23 セパレータ
24 コインケース
25 上蓋
26 ガスケット
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Separator 12 Negative electrode 13 Battery can 14 Positive electrode tab 15 Negative electrode tab 16 Inner cover 17 Internal pressure release valve 18 Gasket 19 PTC element 20 Outer cover 21 Positive electrode 22 Negative electrode 23 Separator 24 Coin case 25 Upper cover 26 Gasket

Claims (10)

Na、Ni及びMnを含む複合金属酸化物からなる非水電解液二次電池用正極活物質。   A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a composite metal oxide containing Na, Ni and Mn. 複合金属酸化物が一般式(I):
NaαNiβ−gMnγ−hM’g+h (I)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
αは0<α≦0.5の範囲内であり、
βは2/9≦β≦1/4の範囲内であり、
γは3/4≦γ≦7/9の範囲内であり、
gは0≦g≦0.045の範囲内であり、
hは0≦h≦0.045の範囲内であり、
β+γ+g+hは1である]
で表される、請求項1に記載の非水電解液二次電池用正極活物質。
The composite metal oxide is represented by the general formula (I):
Na α Ni β-g Mn γ-h M ′ g + h O 2 (I)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
α is in the range of 0 <α ≦ 0.5,
β is in the range of 2/9 ≦ β ≦ 1/4,
γ is in the range of 3/4 ≦ γ ≦ 7/9,
g is in the range of 0 ≦ g ≦ 0.045,
h is in the range of 0 ≦ h ≦ 0.045,
β + γ + g + h is 1]
The positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 1 represented by these.
複合金属酸化物が一般式(II):
Na4−aNi2−xMn7−yM’x+y18 (II)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
aは0≦a<4の範囲内であり、
xは0≦x≦0.4の範囲内であり、
yは0≦y≦0.4の範囲内である]
で表される、請求項2に記載の非水電解液二次電池用正極活物質。
The composite metal oxide has the general formula (II):
Na 4-a Ni 2-x Mn 7-y M ′ x + y O 18 (II)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
a is in the range of 0 ≦ a <4,
x is in the range of 0 ≦ x ≦ 0.4,
y is in the range of 0 ≦ y ≦ 0.4]
The positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 2 represented by these.
複合金属酸化物が一般式(III):
Na2−bNi1−pMn3−qM’p+q (III)
[式中、
M’はAl、Mg及びCoからなる群から選択される少なくとも1種であり、
bは0≦b<2の範囲内であり、
pは0≦p≦0.1の範囲内であり、
qは0≦q≦0.1の範囲内である]
で表される、請求項2に記載の非水電解液二次電池用正極活物質。
The composite metal oxide has the general formula (III):
Na 2-b Ni 1-p Mn 3-q M ′ p + q O 8 (III)
[Where
M ′ is at least one selected from the group consisting of Al, Mg and Co;
b is in the range of 0 ≦ b <2,
p is in the range of 0 ≦ p ≦ 0.1,
q is within the range of 0 ≦ q ≦ 0.1]
The positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 2 represented by these.
請求項1〜4のいずれかに記載の非水電解液二次電池用正極活物質を含む正極と、ナトリウムイオンを可逆的に吸蔵放出する負極とを有する非水電解液二次電池。   The nonaqueous electrolyte secondary battery which has a positive electrode containing the positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-4, and the negative electrode which occludes / releases sodium ion reversibly. ナトリウムイオンを可逆的に吸蔵放出する負極が、負極活物質として、芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物を含む、請求項5に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 5, wherein the negative electrode reversibly occluding and releasing sodium ions includes a compound having at least one aromatic carboxylic acid sodium salt structure as a negative electrode active material. 芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物が一般式(IV):
(CONa1+c (IV)
[式中、cは0≦c≦1の範囲内である]
で表される、請求項6に記載の非水電解液二次電池。
A compound having at least one aromatic carboxylic acid sodium salt structure is represented by the general formula (IV):
C 6 H 4 (CO 2 Na 1 + c ) 2 (IV)
[Wherein c is in the range of 0 ≦ c ≦ 1]
The nonaqueous electrolyte secondary battery according to claim 6 represented by:
芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物からなる非水電解液二次電池用負極活物質。   A negative electrode active material for a non-aqueous electrolyte secondary battery, comprising a compound having at least one aromatic carboxylic acid sodium salt structure. 芳香族カルボン酸ナトリウム塩構造を少なくとも1つ有する化合物が一般式(IV):
(CONa1+c (IV)
[式中、cは0≦c≦1の範囲内である]
で表される、請求項8に記載の非水電解液二次電池用負極活物質。
A compound having at least one aromatic carboxylic acid sodium salt structure is represented by the general formula (IV):
C 6 H 4 (CO 2 Na 1 + c ) 2 (IV)
[Wherein c is in the range of 0 ≦ c ≦ 1]
The negative electrode active material for nonaqueous electrolyte secondary batteries according to claim 8, represented by:
請求項8又は9に記載の非水電解液二次電池用負極活物質を含む負極と、ナトリウムイオンを可逆的に吸蔵放出する正極とを有する非水電解液二次電池。   A nonaqueous electrolyte secondary battery comprising a negative electrode comprising the negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 8 and a positive electrode capable of reversibly occluding and releasing sodium ions.
JP2012533799A 2010-09-17 2010-09-17 Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery Pending JPWO2012035648A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066175 WO2012035648A1 (en) 2010-09-17 2010-09-17 Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPWO2012035648A1 true JPWO2012035648A1 (en) 2014-01-20

