IT201800009235A1 - Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia - Google Patents

Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia Download PDF

Info

Publication number
IT201800009235A1
IT201800009235A1 IT102018000009235A IT201800009235A IT201800009235A1 IT 201800009235 A1 IT201800009235 A1 IT 201800009235A1 IT 102018000009235 A IT102018000009235 A IT 102018000009235A IT 201800009235 A IT201800009235 A IT 201800009235A IT 201800009235 A1 IT201800009235 A1 IT 201800009235A1
Authority
IT
Italy
Prior art keywords
heat shock
cells
immortalized
culture medium
myoblastic
Prior art date
Application number
IT102018000009235A
Other languages
English (en)
Inventor
Felice Valentina Di
Rosario Barone
Gammazza Antonella Marino
Claudia Campanella
Francesco Cappello
Felicia Farina
Eleonora Trovato
Daniela D'amico
Filippo Macaluso
Dario Coletti
Sergio Adamo
Gabriele Multhoff
Paolo Gasco
Original Assignee
Universita' Degli Studi Di Palermo
Nanovector Srl
Univ Sorbonne
Centre Nat Rech Scient
Inserm - Institut National De La Sante Et De La Rech Medicale
Universita' Telematica E-Campus
Universita' Degli Studi Di Roma "La Sapienza"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universita' Degli Studi Di Palermo, Nanovector Srl, Univ Sorbonne, Centre Nat Rech Scient, Inserm - Institut National De La Sante Et De La Rech Medicale, Universita' Telematica E-Campus, Universita' Degli Studi Di Roma "La Sapienza" filed Critical Universita' Degli Studi Di Palermo
Priority to IT102018000009235A priority Critical patent/IT201800009235A1/it
Priority to PCT/IB2019/058337 priority patent/WO2020075004A1/en
Publication of IT201800009235A1 publication Critical patent/IT201800009235A1/it

