FR3079112A1 - Procede de demineralisation de lactoserum - Google Patents
Procede de demineralisation de lactoserum Download PDFInfo
- Publication number
- FR3079112A1 FR3079112A1 FR1852410A FR1852410A FR3079112A1 FR 3079112 A1 FR3079112 A1 FR 3079112A1 FR 1852410 A FR1852410 A FR 1852410A FR 1852410 A FR1852410 A FR 1852410A FR 3079112 A1 FR3079112 A1 FR 3079112A1
- Authority
- FR
- France
- Prior art keywords
- whey
- electrodialysis
- demineralization
- temperature
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005862 Whey Substances 0.000 title claims abstract description 150
- 102000007544 Whey Proteins Human genes 0.000 title claims abstract description 150
- 108010046377 Whey Proteins Proteins 0.000 title claims abstract description 150
- 230000002328 demineralizing effect Effects 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000008569 process Effects 0.000 title description 27
- 238000000909 electrodialysis Methods 0.000 claims abstract description 71
- 238000005115 demineralization Methods 0.000 claims abstract description 52
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 15
- 230000020477 pH reduction Effects 0.000 claims abstract description 7
- 238000009928 pasteurization Methods 0.000 claims description 11
- 239000012528 membrane Substances 0.000 abstract description 13
- 235000013365 dairy product Nutrition 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 43
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000012267 brine Substances 0.000 description 13
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000002956 ash Substances 0.000 description 12
- 235000009508 confectionery Nutrition 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000011575 calcium Substances 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 10
- 239000011707 mineral Substances 0.000 description 10
- 238000005342 ion exchange Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 238000005345 coagulation Methods 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 235000013336 milk Nutrition 0.000 description 6
- 210000004080 milk Anatomy 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 235000013351 cheese Nutrition 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229940108461 rennet Drugs 0.000 description 2
- 108010058314 rennet Proteins 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000020122 reconstituted milk Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/422—Electrodialysis
- B01D61/423—Electrodialysis comprising multiple electrodialysis steps
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C21/00—Whey; Whey preparations
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/14—Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
- A23C9/144—Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by electrical means, e.g. electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/06—Energy recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/52—Accessories; Auxiliary operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/10—Temperature control
- B01D2311/103—Heating
- B01D2311/1032—Heating or reheating between serial separation steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/18—Details relating to membrane separation process operations and control pH control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/24—Quality control
- B01D2311/243—Electrical conductivity control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Nanotechnology (AREA)
- Dairy Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
L'invention se rapporte au domaine des produits laitiers et concerne particulièrement un procédé de déminéralisation de lactosérum. Le procédé selon l'invention comprend les étapes suivantes de fourniture d'un lactosérum, d'électrodialyse à une température de 30°C à 60°C du lactosérum, d'acidification du lactosérum à un pH compris entre 2 et 3,5, de pasteurisation du lactosérum acidifié, d'électrodialyse à une température comprise de 30°C à 60°C du lactosérum acidifié pasteurisé, et de neutralisation du lactosérum déminéralisé à un pH compris entre 6,7 et 7,2. Le procédé selon l'invention permet de réaliser une déminéralisation de lactosérum en utilisant uniquement la méthode de l'électrodialyse tout en évitant les problèmes classiquement rencontrés avec cette méthode, à savoir un taux de déminéralisation limité, un encrassement des membranes, et une durée de vie insuffisante.
Description
L’invention se rapporte au domaine des produits laitiers et concerne particulièrement un procédé de déminéralisation de lactosérum.
Le lactosérum est la partie liquide issue de la coagulation du lait, ladite coagulation étant provoquée par la dénaturation de la caséine, protéine majoritaire du lait. Π existe deux types de coagulation, menant chacune à deux types de lactosérum différent. En effet, selon que la coagulation est une coagulation lactique ou une coagulation présure, le lactosérum obtenu est respectivement qualifié de lactosérum acide ou de lactosérum doux. Le lactosérum est également appelé lactosérum de fromagerie ou petit-lait.
Depuis des décennies, la valorisation du lactosérum représente des enjeux aussi bien économiques qu’écologiques. En effet, bien que la composition soit intéressante, le lactosérum possède une Demande Chimique en Oxygène (DCO) de 50 g/L à 70 g/L, ce qui en fait un produit organique polluant ne pouvant être rejeté dans la nature et dont le transport est coûteux.
C’est ainsi qu’au fil du temps, des voies de valorisation ont vu le jour, notamment par l’intermédiaire des procédés de déminéralisation permettant d’obtenir du lactosérum déminéralisé.
Le lactosérum déminéralisé, liquide ou en poudre, constitue de nos jours le principal composant des produits infantiles et diététiques, en particulier des laits succédanés du lait maternel. Le lactosérum déminéralisé a également d'autres applications, comme par exemple en tant qu’ingrédient de remplacement du lait écrémé en confiserie-chocolaterie ou dans la fabrication des laits reconstitués.
Différentes techniques peuvent être envisagées pour la déminéralisation du lactosérum, en particulier Γultrafiltration, l’osmose inverse, l’électrodialyse et l’échange d’ions. Les deux premières techniques étant bien trop spécifiques, seules les deux dernières ont trouvé une réelle application industrielle. Ainsi, les procédés de déminéralisation du lactosérum les plus efficaces à l’heure actuelle sont l'électrodialyse et l'échange d'ions, qui sont appliquées séparément ou en combinaison.
L'électrodialyse est une technique électrochimique qui permet d'éliminer sélectivement les sels ionisés d'une solution par migration sous l'action d'un champ électrique à travers des membranes sélectivement perméables aux cations et aux anions. Selon cette technique, les jsels ionisés en solution dans le lactosérum migrent sous l’effet d’un champ électrique à travers des membranes sélectivement perméables aux cations et aux anions et sont éliminés sous forme de saumures.