Family

ID=45831147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012533799A Pending JPWO2012035648A1 (en) 2010-09-17 2010-09-17 Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JPWO2012035648A1 (en)
WO (1) WO2012035648A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155246B (en) * 2010-10-21 2016-05-04 株式会社丰田中央研究所 Electrode, the non-aqueous secondary battery with this electrode and battery pack for non-aqueous secondary battery
JP5348170B2 (en) * 2011-04-08 2013-11-20 株式会社豊田中央研究所 Negative electrode for lithium secondary battery and lithium secondary battery
JP5897971B2 (en) * 2012-04-20 2016-04-06 株式会社豊田中央研究所 Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
JP6010447B2 (en) * 2012-12-13 2016-10-19 京セラ株式会社 Active material and secondary battery using the same
JP6321973B2 (en) * 2013-01-23 2018-05-09 学校法人東京理科大学 Composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP6346733B2 (en) * 2013-04-26 2018-06-20 株式会社豊田中央研究所 Electrode, non-aqueous secondary battery and electrode manufacturing method
JP6187903B2 (en) * 2013-05-21 2017-08-30 国立研究開発法人産業技術総合研究所 Method for producing positive electrode material for sodium secondary battery
JP2015022845A (en) * 2013-07-17 2015-02-02 株式会社豊田中央研究所 Method for producing electrode active material, electrode active material, and nonaqueous secondary battery using the same
JP5850006B2 (en) * 2013-08-12 2016-02-03 トヨタ自動車株式会社 Negative electrode active material for sodium ion battery, sodium ion battery, and method for producing negative electrode active material for sodium ion battery
JP5924316B2 (en) * 2013-08-12 2016-05-25 トヨタ自動車株式会社 Negative electrode active material for sodium ion battery and sodium ion battery
GB201400347D0 (en) * 2014-01-09 2014-02-26 Faradion Ltd Doped nickelate compounds
JP6264157B2 (en) * 2014-04-01 2018-01-24 株式会社豊田中央研究所 Nonaqueous secondary battery electrode and nonaqueous secondary battery
JP6394253B2 (en) * 2014-10-03 2018-09-26 株式会社豊田中央研究所 Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
CN105047865B (en) * 2015-06-10 2018-06-12 长安大学 It is a kind of for novel trimellitate of electrode material and preparation method thereof
JP7087855B2 (en) * 2018-09-07 2022-06-21 株式会社豊田中央研究所 Method for manufacturing electrode active material, power storage device and electrode active material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317226A (en) * 1998-04-30 1999-11-16 Mitsubishi Materials Corp Positive active material for lithium secondary battery and its manufacture
JP3986216B2 (en) * 1999-08-19 2007-10-03 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
KR100441524B1 (en) * 2002-01-24 2004-07-23 삼성에스디아이 주식회사 Positive active material slurry composition for rechargeable lithium battery
JP2009038023A (en) * 2007-07-12 2009-02-19 Sumitomo Chemical Co Ltd Electrode for electrochemical power storage device

Also Published As

Publication number Publication date
WO2012035648A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5099168B2 (en) Lithium ion secondary battery
WO2012053553A1 (en) Electrode for nonaqueous secondary batteries, nonaqueous secondary battery comprising same, and battery
US9960413B2 (en) LMFP cathode materials with improved electrochemical performance
JP5013217B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004193115A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JP2004235144A (en) Nonaqueous electrolyte secondary battery and negative electrode active substance therefor
JP2005044743A (en) Positive electrode activator of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106663780B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016207479A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP6247110B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2021048137A (en) Cathode active material for lithium secondary battery
JP2017045633A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
JP4626141B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2016219188A (en) Lithium phosphorous-based vanadium composite oxide/carbon composite body and method for producing the same, lithium ion secondary battery, and electrochemical device
JP2011103260A (en) Positive electrode active material for nonaqueous secondary battery
WO2016103558A1 (en) Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
JP2004241242A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2014216211A (en) Electrode and nonaqueous secondary battery
JP3885720B2 (en) Positive electrode active material for lithium ion secondary battery