GB2550891A - Mechanical link - Google Patents

Mechanical link Download PDF

Info

Publication number
GB2550891A
GB2550891A GB1609381.7A GB201609381A GB2550891A GB 2550891 A GB2550891 A GB 2550891A GB 201609381 A GB201609381 A GB 201609381A GB 2550891 A GB2550891 A GB 2550891A
Authority
GB
United Kingdom
Prior art keywords
arm
mechanical link
link according
pin
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1609381.7A
Other versions
GB201609381D0 (en
Inventor
Keen Phil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultra Electronics Ltd
Original Assignee
Ultra Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultra Electronics Ltd filed Critical Ultra Electronics Ltd
Priority to GB1609381.7A priority Critical patent/GB2550891A/en
Publication of GB201609381D0 publication Critical patent/GB201609381D0/en
Priority to ES17170510T priority patent/ES2735203T3/en
Priority to EP17170510.6A priority patent/EP3249254B1/en
Priority to US15/598,109 priority patent/US10156255B2/en
Priority to JP2017102330A priority patent/JP6423043B2/en
Priority to CA2968096A priority patent/CA2968096C/en
Priority to BR102017011161-0A priority patent/BR102017011161B1/en
Publication of GB2550891A publication Critical patent/GB2550891A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/027Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems between relatively movable parts of the vehicle, e.g. between steering wheel and column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/08Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for fluid
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/0081Additional features or accessories of hinges for transmitting energy, e.g. electrical cable routing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/28Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the interconnecting pivots include elastic members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/30Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the coupling is specially adapted to constant velocity-ratio
    • F16D3/32Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the coupling is specially adapted to constant velocity-ratio by the provision of two intermediate members each having two relatively perpendicular trunnions or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/01Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets for supporting or guiding the pipes, cables or protective tubing, between relatively movable points, e.g. movable channels
    • F16L3/015Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets for supporting or guiding the pipes, cables or protective tubing, between relatively movable points, e.g. movable channels using articulated- or supple-guiding elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/64Devices for uninterrupted current collection
    • H01R39/643Devices for uninterrupted current collection through ball or roller bearing

Abstract

A mechanical link with a first arm 120, a second arm 140 and an interconnection member 160. The first arm 120 is rotatable about a first axis of the interconnection member 160 and the second arm 140 is rotatable about a second axis of the interconnection member 160 which is perpendicular to the first axis. A flexible member extends along the two arms and has a single coiled portion which is received within the interconnection member 160. The coiled portion can coil and uncoil to accommodate rotation of the first arm 120, and is further configured to twist about an axis of the flexible member to accommodate rotation of the second arm 140. The mechanical link may be a universal joint such as a Cardan or Hookes joint. The flexible member may be an electrical cable or wire, or may be a pneumatic or hydraulic hose. The first arm 120 may engage with a through pin 134, and said through pin may have a channel and slots 300, 302 for receiving the flexible member. The first and second arms may also have channels 322.