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Description

Descrizione della domanda di brevetto per invenzione industriale dal titolo: Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia Sfondo dell'invenzione
La presente invenzione si riferisce al settore delle biotecnologie e della farmaceutica in quanto fornisce un procedimento per la preparazione in vitro di vescicole contenenti proteine da shock termico che possono essere impiegate per la preparazione di composizioni farmaceutiche per il trattamento della atrofia muscolare.
Stato dell'arte
La cachessia, la sarcopenia e l'anoressia sono caratterizzate da deperimento muscolare. Questa condizione è un indebolimento e una perdita di muscolo causata da alcune malattie o dalla mancanza o ridotto uso della muscolatura. La perdita di muscoli causa una diminuzione della forza e l'incapacità di muoversi compromettendo la qualità della vita.
La cachessia è una condizione associata a una serie di malattie croniche e condizioni mediche acute in cui i pazienti sono spesso ospedalizzati o diventano estremamente inattivi. Alcune delle malattie che portano alla cachessia sono cancro, sclerosi laterale amiotrofica, sclerosi multipla, distrofia muscolare, neuropatia, poliomielite, atrofia muscolare spinale, sindrome da immunodeficienza acquisita (AIDS), insufficienza cardiaca congestizia, broncopneumopatia cronica ostruttiva (BPCO), insufficienza renale e altre malattie che portano a uno stato infiammatorio cronico (Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD: Cachexia: a new definition. Clin Nutr 2008; 27:793-9).
La sarcopenia è presente nelle persone anziane ed è caratterizzata da una diminuzione della massa muscolare scheletrica dovuta alla diminuzione dell'attività fisica e alla produzione di ormoni anabolici (Han A, Bokshan SL, Marcaccio SE, DePasse JM, Daniels AH. Diagnostic Criteria and Clinical Outcomes in Sarcopenia Research: A Literature Review. J Clin Med. 2018 Apr 8;7(4). pii: E70. doi: 10.3390/jcm7040070. Review. PubMed PMID: 29642478).
L'anoressia risulta dall'assunzione di energia inferiore spesso a causa della perdita di appetito. La malnutrizione può essere presente nella cachessia. Tuttavia, a differenza di altre malattie correlate a questa causa, la cachessia rappresenta un pannello metabolico disturbato e non può essere trattato con la sola nutrizione (Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD: Cachexia: a new definition. Clin Nutr 2008; 27:793-9)).
La cachessia, la sarcopenia e l'anoressia possono causare anche atrofia muscolare.
La degenerazione della muscolatura scheletrica è caratterizzata da un disallineamento (disarrangement) delle proteine sarcomeriche, una diminuzione della sintesi proteica e un aumento del catabolismo proteico. La sintesi proteica è regolata da due fattori chiave: il fattore di inizio della trascrizione eucariotica 2 (eIF2) e il fattore 4F (eIF4F) (Eley HL, Russell ST, Tisdale MJ: Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J 2007; 407:113-20), mentre il catabolismo proteico può essere dovuto all'attivazione del sistema lisosomiale, alle calpaine citosoliche regolate dal calcio e principalmente da vie proteolitiche, ubiquitina ed ATP-dipendenti. La via dell'ubiquitina-proteasoma contribuisce alla degradazione delle proteine miofibrillari (Hasselgren PO, Wray C, Mammen J: Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 2002; 290:1-10).
Nella cachessia e nella sarcopenia, il rilascio di anioni superossido, perossidi di idrogeno o ossido nitrico può contribuire alla degenerazione muscolare. Queste molecole possono interagire tra loro e generare più prodotti altamente reattivi, come per esempio perossinitrito e radicale ossidrile. Questa serie di eventi può essere scatenata da un evento infiammatorio e culminano nello stress ossidativo. L'aumento delle specie reattive dell’ossigeno (ROS) favorisce il catabolismo delle cellule muscolari ancora di più. Uno studio condotto su cellule C2C12 ha documentato che i ROS inducono un up-regulation delle E3-ubiquitina ligasi (Li YP, Chen Y, Li AS, Reid MB: Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 2003; 285:C806 12), di conseguenza aumenta l'attività proteasomica e la degradazione della miosina. Nella cachessia tumorale la catena pesante della miosina (MHC) è un bersaglio importante nel deperimento muscolare. Si riduce la quantità della forma proteica ma rimane stabile a livello di mRNA, come stabilito da un esperimento dove la MHC immunoprecipita con l’ubiquitina (Lenk K, Schuler G, Adams V: Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 2010; 1:9-21).
Al momento non ci sono farmaci disponibili in commercio in grado di migliorare la condizione di vita di un soggetto cachettico, nessun farmaco in grado di avere un effetto sulla riduzione della massa magra. Sono stati usati stimolanti dell'appetito, come il megestrolo acetato, ma l'aumento di peso era dovuto ad un accumulo di grasso piuttosto che alla massa corporea (Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev 2009; 89(2):381-410). Un altro tentativo è stato la ciproeptadina, un antagonista dell'istamina, che ha migliorato l'appetito ma non ha evitato la perdita di peso. Anche i corticosteroidi aumentano l’appetito e la sensazione di benessere, ma non hanno effetti positivi sul peso corporeo (Tisdale MJ: Clinical anticachexia treatments. Nutr Clin Pract 2006;21(2):168-74). E’ noto che anche l'ormone della crescita (GH) influenza in modo positivo la massa muscolare, ma la sua efficacia clinica non è stata ancora dimostrata (Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hänlein D, Willenbrock R, Anker SD, Poole-Wilson PA, Ranke MB, Dietz R: Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998; 351(9111):1233-7).
La cachessia è stata trattata con un inibitore della trascrizione genica del TNF (pentossifillina), con anticorpi anti-citochina e antagonisti dei recettori delle citochine. Una citochina anti-infiammatoria/anabolica, quale l'interleuchina-15 (IL-15), ha avuto un ruolo chiave nella diminuzione della degradazione della proteina MHC e della frammentazione del DNA (Muliawati Y, Haroen H, Rotty LW: Cancer anorexia - cachexia syndrome. Acta Med Indones 2012;44(2):154-62).
Un nuovo farmaco sotto sperimentazione di fase 3 è l’Anamorelin, un farmaco anti-anoressia. Questo è un agonista selettivo del recettore selettivo della proteina ghrelin, ad alta affinità per via orale. La proteina ghrelin è il ligando naturale per il suo recettore che usualmente è accoppiato alla proteina G, e quando attivato ha effetti anabolici e stimolanti l'appetito. Questi effetti sono in parte mediati da aumenti transitori dell'ormone della crescita e del fattore di crescita simile all'insulina (IGF-1) (Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016 Apr;17(4):519-531. doi: 10.1016/S1470-2045(15)00558-6. Epub 2016 Feb 20. PubMed PMID: 26906526; Takayama K, Katakami N, Yokoyama T, Atagi S, Yoshimori K, Kagamu H, Saito H, Takiguchi Y, Aoe K, Koyama A, Komura N, Eguchi K. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized phase 2 trial. Support Care Cancer. 2016 Aug;24(8):3495-505. doi: 10.1007/s00520-016-3144-z. Epub 2016 Mar 23. PubMed PMID: 27005463; PubMed Central PMCID: PMC4917578; Currow D, Temel JS, Abernethy A, Milanowski J, Friend J, Fearon KC. ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann Oncol. 2017 Aug 1;28(8):1949-1956. doi: 10.1093/annonc/mdx192. PubMed PMID: 28472437; PubMed Central PMCID: PMC5834076; Graf SA, Garcia JM. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome: design, development, and potential place in therapy. Drug Des Devel Ther. 2017 Aug 7;11:2325-2331. doi: 10.2147/DDDT.S110131. eCollection 2017. Review. PubMed PMID: 28848326; PubMed Central PMCID: PMC5557912; Prommer E. Oncology Update: Anamorelin. Palliat Care. 2017 Aug 21;10:1178224217726336. doi: 10.1177/1178224217726336. eCollection 2017. Review. PubMed PMID: 28855797; PubMed Central PMCID: PMC5570113; Nishie K, Yamamoto S, Nagata C, Koizumi T, Hanaoka M. Anamorelin for advanced non-small-cell lung cancer with cachexia: Systematic review and metaanalysis. Lung Cancer. 2017 Oct;112:25-34. doi: 10.1016/j.lungcan.2017.07.023. Epub 2017 Jul 27. PubMed PMID: 29191597; Katakami N, Uchino J, Yokoyama T, Naito T, Kondo M, Yamada K, Kitajima H, Yoshimori K, Sato K, Saito H, Aoe K, Tsuji T, Takiguchi Y, Takayama K, Komura N, Takiguchi T, Eguchi K. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer. 2018 Feb 1;124(3):606-616. doi: 10.1002/cncr.31128. Epub 2017 Dec 4. PubMed PMID: 29205286; PubMed Central PMCID: PMC5814824.). Da una recente sperimentazione clinica su pazienti giapponesi con carcinoma polmonare non a piccole cellule (NSCLC) è risultato che una somministrazione giornaliera di 100 mg di Anamerolin ha avuto un effetto positivo sulla massa corporea magra (LBM). Questo farmaco è comunque un farmaco anti-anoressia e non agisce direttamente sul muscolo scheletrico (17. Katakami N, Uchino J, Yokoyama T, Naito T, Kondo M, Yamada K, Kitajima H, Yoshimori K, Sato K, Saito H, Aoe K, Tsuji T, Takiguchi Y, Takayama K, Komura N, Takiguchi T, Eguchi K. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer. 2018 Feb 1;124(3):606-616. doi: 10.1002/cncr.31128. Epub 2017 Dec 4. PubMed PMID: 29205286; PubMed Central PMCID: PMC5814824).
Ad oggi, nel recupero della massa magra, il trattamento più efficace sembra essere solo l’esercizio fisico, infatti, alcuni studi hanno suggerito che l'esercizio può rallentare la progressione di diverse forme di tumore e aumentare la sopravvivenza al cancro diminuendo il rischio di recidiva (Courneya KS, Friedenreich CM. Physical activity and cancer control. Semin Oncol Nurs. 2007 Nov;23(4):242-52).
L'esercizio fisico è in grado di ridurre l'espressione di miostatina e citochine da parte del muscolo scheletrico. Può indurre la diminuzione dell'espressione di citochine proinfiammatorie, principalmente di TNF e IL-6 (Smart NA, Steele M: The effect of physical training on systemic proinflammatory cytokine expression in heart failure patients: a systematic review. Congest Heart Fail 2011; 17(3):110-4) e l'espressione di miostatina nel muscolo scheletrico. La componente anabolica dell'allenamento aumenta l'attivazione degli enzimi antiossidanti. L'allenamento di resistenza, inoltre, induce una significativa fosforilazione di mTOR favorendo la sintesi proteica (Lenk K, Erbs S, Höllriegel R, Beck E, Linke A, Gielen S, Winkler SM, Sandri M, Hambrecht R, Schuler G, Adams V: Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol 2012; 19(3):404-11).
Un'attività fisica regolare può migliorare la qualità della vita e ha effetti positivi sulla sopravvivenza di un individuo. Probabilmente l'efficacia dell'allenamento è legata alle cellule staminali adulte (ASC) del tessuto muscolare scheletrico e cardiaco, ma anche alle vie molecolari che si attivano durante l'allenamento.
L'attività fisica e la contrazione regolare del muscolo scheletrico causano un aumento della produzione di specie reattive dell'ossigeno (ROS) e di specie reattive dell'azoto (RNS) (Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1198-205, Balon TW, Nadler JL. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol (1985). 1994 Dec;77(6):2519-21). L'allenamento stimola anche la produzione di enzimi antiossidanti, come la superossido dismutasi manganese-dipendente (MnSOD) (McArdle A, van der Meulen J, Close GL, Pattwell D, Van Remmen H, Huang TT, Richardson AG, Epstein CJ, Faulkner JA, Jackson MJ. Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol. 2004 May;286(5):C1152-8) o fattori di trascrizione come PGC1 alpha, che contribuiscono a rallentare la degenerazione muscolare dovuta alla sarcopenia. L'allenamento con esercizi di resistenza migliora la massa e la forza muscolare aumentando l'area della sezione trasversale delle fibre e il numero di miofibrille (Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012 Mar 1;590(Pt 5):1049-57). Inoltre, l'allenamento induce un aumento della produzione di proteine citotoprotettive, come ad esempio le proteine della famiglia delle heat shock protein (HSPs) (McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 2004 Feb;18(2):355-7).
La proteina Hsp60 è una chaperonina molecolare altamente conservata che svolge un ruolo essenziale nelle cellule e nei tessuti, sia dei procarioti che degli eucarioti. La struttura molecolare dell’Hsp60 è caratterizzata da tre domini, uno apicale, uno intermedio e uno equatoriale. Il dominio intermedio collega il dominio apicale al dominio equatoriale; quest'ultimo fornisce un dominio che lega sia una molecola di ATP o ADP che lo ione Mg2+ (Karlin S., Brocchieri L. (2000): “Heat shock ptotein 60 sequence comparisons: duplications, lateral transfer, and mitocondrial ecolution. Proc Natl Acad Sci USA; 97:11348-11353). Nell'uomo, Hsp60 è il prodotto del gene HSPD1 localizzato sul locus 2q33.1 ed è filogeneticamente correlato al batterio GroEL. Come regola generale, Hsp60 interagisce con un altra Hsp, la sua co-chaperonina Hsp10, determinando la formazione di un efficiente complesso molecolare per il ripiegamento (folding) di altre proteine, cioè per i cosiddetti polipeptidi cliente (Horwich Arthur L., Adrian C. Apetri and Wayne A. Fenton (2009): “The GroEL/GroES cis cavity as a passive anti-aggregation device”; FEBS, 583(16): 2654–2662).
Negli eucarioti, Hsp60 risiede in genere all'interno dei mitocondri. Recentemente è stata anche trovata in siti extramitocondriali, negli esosomi, sfatando il mito della proteina esclusivamente mitocondriale (Cappello F., Conway de Macario E., Marasa L., Zummo G., Macario AJL (2008): “Hsp60 expression, new locations, functions and perspective for cancer diagnosisand therapy”. Cancer Biol Ther; 7:801-809).
Scarsa è la letteratura scientifica inerente l’’espressione di Hsp60 durante l'allenamento; è costitutivamente espressa nel muscolo in proporzione al contenuto mitocondriale e alla sua capacità ossidativa. E’ stato dimostrato che in ratti addestrati con un protocollo di resistenza a 8 settimane, un aumento significativo dei livelli di Hsp60 nel muscolo plantare e nessuna differenza nel muscolo soleo (Mattson John P., Chris R. Ross, J. Lon Kilgore and Timothy I. Musch (2000): “Induction of mitochondrial stress proteins following treadmill running”. Med Sci Sport Exerc; 32, 365-369). E’ stato descritto anche uno studio sull'uomo dopo l'allenamento di resistenza che ha evidenziato che i livelli di Hsp60 nel vasto laterale erano significativamente più alti (25%) in individui allenati rispetto a quelli sedentari (Morton James P., Don P.M. Maclaren, Nigel T. Cable, Iain T. Campbell, Louise Evans, Anna C. Kayani, Anne MCardle, Barry Drust (2008): “Trained Men Display Increased Basal Heat Shock Pr). È stato anche dimostrato che l'aumentata espressione di Hsp60 in topi allenati facilita il trasporto e il ripiegamento delle proteine, inducendo la biogenesi mitocondriale (31. Hood D.A., Takahashi M., Connor M.K., Freyssenet D. (2000): “Assembly of the cellular powerhouse: current issues in mitochondrial biogenesis.” Exerc Sport Sci Rev. 2000; 28:68– 73).
Gli stessi inventori hanno precedentemente evidenziato la presenza di alti livelli di Hsp60 nelle fibre dei muscoli del gruppo posteriore (gastrocnemio, soleo e plantare) dell'arto posteriore dei topi Balb/c dopo aver completato un programma di allenamento progressivo di 6 settimane (Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, Coletti D, Conway de Macario E, Macario AJ, Cappello F, Adamo S, Farina F, Zummo G, Di Felice V. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016 Jan 27;6:19781. doi: 10.1038/srep19781. PubMed PMID: 26812922).
Stato dell’Arte Brevettuale
La domanda di brevetto statunitense n. US2004028692 e la domanda di brevetto internazionale n. WO9903499 descrivono delle vescicole derivate da cellule tumorali o dendritiche che esibiscono sulla loro superfice il complesso maggiore di istocompatibilità e la loro membrana viene caricata con peptidi antigenici, molecole di adesione o molecole che stimolano i linfociti, mentre nella frazione citosolica contengono antigeni tumorali, immunomodulatori, chemio attrattivi, ormoni e acidi nucleici e per esempio la proteina da shock termico hsp70.
La domanda di brevetto internazionale n. WO2016115632 descrive esosomi ingegnerizzati che contengono DNA, RNA mitocontriali o loro trascritti usati per la cura delle malattie mitocontriali dovute a mutazioni geniche.
La domanda di brevetto statunitense n. US5834192 descrive l’uso della proteina umana associata alla chachessia (HCAP) e del relativo cDNA per la diagnosi della cachessia indotta da tumore.
Le domande di brevetto statunitensi n. US20020022036 e n. US20040228925 e la domanda di brevetto internazionale n.
WO0215915 descrivono l’impiego di un derivato dell’urina per trattare la cachessia associata a tumore e HIV.
La domanda di brevetto internazionale n. WO2016120325 un metodo per misurare i livelli di HSP70 nei fluidi corporei.
Stato dell’arte più prossimo all’invenzione
E’ noto che le cellule muscolari secernono nano vescicole tipo esosoma, di dimensioni comprese tra 50 e 100 nm e diametro medio di 80 nm, che germogliano direttamente dalla membrana plasmatica, la cui biogenesi è regolata dalla proteina Alix (Romancino D.P. et al., 2013, FEBS Letters, 587, 1379-1384).
E’ nota la presenza di vescicole extracellulari (esosomi) con diametro medio di 90-99 nm nel terreno di coltura di cellule C2C12 in via di differenziamento, sia normali che trattate con perossido di idrogeno aventi un effetto proliferativo antidifferenziamento, dimostrato da un incremento dei livelli dell’antigene nucleare delle cellule in proliferazione (Proliferating Cell Nuclear Antigen - PCNA), espresso normalmente nelle cellule in divisione e da una diminuzione della catena pesante della miosina (MyHC) (Guescini M, Maggio S, Ceccaroli P, Battistelli M, Annibalini G, Piccoli G, Sestili P, Stocchi V. Extracellular Vesicles Released by Oxidatively Injured or Intact C2C12 Myotubes Promote Distinct Responses Converging toward Myogenesis. Int J Mol Sci. 2017 Nov 22;18(11).
E’ ulteriormente noto il trasporto di miRNA attivi da parte degli esosomi rilasciati da cellule muscolari, evidenziando il ruolo di trasportatori di segnali (Wang H, Wang B. Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep. 2016 Sep;5(3):296-300; Matsuzaka Y, Tanihata J, Komaki H, Ishiyama A, Oya Y, Rüegg U, Takeda SI, Hashido K. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 Myocytes and mdx Mice. PLoS One. 2016 Dec 15;11(12):e0167811).
E’ stato dimostrato in vivo, il rilascio di esosomi contenenti Hsp60, dopo un allenamento acuto, cioè un topo sedentario che si allena per 30 minuti sul cilindro rotante (Rotarod) senza aver mai fatto esercizio fisico. Gli esosomi sono stati isolati dal siero sia di topi allenati che di topi sedentari di controllo, 15 minuti dopo la fine dell’esercizio fisico, dopo 15 minuti dal termine dell’esercizio fisico gli esosomi isolati dal siero contenevano molta più Hsp60(Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, Coletti D, Conway de Macario E, Macario AJ, Cappello F, Adamo S, Farina F, Zummo G, Di Felice V. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016 Jan 27;6:19781. doi: 10.1038/srep19781. PubMed PMID: 26812922).
Problema tecnico
Come si evince dall’arte nota è di notevole interesse la cura della cachessia che fino ad oggi non dispone di prodotti farmacologici efficaci per il suo trattamento poiché non sono disponibili in commercio principi attivi in grado di contrastare la riduzione della massa magra. I farmaci disponibili agiscono essenzialmente sull’aumento dell’appetito e del benessere generale del paziente e quindi l’unico rimedio efficace rimane l’attività fisica, che però nei pazienti con patologie invalidanti non può essere messa in atto.
Il problema tecnico che si prefissa la presente invenzione di risolvere è quello di fornire un farmaco per il trattamento della cachessia che sia in grado di stimolare il recupero della massa magra agendo direttamente sulla fisiologia del muscolo al pari dell’attività fisica.
Sebbene sia noto che Hsp60, che risiede principalmente nei mitocondri, è costitutivamente espressa nel muscolo e in topi viene rilasciata in esosomi, dopo allenamento, ad oggi non è stato possibile sfruttare queste conoscenze in campo farmacologico.
Gli inventori della presente invenzione, alla luce di quanto noto nell’arte, hanno investigato la possibilità di isolare da determinate linee cellulari muscolari vescicole extracellulari che contengono una maggiore quantità di una proteina da shock termico.
Gli stessi inventori hanno pertanto elaborato un metodo per la produzione delle proteine da shock termico che sono capaci di influenzare la funzionalità muscolare e, pertanto in grado di, contrastare i fenomeni più comuni di danno muscolare, quali la cachessia e la sarcopenia.
In particolare, gli stessi inventori hanno verificato che il secreto delle cellule così trasfettate induce un incremento di PGC1 alpha, e della sua isoforma 1, effetto riscontrato anche per Hsp60, inoltre detto effetto è risultato indipendente dalle specie.
Oggetto dell'invenzione
