ITTO941019A1 - Amplificatore ottico. - Google Patents

Amplificatore ottico. Download PDF

Info

Publication number
ITTO941019A1
ITTO941019A1 IT94TO001019A ITTO941019A ITTO941019A1 IT TO941019 A1 ITTO941019 A1 IT TO941019A1 IT 94TO001019 A IT94TO001019 A IT 94TO001019A IT TO941019 A ITTO941019 A IT TO941019A IT TO941019 A1 ITTO941019 A1 IT TO941019A1
Authority
IT
Italy
Prior art keywords
amplifier
optical
input
amplifiers
amplified
Prior art date
Application number
IT94TO001019A
Other languages
English (en)
Inventor
Piero Gambini
Original Assignee
Cselt Centro Studi Lab Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cselt Centro Studi Lab Telecom filed Critical Cselt Centro Studi Lab Telecom
Priority to IT94TO001019A priority Critical patent/IT1267648B1/it
Publication of ITTO941019A0 publication Critical patent/ITTO941019A0/it
Priority to EP95107877A priority patent/EP0717478B1/en
Priority to DE0717478T priority patent/DE717478T1/de
Priority to DE69506077T priority patent/DE69506077T2/de
Priority to CA002150950A priority patent/CA2150950C/en
Priority to JP7172967A priority patent/JP2640445B2/ja
Priority to US08/528,757 priority patent/US5673141A/en
Publication of ITTO941019A1 publication Critical patent/ITTO941019A1/it
Application granted granted Critical
Publication of IT1267648B1 publication Critical patent/IT1267648B1/it

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5009Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-insensitive
    • H01S5/5018Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-insensitive using two or more amplifiers or multiple passes through the same amplifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • H01S5/5072Gain clamping, i.e. stabilisation by saturation using a further mode or frequency

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

L'AMPLIFICATORE (1) E' COSTITUITO DA DUE AMPLIFICATORI A FIBRA O GUIDA ATTIVA (2, 3) POSTI RISPETTIVAMENTE PRIMA E DOPO UN AMPLIFICATORE A SEMICONDUTTORE AGGANCIATO IN GUADAGNO (4) PORTATO IN CONDIZIONI DI EMISSIONE STIMOLATA, IL QUALE PUNGE DA SORGENTE DI RADIAZIONE DI POMPA PER I DUE AMPLIFICATORI A FIBRA O GUIDA ATTIVA (2, 3). (FIG. 1)