Description

MECHANICAL LINK
Technical Field
The present application relates to a mechanical link for guiding and protecting a flexible member such as a conductor, cable, hose or the like.
Background to the Invention
There are numerous applications in which it is necessary to guide a flexible member such as an electrical conductor or cable, hydraulic hose or the like between two structures, where one structure is moveable relative to the other. For example, in the aerospace industry it is a common requirement for an electrical cable to provide power to components on moveable control surfaces, whilst in the automotive industry electrical conductors are commonly required to provide power to components in doors, wing mirrors and the like. In all of these applications the conductor must be able to withstand repeated movement of the structure to which it is connected without damage, whilst at the same time minimising the amount of conductor used, to minimise weight and cost.
Solutions have been developed which house conductors within moveable joints, thereby accommodating the required range of movement whilst also protecting the conductor from damage from objects outside the joint. However, these solutions typically only accommodate movement about one axis at a time. Thus, where simultaneous movement about multiple axes is required, multiple separate joints are required, which increases complexity, cost and weight, whilst also reducing design flexibility.
Accordingly, a need exists for some means of guiding and protecting flexible members such as conductors that must accommodate movement between two structures about multiple axes simultaneously.
Summary of Invention
According to a first aspect of the present invention there is provided a mechanical link, the mechanical link comprising a first arm, a second arm and an interconnection member, wherein: the first arm is rotatable about a first axis of the interconnection member; the second arm is rotatable about a second axis of the interconnection member, the second axis being orthogonal to the first axis; and wherein: the flexible member extends along the first and second arms and is adapted to accommodate rotation of the arms about the first and second axes, the flexible member having a single coiled portion which is received within the interconnection member such that the coiled portion can coil and uncoil to accommodate rotation of the first arm, wherein the coiled portion is further configured to twist about an axis of the flexible member to accommodate rotation of the second arm.
The mechanical link of the present invention is capable of guiding and protecting a flexible member such as a conductor, hose or the like as the arms rotate about mutually orthogonal first and second axes simultaneously. Thus, the mechanical link permits complex three dimensional movement of interconnected structures, whilst protecting and guiding the flexible member. The coiled portion of the flexible member permits the flexible member to coil and uncoil in order to accommodate rotation about the first axis, and to twist in order to accommodate rotation about the second axis. Thus, the mechanical link provides a robust and cost effective solution to the problem of guiding a flexible member between structures that are required to perform complex three dimensional movements relative to each other.
The first arm may engage with a through pin that extends through the interconnection member along the first axis of the interconnection member to permit rotation of the first arm about the first axis.
The second arm may engage with first and second posts that are received in the interconnection member along the second axis of the interconnection member to permit rotation of the second arm about the second axis.
The through pin may be provided with a slot for receiving a portion of the flexible member.
The slot may extend through a full diameter of the through pin.
The through pin may comprise a solid end portion, and the slot may begin partway along the through pin from the solid end portion.
The through pin may further comprise a further slot for receiving a further portion of the flexible member.
The through pin may be provided with a channel for receiving the flexible member and guiding the flexible member towards the first arm.
The channel may be angled.
The first post may be provided with a channel for receiving the flexible member and guiding the flexible member towards the second arm.
The channel may be angled.
The first and second arms may each comprise a channel for receiving the flexible member.
The channel of the first arm may be aligned with the channel of the through pin.
The channel of the second arm may be aligned with the channel of the first post.
The mechanical link may be configured as a universal joint.
The flexible member may be a generally flat, elongate flexible electrical conductor.
The flexible electrical conductor may be a single continuous conductor Alternatively, the flexible member may comprise a cable or hose.
The first and second arms and the interconnection member may be of metal.
Brief Description of the Drawings
Embodiments of the invention will now be described, strictly by way of example only, with reference to the accompanying drawings, of which:
Figure 1 is a schematic perspective representation of a mechanical link having first and second arms and an interconnection member which connects the first arm to the second arm;
Figure 2 is a schematic cutaway view of a mechanical link of Figure 1, showing an interior of the interconnection member and an interior of each of the first and second arms;
Figure 3 is a further schematic cutaway view of the mechanical link illustrated in Figure 1, showing the interior of the interconnection member and the interior of each of the first and second arms from a different angle from that of Figure 2;
Figure 4 is a schematic perspective view of a portion of a flexible conductor for use with the mechanical link illustrated in Figures 1 to 3; and
Figure 5 is a cutaway view of the interconnection member of the mechanical link of Figures 1 to 3, with the flexible conductor of Figure 4 installed.
Description of the Embodiments
Referring first to Figure 1, a mechanical link is shown generally at 100. In the example described below and illustrated in the accompanying Figures the mechanical link 100 guides and protects a flexible conductor, but it will be appreciated by those skilled in the art that the principles described herein can be applied to other types of flexible members, including, for example, cables, pneumatic and hydraulic hoses, fibre optic cables and the like.
The mechanical link 100 is configured as a universal joint, and comprises a first arm 120, a second arm 140 and an interconnection member 160. The first arm 120 takes the form of a generally hollow shaft 122 which terminates in a first open yoke 124. The second arm 140 takes the form of a generally hollow shaft 142 which terminates in a second open yoke 144. The interconnection member 160 is received between the first and second yokes 124,144 so as to link the first arm 120 to the second arm 140.
Generally circular apertures 126, 128 (aperture 128 not visible in Figure 1) are provided in opposed first and second sides 130, 132 of the yoke 124 of the first arm 120. A through pin 134 is received in the apertures 126, 128, and extends between the first side 130 of the yoke 124 and the second side 132 of yoke 124. The through pin 134, in the illustrated example, is fixedly received in the apertures 126, 128, such that the first arm 120 moves with the through pin 134. When the link 100 is assembled, the through pin 134 is rotatably received within the interconnection member 160, such that the interconnection member 160 is able to rotate about the through pin 134, in the directions indicated by the arrow 135. Alternatively, the through pin 134 may be rotatably received in the apertures 126, 128 and fixedly received within the interconnection member 160, such that the first arm 120 is able to rotate about the through pin 134 in the directions indicated by the arrow 135.
Generally circular apertures 146, 148 (aperture 148 not visible in Figure 1) are also provided in opposed first and second sides 150, 152 of the yoke 144 of the second arm 140. A first post 154 is fixedly received in the aperture 146, and a second post 156 (not visible in Figure 1) is fixedly received in the aperture 148, coaxially with the first post 154. In this way, the second arm 140 moves with the first and second posts 154, 156. When the link 100 is assembled, the first and second posts 154, 156 are rotatably received within the interconnection member 160, such that the first and second posts 154, 156 are able to rotate within the interconnection member 160, in the directions indicated by the arrow 155. Alternatively, the first and second posts 154, 156 may be rotatably received in the apertures 146, 148 and fixedly received within the interconnection member 160, such that the second arm 140 is able to rotate about the first and second posts 154, 156 in the directions indicated by the arrow 155.
The interconnection member 160 comprises a generally hollow housing 162 having a first generally circular aperture 164 (shown in Figure 5) provided in a central portion of a first side of the housing 162, and a second generally circular aperture 166 (again, shown in Figure 5) provided in a central portion of a second side of the housing 162, which second side is opposed to the first side. The first and second apertures 166, 168 are aligned with each other such that when the link 100 is assembled, with the through pin 134 received in the first and second apertures 164, 166, a longitudinal axis of the through pm 134 passes through a centre of the interconnection member 160.
The interconnection member 160 is further provided with a third generally circular aperture 168 (again, shown in Figure 5) provided in a central portion of a third side of the housing 162, and a fourth generally circular aperture 170 (again, shown in Figure 5) provided in a central portion of a fourth side of the housing 162, which fourth side is opposed to the third side. The first and second sides of the housing 162 are substantially orthogonal to the third and fourth sides of the housing 162. The third and fourth apertures 168, 170 are aligned with one another, such that when the link 100 is assembled, with the first and second posts 154, 156 received in the third and fourth apertures 168, 170 respectively, a longitudinal axis of the (coaxially arranged) first and second posts 154, 156 passes through the centre of the interconnection member 162, orthogonally to the longitudinal axis of the through pin 134. Thus, as can be seen from Figure 1, when the link 100 is assembled the first and second arms 120, 140 are rotatable about mutually orthogonal axes in the directions indicated by arrows 135, 155.