Con riferimento alle rivendicazioni allegate, il problema tecnico viene pertanto risolto fornendo un processo per la produzione di vescicole contenenti una proteina da shock termico comprendente i seguenti stadi:
a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura;
b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico;
c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b);
d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione;
e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura;
f) Raccolta del mezzo di coltura condizionato delle cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e);
g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico .
Un ulteriore oggetto della presente invenzione sono vescicole contenenti proteine da shock termico ottenute mediante un processo comprendente i seguenti stadi:
a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura;
b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico;
c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b);
d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione;
e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura;
f) Raccolta del mezzo di coltura condizionato dalle cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e);
g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico .
Un ulteriore oggetto della presente invenzione sono delle vescicole contenenti proteine da shock termico ottenute con dette procedimento per uso come medicamento.
Un ulteriore oggetto della presente invenzione sono delle vescicole contenenti proteine da shock termico ottenute con dette procedimento per uso per il trattamento della atrofia muscolare o sarcopenia.
Un ulteriore oggetto della presente invenzione sono le vescicole contenenti proteine da shock termico per uso per il trattamento della cachessia.
Un ulteriore oggetto della presente invenzione sono composizioni farmaceutiche comprendenti proteine da shock termico ottenute mediante il suddetto processo e additivi farmaceuticamente accettabili.
Ulteriori caratteristiche della presente invenzione saranno evidenti dalla descrizione dettagliata che segue, con riferimento ai dati sperimentali riportati e alle figure allegate.
Breve descrizione delle figure
La figura 1 mostra in grafico l’espressione genica delle isoforme di PGC1α, totale e isoforma 1(α1) valutate per mezzo di PCR in tempo reale normalizzata per il gene di riferimento, secondo il metodo Livak, in cellule C2C12 trasfettate con vettore pCMV-6 vuoto e pCMV-6-Entry-HSPD1.
La figura 2 mostra in grafico l’espressione genica delle isoforme di PGC1α, totale e isoforma 1(α1) valutate per mezzo di PCR in tempo reale normalizzata per il gene di riferimento, secondo il metodo Livak, in cellule C2C12 trattate con diverse concentrazioni di hrHp60 e non trattate.
Descrizione dettagliata dell'invenzione
Definizioni
Nell’ambito della presente invenzione, per linee cellulari di cellule mioblastiche immortalizzate si intende linee cellulari derivate da colture primarie di cellule mioblastiche trattate in modo tale da essere mantenute in coltura per un tempo indefinito.
Le cellule mioblastiche sono scelte nel gruppo consistente di mioblasti, cellule satelliti del muscolo scheletrico, cellule staminali del muscolo scheletrico, cellule indifferenziate del muscolo scheletrico.
Le linee cellulari di cellule muscolari immortalizzate sono scelte nel gruppo consistente di: C2C12 (mioblasti immortalizzati di topo, Mus Musculus), L6 (mioblasti di ratto, Rattus Norvegicus), Sol8 (mioblasti di topo, Mus Musculus) G-8 (mioblasti di topo, Mus Musculus), GIBCO® Human Skeletal Myoblasts (mioblasti umani, Homo Sapiens), HSkMC (mioblasti umani da adulto, Homo Sapiens, T0033 abm (mioblasti umani immortalizzati con SV40 large T antigen, C12N5/0658 (mioblasti umani immortalizzati).
Nell’ambito della presente invenzione, per proteine da shock termico si intendono proteine ubiquitarie che vengono sintetizzate dalle cellule quando esposte ad elevate temperature oppure ad alte condizioni di stress, come per esempio stress ipossico, stress chimico, stress da raggi UV, la cui funzione è di protezione nei confronti dei danni cellulari preservando in particolare il corretto ripiegamento delle proteine. Le proteine appartenenti alla classe delle proteine da shock termico sono classificati in base al loro peso molecolare, come per esempio Hsp-90, Hsp-75, Hsp-60, Hsp-10, Hsp-27, Hsp-70.
Nell’ambito della presente invenzione, per etichetta (tag) si intende una breve sequenza nucleotidica o amminoacidica inserita artificialmente nelle vicinanze o adiacente ad una sequenza di interesse affinché essa possa essere selezionata ed identificata per mezzo di cromatografia o fluorescenza. Le etichette utilizzabili nell’ambito della presente invenzione sono: tag, Myc tag, DDK-tag, FLAG, His.
Nell’ambito della presente invenzione, per trasformazione si intende l’insieme di metodiche che permettono di inserire all’interno di batteri competenti DNA esogeno eterologo, mediante procedimenti chimici, come per esempio trattamento con cloruro di calcio, o fisici, come per esempio elettroporazione, al fine di produrre un determinata proteina in grandi quantità.
Nell’ambito della presente invenzione, per batteri competenti si intende i batteri in grado di acquisire DNA esogeno eterologo nel processo di trasformazione, i batteri impiegabili nel procedimento sono:, XL10 Gold, H5 alpha, XL-Blue.
Nell’ambito della presente invenzione, per enzimi di restrizione si intende la famiglia di deossiribonucleasi che catalizzano il taglio endonucleolitico del DNA in specifiche sequenze bersaglio; gli enzimi di restrizione impiegabili nel procedimento sono: EcoRI, BamHI, KpnI, SgfI, AscI, Hind III, Nhe I, Rsr II, Mlu I, Not I, Xho I.
Nell’ambito della presente invenzione, per mezzo di coltura opportuno si intende qualsiasi mezzo per la coltura cellulare, cioè una soluzione isotonica e tamponata in grado di fornire tutte le sostanze fondamentali per la sopravvivenza delle cellule, che sia caratterizzato da elevata concentrazione di siero e una elevata concentrazione di glucosio. Dove per elevata concentrazione di siero si intende che il siero è presente in una percentuale maggiore del 10% rispetto al totale della soluzione, preferibilmente in una percentuale compresa tra il 15 e il 20% rispetto al totale della soluzione. Per siero si intende siero fetale bovino BFS, siero fetale di vitello CFS. Per elevata concentrazione di glucosio si intende una quantità di glucosio di almeno 4000 grammi per litro di soluzione. Terreni che hanno le suddette caratteristiche sono: Dulbecco’s Modified Eagles’s Medium, Dulbecco Modified Eagles’s Medium (DMEM) con il 15% di FBS e (4500 mg/L); Dulbecco’s Modified Eagles’s Medium, Dulbecco Modified Eagles’s Medium (DMEM) con il 5% di HS e (4500 mg/L), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12).
Nell’ambito della presente invenzione, per mezzo di coltura condizionato si intende il mezzo di coltura che contiene principi attivi rilasciati da cellule in esso coltivate e che possono esercitare il loro effetto su ulteriori colture cellulari in essi coltivate, per esempio sono condizionati nel contenere fattori di crescita, proteine da shock termico, interleuchine, in forma libera o contenuti in vescicole o esosomi, rilasciati dalle cellule, poiché li producono naturalmente o in seguito a trasfezione.
Nell’ambito della presente invenzione per atrofia muscolare o sarcopenia si intende la riduzione o perdita di massa muscolare.
Nell’ambito della presente invenzione per cachessia o sindrome da deperimento si intende la condizione di perdita di peso, atrofia muscolare, stanchezza, debolezza e significativa perdita di appetito correlata a condizioni patologiche non dovute all’anoressia.
Nell’ambito della presente invenzione l’atrofia muscolare o sarcopenia e la cachessia possono essere correlate a cancro, sclerosi laterale amiotrofica, sclerosi multipla, distrofia muscolare, neuropatia, poliomielite, atrofia muscolare spinale, sindrome da immunodeficienza acquisita (AIDS), insufficienza cardiaca congestizia, broncopneumopatia cronica ostruttiva (BPCO), insufficienza renale, malattie infiammatorie croniche del muscolo, anoressia.
Nell’ambito della presente invenzione tra le malattie infiammatorie croniche del muscolo o miopatie infiammatorie si comprendono dermatomiosite, polimiosite, miopatia autoimmune necrotizzante, miosite a corpi inclusi, miosite sporadica miosite focale, miosite granulomatosa, miofascite.
Il processo per la produzione di vescicole contenenti proteine da shock termico della presente invenzione comprendente i seguenti stadi:
a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura;
b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico;
c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b);
d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione;
e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura;
f) Raccolta del mezzo di coltura condizionato dalle cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e);
g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico.
Un ulteriore oggetto della presente invenzione sono vescicole contenenti proteine da shock termico ottenute mediante un processo comprendente i seguenti stadi:
a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura;
b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico;
c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b);
d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione;
e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura;
f) Raccolta del mezzo di coltura condizionato dalle cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e);
g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico.
Opzionalmente dopo lo stadio e) e prima dello stadio f) è presente uno stadio addizionale e’) in cui le cellule sono ulteriormente selezionate mediante resistenza ad antibiotico.
Preferibilmente la proteina da shock termico è scelta nel gruppo consistente di Hsp-90, Hsp-75, Hsp-60, Hsp-10, Hsp-27, Hsp-70.
La proteina da shock termico può essere derivante da qualsiasi specie, preferibilmente la proteina da shock termico è umana o murina.
Preferibilmente la proteina da shock termico è mitocondriale.
Preferibilmente la proteina da shock termico è Hsp-60, più preferibilmente è Hsp-60 mitocondriale, ancora più preferibilmente è : Hsp-60 variante 1.
In una forma di realizzazione la sequenza della proteina da shock termico è SEQ.ID.NO.1:
MLRLPTVLRQMRPVSRALAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTV IIEQSWGSPKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIA KEGFEKISKGANPVEIRRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKDIGNII SDAMKKVGRKGVITVKDGKTLNDELEIIEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSE KKISSVQSIVPALEIANAHRKPLVIIAEDVDGEALSTLVLNRLKVGLQVVAVKAPGFGDNRK NQLKDMAIATGGAVFGEEGLNLNLEDVQAHDLGKVGEVIVTKDDAMLLKGKGDKAHIEKRIQ EITEQLDITTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDRVTDALNATRAAVEE GIVLGGGCALLRCIPALDSLKPANEDQKIGIEIIKRALKIPAMTIAKNAGVEGSLIVEKILQ SSSEVGYDAMLGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEAVVTEIPKEEKDPGM GAMGGMGGGMGGGMF
Preferibilmente le cellule mioblastiche sono scelte nel gruppo consistente di mioblasti, cellule satelliti del muscolo scheletrico, cellule staminali del muscolo scheletrico, cellule indifferenziate del muscolo scheletrico.
Preferibilmente la linea cellulare di cellule muscolari immortalizzate è scelta nel gruppo consistente di: C2C12 (mioblasti immortalizzati di topo, Mus Musculus), L6 (mioblasti di ratto, Rattus Norvegicus), Sol8 (mioblasti di topo, Mus Musculus) G-8 (mioblasti di topo, Mus Musculus), GIBCO® Human Skeletal Myoblasts (mioblasti umani, Homo Sapiens), HSkMC (mioblasti umani da adulto, Homo Sapiens, T0033 abm (mioblasti umani immortalizzati con SV40 large T antigen, C12N5/0658 (mioblasti umani immortalizzati).
Più preferibilmente la linea cellulare di cellule muscolari immortalizzate è la linea C2C12 di mioblasti immortalizzati di topo.
Preferibilmente il mezzo di coltura è qualsiasi mezzo per la coltura cellulare contenente una elevata concentrazione di siero e una elevata concentrazione di glucosio.
Più preferibilmente il siero è presente nel mezzo di coltura in una percentuale maggiore del 10% rispetto al totale della soluzione, ancora più preferibilmente in una percentuale compresa tra il 15 e il 20% rispetto al totale della soluzione.
Preferibilmente il siero è scelto nel gruppo consistente di siero fetale bovino BFS, siero fetale di vitello CFS.
Preferibilmente il glucosio è presente nel mezzo di in una quantità di almeno 4000 grammi per litro di soluzione.
Preferibilmente il terreno di coltura è scelto nel gruppo consistente di Dulbecco’s Modified Eagles’s Medium, Dulbecco Modified Eagles’s Medium (DMEM) con il 15% di FBS e (4500 mg/L); Dulbecco’s Modified Eagles’s Medium, Dulbecco Modified Eagles’s Medium (DMEM) con il 5% di HS e (4500 mg/L), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12).
Il mezzo di coltura può essere addizionato con un antibiotico, in base alla selezione che deve essere operata sia nella preparazione del vettore che nella selezione delle cellule trasfettate.
Preferibilmente l’antibiotico è scelto nel gruppo consistente di geneticina, neomicina, kanamicina, tetraciclina, cloranfenicolo, penicillina, streptomicina o miscela degli stessi.
Preferibilmente nello stadio b) la sequenza che conferisce resistenza ad un antibiotico, conferisce resistenza a geneticina, neomicina, più preferibilmente neomicina.
Preferibilmente nello stadio b) il vettore plasmidico è preparato amplificandolo mediante trasformazione batterica .
Preferibilmente nello stadio b) il vettore plasmidico è preparato amplificandolo mediante trasformazione batterica in un batterio scelto nel gruppo consistente di: E. Coli, XL-10 Gold, DH5 alpha.
Più preferibilmente il vettore plasmidico è preparato amplificandolo mediante trasformazione batterica in E.Coli resistente alle tetracicline e al cloramfenicolo.
Preferibilmente nello stadio c) la trasfezione è svolta mediante elettroporazione.
Preferibilmente nello stadio e’) la selezione è svolta mediante addizione nel mezzo di coltura di kanamicina.
Preferibilmente nello stadio g) le vescicole sono isolate mediante centrifugazioni successive che prevedono una prima centrifugazione per eliminare eventuali cellule presenti nel mezzo di coltura, una seconda centrifugazione per eliminare eventuali cellule morte presenti nel mezzo di coltura, una terza centrifugazione per eliminare eventuali ulteriori detriti cellulari e microparticelle presenti nel mezzo di coltura seguite da almeno due ultracentrifugazioni successive ad ottenere un precipitato che viene infine risospeso in un tampone opportuno.
Preferibilmente nello stadio g) la prima centrifugazione è svolta ad una velocità compresa tra 300 e 350 g per un tempo compreso tra 10 e 15 minuti ed a una temperatura compresa tra 4 e 6 °C.
Più preferibilmente la prima centrifugazione è svolta a 300 g per 10 min 4 ° C.
Preferibilmente nello stadio g) la seconda centrifugazione è svolta ad una velocità compresa tra 1800 e 2000g per un tempo compreso tra 10 e 15 minuti ed a una temperatura compresa tra 4 e 6 °C.
Più preferibilmente la seconda centrifugazione è svolta a 2.000 g per 10 minuti 4 ° C.
Preferibilmente nello stadio g) la terza centrifugazione è svolta ad una velocità compresa tra 15000 e 16000 g per un tempo compreso tra 40 e 45 minuti ed a una temperatura compresa tra 4 e 6°C.
Più preferibilmente la terza centrifugazione è svolta a 15.000 g per 45 minuti 4 ° C.
Preferibilmente nello stadio g) la prima ultracentrifugazione è svolta ad una velocità compresa tra 110000 e 113000g per un tempo compreso tra 120 e 180 minuti ed a una temperatura compresa tra 4 e 6°C.
Più preferibilmente nello stadio g) la prima ultracentrifugazione è svolta a 110.000 g per 2h 4 ° C.
Preferibilmente nello stadio g) la seconda ultracentrifugazione è svolta ad una velocità compresa tra 110000 e 113000 g per un tempo compreso tra 120 e 180 minuti ed a una temperatura compresa tra 4 e 6°C.
Più preferibilmente nello stadio g) la seconda ultracentrifugazione è svolta a 110.000 g per 2h 4 ° C.
Preferibilmente nello stadio g) il precipitato è sospeso in una soluzione tampone per analisi western blotting o tampone RIPA.
Un ulteriore oggetto della presente invenzione sono le vescicole contenenti proteine da shock termico per uso come medicamento.
Un ulteriore oggetto della presente invenzione sono le vescicole contenenti proteine da shock termico per uso per il trattamento della atrofia muscolare o sarcopenia.
Un ulteriore oggetto della presente invenzione sono le vescicole contenenti proteine da shock termico per uso per il trattamento della cachessia.
Preferibilmente l’atrofia muscolare o sarcopenia e la cachessia possono essere correlate a cancro, sclerosi laterale amiotrofica, sclerosi multipla, distrofia muscolare, neuropatia, poliomelite, atrofia muscolare spinale, sindrome da immunodeficienza acquisita (AIDS), insufficienza cardiaca congestizia, broncopneumopatia cronica ostruttiva (BPCO), insufficienza renale, malattie infiammatorie croniche del muscolo, anoressia, neuropatia brachiale, ictus, emorragia cerebrale.
Preferibilmente le malattie infiammatorie croniche del muscolo o miopatie infiammatorie sono scelte nel gruppo consistente di dermatomiosite, polimiosite, miopatia autoimmune necrotizzante, miosite a corpi inclusi, miosite sporadica miosite focale, miosite granulomatosa, miofascite.
Un ulteriore oggetto della presente invenzione sono le composizioni farmaceutiche comprendenti come principio attivo vescicole contenenti proteine da shock termico e opportuni eccipienti farmacologicamente accettabili.
Preferibilmente le vescicole contenenti proteine da shock termico hanno un diametro compreso tra 50 e 100 nm, più preferibilmente di diametro compreso tra 90 e 99 nm, ancora più preferibilmente di diametro pari a 80 nm.
l’esperto del settore sarà in grado di selezionare opportuni gli eccipienti farmacologicamente accettabili che tra quelli noti nel settore della farmacologia in base alla forma farmaceutica della composizione.
In una forma preferita di realizzazione della presente invenzione il processo permette la preparazione di vescicole contenenti Hsp60 mediante gli stadi in cui cellule C2C12 sono coltivate in DMEM con una alta concentrazione di glucosio con 2 mM di glutammina, sodio piruvato, siero bovino fetale al 15%, penicillina e streptomicina a 37 ° C in atmosfera umidificata con 5% di CO2 senza giungere a confluenza. La proteina Hsp60 è sovraespressa mediante vettore plasmidico pCMV-6-Entry-HSPD1. Il plasmide è amplificato mediante trasformazione in batteri competenti XL10-Gold. Le cellule C2C12 sono trasfettate mediante elettroporazione, e coltivate in mezzo di coltura condizionato. Le vescicole similesosomiali sono purificare dai terreni in cui sono stati coltivati i mioblasti, raccogliendo il mezzo di coltura e sottoponendolo a una prima centrifugazione a 300 g per 10 min 4 ° C per rimuovere le cellule; una seconda centrifugazione a 2.000 g per 10 minuti 4 ° C per rimuovere le cellule morte; una terza centrifugazione a 15.000 g per 45 minuti 4 ° C per eliminare detriti cellulari e microparticelle, il supernatante è infine ultracentrifugato a 110.000 g per 2h 4 ° C, lavato con PBS freddo e ultracentrifugato nuovamente a 110.000 g, 2h 4 ° C e il precipitato finale risospeso in 80 μl di tampone RIPA.
Esempi
Culture cellulari: cellule C2C12 (mioblasti di muscolo di topo C3H, Cat. 91031101, ATCC - CRL1772, Sigma-Aldrich - Merck, Germania), sono stati coltivati in DMEM con una alta concentrazione di glucosio con 2 mM di glutammina e sodio piruvato (DMEM, Cat. N. 41966052 , Gibco - Thermo Fisher Scientific, Waltham, USA) integrato con siero bovino fetale al 15% (FBS, Cat. 16000044, Gibco - ThermoFisher, Waltham, USA), penicillina e streptomicina (soluzione antibioticoantimicotica, Cat. N. 15240062 , Gibco - ThermoFisher, Waltham, USA) a 37 ° C in atmosfera umidificata con 5% di CO2.
Le colture semi-confluenti venivano divise in sub-colture con un fattore di diluizione da 1: 3 a 1: 6, cioè seminate a 1-2x1,000 cellule/cm2 utilizzando tripsina allo 0,25% in DPBS senza calcio e magnesio (DPBS, Cat. 14190094, Gibco -ThermoFisher, Waltham, USA ) e 5% di CO2 a 37 ° C. Alle cellule non è stato permesso di raggiungere la confluenza.
Trasformazione dei plasmidi e dei batteri: per sovra-esprimere la proteina Hsp60 è stato utilizzato il vettore plasmidico pCMV-6-Entry con il gene HSPD1 (pCMV-6-Entry-HSPD1, codice MR222671, Origene Inc., Rockville, Maryland, USA). La proteina risultante è una proteina di fusione tra Hsp60 e le etichette (tags) Myc-DDK (Hspd1 - Myc-DDK-tagged). La sequenza HSPD1 utilizzata per creare il vettore è quella pubblicata con il numero di accesso NM_010477, https://www.ncbi.nlm.nih.gov/nuccore/NM_010477 nel database del Centro nazionale per le informazioni biotecnologiche (NIH).
SEQ. ID NO. 2: Myc-DDK
ACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGA TTACAAGGATGACGACGATAAG
SEQ.ID.NO. 3 sequenza del vettore plasmidico pCMV-6-Entry-HSPD1:
AACAAAATATTAACGCTTACAATTTCCATTCGCCATTCAGGCTGCGCAACTGTTGGG AAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCA AGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAG TGCCAAGCTGATCTATACATTGAATCAATATTGGCAATTAGCCATATTAGTCATTGGTTATA TAGCATAAATCAATATTGGCTATTGGCCATTGCATACGTTGTATCTATATCATAATATGTAC ATTTATATTGGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGACTAGTTATTA ATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAAC TTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATG ACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTT ACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTG ACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTT CCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCA GTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTG ACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAATAAC CCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGC TCGTTTAGTGAACCGTCAGAATTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTC GACTGGATCCGGTACCGAGGAGATCTGCCGCCGCGATCGCCATGCTTCGACTACCCACAGTC CTTCGCCAGATGAGACCAGTGTCCCGGGCACTGGCTCCTCATCTCACTCGGGCCTATGCCAA AGATGTAAAATTTGGTGCGGACGCTCGAGCCTTAATGCTTCAAGGTGTAGACCTTTTAGCAG ATGCTGTAGCTGTTACAATGGGGCCAAAGGGAAGAACTGTGATTATTGAACAGAGTTGGGGA AGTCCCAAAGTAACAAAAGATGGGGTCACTGTTGCAAAGTCAATTGATTTAAAGGATAAATA CAAAAATATTGGAGCTAAACTTGTTCAGGACGTTGCCAATAACACAAACGAAGAGGCTGGGG ATGGCACCACCACTGCCACTGTTCTGGCACGATCTATTGCCAAGGAGGGCTTTGAGAAGATC AGCAAAGGGGCTAATCCAGTGGAAATCCGGAGAGGTGTGATGTTGGCTGTGGATGCTGTAAT TGCTGAACTTAAGAAACAGTCTAAACCTGTGACAACCCCTGAAGAAATTGCTCAGGTTGCTA CAATTTCTGCAAATGGAGACAAAGACATTGGGAACATCATTTCTGATGCAATGAAAAAGGTT GGAAGAAAGGGTGTCATCACAGTGAAGGATGGAAAAACCCTGAATGATGAGCTAGAAATTAT TGAAGGCATGAAGTTTGATAGAGGATATATTTCCCCGTATTTTATTAACACATCAAAAGGTC AAAAGTGTGAATTCCAAGATGCCTATGTCTTGTTGAGTGAAAAGAAAATTTCCAGTGTTCAG TCCATTGTCCCTGCTCTTGAAATTGCTAATGCTCATCGGAAGCCATTGGTCATAATCGCCGA AGACGTTGACGGAGAAGCTCTAAGCACGCTGGTTTTGAACAGGCTAAAAGTTGGTCTTCAGG TTGTGGCAGTCAAAGCTCCAGGATTTGGGGACAATAGGAAGAACCAGCTTAAAGATATGGCT ATTGCTACTGGTGGTGCAGTGTTTGGAGAAGAGGGGTTGAATCTAAATCTTGAAGATGTTCA AGCTCATGACTTAGGAAAAGTTGGGGAGGTCATTGTCACCAAAGATGATGCCATGCTTTTGA AAGGAAAAGGTGACAAAGCTCACATTGAAAAACGTATTCAAGAAATCACTGAGCAGCTAGAC ATCACAACTAGTGAATATGAAAAAGAAAAGCTGAACGAGCGACTTGCTAAACTTTCAGATGG AGTAGCTGTGTTGAAGGTTGGAGGAACAAGTGATGTTGAAGTGAATGAGAAAAAAGACAGAG TTACTGATGCTCTCAATGCTACAAGAGCAGCTGTTGAAGAAGGCATTGTTCTAGGAGGGGGC TGCGCTCTGCTTCGGTGCATCCCAGCCTTGGATTCATTAAAGCCTGCTAATGAAGACCAGAA AATAGGTATAGAAATTATTAAAAGAGCACTTAAAATTCCTGCAATGACGATTGCTAAGAATG CAGGTGTTGAAGGATCTTTGATAGTTGAGAAAATTCTGCAGAGTTCCTCAGAAGTTGGTTAT GACGCCATGCTTGGAGATTTTGTGAACATGGTGGAAAAAGGGATCATTGATCCAACAAAGGT TGTGAGAACTGCCTTACTGGATGCTGCTGGGGTGGCCTCCTTGCTAACTACAGCCGAAGCTG TAGTGACAGAAATTCCTAAAGAAGAGAAGGACCCTGGAATGGGTGCAATGGGTGGCATGGGA GGGGGTATGGGAGGCGGCATGTTCACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGA AGAGGATCTGGCAGCAAATGATATCCTGGATTACAAGGATGACGACGATAAGGTTTAAACGG CCGGCCGCGGTCATAGCTGTTTCCTGAACAGATCCCGGGTGGCATCCCTGTGACCCCTCCCC AGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAAAT TAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTG GTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACC AAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGA TTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAA TTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTA ATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTG CTCCCTTCCCTGTCCTTCTGATTTTAAAATAACTATACCAGCAGGAGGACGTCCAGACACAG CATAGGCTACCTGGCCATGCCCAACCGGTGGGACATTTGAGTTGCTTGCTTGGCACTGTCCT CTCATGCGTTGGGTCCACTCAGTAGATGCCTGTTGAATTGGGTACGCGGCCAGCGGCGAGCG GTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAA GAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGT TTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG CGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTC TCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGG CGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTG GGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCT TGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTA GCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC ACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGT TGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGC AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCT GACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT CTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGT AACCTGAGGCTATGGCAGGGCCTGCCGCCCCGACGTTGGCTGCGAGCCCTGGGCCTTCACCC GAACTTGGGGGGTGGGGTGGGGAAAAGGAAGAAACGCGGGCGTATTGGCCCCAATGGGGTCT CGGTGGGGTATCGACAGAGTGCCAGCCCTGGGACCGAACCCCGCGTTTATGAACAAACGACC CAACACCGTGCGTTTTATTCTGTCTTTTTATTGCCGTCATAGCGCGGGTTCCTTCCGGTATT GTCTCCTTCCGTGTTTCAGTTAGCCTCCCCCTAGGGTGGGCGAAGAACTCCAGCATGAGATC CCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCAT AGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATT TCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGC GAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTC TTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGATCCGCCACACCCAGCCGGC CACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCG CCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTC GGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCA TCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGA TCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAG GTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTT CAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGC GCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGG GCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCC AGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGT TCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCGATCTTTGCAAAAGCCTAGGCCTC CAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGAGGCGGCCTCGGCCTCTGCA TAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGG CGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTGCA TACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGATGC ATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACAC ATTCCACAGCTGGTTCTTTCCGCCTCAGGACTCTTCCTTTTTCAATATTATTGAAGCATTTA TCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAG GGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGCGCCCTGTAGCGGCGCATTAAGC GCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGC TCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAA ATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTT GATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTA TCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAAT GAGCTGATTTAACAAAAATTTAACGCGAATTTT
In caratteri normali l’ossatura del vettore, in neretto il
sito di clonazione utilizzato da Origene per clonare il gene
HSPD1, sottolineato il tag Myc-DDK (sequenza etichetta).
Il plasmide è stato amplificato mediante trasformazione in batteri competenti XL10-Gold (Cat. N, 200315, tecnologie Agilent, Santa Clara, California, USA) mancanti di tutti gli enzimi di restrizione noti [D (mcrA) 183 D (mcrCB-hsdSMR-mrr 173] e di endonucleasi (endA), secondo il manuale di istruzione del produttore.
Un'aliquota di 100 μl di cellule è stata delicatamente miscelata, in una provetta pre-refrigerata, con 4 μl di beta-Mercaptoetanolo forniti dal produttore. I batteri incubati su ghiaccio per 10 minuti sono stati agitati delicatamente ogni 2 minuti, 50 ng di p-CMV-6-Entry-HSPD1 o il controllo negativo (pCMV6-Entry vuoto, vettore per cellule eucariotiche con tag Myc-DDK C-terminal, MOCK, pCMV-6-Entry vector, Cat. PS100001, Origene Inc., Rockville, Maryland, USA) sono stati aggiunti all’aliquota di batteri.
Le fiale sono state incubate su ghiaccio per 30 minuti, dopo di che i batteri sono stati sottoposti ad un impulso di 30 secondi a 42°C seguito da un'incubazione su ghiaccio per 2 minuti. Dopo l'incubazione, a ciascuna fiala sono stati aggiunti 0,9 ml di LB-brodo preriscaldato (42 ° C) (LB-broth, L3397, Sigma.aldrich - Merck, Saint Louis, Missouri, USA) e sono stati incubati a 37 ° C per 1 ora con agitazione a 225-250 giri / min.
Duecento microlitri della miscela di trasformazione sono stati piastrati su piastre di agar LB contenenti Kanamycin 50 μm /ml (Cat. 11815-024, Gibco - Thermo Fisher Scientific, Waltham, Massachusetts, USA) e incubate a 37 ° C per una notte.
Le colonie cresciute durante la notte e selezionate con antibiotico, sono state selezionate per inoculare 200 ml di brodo LB con 50 μg/ml di Kanamicina che è stato a sua volta incubato per una notte a 37 ° C in agitazione. Da questa coltura batterica, il DNA plasmidico è stato estratto utilizzando il QIAGEN Plasmid Maxi Kit® (Cat. 12163, Qiagen, Hilden, Germania) seguendo le istruzioni del produttore. Il precipitato di DNA è stato lavato due volte con etanolo al 70% e sciolto in 500 μl di tampone TE fornito con il kit, secondo il protocollo del produttore. Il DNA è stato quantificato utilizzando Nanodrop ND-2000 (Nanodrop, Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Trasfezione: le cellule C2C12 sono state trasfettate utilizzando l'electroporatore Neon Transfection System (Thermo Fisher Scientific, Waltham, Massachusetts, USA) secondo le istruzioni del produttore, utilizzando il sistema di trasfezione Neon da 100 μl (Cat. n. MPK10025, Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Le cellule C2C12 sono state piastrate 1 giorno prima della trasfezione in piastre da 6 pozzetti (5x10<4 >cellule/pozzetto).
Il giorno della trasfezione le cellule erano confluenti al 70-90%. Le cellule sono state staccate con DPBS senza calcio e magnesio e con il 10% di tripsina/EDTA (Cat. n. 15400054, Gibco - Thermo Fisher Scientific, Waltham, Massachusetts, USA). Per campione sono state utilizzate 60.000 cellule, 36 μg di DNA concentrato, 100 μl di tampone R, 1650 impulsi di tensione, 10 ms di ampiezza dell'impulso, 2 impulsi, secondo le istruzioni del produttore. Dopo l'elettroporazione le cellule sono state piastrate in piastre da 6 pozzetti con terreno completo DMEM senza antibiotico/anti-micotico.
Tre giorni dopo la trasfezione le cellule sono state piastrate su vetrini con camera per l'analisi confocale (5.000 cellule/pozzetto) e in piastre da 6 pozzetti (50.000 cellule/pozzetto). Dopo 24 ore le cellule per l'immunofluorescenza sono state fissate in metanolo freddo e per l'estrazione di RNA sono state lisate direttamente nel pozzetto con 500 μl di Tri-Reagent (Cat. n. 93289, Sigma-Aldrich - Merck, Saint Louis, Missouri, USA).
Trattamento con mezzo condizionato: Tre giorni dopo la trasfezione, il terreno di coltura delle cellule è stato cambiato con terreno fresco e pulito. Dopo 24 ore il terreno è stato raccolto e metà di esso è stato diluito 1:2 con DPBS e messo in piastre da 6 pozzetti con 50.000 cellule / pozzetto, per vedere l'effetto dei fattori rilasciati nel mezzo dalle cellule trasfettate. L'RNA, per eseguire la Real-Time PCR, è stato estratto 6 ore dopo l'inizio del trattamento. Una HSP60 ricombinante umana prodotta nel nostro laboratorio è stata usata come controllo, negli esperimenti di trattamento delle C2C12 e per la Real-Time PCR.
Isolamento RNA totale: l’RNA totale delle cellule trattate con terreno condizionato è stato estratto utilizzando il Tri-Reagent (Cat. n. 93289, Sigma-Aldrich - Merck, Saint Louis, Missouri, USA) secondo le istruzioni del produttore. Le concentrazioni dell’RNA dei campioni sono state calcolate con il Nanodrop ND-2000 (Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Analisi quantitativa RT-PCR: la trascrizione inversa è stata effettuata utilizzando il kit ImProm-II (A3800, Promega, Madison, Wisconsin, USA) secondo le istruzioni del produttore. L’analisi qRT–PCR è stata effettuata utilizzando la GoTaq qPCR Master Mix (A6001, Promega, Madison, Wisconsin, USA). I livelli di mRNA sono stati normalizzati a quelli di GAPDH. Le variazioni del livello di trascrizione sono state calcolate usando il metodo 2^-ΔΔCT. L'acido desossiribonucleico complementare (cDNA) è stato amplificato utilizzando gli iniziatori (primer) da SEQ. ID N. 4 A 9. Il cDNA è stato amplificato utilizzando il Rotor-gene™ 6000 Real-Time PCR Machine (Qiagen, Hilden, Germany). la coppia di iniziatori denominate PGC1 alpha tot, riconoscono tutte le isoforme di PGC1 alpha, poiché amplificano un dominio comune a tutte le isoforme note di PGC1 alpha.
SEQ.ID.NO. 4 PGC1 tot- Forward (in Avanti)
5’-TGATGTGAATGACTTGGATACAGACA-3’
SEQ.ID.NO. 5 PGC1 tot- Reverse (contrario)
Entrambi disponibili in PubMed PMID: 23217713
5’-GCTCATTGTTGTACTGGTTGGATATG-3’
SEQ.ID.NO. 6 PGC1 a1- Forward (in Avanti)
5’-GGACATGTGCAGCCAAGACTCT-3’
SEQ.ID.NO. 7 PGC1 a1- Reverse (contrario)
5’-CACTTCAATCCACCCAGAAAGCT-3
Entrambi disponibili in PubMed PMID: 23217713
SEQ.ID.NO. 8 GADPH_Mus - Forward (in Avanti)
5'-CAAGGACACTGAGCAAGAGA-3
SEQ.ID.NO. 9 GADPH_Mus - Reverse (contrario)
5'-GCCCCTCCTGTTATTATGGG-3'
Entrambi disponibili in MGI:MGI:95640
Microscopia elettronica a trasmissione in culture 3D: dopo 3 giorni di differenziazione in DMEM arricchito in siero di cavallo al 5% (HS, Cat. n. 16050130, Gibco - Thermo Fisher Scientific, Waltham, Massachusetts, USA) come precedentemente descritto (37), le cellule sono state immerse nel collagene I (di coda di ratto, Cat. n. 354236, BD Biosciences, Franklin Lakes, New Jersey, USA) in inserto per piastre da 24 pozzetti (200.000 cellule /insert; BD Biosciences, Franklin lakes, New Jersey, USA). Dopo 24 ore, gli inserti sono stati fissati in PFA al 4% per 6 ore e lavati in tampone fosfato salino (PBS) per una notte. Dopo due lavaggi rapidi in PBS, gli inserti sono stati disidratati in alcool 30%, 50% e 70% e incorporati nella resina liquida LRWhite Medium Grade (Cat. N. 14380, Electron Microscopy Sciences, Hatfield, Pennsylvania, USA) prima dell'inclusione in capsule di gelatina (Cat. 70115, Electron Microscopy Sciences, Hatfield, Pennsylvania, USA). I campioni sono stati quindi tagliati in sezioni ultrasottili di 70 nm, adagiate su retini d'oro rivestite con Formavar (FCF100-Au-50, Electron Microscopy Sciences, Hatfield, Pennsylvania, USA) e trattate per immunogold.
Per la colorazione, le griglie sono state sciacquate in gocce d'acqua per 10 minuti, incubate in tampone citrato a pH 6,0 per 40 minuti e i siti aspecifici bloccati in 3% BSA-c (Cat. N. 900099, Electron Microscopy Sciences, Hatfield, Pennsylvania, USA) in T-PBS per 30 min. I retini sono stati quindi incubati con l'anticorpo primario (anti-Alix, 1A12, sc-53540, Santa Cruz Biotechnology, Dallas, Texas, USA, diluito 1:10) durante la notte a 4 ° C all'interno di una micropiastra, lavati due volte per 5 minuti in T-PBS, incubati con anticorpo secondario AuroProbe EM (RPN425, Amersham Biosciences, Little Chalfton, Regno Unito, diluito 1:25 in 0,3% BSA-c in T-PBS) per 1 ora. I retini, lavati due volte in T-PBS, sono stati post-fissati con glutaraldeide al 2% in PBS. Lavati di nuovo sono stati contrastati usando tecniche convenzionali. Le preparazioni montate su retini sono state colorate con acetato di uranile e citrato di piombo per 5 minuti e successivamente osservate al microscopio elettronico JEM-1220 (Jeol, Akishima, Tokyo, Japan) e guardati a 120 kV.
Isolamento di vescicole simili agli esosomi secreti dalle C2C12: Per isolare vescicole simil-esosomiali dai terreni in cui sono stati coltivati i mioblasti per l'analisi Western Blot, le cellule sono state coltivate in fiasche T162 (5000 cellule/cm2). Quando le cellule erano a circa il 70-80% di confluenza, il mezzo completo è stato sostituito con DMEM privo di siero e le cellule sono state mantenute in esso per circa 20 ore. Successivamente, il mezzo è stato raccolto per la purificazione degli esosomi.
Il mezzo è stato prima centrifugato a 300 g per 10 min 4 ° C per rimuovere le cellule; un secondo stadio di centrifugazione è stato fatto a 2.000 g per 10 minuti 4 ° C per rimuovere le cellule morte; quindi, il mezzo è stato centrifugato a 15.000 g per 45 minuti 4 ° C per eliminare detriti cellulari e microparticelle. Il supernatante risultante è stato infine ultracentrifugato a 110.000 g per 2h 4 ° C (Sorvall Discovery Micro-Ultracentrifuge M120 SE ultracentrifuga, tipo rotore S55A-Ti, Sorvall, Thermo Fischer Scientific, Waltham, Massachusetts, USA). Dopo la prima ultracentrifugazione, il pellet è stato lavato con PBS freddo e ultracentrifugato nuovamente a 110.000 g, 2h 4 ° C (34). Il precipitato finale è stato risospeso in 80 μl di tampone RIPA e quantificato utilizzando il saggio per quantificare le proteine BCA (Cat.
23225, Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Distribuzione delle dimensioni delle vescicole simili agli esosomi C2C12: la distribuzione statistica delle dimensioni delle vescicole isolate è stata misurata mediante il sistema di diffusione dinamica della luce (DLS) Zetasizer NanoS (Malvern Instruments, Malvern, UK). In breve, 40μL di precipitato estratto non diluito in PBS sono stati analizzati a 25 ° C utilizzando una cella al quarzo di precisione per volumi ridotti (ZEN2112). L'indice di rifrazione e la viscosità del materiale disperso in PBS erano rispettivamente 1,340 e 1,1000 cP a 25 ° C (Alexis Forterre et al. Proteomic Analysis of C2C12 Myoblast and Myotube Exosome-Like Vesicles: A New Paradigm for Myoblast Myotube Cross Talk? PLOS ONE. doi:10.1371/journal.pone.0084153 (2014).
Western Blotting : le cellule e le vescicole sono state lisate in tampone RIPA (NaCl 150 mM, Deossicolato sodio 0,5% (Sigma-Aldrich - Merck, Saint Louis, Missouri, USA), Triton X-100 1% (Sigma-Aldrich - Merck, Saint Louis, Missouri, USA), 50 mM Tris, pH 8.0, 0,1% SDS, cocktail di inibitori della proteasi (compresse ULTRA, Mini, senza EDTA, EASYpack, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA). Cellule e vescicole (36) sono state denaturate in tampone 4x SDS (40% glicerolo, 240 nM Tris/HCl pH 6.8, 8% SDS, 0.04% bromofenolo blu, 5% betamercaptoetanolo) diluito a una concentrazione finale di 1x per 5 min a 95 °C e caricate su un gel SDS-PAGE al 12% (10 μg di proteine). Dopo l'elettroforesi, le proteine sono state trasferite su una membrana di nitrocellulosa (sandwich (panino) di carta con filtro a membrana di nitrocellulosa 0.45 μm dimensione dei pori di Novex, Cat. N. LC2006, Thermo Fisher Scietific, Waltham, Massachusetts, USA) controllate con Red Ponceau e bloccate 1 ora a temperatura ambiente con 5% di latte in soluzione salina tamponata con tris contenente lo 0,05% di Tween20. La membrana è stata quindi tagliata e incubata overnight a 4 ° C con l’anticorpo con anti-Alix (1А12, sc-53540, Santa Cruz Biotechnology, Dallas, Texas, USA; diluizione 1:1000), anti-Calnexina (MA3-027, Thermo Fisher Scientific, Waltham, Massachusetts, USA; diluizione 1:500), anti-beta-actina (AC-74, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA; diluizione 1:5000), anti-Hsp70 [cmHsp70.1, prodotto in laboratorio dalla Prof. Gabriele Multhoff (Botzler C, Li G, Issels RD, Multhoff G. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones. 1998 Mar;3(1):6-11); diluito 1:100)] and anti-Rab5 (R4654, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA; diluizione 1:500), tutti diluiti in latte al 5% in T-TBS. Anticorpi secondari, diluiti 1:20000 in latte al 5% in T-TBS, sono stati utilizzati: Polyclonal Rabbit anti-Mouse HRP-coniugato (P026002-2, Agilent-DAKO, Santa Clara, California, USA) e Polyclonal Swine anti-Rabbit HRP-coniugato (P021702-2, Agilent - DAKO, Santa Clara, California, USA ). Il segnale è stato rilevato utilizzando un substrato Western Blotting PierceTM ECL (Cat. 32106, Thermo Fisher Scientific, Waltham, Massachusetts, USA) e con lo strumento ChemiDoc Imaging System (Bio-Rad, Hercules, California, USA).
Hsp60 humana ricombinante: un oligo corrispondente alla sequenza codificante l’HSP60 umana senza la regione per la localizzazione mitocondriale (Homo sapiens heat shock protein family D (Hsp60) member 1 (HSPD1), transcript variant 1, mRNA, presa da GenBank Accession number NM_002156, da 1 a 1655 paia di basi), è stato sintetizzato, amplificato ed inserito dalla Eurofins Scientific (Eurofins Scientific, Lussemburgo) nel plasmide di espressione pET15b fornito dalla Eurofins stessa tra le sequenze degli enzimi di restrizione BamH1 al 3’ e Ndel al 5’.