L’électrodialyse pose cependant plusieurs problèmes. En effet, son fonctionnement est connu comme irrégulier, le taux de déminéralisation du lactosérum est limité, les membranes ont tendance à s’encrasser et leur durée de vie est relativement limitée. De plus, certains facteurs sont limitants comme par exemple la vitesse lente de déplacement des anions, ainsi que la difficulté pour dissocier tous les sels.
L'échange d'ions est une technique basée sur le principe des équilibres ioniques existant entre une phase solide et une phase liquide et fait appel à des phénomènes d'absorption et d'exclusion. Ainsi, selon cette technique, on utilise l’équilibre ionique entre une résine en tant que phase solide et le lactosérum à déminéraliser en tant que phase liquide, les ions étant absorbés sur la résine de même nature lors de la phase de saturation, puis les résines sont ensuite régénérées. Un des inconvénients de cette technique réside dans le fait que de très grandes quantités d'eau sont nécessaires et des réactifs de régénération doivent être utilises en abondance, réactifs dont on ne sait trop que faire après usage. De plus, à l’échelle industrielle, cette technique nécessite des installations de taille imposante, notamment par la hauteur de la colonne contenant la résine qui peut atteindre plusieurs mètres dans certains cas. Enfin, un autre inconvénient réside dans le fait que la mise en œuvre de cette technique est discontinue, environ 40% du temps étant consacré à la déminéralisation du lactosérum et environ 60 % du temps au lavage des résines et à leur régénération.
Pour augmenter la productivité de la déminéralisation, le document US 4803 089 décrit ainsi la combinaison de ces deux techniques dans un procédé en deux étapes, l’électrodialyse assurant une première déminéralisation d’environ 50-60 % et l’échange d’ion, de préférence multiétage avec des résines successives cationique faible et cationique forte, réalisant la déminéralisation finale à environ 90-95 %.
On connaît également du document US 4 138 501 un procédé de déminéralisation d’un lactosérum clarifié et écrémé par électrodialyse suivi d’échange d’ions avec en premier lieu une résine cationique forte sous forme H+ suivie d’une résine anionique faible sous forme OH-. Selon une variante du procédé décrit, le lactosérum peut éventuellement être pasteurisé avant l’étape d’échange d’ions sur résine échangeuse.
Ces types de procédé présentent l’inconvénient que l’étape d’échange d’ions nécessite de grandes quantités de régénérant chimiques et consomme également des quantités d’eau très importantes. De plus, l’électrodialyse n’était jusqu’à présent pas utilisée au-delà d’un taux de déminéralisation supérieur à 60% en raison notamment de la grande demande en énergie électrique.
Π est également connu du document EP 1 053 685, un procédé de traitement de lactosérum en vue de sa déminéralisation comprenant une étape de séparation des sels par transfert au travers de membranes de nanofiltration caractérisé en ce qu’il comprend en amont de cette étape de séparation et de manière successive, au moins une étape d’échange de cations divalents par des protons et au moins une étape d’échange d’anion divalent par des ions chlorure.
Le document US 3 325 389 décrit un procédé de déminéralisation de lactosérum par électrodialyse dans lequel ledit lactosérum est soumis à une étape de traitement thermique de 130°F à 145°F (54°C à 63°C) pendant au maximum 30 heures, de préférence au maximum 2 heures, tout en maintenant le pH à environ 4 à 5 afin de précipiter les inhibiteurs de déminéralisation et d’augmenter la vitesse de déminéralisation par Γ électrodialyse.
Cependant, bien que des solutions de déminéralisation de lactosérums soient proposées, il existe toujours un besoin de développer de nouvelles alternatives plus efficaces et permettant notamment de répondre à la demande croissante de valorisation des lactosérums.
ü est donc du mérite des inventeurs d’avoir pu mettre au point un procédé de déminéralisation du lactosérum surmontant tout ou partie des problèmes décrits précédemment, tout en obtenant un produit qualitatif présentant notamment des avantages en termes de coûts de production et d’encombrement des installations industrielles.
Ainsi, un objet de l’invention concerne un procédé de déminéralisation de lactosérum comprenant les étapes suivantes de :
fourniture d’un lactosérum, électrodialyse à une température de 30°C à 60°C du lactosérum, acidification du lactosérum à un pH compris entre 2 et 3,5, pasteurisation du lactosérum acidifié, électrodialyse à une température comprise de 30°C à 60°C du lactosérum acidifié pasteurisé, neutralisation du lactosérum déminéralisé à un pH compris entre 6,7 et 7,2.
D’une manière tout à fait surprenante, les inventeurs ont constaté que des conditions particulières de mise en œuvre dans le procédé de déminéralisation permettaient de s’affranchir d’une étape d’échange d’ions tout en limitant les inconvénients connus de l’électrodialyse. En effet, les inventeurs ont notamment constaté que la mise en œuvre d’une étape d’acidification et de pasteurisation après une première étape d’électrodialyse, permettait ensuite de poursuivre la déminéralisation par l’intermédiaire d’une seconde étape d’électrodialyse, sans pour autant que cela pose les problèmes classiquement rencontrés avec cette méthode, à savoir un taux de déminéralisation limité, un encrassement des membranes, et une durée de vie insuffisante.
La première étape du procédé consiste à fournir un lactosérum. Le lactosérum peut être un lactosérum doux ou un lactosérum acide.