Description

Descrizione dell'invenzione avente per titolo:
"AMPLIFICATORE OTTICO"
La presente invenzione ha per oggetto un amplificatore ottico.
Nei sistemi di comunicazione ottica vengono generalmente usati due tipi di amplificatori ottici: amplificatori a semiconduttore o amplificatori a fibra (o in generale in guida ottica) attiva.
Gli amplificatori a semiconduttore sono dei dispositivi di struttura sostanzialmente analoga a quella dei laser, i quali vengono polarizzati sotto la soglia di emissione stimolata per evitare l'innesco delle oscillazioni laser e al di sopra della trasparenza, per sfruttare le caratteristiche di amplificazione del materiale attivo di cui sono composti. Un problema presentato dagli amplificatori a semiconduttore è rappresentato dal livello di intermodulazione relativamente elevato, che è di ostacolo all'uso in sistemi di comunicazione a divisione di lunghezza d'onda.
Gli amplificatori a fibra utilizzano un tratto di una fibra ottica (o di una guida ottica integrata) attiva, cioè una fibra o guida in cui il nucleo è drogato con ioni aventi bande di emissione spettroscopica nelle regioni di interesse per le telecomunicazioni, in particolare ioni di terre rare quali neodimio o praseodimio (per sistemi operanti nella cosiddetta seconda finestra, intorno a 1,3 μm ) ed erbio (per la terza finestra, intorno a 1,55 μm ). L'amplificazione è ottenuta lanciando nel nucleo una radiazione di pompaggio di lunghezza d'onda opportuna, diversa da quella del segnale da amplificare. Il principale problema che si presenta nell'utilizzo di questi amplificatori è dato dalla necessità di impiegare accoppiatori dicroici per inviare nella fibra o guida il segnale da amplificare e il segnale di pompaggio, e tali accoppiatori sono difficilmente integrabili e hanno un costo non indifferente. Inoltre, il tempo di accensione e spegnimento, che è legato al tempo di fluorescenza dei reagenti, è relativamente lungo (dell'ordine dei millisecondi per Terbio).
Recentemente sono stati anche proposti amplificatori a semiconduttore che presentano un basso livello d'intermodulazione, cosicché possono essere utilmente impiegabili con sistemi a divisione di lunghezza d'onda. Un amplificatore di questo tipo è descritto da G. Soulage e altri nella memoria "Clamped gain travelling wave semiconductor optical amplifier as a large dynamic range optical gate", presentata alla conferenza ECOC'94, Firenze, 25-29 Settembre 1994. Il dispositivo è costituito sostanzialmente da un diodo laser a reazione distribuita che, portato in condizioni di emissione stimolata, è in grado di amplificare lunghezze d'onda comprese nella terza finestra. Il dispositivo presenta un guadagno costante per una vasta gamma di potenze del segnale di ingresso (a lunghezze d'onda diverse dalla lunghezza d'onda di Bragg) e indipendente dalla polarizzazione del segnale d'ingresso.
Questo dispositivo presenta a sua volta l'inconveniente che la potenza emessa per effetto laser non viene sfruttata; inoltre, come tutti gli amplificatori a semiconduttore, è relativamente rumoroso.
Secondo l'invenzione si fornisce invece un amplificatore ottico che ha elevate prestazioni, presenta limitata rumorosità e non richiede i dispositivi di accoppiamento dicroici.
L'amplificatore secondo l'invenzione è caratterizzato dal fatto di comprendere:
- uno stadio d'ingresso costituito da un primo amplificatore in guida ottica attiva;
- uno stadio di uscita costituito da un secondo amplificatore in guida ottica attiva; e
- uno stadio intermedio, che è costituito da un amplificatore a semiconduttore agganciato in guadagno atto a emettere una radiazione a una lunghezza d'onda diversa da quella di un segnale ottico da amplificare e compresa in una banda corrispondente alla banda di pompaggio degli amplificatori a guida ottica attiva, è polarizzato da una corrente tale da portarlo in condizioni di emissione ed è accoppiato alle guide che compongono gli stadi d'ingresso e di uscita in modo tale da inviare in essi, come radiazione di pompaggio, la radiazione emessa per emissione stimolata.
L'invenzione soddisfa le esigenze indicate sopra. Infatti, l'amplificatore agganciato in guadagno è meno costoso da realizzare dei dispositivi di accoppiamento dicroici e il suo uso come sorgente della radiazione di pompaggio rende la struttura semplice e compatta. Inoltre, il rumore introdotto daH'amplificatore a semiconduttore è aggiunto a un segnale già amplificalo dallo stadio d'ingresso (che, essendo un amplificatore a fibra o in ottica integrata, è di per sé scarsamente rumoroso), e quindi la sua influenza è minore. Ancora, le caratteristiche di spegnimento non dipendono più dal tempo di fluorescenza dei reagenti, ma dal l'ampli ficatore a semiconduttore, che è comandato da una corrente e quindi presenta tempi di spegnimento nettamente inferiori (dell'ordine del nanosecondo). Infine, la potenza di uscita dell'amplificatore è sostanzialmente costante, in quanto da un lato il guadagno dell'amplificatore a semiconduttore è sostanzialmente costante per una vasta gamma di potenze d'ingresso e dall'altro l'intensità della radiazione di pompaggio degli amplificatori d'ingresso/uscita (cioè dell'emissione dell'amplificatore a semiconduttore) varia sostanzialmente in modo inversamente proporzionale all'intensità della radiazione che arriva al'amplificatore a semiconduttore.