SEQ.ID. NO. 10: Sequenza del plasmide >pET-15b ttctcatgtttgacagcttatcatcgataagctttaatgcggtagtttatcacagttaaatt gctaacgcagtcaggcaccgtgtatgaaatctaacaatgcgctcatcgtcatcctcggcacc gtcaccctggatgctgtaggcataggcttggttatgccggtactgccgggcctcttgcggga tatccggatatagttcctcctttcagcaaaaaacccctcaagacccgtttagaggccccaag gggttatgctagttattgctcagcggtggcagcagccaactcagcttcctttcgggctttgt tagcagccggatccATGCTTCGGTTACCCACAGTCTTTCGCCAGATGAGACCGGTGTCCAGG GTACTGGCTCCTCATCTCACTCAGCCGATGCTGTGGCCGTTACAATGGGGCCAAAGGGAAGA ACAGTGATTATTGAGCAGAGTTGGGGAAGTCCCAAAGTAACAAAAGATGGTGTGACTGTTGC AAAGTCAATTGACTTAAAAGATAAATACAAAAACATTGGAGCTAAACTTGTTCAAGATGTTG CCAATAACACAAATGAAGAAGCTGGGGATGGCACTACCACTGCTACTGTACTGGCACGCTCT ATAGCCAAGGAAGGCTTCGAGAAGATTAGCAAAGGTGCTAATCCAGTGGAAATCAGGAGAGG TGTGATGTTAGCTGTTGATGCTGTAATTGCTGAACTTAAAAAGCAGTCTAAACCTGTGACCA CCCCTGAAGAAATTGCACAGGTTGCTACGATTTCTGCAAACGGAGACAAAGAAATTGGCAAT ATCATCTCTGATGCAATGAAAAAAGTTGGAAGAAAGGGTGTCATCACAGTAAAGGATGGAAA AACACTGAATGATGAATTAGAAATTATTGAAGGCATGAAGTTTGATCGAGGCTATATTTCTC CATACTTTATTAATACATCAAAAGGTCAGAAATGTGAATTCCAGGATGCCTATGTTCTGTTG AGTGAAAAGAAAATTTCTAGTATCCAGTCCATTGTACCTGCTCTTGAAATTGCCAATGCTCA CCGTAAGCCTTTGGTCATAATCGCTGAAGATGTTGATGGAGAAGCTCTAAGTACACTCGTCT TGAATAGGCTAAAGGTTGGTCTTCAGGTTGTGGCAGTCAAGGCTCCAGGGTTTGGTGACAAT AGAAAGAACCAGCTTAAAGATATGGCTATTGCTACTGGTGGTGCAGTGTTTGGAGAAGAGGG ATTGACCCTGAATCTTGAAGACGTTCAGCCTCATGACTTAGGAAAAGTTGGAGAGGTCATTG TGACCAAAGACGATGCCATGCTCTTAAAAGGAAAAGGTGACAAGGCTCAAATTGAAAAACGT ATTCAAGAAATCATTGAGCAGTTAGATGTCACAACTAGTGAATATGAAAAGGAAAAACTGAA TGAACGGCTTGCAAAACTTTCAGATGGAGTGGCTGTGCTGAAGGTTGGTGGGACAAGTGATG TTGAAGTGAATGAAAAGAAAGACAGAGTTACAGATGCCCTTAATGCTACAAGAGCTGCTGTT GAAGAAGGCATTGTTTTGGGAGGGGGTTGTGCCCTCCTTCGATGCATTCCAGCCTTGGACTC ATTGACTCCAGCTAATGAAGATCAAAAAATTGGTATAGAAATTATTAAAAGAACACTCAAAA TTCCAGCAATGACCATTGCTAAGAATGCAGGTGTTGAAGGATCTTTGATAGTTGAGAAAATT ATGCAAAGTTCCTCAGAAGTTGGTTATGATGCTATGcatatggctgccgcgcggcaccaggc cgctgctgtgatgatgatgatgatggctgctgcccatggtatatctccttcttaaagttaaa caaaattatttctagaggggaattgttatccgctcacaattcccctatagtgagtcgtatta atttcgcgggatcgagatctcgatcctctacgccggacgcatcgtggccggcatcaccggcg ccacaggtgcggttgctggcgcctatatcgccgacatcaccgatggggaagatcgggctcgc cacttcgggctcatgagcgcttgtttcggcgtgggtatggtggcaggccccgtggccggggg actgttgggcgccatctccttgcatgcaccattccttgcggcggcggtgctcaacggcctca acctactactgggctgcttcctaatgcaggagtcgcataagggagagcgtcgagatcccgga caccatcgaatggcgcaaaacctttcgcggtatggcatgatagcgcccggaagagagtcaat tcagggtggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctct tatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaa agtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgg gcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaa attgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggt agaacgaagcggcgtcgaagcctgtaaagcggcggtgcacaatcttctcgcgcaacgcgtca gtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgc actaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattatttt ctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaa tcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcat aaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccat gtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctgg ttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgtt ggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgcc gttaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgc aactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaaga aaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaat gcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgta agttagctcactcattaggcaccgggatctcgaccgatgcccttgagagccttcaacccagt cagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttcttta tcatgcaactcgtaggacaggtgccggcagcgctctgggtcattttcggcgaggaccgcttt cgctggagcgcgacgatgatcggcctgtcgcttgcggtattcggaatcttgcacgccctcgc tcaagccttcgtcactggtcccgccaccaaacgtttcggcgagaagcaggccattatcgccg gcatggcggccgacgcgctgggctacgtcttgctggcgttcgcgacgcgaggctggatggcc ttccccattatgattcttctcgcttccggcggcatcgggatgcccgcgttgcaggccatgct gtccaggcaggtagatgacgaccatcagggacagcttcaaggatcgctcgcggctcttacca gcctaacttcgatcactggaccgctgatcgtcacggcgatttatgccgcctcggcgagcaca tggaacgggttggcatggattgtaggcgccgccctataccttgtctgcctccccgcgttgcg tcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaacgg attcaccactccaagaattggagccaatcaattcttgcggagaactgtgaatgcgcaaacca acccttggcagaacatatccatcgcgtccgccatctccagcagccgcacgcggcgcatctcg ggcagcgttgggtcctggccacgggtgcgcatgatcgtgctcctgtcgttgaggacccggct aggctggcggggttgccttactggttagcagaatgaatcaccgatacgcgagcgaacgtgaa gcgactgctgctgcaaaacgtctgcgacctgagcaacaacatgaatggtcttcggtttccgt gtttcgtaaagtctggaaacgcggaagtcagcgccctgcaccattatgttccggatctgcat cgcaggatgctgctggctaccctgtggaacacctacatctgtattaacgaagcgctggcatt gaccctgagtgatttttctctggtcccgccgcatccataccgccagttgtttaccctcacaa cgttccagtaaccgggcatgttcatcatcagtaacccgtatcgtgagcatcctctctcgttt catcggtatcattacccccatgaacagaaatcccccttacacggaggcatcagtgaccaaac aggaaaaaaccgcccttaacatggcccgctttatcagaagccagacattaacgcttctggag aaactcaacgagctggacgcggatgaacaggcagacatctgtgaatcgcttcacgaccacgc tgatgagctttaccgcagctgcctcgcgcgtttcggtgatgacggtgaaaacctctgacaca tgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgt cagggcgcgtcagcgggtgttggcgggtgtcggggcgcagccatgacccagtcacgtagcga tagcggagtgtatactggcttaactatgcggcatcagagcagattgtactgagagtgcacca tatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttc cgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctc actcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtga gcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccatag gctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccga caggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccg accctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctca tagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgc acgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaac ccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgag gtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagga cagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctct tgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattac gcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagt ggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctag atccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtc tgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcat ccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggc cccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaa ccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagt ctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgtt gttgccattgctgcaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctc cggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagct ccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatg gcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtga gtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgt caacacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgt tcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccac tcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaa caggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcata ctcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacat atttgaatgtatttagaaaaataaacaaataggggtt ccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacatt aacctataaaaataggcgtatcacgaggccctttcgtcttcaagaa
Il plasmide permette la sintesi di una proteina con una sequenza His-tag all’estremità ammino-terminale. Sono stati utilizzati batteri BL21 (DE3) (Cat. n. 200131, Agilent Technologies, Santa Clara, California, USA) per ottenere l’espressione della proteina. I batteri trasformati sono stati coltivati su piastre di terreno LB-broth (L3397, Sigma.aldrich - Merck, Saint Louis, Missouri,USA) contenete agar (Cat. n. A5306, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA) e ampicillina (Cat. n. A9518, Sigma.aldrich - Merck, Saint Louis, Missouri,USA), ad una concentrazione finale di 100 µg/ml, per circa 16 ore a 37 °C. Venti ml di LB contenente 0,5% glucosio (Cat. n. 49163, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA) e ampicillina 100 µg/ml sono stati utilizzati per preparare un pre-inoculo della colonia scelta dopo la crescita. Questo è stato lasciato ad agitare per tutta la notte a 37°C per essere poi aggiunto ad 1l di LB, 0,5% glucosio, ampicillina 100 µg/ml e lasciato ad agitare a 37°C fino al raggiungimento di OD600 tra 0.5 e 0.6. A questo punto è stata indotta l’espressione di HSP60 con 1 mM di Isopropilβ-D-1-tiogalattopiranoside (IPTG, Cat. n. I6758, Sigma-Aldrich -Merck, Saint Louis, Missouri, USA) e la coltura batterica è stata lasciata a crescere a 37°C per 2h in agitazione. Dopo centrifugazione a 8000 rpm per 30 min, il precipitato batterico è stato risospeso in 30 ml 50 mM Tris-HCl pH 8, 2mM
threo-1,4-Dimercapto-2,3-butanediol, DL-Dithiothreitol (DTT,
Cat. n. DTT-RO, Sigma-Aldrich -Merck, Saint Louis, Missouri,
USA), 2 mM DNAse I (RQ1 RNase-Free DNase, M6101, Promega,
Madison, Wisconsin, USA), 10 mM MgCl2 e lisato tramite
sonicazione. La proteina ricombinante è stata quindi
purificata utilizzando cromatografia (AKTA Pure chromatography
system, GE Healthcare, Chicago, Illinois, USA) su colonna Q
sepharose 26/20 e i seguenti soluzione tampone: A) 50 mM Tris-
HCl pH 8, 2mM DTT; B) 50 mM Tris-HCl pH 8, 2mM DTT, 1M NaCl.
Dopo visualizzazione su gel di agarosio, le frazioni contenete
la proteina sono state passate in gel filtrazione utilizzando
la colonna Superdex-200 16/60 e il soluzione tampone 20 mM
Tris-HCl pH 8, 300 mM NaCl, 0,1 mM tris (2-
carbossietil)fosfina (TCEP). La proteina è stata ulteriormente
filtrata utilizzando filtri per centrifuga con un limite (cut-
off) di 30 kDa (Millipore Amicon – Ultra 4) per ottenere la
ricombinante in una soluzione contenente 20 mM Tris-HCl (pH
7.7), 3% glicerolo e 30 mM NaCl. La concentrazione è stata
ottenuta tramite misurazione allo spettrofotometro.
SEQ.ID.NO. 11: Sequenza di Hsp60 dalla base 1 alla 1647, da
cui è stata ottenuta la Hsp60 ricombinante umana
ATGGCCAAAGATGTAAAATTTGGTGCAGATGCCCGAGCCTTAATGCTTCAAGGTGTAGACCT TTTAGCCGATGCTGTGGCCGTTACAATGGGGCCAAAGGGAAGAACAGTGATTATTGAGCAGG GTTGGGGAAGTCCCAAAGTAACAAAAGATGGTGTGACTGTTGCAAAGTCAATTGACTTAAAA GATAAATACAAGAACATTGGAGCTAAACTTGTTCAAGATGTTGCCAATAACACAAATGAAGA AGCTGGGGATGGCACTACCACTGCTACTGTACTGGCACGCTCTATAGCCAAGGAAGGCTTCG AGAAGATTAGCAAAGGTGCTAATCCAGTGGAAATCAGGAGAGGTGTGATGTTAGCTGTTGAT GCTGTAATTGCTGAACTTAAAAAGCAGTCTAAACCTGTGACCACCCCTGAAGAAATTGCACA GGTTGCTACGATTTCTGCAAACGGAGACAAAGAAATTGGCAATATCATCTCTGATGCAATGA AAAAAGTTGGAAGAAAGGGTGTCATCACAGTAAAGGATGGAAAAACACTGAATGATGAATTA GAAATTATTGAAGGCATGAAGTTTGATCGAGGCTATATTTCTCCATACTTTATTAATACATC AAAAGGTCAGAAATGTGAATTCCAGGATGCCTATGTTCTGTTGAGTGAAAAGAAAATTTCTA GTATCCAGTCCATTGTACCTGCTCTTGAAATTGCCAATGCTCACCGTAAGCCTTTGGTCATA ATCGCTGAAGATGTTGATGGAGAAGCTCTAAGTACACTCGTCTTGAATAGGCTAAAGGTTGG TCTTCAGGTTGTGGCAGTCAAGGCTCCAGGGTTTGGTGACAATAGAAAGAACCAGCTTAAAG ATATGGCTATTGCTACTGGTGGTGCAGTGTTTGGAGAAGAGGGATTGACCCTGAATCTTGAA GACGTTCAGCCTCATGACTTAGGAAAAGTTGGAGAGGTCATTGTGACCAAAGACGATGCCAT GCTCTTAAAAGGAAAAGGTGACAAGGCTCAAATTGAAAAACGTATTCAAGAAATCATTGAGC AGTTAGATGTCACAACTAGTGAATATGAAAAGGAAAAACTGAATGAACGGCTTGCAAAACTT TCAGATGGAGTGGCTGTGCTGAAGGTTGGTGGGACAAGTGATGTTGAAGTGAATGAAAAGAA AGACAGAGTTACAGATGCCCTTAATGCTACAAGAGCTGCTGTTGAAGAAGGCATTGTTTTGG GAGGGGGTTGTGCCCTCCTTCGATGCATTCCAGCCTTGGACTCATTGACTCCAGCTAATGAA GATCAAAAAATTGGTATAGAAATTATTAAAAGAACACTCAAAATTCCAGCAATGACCATTGC TAAGAATGCAGGTGTTGAAGGATCTTTGATAGTTGAGAAAATTATGCAAAGTTCCTCAGAAG TTGGTTATGATGCTATGGCTGGAGATTTTGTGAATATGGTGGAAAAAGGAATCATTGACCCA ACAAAGGTTGTGAGAACTGCTTTATTGGATGCTGCTGGTGTGGCCTCTCTGTTAACTACAGC AGAAGTTGTAGTCACAGAAATTCCTAAAGAAGAGAAGGACCCTGGAATGGGTGCAATGGGTG GAATGGGAGGTGGTATGGGAGGTGGCATGTTCTAA
SEQ.ID.NO.12: Sequenza aminoacidica dell’Hsp60 sintetizzata dal Plasmide pET-15b
MAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQGWGSPKVTKDGVTVAKSIDLK DKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEIRRGVMLAVD AVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDEL EIIEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVI IAEDVDGEALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLE DVQPHDLGKVGEVIVTKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKL SDGVAVLKVGGTSDVEVNEKKDRVTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANE DQKIGIEIIKRTLKIPAMTIAKNAGVEGSLIVEKIMQSSSEVGYDAMAGDFVNMVEKGIIDP TKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGAMGGMGGGMGGGMF
Analisi statistica: i risultati ottenuti sono stati analizzati
statisticamente mediante l’analisi ANOVA one-way con post-test
di Bonferroni. Tutte le analisi statistiche sono state
eseguite utilizzando il software GraphPad PrismTM 4.0
(GraphPad Software Inc., San Diego, California, USA). Tutti i dati sono presentati come media ± SD e il livello di significatività statistica è stato fissato a p<0.05.
Per dimostrare che il terreno di coltura delle C2C12 contenesse nanovescicole, le cellule sono state coltivate per 3 giorni in siero di cavallo, staccate e messe in colture tridimensionale in presenza di collagene I derivato dalla coda di ratto per 24h. Questo tipo di procedimento serve per creare un campione adeguato alla microscopia elettronica e che impedisca la dispersione delle nanovescicole nel mezzo di coltura. La microscopia elettronica delle cellule C2C12 parzialmente differenziate, così come in precedenza dimostrato (Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 2013 May 2;587(9):1379-84.), ha messo in evidenza vescicole extra cellulari con diametro da 50 a 120-140 nm, in prossimità delle membrane delle cellule. La microscopia elettronica ha anche messo in evidenza nanovescicole disperse nella matrice di collagene I, contenenti la proteina Alix; la disposizione degli anticorpi e delle biglie di oro colloidale ad esso attaccate, dimostra la classica localizzazione submembranaria.
Mediante centrifugazioni seriate del terreno di coltura raccolto nelle 24 ore senza siero e la valutazione del potenziale ζ sulle frazioni così ottenute, è stato possibile mettere in evidenza il rilascio da parte delle cellule sia di una popolazione di vescicole extra cellulari di maggiori dimensioni, da 100 a 1000 nm di diametro, che la presenza di classici esosomi. Il materiale ottenuto dalle due frazioni è stato lisato, le proteine quantificate e usate per valutare la presenza dei classici markers proteici di esosomi e vescicole extracellulari.
L’analisi al Western Blotting dei lisati ottenuti dalle frazioni a 15,000xg e a 110,000xg, paragonate al lisato cellulare in toto, dimostra che la frazione a 110,000xg contiene Alix, Hsp70 e RAB5, proteine tipiche degli esosomi, dimostrando quindi che nella frazione di 110,000xg ci sono esosomi. La frazione a 15,000xg contiene RAB5 e Hsp70, ma non Alix. I lisati cellulari totali contengono in minore quantità Alix e RAB5, ma contengono la Calnessina che non è abitualmente contenuta negli esosomi e nelle vescicole extracellulari, utilizzata per dimostrare che non ci sono frammenti cellulari nelle altre due frazioni. I risultati dimostrano che le C2C12 producono sia esosomi che vescicole extracellulari, e che il metodo di isolamento permette di raccogliere entrambe le frazioni senza contaminazione di frammenti cellulari.
Le cellule C2C12 sono state transfettate mediante elettroporazione con il plasmide pCMV-6-Entry-HSPD1 esprimente il gene HSP60 var1 di topo, e con il plasmide pCMV-6-Entry vuoto come controllo negativo, come descritto nei materiali e metodi. Il plasmide pCMV-6-Entry-HSPD1 deriva dal plasmide pCMV-6-Entry vuoto, e come tale il suo naturale controllo negativo. L’efficienza della trasfezione è stata controllata mediante citofluorimetria a flusso, le cellule Myc-DDK positive rappresentavano il 7-8% della popolazione totale di cellule. Dopo 3 giorni dalla trasfezione, è stato cambiato il terreno e le cellule staccate e piastrate in chamber-slides per l’analisi confocale e in piastre da 6 pozzetti per raccogliere il terreno di coltura. L’analisi confocale ha confermato la presenza di cellule che esprimevano una maggiore quantità di Hsp60 nei campioni transfettati con pCMV-6-Entry-HSPD1 e la presenza di cellule che esprimevano il tag Myc-DDK sia nei campioni transfettati con pCMV-6-Entry che con pCMV-6-Entry-HSPD1.
La proteina che è stata fatta esprimere alle cellule C2C12 ha il tag Myc-DDK attaccato al dominio carbossi-terminale, ma tra gli ultimi 3 aminoacidi e il tag Myc-DDK ci sono 2 aa TR che derivano dal sito di clonazione e 4 aa TRPL sequenza strutturale del plasmide, che di fatto viene comunque tradotta dalle cellule.
Il terreno delle C2C12 ingegnerizzate sia con pCMV-6-Entry-HSPD1 che con pCMV-6-Entry vuoto, è stato raccolto dopo 24 ore, e utilizzato ad una diluizione 1:2 per trattare le cellule C2C12 normali per un tempo di 6 ore. Solo il terreno raccolto dal plasmide pCMV-6-Entry-HSPD1 era capace di attivare la trascrizione di PGC 1 alpha totale, in particolare della isoforma 1 di PGC1 alpha, come mostrato in figura 1. I risultati dimostrano che il plasmide ha funzionato, che nelle cellule trasfettate la Hsp60-Myc-DDK si è effettivamente espressa, e che il terreno delle C2C12 trasfettate è capace di indurre l’espressione dei geni PGC1 alpha, in particolare dell’isoforma 1.
Per capire se fosse effettivamente l’Hsp60 iperespressa dalle cellule C2C12 la responsabile dell’aumento dell’mRNA dei geni PGC1 alpha, poiché i primers riconoscono tutte le isoforme, e in particolare della sua isoforma 1, abbiamo trattato le cellule C2C12 normali e non differenziate con 20 e 40 ng/ml di Hsp60 umana ricombinante (hrHsp60) disciolta in DMEM-15% FBS, con sequenza simile a quella di topo. L’analisi dell’espressione degli mRNA di PGC1 alpha e della sua isoforma 1, ha dimostrato che l’hrHsp60 disciolta in soluzione acquosa è capace di attivare sia il trascritto totale di PGC1 alpha, che quello specifico della isoforma PGC 1 alpha 1, come mostrato in figura 2. Considerando che la hrHsp60 è priva della sequenza di localizzazione mitocondriale, si dimostra anche che l’attività della Hsp60 sui trascritti di PGC1 alpha è dovuta ai domini corrispondenti alla sequenza della Hsp60 tra la base 1 e la 1647. La hrHsp60 ha un tag His all’estremità amino-terminale.
I risultati dimostrano che le cellule C2C12 rilasciano nel terreno di coltura esosomi, vescicole extracellulari ed Hsp60, e che il secreto delle C2C12 è da solo capace di attivare la trascrizione dei geni del fattore PGC1 alpha, ed in particolare dell’isoforma alpha 1.
Le cellule C2C12 sono una linea cellulare di mioblasti immortalizzati, corrispettivo delle cellule staminali del muscolo scheletrico, e mostrano le stesse caratteristiche delle cellule presenti nel muscolo, quindi rappresentano un valido modello, in quanto sono di norma utilizzate per studiare molti dei fenomeni e meccanismi molecolari che si verificano nel muscolo scheletrico in toto. I risultati ottenuti confermano che le cellule C2C12 producono esosomi del diametro di 50-100 nm contenenti Alix, e dimostriamo che anche in condizioni basali esse producono vescicole extracellulari del diametro di 100-1000 nm.
Per dimostrare che le cellule rilasciano Hsp60 nel terreno di coltura, abbiamo prelevato il terreno dalle cellule trasfettate con il plasmide pCMV-6-Entry-HSPD1, del suo corrispettivo controllo negativo pCMV-6-Entry, delle cellule C2C12 normali non trattate, e lo abbiamo utilizzato per trattare altre colture di C2C12 non trattate, utilizzando come controllo positivo soluzioni di 20 e 40 ng/ml di hrHsp60. Nelle cellule C2C12 trattate con ognuna di queste soluzione abbiamo valutato l’espressione dei geni delle diverse isoforme di PGC1 alpha in toto e in particolare della isoforma alpha1. Sia il terreno delle cellule trasfettate con pCMV-6-Entry-HSPD1 che la soluzione con 40 ng/ml di hrHsp60 hanno stimolato la sintesi di PGC1 alpha totale e di PGC1 alpha1, come mostrato nelle figure 1 e 2. Si è ulteriormente verificato che il terreno contenente il secreto delle cellule C2C12 trasfettate con il plasmide esprimente HSPD1 è in grado, usato direttamente su cellule in vitro, di attivare la trascrizione di PGC1 alpha e PGC1 alpha 1, rispetto al plasmide vuoto; che il principio attivo rilasciato nel mezzo di coltura è Hsp60; che il tag Myc-DDK non ha un ruolo nell’attività della Hsp60, poiché la hrHSP60 non ha Myc-DDK, ma anzi porta l’etichetta (tag) poli-istidina (His-tag); che il dominio attivo della Hsp60 deve essere compreso nella prima parte della proteina, tolta la sequenza di localizzazione mitocondriale; che l’attività della Hsp60 non è specie-specifica poiché sia la Hsp60 di topo che quella umana attivano la trascrizione degli stessi geni; che la Hsp60 è trasportata in una forma molto più attiva quando rilasciata naturalmente dalle cellule che iperesprimono la Hsp60, poiché anche pochissime cellule (7-8% di cellule trasfettate sul totale) sono in grado di attivare PGC1 alpha e PGC1 alpha 1, rispetto ad una alta concentrazione di Hsp60.
I risultati sperimentali ottenuti dimostrano:
che la proteina Hsp60 nelle colture di cellule C2C12 è veicolata all’interno di esosomi o vescicole extracellulari; che anche se l’efficienza di trasfezione delle cellule è bassa (7-8%), l’incremento nella proteina Hsp60 rilasciata nel mezzo extracellulare ha un effetto paragonabile a quello di 40 ng/ml di hrHsp60 che corrispondono a una concentrazione da 3 a 10 volte superiore alla concentrazione riscontrata in vivo negli animali allenati mentre una concentrazione più bassa (20 ng/ml), ma comunque più elevata delle concentrazioni note di Hsp60 nei topi allenati e sedentari non ha alcun effetto sui livelli di espressione di PGC1 alpha e PGC1 alpha1, quindi la molecola bio-attiva di questo mezzo di coltura è l’Hsp60, la quale usata da sola, ma in eccesso rispetto alle concentrazioni plasmatiche, attiva la trascrizione di PGC1 alpha; l’etichetta (tag) Myc-DDK non influisce sull’attività della Hsp60, infatti la hrHSP60 non ha la sequenza Myc-DDK ma bensì la sequenza tag poli-istidina (His-tag); il dominio attivo della Hsp60 dovrebbe essere posizionato prima parte della proteina, tolta la sequenza di localizzazione mitocondriale; l’attività della Hsp60 non è specie-specifica poiché sia la Hsp60 di topo che quella umana attivano la trascrizione degli stessi geni; la Hsp60 è trasportata in una forma molto più attiva quando rilasciata naturalmente dalle cellule che iper-esprimono la Hsp60, perché anche una quota bassa, di circa il 7-8% di cellule trasfettate sul totale, sono in grado di attivare PGC1 alpha e PGC1 alpha 1, rispetto ad una alta concentrazione di Hsp60 e infine l’effetto della Hsp60 è potenziato dell’essere veicolata da nanovescicole.