Dans le contexte de la présente invention, le lactosérum acide peut être le liquide obtenu par coagulation du lait via une acidification provoquée par le métabolisme des bactéries lactiques. D’une manière générale, la composition du lactosérum acide se présente comme suit :
lactose : 4,0 — 5,0 % protéines : 0,6 - 0,7 % sels minéraux (principalement Na+’ K+ et Ca2+): 0,7 - 0,8 % matières grasses : 0,05 - 0,1 % teneur en matière sèche (extrait sec total) : 5,3 - 6,0 % acidité : pH 4,3 - 4,6
Dans le contexte de la présente invention, on désigne par lactosérum doux, le liquide obtenu après coagulation de la caséine par la présure lors de la fabrication de fromage. Comme mentionné précédemment, le lactosérum doux est un co-produit connu issu de l’industrie fromagère. D’une manière générale, la composition du lactosérum doux se présente comme suit :
lactose : 4,0 - 5,0 % protéines : 0,6 - 0,8 % sels minéraux (principalement Na+’ K+ et Ca2+): 0,4 - 0,6 % matières grasses : 0,2 - 0,4 % teneur en matière sèche (extrait sec total) : 5,3 - 6,6 % acidité : pH 5,9 - 6,5
Selon un mode de réalisation préféré, le lactosérum fournit est un lactosérum doux. Selon ce mode de réalisation, le lactosérum doux peut être sous forme brute ou sous forme concentrée. De même, il peut également s’agir d’un lactosérum reconstitué à partir d’une poudre de lactosérum.
Selon une variante de ce mode de réalisation préféré, le lactosérum doux est un lactosérum doux concentré, avantageusement concentré thermiquement dans des conditions de chauffage modéré jusqu’à l’obtention d’un extrait sec compris entre 18 à 25 %. De préférence, le lactosérum doux présente un extrait sec de 18 à 23 %, et tout particulièrement environ 20 % d’extrait sec. Le lactosérum peut également être défini par ses caractéristiques de conductivité et son taux de cendres. Selon ce mode de réalisation, le lactosérum concentré fourni présente une conductivité Ω comprise de 13,5 à 14,5 mS/cm à 20°C et un taux de cendres compris de 7,8 à 8,4.
Avantageusement, le lactosérum fourni peut également être écrémé et clarifié avant l’étape d’électrodialyse.
La seconde étape du procédé selon l’invention consiste en une électrodialyse du lactosérum. Cette première électrodialyse est réalisée à une température comprise de 30°C à 60°C, de préférence à une température comprise de 35°C à 55°C, et de préférence encore à une température comprise de 40°C à 50°C. Par exemple, cette étape d’électrodialyse peut être réalisée à une température d’environ 45°C.
L’étape d’électrodialyse est mise en œuvre jusqu’à atteindre le taux de déminéralisation souhaité, à savoir pour cette étape un taux de déminéralisation d’au moins 30 %, d’au moins 40 %, et tout particulièrement, un taux de déminéralisation d’environ 50 %.
L’expression « taux de déminéralisation », représente le rapport des quantités de sels minéraux éliminés du lactosérum (c’est-à-dire la différence entre les quantités de sels minéraux du lactosérum de départ et les quantités résiduelles du lactosérum déminéralisé) aux quantités de sels minéraux du lactosérum de départ, ramenés aux mêmes pourcentages de matière sèches.
L’homme du métier peut apprécier le taux de déminéralisation du lactosérum par l’intermédiaire de la conductivité. De plus, le taux de cendres du lactosérum déminéralisé peut également être un indicateur du taux de déminéralisation atteint. Au sens de la présente invention, on entend par « cendres », le produit résultant de l’incinération de la matière sèche du lactosérum. Selon la présente invention, le taux de cendres est déterminé selon la norme NF 04-208.
Selon cette seconde étape du procédé selon l’invention, l’électrodialyse est réalisée de manière à obtenir une conductivité du lactosérum comprise entre 4,0 et 5,0 mS/cm et/ou un taux de cendres compris de 3,3 à 3,9, ce qui correspond à un taux de déminéralisation d’environ 50 %.
La troisième étape du procédé consiste à acidifier le lactosérum à un pH compris entre 2 et 3,5. Les inventeurs ont en effet constaté que l’acidification du lactosérum et le travail à bas pH présentent plusieurs avantages, notamment pour l’efficacité de l’électrodialyse. D’une part, l’efficacité est augmentée car les bas pH favorisent l’ionisation des sels divalents et trivalents présents dans le lactosérum et augmente ainsi par exemple la disponibilité du calcium ou du magnésium. D’autre part, cela permet d’abaisser la viscosité du lactosérum et entraîne un meilleur passage des ions au travers des membranes d’électrodialyse. De ce fait, l’encrassement des membranes est diminué et leur durée de vie est augmentée.
De plus, le maintien du lactosérum à un pH compris entre 2 et 3,5 permet d’assurer la stabilité thermique des protéiques sériques en évitant leur floculation et leur dénaturation lors de la pasteurisation. Ce point est particulièrement intéressant pour le maintien de la qualité nutritionnelle du lactosérum déminéralisé. D’une manière avantageuse, le pH acide évite également tout développement bactériologique lors de l’opération de déminéralisation.
Enfin, le maintien des conditions acides selon l’invention dans le procédé de déminéralisation est également avantageux en ce qu’il permet de diminuer la consommation d’eau et de produits chimiques.
L’acidification est réalisée de manière à diminuer et à maintenir le pH du lactosérum à une valeur comprise de 2,0 à 3,5. De préférence, le pH du lactosérum est abaissé et maintenu à une valeur comprise de 2,5 à 3,2, et de préférence encore, à une valeur environ égale à 3. La diminution du pH peut être réalisée par l’intermédiaire des moyens connus de l’homme du métier comme par exemple l’utilisation d’une solution d’acide chlorhydrique (HCl).
La quatrième étape du procédé selon l’invention consiste en une étape de pasteurisation du lactosérum acidifié. La pasteurisation permet de réduire de manière significative le nombre de microorganismes présents dans le lactosérum, et notamment d’éliminer les germes les plus résistants, tels que les germes sporulés et thermorésistants, sans toutefois altérer pour autant les protéines. Cette étape présente également l’avantage de permettre la réalisation de l’étape d’électrodialyse à des températures plus élevées que celles classiquement mises en œuvre.
Cette étape de pasteurisation est réalisée à une température comprise entre 90°C et 125°C et pendant une durée comprise entre 5 secondes et 30 minutes, de préférence pendant une durée comprise entre 5 secondes et 15 minutes, et de préférence encore, pendant une durée comprise entre 10 secondes et 5 minutes, comme par exemple environ 5 minutes.