A maggior chiarimento si fa riferimento ai disegni allegati, in cui:
- la fig. 1 è uno schema di principio dell'amplificatore secondo l’invenzione, e
- la fig. 2 è una rappresentazione semplificata di un amplificatore a semiconduttore agganciato in guadagno.
Nella fig. 1, l'amplificatore oggetto dell’invenzione, indicato dal blocco a linea a tratti 1, comprende uno stadio d'ingresso 2 e uno stadio di uscita 3, che nell’esempio illustrato sono costituiti ognuno da un tratto di fibra ottica drogata con ioni di terre rare (in particolare ioni Er, nel caso che il segnale da amplificare abbia lunghezza d’onda compresa nella terza finestra, o ioni Nd o Pr nel caso che il segnale da amplificare abbia lunghezza d'onda compresa nella seconda finestra), e uno stadio intermedio 4 costituito da un amplificatore a semiconduttore agganciato in guadagno, p. es. un amplificatore del tipo descritto nella memoria di G. Soulage e altri, a cui sono unite le fibre costituenti gli amplificatori 2 e 3. L'amplificatore a semiconduttore 4 è polarizzato da una corrente tale da essere portato in condizioni di emissione laser, cosicché esso funge da sorgente di radiazione di pompaggio per gli amplificatori 2, 3. Il primo di questi sarà pompato in senso opposto al senso di propagazione del segnale da amplificare, mentre nel secondo il senso di propagazione del segnale e della radiazione di pompaggio è lo stesso.
Le fibre che costituiscono gli amplificatori 2, 3, sono fissate all'amplificatore 4 in modo del tutto convenzionale. Tramite isolatori opzionali d'ingresso e di uscita S, 6 l'amplificatore 1 è collegato a due tratti di fibra 7, 8 che convogliano i segnali da amplificare e rispettivamente i segnali amplificati.
Come si vede schematicamente in fig. 2, l’amplificatore a semiconduttore agganciato in guadagno 4 è sostanzialmente un laser a semiconduttore a reazione distribuita, in cui la reazione ottica è ottenuta mediante un reticolo 9. Le facce terminali sono munite di rivestimenti antiriflesso 10 per sopprimere le risonanze Fabry-Perot. Con 11 sono indicati l'elettrodo e il conduttore per il collegamento alla sorgente di corrente di polarizzazione.
Considerando a titolo di esempio il caso in cui i segnali da amplificare abbiano una lunghezza d'onda compresa nella terza finestra (1,55 μm ) , cosicché gli amplificatori 2, 3 sono realizzati con fibre drogate con erbio, l'amplificatore 4 sarà progettato in modo da amplificare segnali a lunghezza d'onda compresa p. es. tra 1,53 μm e 1,56 μm e da emettere una radiazione compresa nella banda di pompaggio dell'erbio (1,48 μm). Il tecnico del ramo non ha nessun problema a progettare il reticolo in modo da ottenere i valori voluti.
Con la disposizione descritta, il segnale da amplificare (p. es. un segnale a divisione di lunghezza d'onda), subisce tre amplificazioni successive e quindi si hanno buone prestazioni. Valori facilmente ottenibili sono dell'ordine della decina di dB per l'amplificatore d'ingresso e quello a semiconduttore, e valori dell'ordine dei 5 dB per l'amplificatore di uscita. L'amplficatore a semiconduttore 4, come detto, ha guadagno sostanzialmente costante e indipendente dalla potenza d'ingresso. Viceversa, la potenza emessa per effetto laser, e quindi la potenza di pompaggio degli amplificatori a semiconduttore, diminuisce al crescere di tale potenza, facendo diminuire anche il guadagno degli amplificatori a fibra. Complessivamente però la potenza di uscita rimane sostanzialmente costante.
Per ottenere valori di amplificazione come quelli detti sopra per gli amplificatori a fibra saranno sufficienti lunghezze di fibra dell'ordine della decina di metri. Pertanto il dispositivo, compresi gli isolatori, potrà essere montato in un modulo di dimensioni ridotte (alcuni centimetri di lato).
E’ evidente che quanto descritto è dato a titolo di esempio non limitativo, e che varianti e modifiche sono possibili senza uscire dal campo di protezione del'invenzione. In particolare, gli stadi di ingresso e uscita possono essere realizzati mediante guide ottiche integrale di tipo attivo. Anche queste sono facilmente accoppiabili a un amplificatore a semiconduttore.