Figure 2 is a schematic cutaway view of the link 100 shown in Figure 1, showing an interior of the interconnection member 160, as well as an interior of each of the first and second arms 120, 140.
Figure 3 is a further schematic cutaway view of the link 100 shown in Figure 1, showing the interior of the interconnection member 160 and the interior of each of the first and second arms 120, 140 from a different angle from that of Figure 2.
As can be seen from Figures 2 and 3, the through pin 134 is provided with first and second slots 300, 302 which, as shown in Figures 2 and 3, receive portions of a flexible conductor. As is most clearly shown in Figure 3, the first slot 300 is formed as an aperture in a first portion 304 of the through pin 134, which first portion extends between first and second ends 306, 308 of the through pin 134. The second slot 302 is formed between the first portion 304 of the through pin 134 and a second portion 310 of the through pin 134, which second portion 310 extends from the first end 306 of the through pin 134 partway towards the second end 308 of the through pin 134.
As can be seen most clearly in Figure 3, the second slot 302 terminates in an angled channel 312 which turns through an angle of approximately 90 degrees as it extends through an interior of the through pin 134. The angled channel 312 aligns with an elongate channel 314 that extends through the second side 132 of the yoke 124 of the first arm 120 and along the interior of the shaft 122 of the first arm 120. The purpose of the angled channel 312 and the elongate channel 314 is to receive and guide a flexible conductor, as will be explained in more detail below.
As can be seen most clearly in Figure 2, the first post 154 is also provided with an angled channel 320 which turns through approximately 90 degrees as it extends through an interior of the first post 154. The angled channel 320 aligns with an elongate channel 322 that extends through the first side 250 of the yoke 244 of the second arm 140 and opens into the interior of the shaft 142 of the second arm 140.
Figure 4 is a schematic perspective view of a portion of a flexible conductor for use with the mechanical link illustrated in Figure 1, whilst Figure 5 is a cutaway view showing the flexible conductor installed within the interconnection member 160.
The flexible conductor, shown generally at 400 in Figure 4, is a generally flat, elongate conductor for carrying one or more electrical signals. The flexible conductor 400 may be, for example, a ribbon cable or flexible PCB.
The flexible conductor 400 is configured to be received within the mechanical link 100, and comprises a first elongate portion 410 (which, for clarity, is shown truncated in Figures 4 and 5), a second elongate portion 420 (which is again shown truncated in Figures 4 and 5), a central portion 430, a coiled portion 440, and first and second intermediate portions 450, 460. It is to be understood that, although the flexible conductor 400 is described here as a number of "portions" for ease of understanding, in practice the "portions" make up a single continuous conductor.
The first elongate portion 410 is a generally flat, straight portion of the conductor 400, which is linked to the central portion 430 by the first intermediate portion 450. The first intermediate portion 450 forms a bend in the conductor 400 of approximately 90 degrees, to allow the flexible conductor 400 to be received in and to follow the shape of the angled channel 312 in the second end portion 308 of the pin 234.
The central portion 430 is also a generally flat, straight portion of the conductor 400 which, when the mechanical link 100 is assembled, is received in the second slot 302 of the through pin 134, as shown in Figures 2 and 5. To this end, a distal end 432 of the central portion 430 includes a diagonally folded portion 434 which develops into an upstanding portion 436 that is parallel to the central portion 430, and whose edges are generally orthogonal to the edges of the central portion 430. The upstanding portion 436 terminates in a 180 degree bend 438, which in turn develops into a straight portion 439 which connects to an inner end 442 of the coiled portion 440.
As can be seen in Figures 2 and 5, when the conductor 400 is installed in the link 100, the central portion 430 is received between the first and second portions 304, 310 of the through pin 134. The diagonally folded portion 434 extends over a free end of the second portion 310 such that the upstanding portion 436 lies adjacent an outer edge of the second portion 310 of the through pin 134. The 180 degree bend 438 extends around free ends of the first and second portions 304, 310 of the through pin 134, and the straight portion 439 is received in the first slot 300, between the first and second portions 304, 310 of the through pin 134.