Selon un mode de réalisation particulier, la pasteurisation est réalisée pendant une durée de 3 à 7 minutes et à une température comprise de 90°C à 100°C et de préférence, à une température d’environ 95°C et pendant une durée d’environ 5 minutes.
Selon un autre mode de réalisation particulier, la pasteurisation est réalisée pendant une durée de 5 à 20 secondes et à une température comprise de 105°C à 125°C et de préférence, à une température de 110°C à 120°C et pendant une durée de 10 à 15 secondes.
Selon un autre mode de réalisation particulier, la pasteurisation est réalisée pendant 1 à 20 min et à une température comprise entre 80 et 120°C, de préférence pendant 1 à 10 minutes et à une température comprise entre 90 et 100°C, et de préférence encore pendant environ 5 minutes et à une température d’environ 95°C.
La cinquième étape du procédé selon l’invention consiste en une étape d’électrodialyse du lactosérum acidifié et pasteurisé. Comme précédemment mentionné, selon cette étape, les sels ionisés en solution dans le lactosérum migrent sous l’effet d’un champ électrique à travers des membranes sélectivement perméables aux cations et aux anions, et sont éliminés sous forme de saumures. L’étape d’électrodialyse est réalisée à une température comprise de 30°C à 60°C, de préférence à une température comprise de 35°C à 55°C, et de préférence encore à une température comprise de 40°C à 50°C. Par exemple, l’étape d’électrodialyse peut être réalisée à une température d’environ 45°C.
Avantageusement, ces températures permettent de contribuer à la diminution de la viscosité du lactosérum et à une meilleure dissociation des sels minéraux. De plus, bien que les températures mises en œuvre dans l’électrodialyse soient plus élevées que celles classiquement mises en œuvre, le lactosérum ayant été préalablement acidifié et pasteurisé garde une grande stabilité microbiologique et ne développe aucune flore néfaste.
L’étape d’électrodialyse est mise en œuvre jusqu’à atteindre le taux de déminéralisation souhaité du lactosérum acidifié, à savoir un taux de déminéralisation d’au moins 70 %, d’au moins 75 %, d’au moins 80 %, d’au moins 85 %, ou encore d’au moins 90 %.
De préférence selon cette étape, le lactosérum acidifié présente un taux de déminéralisation d’environ 70 %, et de préférence encore, un taux de déminéralisation d’environ 90 %.
Cette seconde étape d’électrodialyse permet ainsi d’obtenir un taux de déminéralisation important du lactosérum tout en évitant les problèmes classiquement rencontrés avec cette technique.
Le procédé selon l’invention permet ainsi d’obtenir un lactosérum déminéralisé uniquement par l’intermédiaire de l’électrodialyse. Ainsi, à l’inverse de ce qui était connu de l’art antérieur, le procédé de déminéralisation ne comprend pas d’étape(s) d’échange d’ion, comme par exemple une étape d’échange de cations divalents par des protons et une étape d’échange d’anions divalents par des ions chlorure.
Comme précédemment mentionné, l’homme du métier peut apprécier le taux de déminéralisation du lactosérum acidifié par l’intermédiaire de la conductivité et du taux de cendres du lactosérum déminéralisé.
Selon un mode de réalisation particulier, la seconde étape d’électrodialyse est réalisée de manière à obtenir une conductivité du lactosérum comprise entre 2,0 et 3,0 mS/cm, et/ou un taux de cendres compris de 0,8 à 1,5, ce qui correspond à un taux de déminéralisation d’environ 70 %.
Selon un autre mode de réalisation particulier, la seconde étape d’électrodialyse est réalisée de manière à obtenir une conductivité du lactosérum comprise entre 1,0 et 1,5 mS/cm, et/ou un taux de cendres compris de 0,8 à 1,5 ce qui correspond à un taux de déminéralisation d’environ 90 %.
Lorsque l’étape d’électrodialyse permet d’obtenir le lactosérum présentant le taux de déminéralisation cible, le procédé selon l’invention comprend une étape de neutralisation. Avantageusement, la neutralisation est réalisée de manière concomitante à la seconde étape d’électrodialyse.
La neutralisation est une technique connue de l’homme du métier qui consiste à ramener le pH d’une solution ou d'un effluent à une valeur fixée en fonction des besoins. Selon la présente invention, la neutralisation est réalisée sur le lactosérum déminéralisé afin de remonter le pH à une valeur comprise de 6,5 à 7,4, de préférence de 6,7 à 7,2.
Pour l’étape de neutralisation, les solutions basiques connues de l’homme du métier peuvent être employées, par exemple des solutions d’hydroxyde de potassium, d’hydroxyde de sodium, ou leur mélange. La neutralisation entraîne une augmentation de la conductivité du lactosérum déminéralisé par électrodialyse, et une légère étape de déminéralisation finale en électrodialyse dudit lactosérum permet d’obtenir une conductivité comprise entre 2,0 et 3,0 mS/cm, pour un déminéralisé à 70%, ou une conductivité comprise entre 0,8 et 1,5 mS/cm, pour un lactosérum déminéralisé à 90%.
Ainsi, après neutralisation, le lactosérum déminéralisé selon l’invention comprend un taux de déminéralisation d’au moins 70 %, d’au moins 75 %, d’au moins 80 %, d’au moins 85 %, ou encore d’au moins 90 %.
Le lactosérum déminéralisé selon l’invention présente un taux de cendres inférieur à 4%, de préférence inférieur à 2,7% et tout particulièrement, un taux de cendres inférieur à 1,1 %.
Le lactosérum déminéralisé selon l’invention trouve une application toute particulière dans le domaine de la nutrition et de la diététique, notamment pour la préparation de laits destinés à l’alimentation infantile. D’une manière avantageuse, le lactosérum déminéralisé selon le procédé de l’invention trouve une application pour la fabrication de laits destinés à l’alimentation des nourrissons.
Un second objet de l’invention concerne un lactosérum déminéralisé susceptible d’être obtenu par le procédé décrit précédemment.