Claims (2)

  1. RIVENDICAZIONI 1. Amplificatore ottico, caratterizzato dal fatto di comprendere: - uno stadio d'ingresso (2) costituito da un primo amplificatore a guida ottica attiva; - uno stadio di uscita (3), costituito da un secondo amplificatore a guida ottica attiva; e - uno stadio intermedio (4), che è costituito da un amplificatore a semiconduttore agganciato in guadagno atto a emettere una radiazione a una lunghezza d'onda diversa da quella di un segnale ottico da amplificare e compresa in una banda di pompaggio degli amplificatori a guida attiva, è polarizzato da una corrente tale da portarlo in condizioni di emissione ed è accoppiato alle guide che compongono gli stadi d'ingresso e di uscita (2, 3) in modo tale da inviare in essi, come radiazione di pompaggio, la radiazione emessa per emissione stimolata.
  2. 2. Amplificatore ottico secondo la riv. 1 , caratterizzato dal fatto di comprendere inoltre un isolatore d'ingresso (5) e un'isolatore di uscita (6) per il collegamento degli stadi d'ingresso e di uscita (2, 3) a linee di trasmissione ottica (7, 8) che convogliano rispettivamente i segnali da amplificare e i segnali amplificati.
IT94TO001019A 1994-12-15 1994-12-15 Amplificatore ottico. IT1267648B1 (it)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IT94TO001019A IT1267648B1 (it) 1994-12-15 1994-12-15 Amplificatore ottico.
EP95107877A EP0717478B1 (en) 1994-12-15 1995-05-23 Optical amplifier
DE0717478T DE717478T1 (de) 1994-12-15 1995-05-23 Optischer Verstärker
DE69506077T DE69506077T2 (de) 1994-12-15 1995-05-23 Optischer Verstärker
CA002150950A CA2150950C (en) 1994-12-15 1995-06-02 Optical amplifier
JP7172967A JP2640445B2 (ja) 1994-12-15 1995-06-16 光増幅器
US08/528,757 US5673141A (en) 1994-12-15 1995-09-15 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT94TO001019A IT1267648B1 (it) 1994-12-15 1994-12-15 Amplificatore ottico.

Publications (3)

Publication Number Publication Date
ITTO941019A0 ITTO941019A0 (it) 1994-12-15
ITTO941019A1 true ITTO941019A1 (it) 1996-06-15
IT1267648B1 IT1267648B1 (it) 1997-02-07

Family

ID=11412969

Family Applications (1)

Application Number Title Priority Date Filing Date
IT94TO001019A IT1267648B1 (it) 1994-12-15 1994-12-15 Amplificatore ottico.

Country Status (6)