The coiled portion 440 enables the flexible conductor 400 to accommodate movement of the arms 120, 140 about their respective axes of rotation. To this end, when the central portion 430 is received in the second slot 302 of the through pin 134, the coiled portion 440 forms a loose coil arrangement around the first and second portions 304, 310 of the through pin 134 comprising, in the illustrated example, approximately one and a half coil turns, with the coil turns being spaced apart and substantially parallel to each other. It will be appreciated that more or fewer coil turns may be provided, as required by the particular application of the link 100.
This loose coil arrangement can be coiled or uncoiled as required to accommodate rotation of the first arm 120 in the directions indicated by the arrow 135 in Figure 1. Thus, when the first arm 120 rotates, the coiled portion 440 coils or uncoils depending upon the direction of rotation, in order to accommodate the rotation.
The loose coil arrangement also permits the flexible conductor 400 to twist about a central longitudinal axis of the flexible conductor 400 in order to accommodate rotation of the second arm 140 in the directions indicated by the arrow 155 in Figure 1. Thus, when the second arm 140 rotates, the coiled portion 440 of the flexible conductor 400 twists about the central longitudinal axis of the flexible conductor 400, such that the spacing between the coil turns of the coiled portion 440 is reduced. At the extremes of the rotational movement of the first arm 120 the coil turns of the coiled portion may come into contact with one another as a result of the twisting of the coiled portion 440 of the conductor 400
The use of a single coiled portion 440 in the single continuous flexible conductor 400 to accommodate rotation about two orthogonal axes simplifies the design and construction of the link 100, and reduces the risk of failure of the conductor 400, since the single continuous flexible conductor 400 includes no joints or connections that could fail under stress.
The second elongate portion 420 is a generally flat, straight portion of the conductor, which is linked to an outer end 444 of the coiled portion by the second intermediate portion 460. The second intermediate portion 460 includes a pair of opposed bends 462, 464 in the conductor 400, which are linked by a central straight portion 466 of the second intermediate portion 460. The bends 462, 464 and the straight portion permit the conductor 400 to be received in and to follow the shape of the angled channel 320 in the first post 154.
As shown in Figure 5, when the flexible conductor 400 is installed in the mechanical link 100, the first elongate portion 410 extends out of the angled channel 312 in the second end portion 308 of the pin 234, and is received in the channel 314 that extends through the interior of the second side 132 of the yoke 124 of the first arm 120 and along the interior of the shaft 122 of the first arm 120.
Similarly, when the flexible conductor 400 is installed in the mechanical link 100, the second elongate portion 420 extends out of the angled channel 320 of the post 154, and is received in the channel 322 that extends through the interior of the first side 150 of the yoke 144 of the second arm 140.
As discussed above, when the flexible conductor 400 is installed in the mechanical link 100, the central portion 430 of the flexible conductor 400 is received in the second slot 302 and the straight portion 439 is received in the first slot 300 of the through pin 134, the coiled portion 440 coils loosely around the through pin 134. The positioning of the central portion 430 and the straight portion 439 within the second and first slots 302, 300 respectively anchors the conductor 400 within the slots, thus ensuring that the coiled portion 440 coils and uncoils when the first arm 120 moves, rather than moving freely within the housing 162, and ensuring that the coiled portion 440 twists when the second arm 140 moves, rather than moving or extending along the through pin 134.
The first intermediate portion 450 of the conductor 400 is received in the angled channel 312, whilst the second intermediate portion 460 is received in the angled channel 320. The positioning of the intermediate portions 450, 460 within the angled channels 312, 320 helps to retain the coiled portion 440 of the conductor 400 in position within the housing 160, restricting movement of the conductor 400 during movement of the second arm 140, thereby ensuring that the coil turns of the coiled portion 440 twist to accommodate the movement of the second arm 140. To secure and stabilise the coiled portion 440 further, thereby ensuring correct twisting of the coiled portion 440, the outer end 444 of the coiled portion 440 may be received in a guide or slot 480 that is connected to or integral with the post 154.
As indicated above, although in the examples described and illustrated herein the mechanical link 100 guides and protects a flexible conductor, it will be appreciated by those skilled in the art that the principles described can be applied to other types of flexible members, including, for example, cables, pneumatic and hydraulic hoses, fibre optic cables and the like, even where those flexible members are not flat. The only requirement is that there is sufficient space within the interconnection member to accommodate a coiled portion of the flexible member.