Claims (10)

  1. RIVENDICAZIONI 1) Processo per la produzione di vescicole contenenti proteine da shock termico comprendente i seguenti stadi: a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura; b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico; c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b); d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione; e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura; f) Raccolta del mezzo di coltura condizionato dalle cellule mioblastiche immortalizzate che sovraesprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e); g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico.
  2. 2) Processo per la produzione di vescicole contenenti proteine da shock termico secondo la rivendicazione 1 in cui la proteina da shock termico è scelta nel gruppo consistente di Hsp-90, Hsp-75, Hsp-60, Hsp-10, Hsp-27, Hsp-70.
  3. 3) Processo per la produzione di vescicole contenenti proteine da shock termico secondo la rivendicazione 1 in cui nello stadio a) le cellule mioblastiche sono scelte nel gruppo consistente di mioblasti, cellule satelliti del muscolo scheletrico, cellule staminali del muscolo scheletrico, cellule indifferenziate del muscolo scheletrico.
  4. 4) Processo per la produzione di vescicole contenenti proteine da shock termico secondo la rivendicazione 1 in cui nello stadio b) il vettore plasmidico è preparato amplificandolo mediante trasformazione batterica.
  5. 5) Processo per la produzione di vescicole contenenti proteine da shock termico secondo la rivendicazione 1 in cui nello stadio c) la trasfezione è svolta mediante elettroporazione.
  6. 6) Processo per la produzione di vescicole contenenti proteine da shock termico secondo la rivendicazione 1 in cui nello stadio g) le vescicole sono isolate mediante centrifugazioni successive che prevedono una prima centrifugazione per eliminare eventuali cellule presenti nel mezzo di coltura, una seconda centrifugazione per eliminare eventuali cellule morte presenti nel mezzo di coltura, una terza centrifugazione per eliminare eventuali ulteriori detriti cellulari e microparticelle presenti nel mezzo di coltura seguite da almeno due ultracentrifugazioni successive ad ottenere un precipitato che viene infine risospeso in un tampone opportuno.
  7. 7) Vescicole contenenti proteine da shock termico ottenute mediante un processo comprendente i seguenti stadi: a) Coltivare una linea di cellule mioblastiche immortalizzate in opportuno mezzo di coltura; b) Preparare un vettore plasmidico comprendete una sequenza codificante per una proteina da shock termico e almeno una sequenza che conferisce resistenza ad un antibiotico; c) Trasfettare le linea di cellule mioblastiche immortalizzate ottenute nello stadio a) con il vettore ottenuto al termine dello stadio b); d) Selezionare tra le cellule mioblastiche immortalizzate trasfettate ottenute nello stadio c) le cellule mioblastiche immortalizzate che sono trasfettate con il vettore plasmidico dello stadio b) per propagare solo le linee cellulari muscolari che sovra-esprimono la sequenza codificante per una proteina da shock termico grazie a detta trasfezione; e) Coltivare le cellule mioblastiche immortalizzate che sovra-esprimono la sequenza codificante per una proteina da shock termico selezionate nello stadio d) in un opportuno mezzo di coltura; f) Raccolta del mezzo di coltura condizionato dalle cellule mioblastiche immortalizzate che sovraesprimono la sequenza codificante per una proteina da shock termico coltivate nello stadio e); g) Isolamento dal mezzo di coltura condizionato raccolto nello stadio f) di vescicole contenenti la proteina da shock termico.
  8. 8) Vescicole contenenti proteine da shock termico della rivendicazione 7 per uso come medicamento.
  9. 9) Vescicole contenenti proteine da shock termico della rivendicazione 7 per uso per il trattamento della atrofia muscolare o sarcopenia e della cachessia.
  10. 10) Composizioni farmaceutiche comprendenti come principio attivo vescicole contenenti proteine da shock termico secondo la rivendicazione 7 e opportuni eccipienti farmacologicamente accettabili.
IT102018000009235A 2018-10-08 2018-10-08 Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia IT201800009235A1 (it)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT102018000009235A IT201800009235A1 (it) 2018-10-08 2018-10-08 Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia
PCT/IB2019/058337 WO2020075004A1 (en) 2018-10-08 2019-10-01 Process for synthesis of exosomes containing the heat shock protein hsp60 and their use for the treatment of muscular atrophy and cachexia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT102018000009235A IT201800009235A1 (it) 2018-10-08 2018-10-08 Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia

Publications (1)

Publication Number Publication Date
IT201800009235A1 true IT201800009235A1 (it) 2020-04-08

Family

ID=65199457

Family Applications (1)

Application Number Title Priority Date Filing Date
IT102018000009235A IT201800009235A1 (it) 2018-10-08 2018-10-08 Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia

Country Status (2)

Country Link
IT (1) IT201800009235A1 (it)
WO (1) WO2020075004A1 (it)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834192A (en) 1996-04-05 1998-11-10 Incyte Pharmaceuticals, Inc. Human cachexia associated protein
WO1999003499A1 (fr) 1997-07-16 1999-01-28 Institut National De La Sante Et De La Recherche Medicale Vesicule cellulaire denommee ''exosome'', leur preparation et utilisation dans la stimulation d'une reponse immunitaire
US20020022036A1 (en) 2000-08-21 2002-02-21 Riordan Neil H. Method for inducing an anti-tumor and anti-cachexia immune response in mammals
WO2016115632A1 (en) 2015-01-21 2016-07-28 Exerkine Corporation Method for treating mitochondrial disease
WO2016120325A1 (en) 2015-01-27 2016-08-04 Klinikum Rechts Der Isar Der Technischen Universität München Quantitative assay for heat shock protein 70 (hsp70) protein in body fluids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834192A (en) 1996-04-05 1998-11-10 Incyte Pharmaceuticals, Inc. Human cachexia associated protein
WO1999003499A1 (fr) 1997-07-16 1999-01-28 Institut National De La Sante Et De La Recherche Medicale Vesicule cellulaire denommee ''exosome'', leur preparation et utilisation dans la stimulation d'une reponse immunitaire
US20040028692A1 (en) 1997-07-16 2004-02-12 Laurence Zitvogel Sensitization process for antigen-presenting cells and means for implementing the process
US20020022036A1 (en) 2000-08-21 2002-02-21 Riordan Neil H. Method for inducing an anti-tumor and anti-cachexia immune response in mammals
WO2002015915A2 (en) 2000-08-21 2002-02-28 The Center For The Improvement Of Human Functioning International, Inc. Method for inducing an anti-tumor and anti-cachexia immune response in mammals
US20040228925A1 (en) 2000-08-21 2004-11-18 Riordan Neil H. Method for inducing an anti-tumor and anti-cachexia immune response in mammals
WO2016115632A1 (en) 2015-01-21 2016-07-28 Exerkine Corporation Method for treating mitochondrial disease
WO2016120325A1 (en) 2015-01-27 2016-08-04 Klinikum Rechts Der Isar Der Technischen Universität München Quantitative assay for heat shock protein 70 (hsp70) protein in body fluids