L’invention sera mieux comprise à l’aide des exemples qui suivent qui se veulent purement illustratifs et ne limitent en rien la portée de la protection.
Exemples
Le taux de cendres est déterminé selon la norme NF 04-208.
Exemple 1 : Préparation d’un lactosérum déminéralisé selon l’invention
Essai 1 : Pour cet essai, 3 solutions ont été préparées et disposées dans des cuves dont les contenus sont repris ci-dessous :
Cuve 1 : solution de 20 L de lactosérum doux concentré à 19,63 % d’extrait sec. La solution présente une température de 3O,8°C et une conductivité de 13,71 mS/cm. La solution a été pasteurisée à 95°C pendant 5 minutes.
Cuve 2 : solution de saumure préparée par avec 20L d’eau de ville à 40°C et acidifiée avec quelques gouttes d’HCl à 37%. Le pH de la solution est de 2,89.
Cuve 3 : solution d’électrolyte préparée avec 18L d’eau de ville à 30°C et quelques gouttes d’FhSCU à 95% pour ajuster la conductivité entre 15 et 18 mS/cm (à 20°C). La solution présente une conductivité de 16,37 mS/cm (à 20°C), un pH égal à 1,43 et une température de 27,6°C.
L’électrodialyse est mise en route et un contrôle du pH et de la conductivité est réalisé en continu par l’intermédiaire de sondes préalablement calibrées.
Lorsque la conductivité du lactosérum atteint 4,52 mS/cm l’électrodialyse est arrêtée. 15 L de saumure sont alors retirés et remplacés par de l’eau de ville dont le pH a été ajusté à 2,79 par ajout 5 d’HCl, et l’électrodialyse est relancée.
Enfin, l’électrodialyse est de nouveau arrêtée lorsque la solution de lactosérum acidifié déminéralisé présente une conductivité de 2,56 mS/cm.
Pour réaliser la neutralisation, 75 mL de NaOH à 40 % sont ajoutés dans la cuve 1 pour ajuster le pH à 6,6, la conductivité est de 3,88 mS/cm. 15 L de saumure sont retirés et replacés par de l’eau de ville 10 à 40°C dont le pH a été ajusté à 2,86. L’électrodialyse est relancée pendant une durée d’environ 30 minutes jusqu’à ce que la solution de lactosérum déminéralisé présente une conductivité de 2,74 mS/cm.
Des prélèvements sont effectués après l’arrêt de la première électrodialyse (prélèvement 1) et après l’arrêt de la seconde électrodialyse en fin de procédé (prélèvement 2) afin d’effectuer des analyses 15 sur les caractéristiques du lactosérum déminéralisé obtenu. Les résultats sont présentés dans le tableau 1 ci-dessous.
Tableau 1
Paramètres analysés | ||||||||||
pH | Na+ | K+ | Ca2+ | Mg2+ | ES | Cendres | Matière azotée totale | Cl | P | |
mg/lOOg d’extrait sec | % | %ZMatière sèche | mg/lOOg d’extrait sec | |||||||
Prélèvement 1 | 3,8 | 84 | 166 | 265 | 16 | 18,8 | 2,2 | 13,8 | 299 | 255 |
Prélèvement 2 | 6,5 | 486 | 115 | 236 | 15 | 18,7 | 2,2 | 13,8 | 107 | 229 |
Taux de déminéralisation | 73 % |
Un bilan de matière a été effectué afin de vérifier le bon transfert des ions (sodium, potassium, 20 calcium magnésium et chlore) à travers les membranes. Ce bilan confirme que les quantités d’ions disparues du lactosérum se retrouvent dans la solution de saumure, avec un écart relatif entre les quantités inférieur à 15 %.
Le lactosérum déminéralisé selon le procédé de l’invention présente un taux de déminéralisation de 73 % et la composition en minéraux est conforme au cahier des charges.
Essai 2 : Cet essai a été reproduit dans les mêmes conditions opératoires que l’essai 1 mais avec des solutions de départ légèrement différentes. Trois nouvelles solutions ont donc été préparées et disposées dans des cuves dont les contenus sont repris ci-dessous :
Cuve 1 : solution de 20 L de lactosérum doux concentré à 19,58 % d’extrait sec. La solution présente une température de 29,9°C et une conductivité de 13,85 mS/cm. La solution a été pasteurisée à 95°C pendant 5 minutes.
Cuve 2 : solution de saumure préparée par avec 20L d’eau de ville à 29,5°C et acidifiée avec quelques gouttes d’HCl à 37 %. Le pH de la solution est de 3,09.
Cuve 3 : solution d’électrolyte préparée avec 18L d’eau de ville à 30°C et quelques gouttes d’H2SO4 à 95 %. La solution présente une conductivité de 18,49 mS/cm (à 20°C), un pH égal à 1,24 et une température de 30,7°C.
Chacune des cuves est reliée à l’électrodialyseur présentant les mêmes caractéristiques que celui de l’essai 1.
L’électrodialyse est mise en route et le contrôle du pH et de la conductivité est réalisé en continu par l’intermédiaire de sondes préalablement calibrées.
Lorsque la conductivité du lactosérum atteint 4,49 mS/cm l’électrodialyse est arrêtée. 20 L de saumure sont alors retirés et remplacés par de l’eau de ville dont le pH a été ajusté à 2,88 par ajout d’HCl, et l’électrodialyse est relancée.
Enfin, l’électrodialyse est de nouveau arrêtée lorsque la solution de lactosérum acidifié déminéralisé présente une conductivité de 2,77 mS/cm.
Pour réaliser la neutralisation, 86 mL de NaOH à 40 % sont ajoutés dans la cuve 1, amenant le pH du sérum à 6,65, la conductivité du sérum est alors de 4,33 mS/cm.
L de saumure sont retirés et remplacés par de l’eau de ville à 40°C dont le pH a été ajusté à 2,87. L’électrodialyse est relancée pendant une durée d’environ 30 minutes jusqu’à ce que la solution de lactosérum déminéralisé présente une conductivité de 3,02 mS/cm et un pH de 6,50.