Claims (20)

1. A mechanical link, the mechanical link comprising a first arm, a second arm and an interconnection member, wherein: the first arm is rotatable about a first axis of the interconnection member; the second arm is rotatable about a second axis of the interconnection member, the second axis being orthogonal to the first axis; and wherein: the flexible member extends along the first and second arms and is adapted to accommodate rotation of the arms about the first and second axes, the flexible member having a single coiled portion which is received within the interconnection member such that the coiled portion can coil and uncoil to accommodate rotation of the first arm, wherein the coiled portion is further configured to twist about an axis of the flexible member to accommodate rotation of the second arm.
2. A mechanical link according to claim 1 wherein the first arm engages with a through pin that extends through the interconnection member along the first axis of the interconnection member to permit rotation of the first arm about the first axis.
3. A mechanical link according to claim 1 or claim 2 wherein the second arm engages with first and second posts that are received in the interconnection member along the second axis of the interconnection member to permit rotation of the second arm about the second axis.
4. A mechanical link according to claim 2 wherein the through pin is provided with a slot for receiving a portion of the flexible member.
5. A mechanical link according to claim 4 wherein the slot extends through a full diameter of the through pin.
6. A mechanical link according to claim 4 or claim 5 wherein the through pin comprises a solid end portion and the slot begins partway along the through pin from the solid end portion.
7. A mechanical link according to any one of claims 4 to 6 wherein the through pin further comprises a further slot for receiving further portion of the flexible member.
8. A mechanical link according to any one of claims 4 to 7 wherein the through pin is provided with a channel for receiving the flexible member and guiding the flexible member towards the first arm.
9. A mechanical link according to claim 8 wherein the channel is angled.
10. A mechanical link according to any one of claims 3 to 9 wherein the first post is provided with a channel for receiving the flexible member and guiding the flexible member towards the second arm.
11. A mechanical link according to claim 10 wherein the channel is angled.
12. A mechanical link according to any one of the preceding claims, wherein the first and second arms each comprise a channel for receiving the flexible member.
13. A mechanical link according to claim 12, where dependent upon claim 8, wherein the channel of the first arm is aligned with the channel of the through pin.
14. A mechanical link according to claim 12, where dependent upon claim 10, wherein the channel of the second arm is aligned with the channel of the first post.
15. A mechanical link according to any one of the preceding claims wherein the mechanical link is configured as a universal joint.
16. A mechanical link according to any one of the claims wherein the flexible member is a generally flat, elongate flexible electrical conductor.
17. A mechanical link according to claim 16 wherein the flexible electrical conductor is a single continuous conductor
18. A mechanical link according to any one of claims 1 to 15 wherein the flexible member comprises a cable or hose.
19. A mechanical link according to any one of the preceding claims wherein the first and second arms and the interconnection member are of metal.
20. A mechanical link substantially as hereinbefore described with reference to the accompanying drawings.
GB1609381.7A 2016-05-27 2016-05-27 Mechanical link Withdrawn GB2550891A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB1609381.7A GB2550891A (en) 2016-05-27 2016-05-27 Mechanical link
ES17170510T ES2735203T3 (en) 2016-05-27 2017-05-10 Mechanical joint
EP17170510.6A EP3249254B1 (en) 2016-05-27 2017-05-10 Mechanical link
US15/598,109 US10156255B2 (en) 2016-05-27 2017-05-17 Mechanical link with single coil flexible member accommodating multiple-axis rotation
JP2017102330A JP6423043B2 (en) 2016-05-27 2017-05-24 Connecting device
CA2968096A CA2968096C (en) 2016-05-27 2017-05-24 Mechanical link
BR102017011161-0A BR102017011161B1 (en) 2016-05-27 2017-05-26 MECHANICAL JOINT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1609381.7A GB2550891A (en) 2016-05-27 2016-05-27 Mechanical link