Country Link
US (1) US5673141A (it)
EP (1) EP0717478B1 (it)
JP (1) JP2640445B2 (it)
CA (1) CA2150950C (it)
DE (2) DE69506077T2 (it)
IT (1) IT1267648B1 (it)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636236B4 (de) * 1996-09-06 2004-09-16 Evotec Technologies Gmbh Diodenlasergepumpter Vielmoden-Wellenleiterlaser, insbesondere Faserlaser
DE19647488A1 (de) * 1996-11-16 1998-05-20 Alsthom Cge Alcatel Optischer Verstärker für Signale einer großen Bandbreite und optisches Übertragungssystem mit einem solchen optischen Verstärker
EP0901245B1 (en) * 1997-08-27 2006-05-17 Interuniversitair Micro-Elektronica Centrum Vzw Optical decision circuit and use thereof
KR19990035458A (ko) * 1997-10-31 1999-05-15 윤종용 증폭이득 고정형 광증폭기
JP3607497B2 (ja) * 1998-03-17 2005-01-05 日本電気株式会社 利得等化器と利得等化機能を備えた光増幅装置
US6891664B2 (en) * 1999-03-22 2005-05-10 Finisar Corporation Multistage tunable gain optical amplifier
DE19926811A1 (de) * 1999-03-22 2000-09-28 Claude Stricker Lichtquelle für die optische Informationsübertragung
US6249373B1 (en) * 1999-12-22 2001-06-19 At&T Corp. Semiconductor optical amplifier with adjustable gain
US6310720B1 (en) * 2000-06-02 2001-10-30 Genoa Corporation Polarization insensitive semiconductor optical amplifier
EP1172907B1 (en) 2000-07-11 2006-05-31 Corning Incorporated A tunable gain-clamped semiconductor optical amplifier
US6490077B1 (en) * 2000-11-20 2002-12-03 Corning Incorporated Composite optical amplifier
US6778320B1 (en) * 2000-11-20 2004-08-17 Avanex Corporation Composite optical amplifier
US6560010B1 (en) * 2000-12-14 2003-05-06 Genoa Corporation Broadband gain-clamped semiconductor optical amplifier devices
US6853658B1 (en) * 2000-12-14 2005-02-08 Finisar Corporation Optical logical circuits based on lasing semiconductor optical amplifiers
US7065300B1 (en) 2000-12-14 2006-06-20 Finsiar Corporation Optical transmitter including a linear semiconductor optical amplifier
US6493132B1 (en) * 2001-02-14 2002-12-10 Agere Systems Guardian Corp. Monolithic optically pumped high power semiconductor lasers and amplifiers
US6909536B1 (en) 2001-03-09 2005-06-21 Finisar Corporation Optical receiver including a linear semiconductor optical amplifier
US6731424B1 (en) * 2001-03-15 2004-05-04 Onetta, Inc. Dynamic gain flattening in an optical communication system
US6483637B2 (en) 2001-03-30 2002-11-19 Sycamore Networks, Inc. System and method for per-band optical amplification
GB0109167D0 (en) * 2001-04-12 2001-05-30 Corning Ltd Composite optical amplifier
US6597497B2 (en) 2001-10-04 2003-07-22 Shih-Yuan Wang Semiconductor optical amplifier with transverse laser cavity intersecting optical signal path and method of fabrication thereof
US6714344B2 (en) 2001-10-04 2004-03-30 Gazillion Bits, Inc. Reducing output noise in a ballast-powered semiconductor optical amplifier
US6836357B2 (en) 2001-10-04 2004-12-28 Gazillion Bits, Inc. Semiconductor optical amplifier using laser cavity energy to amplify signal and method of fabrication thereof
US7283694B2 (en) * 2001-10-09 2007-10-16 Infinera Corporation Transmitter photonic integrated circuits (TxPIC) and optical transport networks employing TxPICs
US20080044128A1 (en) * 2001-10-09 2008-02-21 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
US7751658B2 (en) * 2001-10-09 2010-07-06 Infinera Corporation Monolithic transmitter photonic integrated circuit (TxPIC) having tunable modulated sources with feedback system for source power level or wavelength tuning
US7116851B2 (en) * 2001-10-09 2006-10-03 Infinera Corporation Optical signal receiver, an associated photonic integrated circuit (RxPIC), and method improving performance
US7672546B2 (en) * 2001-10-09 2010-03-02 Infinera Corporation Optical transport network having a plurality of monolithic photonic integrated circuit semiconductor chips
KR100395430B1 (ko) * 2001-10-29 2003-08-21 이동한 라만 광섬유증폭기와 반도체 광증폭기의 결합장치
US7747114B2 (en) 2002-10-08 2010-06-29 Infinera Corporation Tilted combiners/decombiners and photonic integrated circuits (PICs) employing the same
KR100617772B1 (ko) * 2004-02-25 2006-08-28 삼성전자주식회사 반도체 광증폭기 및 이를 이용한 광증폭 장치
JP4606369B2 (ja) * 2006-04-06 2011-01-05 日本電信電話株式会社 光増幅器
US7702201B2 (en) * 2006-06-08 2010-04-20 Industrial Technology Research Institute Gain flattening utilizing a two-stage erbium-based amplifier
US7535630B2 (en) * 2006-06-08 2009-05-19 Industrial Technology Research Institute Broadband hybrid two-stage optical amplifier
JP2014126718A (ja) * 2012-12-26 2014-07-07 V Technology Co Ltd 半導体光集積回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224116A (en) * 1989-03-08 1993-06-29 Bt&D Technologies Ltd. Laser amplifier
JPH0357288A (ja) * 1989-07-17 1991-03-12 Siemens Ag 半導体レーザーを有するデバイスおよびその使用方法
US5039199A (en) * 1989-12-29 1991-08-13 At&T Bell Laboratories Lightwave transmission system having remotely pumped quasi-distributed amplifying fibers
JP2693662B2 (ja) * 1991-07-16 1997-12-24 株式会社東芝 光増幅装置
US5239607A (en) * 1992-06-23 1993-08-24 Bell Communications Research, Inc. Optical fiber amplifier with flattened gain
GB2272102B (en) * 1992-10-30 1996-02-07 Northern Telecom Ltd Optical amplifier
US5436759A (en) * 1994-06-14 1995-07-25 The Regents Of The University Of California Cross-talk free, low-noise optical amplifier