Des prélèvements sont effectués après l’arrêt de la première électrodialyse (prélèvement 1) et après l’arrêt de la seconde électrodialyse en fin de procédé (prélèvement 2) afin d’effectuer des analyses sur les caractéristiques du lactosérum déminéralisé obtenu. Les résultats sont présentés dans le tableau 2 ci-dessous.
Tableau 2
Paramètres analysés | ||||||||||
pH | Na+ | K+ | Ca2+ | Mg2+ | ES | Cendres | Matière azotée totale | Cl | P | |
mg/lOOg d’extrait sec | % | %/Matières sèches | mg/lOOg d’extrait sec | |||||||
Prélèvement 1 | 3,4 | 92 | 182 | 266 | 87 | 18,8 | 1,8 | 13,7 | 370 | 266 |
Prélèvement 2 | 6,5 | 645 | 124 | 229 | 79 | 18,7 | 2,4 | 13,8 | 114 | 235 |
Taux de déminéralisation | 70 % |
Un bilan de matière a été effectué afin de vérifier le bon transfert des ions (sodium, potassium, calcium, magnésium et chlore) à travers les membranes. Ce bilan confirme que les quantités d’ions 5 disparues du lactosérum se retrouvent dans la solution de saumure, avec un écart relatif entre les quantités inférieur à 15 %.
Le lactosérum déminéralisé selon le procédé de l’invention présente un taux de déminéralisation de 70 % et la composition en minéraux est conforme au cahier des charges.
Afin d’augmenter le taux de déminéralisation de ce lactosérum.
Essai 3 : Cet essai a été reproduit dans les mêmes conditions opératoires de l’essai 1 et 2 mais avec des solutions de départ légèrement différentes. Trois nouvelles solutions ont donc été préparées et disposées dans des cuves dont les contenus sont repris ci-dessous :
Cuve 1 : solution de 20 L de lactosérum doux concentré à 19,7 % d’extrait sec. La solution présente une température de 29,9°C et une conductivité de 13,85 mS/cm. La solution a été 15 pasteurisée à 95 °C pendant 5 minutes.
Cuve 2 : solution de saumure préparée par avec 20L d’eau de ville à 33,5-C et acidifiée avec quelques gouttes d’HCl à 37%. Le pH de la solution est de 3,01.
Cuve 3 : solution d’électrolyte préparée avec 18L d’eau de ville à 30°C et quelques gouttes d’H2SO4 à 95% pour ajuster la conductivité entre 15 et 18 mS/cm (à 20°C). La solution présente une conductivité de 17,28 mS/cm (à 20°C), un pH égal à 1,23 et une température de 36,1°C.
Chacune des cuves est reliée à l’électrodialyseur présentant les mêmes caractéristiques que celui de l’essai 1.
La première étape d’électrodialyse est mise en route et le contrôle du pH et de la conductivité est réalisé en continu par l’intermédiaire de sondes préalablement calibrées.
Lorsque la conductivité du lactosérum atteint 4,51 mS/cm Γ électrodialyse est arrêtée.
L de saumure sont alors retirés et remplacés par de l’eau de ville dont le pH a été ajusté à 2,92 par ajout d’HCl et Γélectrodialyse est relancée.
Enfin, Γélectrodialyse est de nouveau arrêtée lorsque la solution de lactosérum déminéralisé présente une conductivité de 2,26 mS/cm.
Pour réaliser la neutralisation, 84 mL de NaOH à 40% sont ajoutés dans la cuve 1, amenant le pH à 6,8 et la conductivité à 3,8 mS/cm. 20 L de saumure sont retirés et remplacés par de l’eau de ville à 40°C dont le pH a été ajusté à 2,87. L’électrodialyse est relancée pendant une durée d’environ 30 minutes jusqu’à ce que la solution de lactosérum déminéralisé présente une conductivité de 2,78 mS/cm et un pH de 6,7.
Des prélèvements sont effectués après l’arrêt de la première électrodialyse (prélèvement 1) et après l’arrêt de la seconde électrodialyse en fin de procédé (prélèvement 2) afin d’effectuer des analyses sur les caractéristiques du lactosérum déminéralisé obtenu. Les résultats sont présentés dans le tableau 3 ci-dessous.
Tableau 3
Paramètres analysés | ||||||||||
pH | Na+ | K+ | Ca2+ | Mg2+ | ES | Cendres | Matière azotée totale | cr | P | |
mg/lOOg d’extrait sec | % | %/Matières Sèches | mg/lOOg d’extrait sec | |||||||
Prélèvement 1 | 3,7 | 73 | 132 | 222 | 75 | 19,1 | 3,7 | 13,0 | 210 | 257 |
Prélèvement 2 | 6,7 | 576 | 99 | 195 | 72 | 19,1 | 2,5 | 13,0 | 96 | 225 |
Taux de déminéralisation | 69 % |
Un bilan de matière a été effectué afin de vérifier le bon transfert des ions (sodium, potassium, calcium, magnésium et chlore) à travers les membranes. Ce bilan confirme que les quantités d’ions disparues du lactosérum se retrouvent dans la solution de saumure, avec un écart relatif entre les quantités inférieur à 15%.
Le lactosérum déminéralisé selon le procédé de l’invention présente un taux de déminéralisation de 69 % et la composition en minéraux est conforme au cahier des charges.
Exemple 2 : Préparation d’un lactosérum déminéralisé à environ 90 % selon l’invention
En utilisant les mêmes conditions opératoires que l’essai 1 de l’exemple 1 et avec les mêmes solutions dans les cuves, Γélectrodialyse est mise en route jusqu’à ce que la conductivité du lactosérum acidifiée atteigne 3,02 mS/cm.