Publications (2)

Publication Number Publication Date
GB201609381D0 GB201609381D0 (en) 2016-07-13
GB2550891A true GB2550891A (en) 2017-12-06

Family

ID=56410661

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1609381.7A Withdrawn GB2550891A (en) 2016-05-27 2016-05-27 Mechanical link

Country Status (7)

Country Link
US (1) US10156255B2 (en)
EP (1) EP3249254B1 (en)
JP (1) JP6423043B2 (en)
BR (1) BR102017011161B1 (en)
CA (1) CA2968096C (en)
ES (1) ES2735203T3 (en)
GB (1) GB2550891A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2852898T3 (en) * 2018-04-24 2021-09-14 David Robertson A rollover protection device
CN112032187B (en) * 2019-10-08 2021-07-16 张楼锋 Support self-locking device used in medical field
US11828395B2 (en) * 2022-02-14 2023-11-28 Imaging Brands, Inc. Inline housing for maintaining a cable posture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270574A (en) * 1998-03-24 1999-10-05 Osaka Gas Co Ltd Cylindrical universal joint
US20020129945A1 (en) * 2001-03-16 2002-09-19 Brewer James E. Flexible joint for well logging instruments
DE202004020194U1 (en) * 2004-12-30 2005-03-03 Weber, Herbert Cardan joint has electrical lead-through with at least one elastic cable-form component, and especially spring component which may consist of electrically conducting material
EP1889808A1 (en) * 2006-04-03 2008-02-20 Epsilon Kran GmbH Crane arm with connecting device for a working implement
JP2009216220A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Universal joint

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB616486A (en) 1946-09-06 1949-01-21 William Harold Botterill Improvements in or relating to universal shaft couplings
GB827256A (en) 1957-08-19 1960-02-03 Mollart Engineering Company Lt Improvements in or relating to universal joints
US4382624A (en) * 1980-12-15 1983-05-10 Deere & Company Grapple pivot snubber
US4685349A (en) * 1985-12-20 1987-08-11 Agency Of Industrial Science And Technology Flexibly foldable arm
CN2049419U (en) 1989-08-08 1989-12-13 梁殿岐 Universal electric cable connecting device
US5381486A (en) 1992-07-08 1995-01-10 Acs Communications, Inc. Communications headset having a universal joint-mounted microphone boom
JP2658935B2 (en) * 1994-12-30 1997-09-30 日本電気株式会社 Electronic device having hinge structure
US5735707A (en) 1996-05-30 1998-04-07 International Business Machines Corporation Multi-directional shielded cable exit
JPH1149438A (en) * 1997-06-06 1999-02-23 Nakasu Denki Kk Filament winder, wiring duct and duct material holding member
TW519785B (en) * 2000-12-20 2003-02-01 Japan Aviation Electron Folding-type electronic apparatus comprising two base members hinge-connected by a hinge connector with an FPC
CA2442323C (en) * 2001-03-26 2011-10-18 Glenn Alexander Thompson Constant velocity coupling and control system therefor
JP4122782B2 (en) 2002-01-25 2008-07-23 村田機械株式会社 Automated guided vehicle system
JP2004112978A (en) 2002-09-20 2004-04-08 Tokyo Electric Power Co Inc:The Interphase spacer for electric wire, and aerial transmission line
JP4142033B2 (en) * 2005-06-09 2008-08-27 株式会社カシオ日立モバイルコミュニケーションズ Portable electronic devices
JP4565029B2 (en) * 2008-08-13 2010-10-20 ファナック株式会社 Striated body motion restriction device and robot equipped with the device
JP2010172116A (en) * 2009-01-23 2010-08-05 Yazaki Corp Harness winding type power supply device
JP2010276183A (en) * 2009-06-01 2010-12-09 Nsk Ltd Universal joint
US8157569B1 (en) * 2011-02-08 2012-04-17 Longlife International Limited Biaxially rotatable electrical connector
CN102147516A (en) 2011-05-17 2011-08-10 江东金具设备有限公司 Universal joint for submarine optical cable connector box
CN202067009U (en) 2011-05-17 2011-12-07 江东金具设备有限公司 Universal joint for connection box of seabed optical cable
FR2977627B1 (en) 2011-07-08 2016-02-05 Somfy Sas DEVICE FOR COUPLING AND DOMOTIC INSTALLATION COMPRISING SUCH A DEVICE
CN102330752B (en) 2011-10-22 2016-03-16 襄阳博亚精工装备股份有限公司 With the Self-homing type Rzeppa synchronoccs universal coupling of safety pin
CN202301512U (en) 2011-10-22 2012-07-04 襄阳博亚精工装备股份有限公司 Self-homing-type Rzeppa synchronous universal coupling with safety pin
CN103174762A (en) 2011-12-22 2013-06-26 鸿富锦精密工业(深圳)有限公司 Cardan joint
TWI513914B (en) * 2012-08-14 2015-12-21 Au Optronics Corp Electronic device and display module used therein with hinge signal passage design
CN202851711U (en) 2012-11-01 2013-04-03 常州市明及电气技术开发有限公司 Cross joint of solid insulation combination electrical appliance
JP5975849B2 (en) 2012-11-01 2016-08-23 株式会社ソミック石川 Ball joint
CN103591160B (en) 2013-11-23 2015-11-18 清华大学 Oil and gas pipes defect internal detector universal joint
FR3024384A1 (en) * 2014-07-30 2016-02-05 Aldebaran Robotics IMPROVING THE ASSEMBLY OF A HUMANOID ROBOT
CN204164978U (en) 2014-10-24 2015-02-18 佛山市南海区华恒照明电器厂 A kind of LED Universal-head
CN104993431A (en) 2015-07-15 2015-10-21 季德贵 Hinge allowing wire to pass through
CN204793903U (en) 2015-07-15 2015-11-18 季德贵 Can cross line hinge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270574A (en) * 1998-03-24 1999-10-05 Osaka Gas Co Ltd Cylindrical universal joint
US20020129945A1 (en) * 2001-03-16 2002-09-19 Brewer James E. Flexible joint for well logging instruments
DE202004020194U1 (en) * 2004-12-30 2005-03-03 Weber, Herbert Cardan joint has electrical lead-through with at least one elastic cable-form component, and especially spring component which may consist of electrically conducting material
EP1889808A1 (en) * 2006-04-03 2008-02-20 Epsilon Kran GmbH Crane arm with connecting device for a working implement
JP2009216220A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Universal joint