Non-Patent Citations (53)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NM_002156
ALEXIS FORTERRE ET AL.: "Proteomic Analysis of C2C12 myoblast and Myotube Exosome-Like vesicles: A New paradigm for myoblast Myotube crosstalk?", PLOS ONE, 2014
AM J PHYSIOL CELL PHYSIOL, vol. 285, 2003, pages C806 12
ANNA C. KAYANI ET AL: "Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle cross-sectional area", AM ERICAN JOURNAL OF PHYSIOLOGY REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, vol. 299, no. 1, 21 April 2010 (2010-04-21), pages R268 - R276, XP002791872, DOI: 10.1152/ajpregu.00334.2009 *
ATHERTON PJ; SMITH K: "Muscle protein synthesis in response to nutrition and exercise", J PHYSIOL., vol. 590, 1 March 2012 (2012-03-01), pages 1049 - 57
BALON TW; NADLER JI: "Nitric oxide release is present from incubated skeletal muscle preparations", J APPL PHYSIOL, vol. 77, no. 6, 1985, pages 2519 - 21
BARONE R. ET AL: "Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 alpha 1 expressiona", SCIENTIFIC REPORTS, vol. 6, 19781, 27 January 2016 (2016-01-27), pages 1 - 18, XP002791870, DOI: 10.1038/srep19781 *
BARONE R; MACALUSO F; SANGIORGI C; BELL ELEMENT C; MARINE MORESI GAMMAZZA A, V; COLETTI D; CONWAY DE MACARIO; MACARIO AJ; CAP F; A: "Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 to expression", SKI REP., 27 January 2016 (2016-01-27)
BARONE R; MACALUSO F; SANGIORGI C; BELL ELEMENT C; MARINE MORESI GAMMAZZA A, V; COLETTI D; CONWAY DE MACARIO; MACARIO AJ; CAP F; A: "Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 to expression", SKI REP., vol. 6, 27 January 2016 (2016-01-27), pages 19781
BLANK B.; HOOD D. A.; TAKAHASHI M.; CONNOR M. K.; FREYSSENET D.: "Assembly of the cellular powerhouse: current issues in mitochondrial from Biogenesis", EXERC SPORTS SKI REV., vol. 28, 2000, pages 68 - 73
BOTZLER C, G; ISSELS RD; MULTHOFF G: "definition of extracellular localized epitopes of Hsp70 involved in an NK immune response", CELL STRESS CHAPERONES, vol. 3, no. 1, March 1998 (1998-03-01), pages 6 - 11, XP002118461, DOI: doi:10.1379/1466-1268(1998)003<0006:DOELEO>2.3.CO;2
COURNEYA KS; FRIEDENREICH CM: "Physical activity and cancer control", SEMIN ONCOL NURS, vol. 23, no. 4, November 2007 (2007-11-01), pages 242 - 52, XP022341403, DOI: doi:10.1016/j.soncn.2007.08.002
CURROW D; TEMEL JS; ABERNETHY A; MILANOWSKI J; FRIEND J; FEARON KC: "Roman 3 to phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia", ANN ONCOL., vol. 28, no. 8, 1 August 2017 (2017-08-01), pages 1949 - 1956
DAVIES KJ; QUINTANILHA AT; BROOKS GA; PACKER L: "Free radicals and tissue damage produced by exercise", BIOCHEM BIOPHYS RES COMMUN, vol. 107, no. 4, 31 August 1982 (1982-08-31), pages 1198 - 205
ELEY HL; RUSSELL ST; TISDALE MJ: "Effect of branched-chain amino acids on muscle atrophy in cancer cachexia", BIOCHEM J, vol. 407, 2007, pages 113 - 20, XP008119488, DOI: doi:10.1042/BJ20070651
EVANS WJ; MORLEY JE; ARGILES J; BALES C; BARACOS V; GUTTRIDGE D; JATOI A; KALANTAR-ZADEH K; LOCHS H; MANTOVANI G: "Cachexia: a new definition", CLIN NUTR, vol. 27, 2008, pages 793 - 9, XP025668136, DOI: doi:10.1016/j.clnu.2008.06.013
GRAF SA; GARCIA JM: "Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome: design, development, and potential place in therapy", DRUG DES DEVEL THER., vol. 11, 7 August 2017 (2017-08-07), pages 2325 - 2331
GUESCINI M. ET AL: "C2C12 myoblasts release micro-vesicles containing mtDNA andproteins involved in signal transduction", EXPERIMENTAL CELL RESEARCH, vol. 316, no. 12, 24 April 2010 (2010-04-24), pages 1977 - 1984, XP055085558, DOI: 10.1016/J.YEXCR.2010.04.006 *
GUESCINI M. ET AL: "Extracellular Vesicles Released by Oxidatively Injured or Intact C2C12 Myotubes Promote Distinct Responses Converging toward Myogenesis.", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 18, no. 11, 22 November 2017 (2017-11-22), pages 1 - 14, XP002791877, DOI: 10.3390/ijms18112488 *
GUESCINI M; MAY S; CECCAROLI P; BATTISTELLI M; ANNIBALINI G; SMALL G; SESTILI P; STALKS V: "Extracellular vesicles released by oxidatively injured or Intact C2C12 myotubes Promote Distinct responses converging toward myogenesis", INT J MOL SKI., vol. 18, no. 11, 22 November 2017 (2017-11-22)
HAN A; BOKSHAN ANABOLIC SL; MARCACCIO IF; DEPASSE JM; DANIELS AH: "Diagnostic Criteria and Clinical outcomes in sarcopenia Research: A Literature Review", J CLIN MED., vol. 7, no. 4, 8 April 2018 (2018-04-08), pages E70
HASSELGREN PO; WRAY C; MAMMEN J: "Molecular regulation of muscle cachexia: it may be more than the proteasome", BIOCHEM BIOPHYS RES COMMUN, vol. 290, 2002, pages 1 - 10
HAT F.; CONWAY DE MACARIO E.; MARASA L.; ZUMMO G.; MACARIO: "Hsp60 expression, new locations, functions and perspective for cancer diagnosisand therapy", CANCER BIOL THER, vol. 7, 2008, pages 801 - 809
HORWICH ARTHUR L.; ADRIAN C. APETRI; WAYNE A. FENTON: "The GroEL/GroES cis cavity as a passive anti-aggregation device", FEBS, vol. 583, no. 16, 2009, pages 2654 - 2662
JI SUK CHOI: "exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.etal", JOURNAL OF CONTROLLED RELEASE, vol. 112, 15 December 2015 (2015-12-15), pages 107 - 115, XP002791878 *
KARLIN S.; BROCCHIERI L.: "Heat shock ptotein 60 sequence comparisons: duplications, lateral transfer, and mitocondrial ecolution", PROC NATL ACAD SCI USA, vol. 97, 2000, pages 11348 - 11353
KASPER BENDIX JOHNSEN ET AL: "A comprehensive overview of exosomes as drug delivery vehicles - Endogenous nanocarriers for targeted cancer therapy", BIOCHEMICA ET BIOPHYSICA ACTA - REVIEWS ON CANCER, vol. 1846, no. 1, August 2014 (2014-08-01), pages 75 - 87, XP002791873, DOI: 10.1016/j.bbcan.2014.04.005 *
KATAKAMI N; UCHINO J; YOKOYAMA T; NAITO T; KONDO M; YAMADA K; KITAJIMA H; YOSHIMORI K; SATO K; SAITO H: "Anamorelin (ONO-7643)for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multi-center study of Japanese patients (ONO-7643-04", CANCER, vol. 124, no. 3, 1 February 2018 (2018-02-01), pages 606 - 616
KATAKAMI N; UCHINO J; YOKOYAMA T; NAITO T; KONDO M; YAMADA K; KITAJIMA H; YOSHIMORI K; SATO K; SAITO H: "Anamorelin (ONO-7643)for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multi-center study of Japanese patients (ONO-7643-04", CANCER, vol. 124, no. 3, 4 December 2017 (2017-12-04), pages 606 - 616
LENK'S, K; ERBS S; HOLLRIEGEL R; BECK IS; LINKE A; GIELEN S; WINKLER SM; SANDRI M; HAMBRECHT R; SCHULER G: "exercise training leads to a reduction of myostatin elevated levels in patients with chronic heart failure", EUR J PREV CARDIOL, vol. 19, no. 3, 2012, pages 404 - 11
LENK'S, K; SCHULER G; ADAMS V: "skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training", J CACHEXIA SARCOPENIA MUSCLE, vol. 1, 2010, pages 9 - 21
MATSUZAKA Y; TANIHATA J; KOMAKI H; ISHIYAMA A; OYA Y; RUEGG U IS; HASHIDO TAKEDA K: "Characterization and Functional Analysis of Extracellular vesicles and Muscle-Abundant miRNAs (MIR-1, MIR-133a, and MIR-206)in C2C12 myocytes and mdx Mice", PLOS ONE, vol. 11, no. 12, pages 0167811
MATTSON JOHN P.; CHRIS R.; ROSS J. LON KILGORE; TIMOTHY I. MUSCH: "Induction of mitochondrial stress proteins following treadmill running", MED SCI SPORTS EXERC, vol. 32, 2000, pages 365 - 369
MCARDLE A; DILLMANN WH; MESTRIL R; W. DURTLER JA; JACKSON MJ: "Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction", FASEB J., vol. 18, no. 2, February 2004 (2004-02-01), pages 355 - 7
MCARDLE A; VAN DER MEULEN J; CLOSE GL; PATTWELL D; VAN REMMEN H; HUANG TT; RICHARDSON AG; EPSTEIN CJ; W. DURTLER JA; JACKSON MJ: "Role of mitochondrial superoxide dismutase in Dental cements-induced generation of reactive oxygen species in skeletal muscle extracellular space", AM J PHYSIOL CELL PHYSIOL., vol. 286, no. 5, May 2004 (2004-05-01), pages C1152 - 8
MCARDLE ANNE ET AL: "Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction.", FASEB JOURNAL, vol. 18, no. 2, 19 December 2003 (2003-12-19), pages 1 - 12, XP002791875, ISSN: 0892-6638, DOI: 10.1096/fj.03-0395fje *
MORTON JAMES P.; DON P. M. MACLAREN; NIGEL T. CABLE; LA: T. CAMPBELL; LOUISE EVANS; C. KAYANI; ANNE MCARDLE; BARRY DRUST, PREDETERMINED CRITERIA MEN DISPLAY INCREASED BASAL HEAT SHOCK PR, 2008
MULIAWATI Y; HAROEN H; ROTTY ANOREXIA - LW: "Cancer cachexia syndrome", ACTA MED INDONES, vol. 44, no. 2, 2012, pages 154 - 62
NISHIE K; YAMAMOTO S; NAGATA C; KOIZUMI T; HANAOKA M: "Anamorelin for advanced non-small-cell lung cancer with cachexia: Systematic review and meta-analysis", LUNG CANCER, vol. 112, 27 July 2017 (2017-07-27), pages 25 - 34
OSTERZIEL KJ; STROHM 0; SCHULER J; FRIEDRICH M; HANLEIN D; WILLENBROCK ANKER R, SD; POOLE-WILSON PA; RANKE MB; DIETZ R: "randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy", LANCET, vol. 351, no. 9111, 1998, pages 1233 - 7, XP004833082, DOI: doi:10.1016/S0140-6736(97)11329-0
PROMMER E: "Oncology Update: Anamorelin", PALLIAT CARE, 21 August 2017 (2017-08-21)
ROMANCINO D. P. ET AL., FEBS LETTERS, vol. 587, 2013, pages 1379 - 1384
ROMANCINO DANIELE P ET AL: "Identification and characterization of the nano-sized vesicles released by muscle cells.", FEBS LETTERS, vol. 587, no. 9, 2 May 2013 (2013-05-02), pages 1379 - 1384, XP002791871, ISSN: 1873-3468, DOI: 10.1016/j.febslet.2013.03.012 *
ROMANCINO DP; PATERNITI G; IN MULTIPLE FIELDS Y; DE LUCA A; FELICE V; AZZO A; BONGIOVANNI A: "Identification and characterization of the nano-sized vesicles released by muscle cells", FEBS LETT., vol. 587, no. 9, 2 May 2013 (2013-05-02), pages 1379 - 84
SARAH M. SENF: "skeletal muscle heat shock protein 70: functions and therapeutic potential for wasting disorders", FRONTIERS IN PHYSIOLOGY, vol. 4, no. 4, 330, 11 November 2013 (2013-11-11), pages 1 - 6, XP002791876 *
SAVANT S. THAKUR ET AL: "Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions", PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B, vol. 373, 4 December 2017 (2017-12-04), pages 1 - 11, XP055594444, ISSN: 1471-2970, DOI: 10.1098/rstb.2016.0528 *
SMART NA; STEELE M: "The effect of physical training on systemic pro- inflammatory cytokine expression in heart failure patients: a systematic review", CONGEST HEART FAIL, vol. 17, no. 3, 2011, pages 110 - 4
TAKAYAMA K; KATAKAMI YOKOYAMA T, N, S; YOSHIMORI ATAGI KAGAMU K, H; SAITO H; TAKIGUCHI Y; AOE K; KOYAMA A; KOMURA N; EGUCHI K: "Anamorelin (ONO-7643)in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized trial phase 2", SUPPORT CARE CANCER, vol. 24, no. 8, 23 March 2016 (2016-03-23), pages 3495 - 505, XP035987648, DOI: doi:10.1007/s00520-016-3144-z
TEMEL JS; ABERNETHY AP; CURROW DC; FRIEND J; DUUS EM; YAN Y; FEARON KC: "Anamorelin in patients with non-small-cell lung cancer and cachexia (Roman Roman 1 and 2): results from two randomised, double-blind, phase 3 trials", LANCET ONCOL., vol. 17, no. 4, 20 February 2016 (2016-02-20), pages 519 - 531
TISDALE MJ: "Clinical anticachexia treatments", NUTR CLIN PRACT, vol. 21, no. 2, 2006, pages 168 - 74, XP009097580
TISDALE MJ: "Mechanisms of cancer cachexia", PHYSIOL, vol. 89, no. 2, 2009, pages 381 - 410
TOMAZ MARS ET AL: "Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblastsy", JOURNAL OF MEMBRANE BIOLOGY, vol. 248, no. 2, April 2015 (2015-04-01), pages 273 - 283, XP035443957, DOI: 10.1007/s00232-014-9766-5 *
WANG H; WANG B: "Extracellular vesicle mediated microRNAs skeletal muscle myogenesis and disease", BIOMED REP., vol. 5, no. 3, September 2016 (2016-09-01), pages 296 - 300

Also Published As

Publication number Publication date
WO2020075004A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
CN112480217B (zh) 基于SARS-CoV-2的S抗原蛋白的疫苗和组合物
CN104353066B (zh) Myc的调节剂、其使用方法和鉴别调节myc的试剂的方法
JP5645816B2 (ja) 中枢神経細胞の増殖及び分化に係る中核因子を含む医薬組成物
KR20210098473A (ko) 조작된 세포외 소포체 및 이의 용도
JP2020520640A (ja) 連結したインターロイキン−12(il12)ポリペプチドをコードするポリヌクレオチド及びその使用
US10131888B2 (en) Intracellular protein delivery
EP3118212B1 (en) Cell penetrating peptide and method for delivering biologically active substance using same
CN106659803A (zh) 核酸疫苗
CN107148427A (zh) 新型免疫原性肽
WO2018006750A1 (zh) 一种新型天然蛋白及其应用
CN109069605A (zh) 新免疫原性CD1d结合肽
Shang et al. An ultrashort peptide-based supramolecular hydrogel mimicking IGF-1 to alleviate glucocorticoid-induced sarcopenia
JP2023154032A (ja) ミオミキサーにより促進される筋細胞融合に関連する組成物および方法
Nakamura et al. Lipid nanoparticles fuse with cell membranes of immune cells at low temperatures leading to the loss of transfection activity
CN110312522A (zh) 赖氨酸特异性组蛋白脱甲基化酶-1抑制剂及其用途
Zhou et al. Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway
CN114051412A (zh) 用于卵巢癌的治疗性rna
CN107708718A (zh) 用于治疗2型糖尿病的肠内递送的苦味寡肽
JP6923875B2 (ja) 腫瘍細胞のcd47発現を抑制するための薬剤組成物およびその利用
EP2869828B1 (en) Vault immunotherapy
IT201800009235A1 (it) Procedimento per la sintesi di esosomi contenenti proteine da shock termico e loro uso per il trattamento della atrofia muscolare e della cachessia
WO2015135432A1 (zh) 靶向脂质体的制备及其应用
CN107206046A (zh) 改良的钠通道的肽抑制剂
JP6576355B2 (ja) 細胞輸送
Gurriaran-Rodriguez et al. Wnt binding to Coatomer proteins directs secretion on exosomes independently of palmitoylation