La neutralisation est réalisée avec un mélange d’hydroxyde de sodium : hydroxyde de potassium (1 :3) 10 afin d’atteindre un pH de 6,7 et une conductivité de 5,37 mS/cm. 5 L de saumures sont retirés et remplacés avec une solution d’eau de ville à 40°C. L’électrodialyse est relancée pendant environ 2h puis de nouveau arrêtée lorsque la solution de lactosérum déminéralisé présente une conductivité de 1,04 mS/cm et un pH de 6,5.
Des prélèvements sont effectués après l’arrêt de la première électrodialyse (prélèvement 1) et après 15 l’arrêt de la seconde électrodialyse en fin de procédé (prélèvement 2) afin d’effectuer des analyses sur les caractéristiques du lactosérum déminéralisé obtenu. Les résultats sont présentés dans le tableau 4 ci-dessous.
Tableau 4
Paramètres analysés | ||||||||||
PH | Na+ | K+ | Ca2+ | Mg2+ | ES | Cendres | Matière azotée totale | cr | P | |
mg/lOOg d’extrait sec | % | %/Matières Sèches | mg/lOOg d’extrait sec | |||||||
Prélèvement 1 | 3,7 | 91 | 189 | 323 | 95 | 18,2 | 1,7 | 13,9 | 316 | 143 |
Prélèvement 2 | 6,6 | 93 | 171 | 138 | 67 | 18,0 | 0,9 | 14,0 | 26 | 137 |
Taux de déminéralisation | 89 % |
Un bilan de matière a été effectué afin de vérifier le bon transfert des ions (sodium, potassium, calcium, magnésium et chlore) à travers les membranes. Ce bilan confirme que les quantités d’ions disparues du lactosérum se retrouvent dans la solution de saumure, avec un écart relatif entre les quantités inférieur à 20 %.
Le lactosérum déminéralisé selon le procédé de l’invention présente un taux de déminéralisation de % et la composition en minéraux est conforme au cahier des charges.
Claims (8)
1. Procédé de déminéralisation d’un lactosérum comprenant les étapes suivantes de :
fourniture d’un lactosérum, électrodialyse à une température de 30°C à 60°C dudit lactosérum, acidification du lactosérum à un pH compris entre 2 et 3,5, pasteurisation du lactosérum acidifié, électrodialyse à une température de 30°C à 60°C du lactosérum acidifié pasteurisé, neutralisation du lactosérum déminéralisé à un pH compris entre 6,7 et 7,2.
2. Procédé de déminéralisation selon la revendication 1, caractérisée en ce que le lactosérum fournit à la première étape est un lactosérum concentré de 18 à 25 % d’extrait sec.
3. Procédé de déminéralisation selon la revendication 1 ou 2, caractérisé en ce que l’étape d’électrodialyse du lactosérum est réalisée de manière à obtenir une conductivité dudit lactosérum entre 4,0 et 5,0 mS/cm.
4. Procédé de déminéralisation selon l’une des revendications 1 à 3, caractérisé en ce que l’étape d’électrodialyse du lactosérum acidifié et pasteurisé est réalisée de manière à obtenir une conductivité dudit lactosérum acidifié et pasteurisé entre 2,0 et 3,0 mS/cm.
5. Procédé de déminéralisation selon l’une des revendications 1 à 3, caractérisé en ce que l’étape d’électrodialyse du lactosérum acidifié et pasteurisé est réalisée de manière à obtenir une conductivité dudit lactosérum acidifié et pasteurisé entre 1,0 et 1,5 mS/cm.
6. Procédé de déminéralisation selon les revendications 1 à 5, caractérisé en ce que la pasteurisation est réalisée pendant 1 à 20 min et à une température comprise entre 80 et 120°C, de préférence pendant 1 à 10 minutes et à une température comprise entre 90 et 100°C, et de préférence encore pendant environ 5 minutes et à une température d’environ 95°C.
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que les étapes d’électrodialyse sont réalisées à une température comprise de 35°C à 55°C, et de préférence encore à une température comprise de 40°C à 50°C.
8. Procédé selon l’une des revendications 1 à 7, caractérisé en ce que l’étape de neutralisation est réalisée de manière concomitante à l’étape d’électrodialyse du lactosérum acidifié pasteurisé.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1852410A FR3079112B1 (fr) | 2018-03-21 | 2018-03-21 | Procede de demineralisation de lactoserum |
EP19718787.5A EP3768091A1 (fr) | 2018-03-21 | 2019-03-21 | Procede de demineralisation de lactoserum et lactoserum ainsi obtenu |
CN201980020325.7A CN111935986A (zh) | 2018-03-21 | 2019-03-21 | 用于乳清脱盐的方法和由此获得的乳清 |
US16/981,540 US11406111B2 (en) | 2018-03-21 | 2019-03-21 | Method for the demineralisation of whey and whey thus obtained |
JP2021500359A JP7308919B2 (ja) | 2018-03-21 | 2019-03-21 | ホエーの脱塩化方法、及びこれにより得られたホエー |
PCT/FR2019/050652 WO2019180389A1 (fr) | 2018-03-21 | 2019-03-21 | Procede de demineralisation de lactoserum et lactoserum ainsi obtenu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1852410A FR3079112B1 (fr) | 2018-03-21 | 2018-03-21 | Procede de demineralisation de lactoserum |
FR1852410 | 2018-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3079112A1 true FR3079112A1 (fr) | 2019-09-27 |
FR3079112B1 FR3079112B1 (fr) | 2022-05-06 |
Family
ID=63014655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1852410A Active FR3079112B1 (fr) | 2018-03-21 | 2018-03-21 | Procede de demineralisation de lactoserum |
Country Status (6)
Country | Link |
---|---|
US (1) | US11406111B2 (fr) |