Also Published As

Publication number Publication date
ES2735203T3 (en) 2019-12-17
BR102017011161A2 (en) 2017-12-12
CA2968096A1 (en) 2017-11-27
US10156255B2 (en) 2018-12-18
CA2968096C (en) 2020-01-14
GB201609381D0 (en) 2016-07-13
US20170343039A1 (en) 2017-11-30
EP3249254A3 (en) 2017-12-27
EP3249254B1 (en) 2019-05-01
JP6423043B2 (en) 2018-11-14
EP3249254A2 (en) 2017-11-29
BR102017011161B1 (en) 2022-09-06
JP2017216869A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
CA2968096C (en) Mechanical link
US10302889B2 (en) Gimbal transmission cable management
KR101779645B1 (en) Cable protection and guide device
JP2009071916A (en) Retainer for cable connection
EP3293844B1 (en) Mechanical link
JP6882437B2 (en) Cable wiring method, robot manufacturing method, rotating shaft cable wiring structure, and robot
JP6458116B1 (en) Retrofit connector
US9164233B2 (en) Field installable cable splice system
JP6539233B2 (en) Turning mechanism and positioning device
CN108908314B (en) Linkage joint group and mechanical arm
KR102615648B1 (en) Joint apparatus for robot
JP2522667B2 (en) Universal joint for cables
KR102655240B1 (en) Joint apparatus for robot
JPH012276A (en) Universal joint for cables
WO2023162913A1 (en) Wire harness routing structure, link-type sliding door, and wire harness
EP4286106A1 (en) Robot arm joint, connector and robot arm
US20220340394A1 (en) Rotary Guide For One or More Lines
JPH0318072B2 (en)
WO2018097729A1 (en) Guidance element with internal conduit between two constructional parts

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)