Also Published As

Publication number Publication date
DE69506077T2 (de) 1999-05-06
US5673141A (en) 1997-09-30
EP0717478A3 (en) 1997-10-08
IT1267648B1 (it) 1997-02-07
DE717478T1 (de) 1998-05-28
DE69506077D1 (de) 1998-12-24
JP2640445B2 (ja) 1997-08-13
JPH08184864A (ja) 1996-07-16
EP0717478A2 (en) 1996-06-19
ITTO941019A0 (it) 1994-12-15
CA2150950C (en) 1999-08-24
CA2150950A1 (en) 1996-06-16
EP0717478B1 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
ITTO941019A1 (it) Amplificatore ottico.
US6178038B1 (en) Optical amplifier having an improved noise figure
US6317254B1 (en) Parallel optical fiber amplifier with high power conversion
KR910015138A (ko) 분리 서비스 채널과 함께 사용되는 원격 통신용 광섬유 회선
JPH03139617A (ja) 光信号伝送システム
IT8922196A1 (it) Gruppo di amplificazione ottico a basso rumore, con riflessione della potenza di pompaggio.
US6490077B1 (en) Composite optical amplifier
KR100358158B1 (ko) 소극기를 이용한 분산보상 라만 증폭기 및 그를 이용한하이브리드형 광섬유 증폭장치
US6707598B2 (en) Pump source with increased pump power for optical broadband Raman amplification
US7020168B2 (en) High power multi-frequency laser
KR100547868B1 (ko) 라만 증폭원리를 이용한 이득 고정 반도체 광증폭기
WO2016182068A1 (ja) ラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システム
KR100488193B1 (ko) 고 출력, 높은 평탄화도의 출력을 갖는 다중 채널 광원
US5235604A (en) Optical amplifier using semiconductor laser as multiplexer
JPH07147442A (ja) 光導波体増幅器
JP2000236127A (ja) 光ファイバ増幅器
KR20030069362A (ko) 분산 보상된 라만 광섬유 증폭기
CN112313844A (zh) 光源设备和光学放大器
JP4471919B2 (ja) 光通信システムおよび半導体光増幅部
JP2627562B2 (ja) 希土類元素ドープ光ファイバレーザ増幅器
JPH0194329A (ja) 光増幅装置
KR100683910B1 (ko) 라만 증폭과 희토류 첨가 광섬유 기반의 복합 광증폭기
JP2744471B2 (ja) 光増幅伝送回路
JP3062204B2 (ja) 光増幅器
JP2000105395A (ja) ラマン増幅方法

Legal Events

Date Code Title Description
0001 Granted
TA Fee payment date (situation as of event date), data collected since 19931001

Effective date: 19971124