EP (1) | EP3768091A1 (fr) |
JP (1) | JP7308919B2 (fr) |
CN (1) | CN111935986A (fr) |
FR (1) | FR3079112B1 (fr) |
WO (1) | WO2019180389A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3721715A1 (fr) * | 2019-04-12 | 2020-10-14 | Eurodia Industrie | Procede de demineralisation d'une composition proteique laitiere, et composition proteique laitiere susceptible d'etre obtenue par ledit procede |
FR3094871B1 (fr) * | 2019-04-12 | 2022-09-09 | Eurodia Ind | Procédé de déminéralisation d’une composition protéique laitière, et composition protéique laitière susceptible d’être obtenue par ledit procédé |
CN114097893B (zh) * | 2021-11-25 | 2024-01-30 | 卡士乳业(深圳)有限公司 | 一种利用酸乳清制备乳清粉的方法及其制备的乳清粉和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4954568A (fr) * | 1972-08-17 | 1974-05-27 | ||
US4844923A (en) * | 1984-12-12 | 1989-07-04 | Martin Herrmann | Method for removing serum proteins from milk products |
US5747647A (en) * | 1994-06-15 | 1998-05-05 | Dairygold Technologies Limited | Process for the fractionation of whey constituents |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325389A (en) | 1963-02-28 | 1967-06-13 | Ionics | Process for pretreatment of whey to increase demineralization rate |
JPS5151548A (en) * | 1974-10-31 | 1976-05-07 | Asahi Chemical Ind | Nyu aruiha hoeenorenzokutekidatsuenhoho |
FR2391653A1 (fr) | 1977-05-23 | 1978-12-22 | Nestle Sa Soc Ass Tech Prod | Procede de traitement du lactoserum |
US4180451A (en) * | 1978-04-19 | 1979-12-25 | Ionics Inc. | Apparatus for treating whey |
US4227981A (en) * | 1979-08-31 | 1980-10-14 | Borden, Inc. | Electrodialysis of acid whey |
NZ202514A (en) * | 1981-11-24 | 1985-08-16 | J Czulak | Whey protein recovery process |
DE3470653D1 (en) | 1984-03-02 | 1988-06-01 | Nestle Sa | Process for treating milk by-products |
JP2623342B2 (ja) * | 1989-06-01 | 1997-06-25 | 雪印乳業株式会社 | 脱塩乳類の製造方法 |
FR2657233B1 (fr) | 1990-01-19 | 1993-07-16 | Ingenierie Ste Vidaubanaise | Procede de traitement du lait ecreme. |
FR2719505B1 (fr) * | 1994-05-09 | 1996-06-14 | Vidaubanaise Ingenierie | Procédé de déminéralisation d'un liquide contenant en solution des matières organiques et des sels. |
FR2793652B1 (fr) | 1999-05-17 | 2001-08-10 | Vidaubanaise Ingenierie | Procede de traitement d'un lactoserum en vue de sa demineralisation |
WO2005099876A1 (fr) | 2004-04-16 | 2005-10-27 | UNIVERSITé LAVAL | Procede d'extraction de lipides a partir de solutions biologiques |
CN104255943A (zh) * | 2014-08-29 | 2015-01-07 | 黑龙江飞鹤乳业有限公司 | 使用脱盐乳清液生产婴幼儿配方乳粉的方法 |
-
2018
- 2018-03-21 FR FR1852410A patent/FR3079112B1/fr active Active
-
2019
- 2019-03-21 US US16/981,540 patent/US11406111B2/en active Active
- 2019-03-21 WO PCT/FR2019/050652 patent/WO2019180389A1/fr unknown
- 2019-03-21 EP EP19718787.5A patent/EP3768091A1/fr active Pending
- 2019-03-21 CN CN201980020325.7A patent/CN111935986A/zh active Pending
- 2019-03-21 JP JP2021500359A patent/JP7308919B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4954568A (fr) * | 1972-08-17 | 1974-05-27 | ||
US4844923A (en) * | 1984-12-12 | 1989-07-04 | Martin Herrmann | Method for removing serum proteins from milk products |
US5747647A (en) * | 1994-06-15 | 1998-05-05 | Dairygold Technologies Limited | Process for the fractionation of whey constituents |
Non-Patent Citations (1)
Title |
---|
HANA SÍMOVÁ ET AL: "Demineralization of natural sweet whey by electrodialysis at pilot-plant scale", DESALINATION AND WATER TREATMENT : SCIENCE AND ENGINEERING ; DWT, vol. 14, no. 1-3, 3 February 2010 (2010-02-03), UK, pages 170 - 173, XP055501232, ISSN: 1944-3994, DOI: 10.5004/dwt.2010.1023 * |
Also Published As
Publication number | Publication date |
---|---|
US11406111B2 (en) | 2022-08-09 |
CN111935986A (zh) | 2020-11-13 |
US20210112821A1 (en) | 2021-04-22 |
FR3079112B1 (fr) | 2022-05-06 |
JP2021518169A (ja) | 2021-08-02 |
WO2019180389A1 (fr) | 2019-09-26 |
JP7308919B2 (ja) | 2023-07-14 |
EP3768091A1 (fr) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fidaleo et al. | Electrodialysis applications in the food industry | |
WO2019180389A1 (fr) | Procede de demineralisation de lactoserum et lactoserum ainsi obtenu | |
Pan et al. | A study of demineralization of whey by nanofiltration membrane | |
EP2310327B1 (fr) | Procede de traitement d'eau par osmose inverse incluant une decarbonatation d'un concentrat et une remineralisation d'un filtrat | |
US20140227151A1 (en) | Recovery and purification of monovalent salt contaminated with divalent salt | |
Kravtsov et al. | Feasibility of using electrodialysis with bipolar membranes to deacidify acid whey | |
EP0153967A1 (fr) | Procédé de traitement de sous-produits laitiers | |
EP3863412B1 (fr) | Procédé de traitement d'effluents de déminéralisation de lactoserum | |
JP2007289953A (ja) | 海水を原材料としたかん水、塩及び苦汁の製造方法、並びにかん水、塩及び苦汁。 | |
FR2818267A1 (fr) | Procede d'appauvrissement en cations monovalents d'une eau destinee a l'alimentation | |
Antczak et al. | An environment-friendly multi-step membrane-based system to succinic acid recovery from the fermentation broth | |
EP3721715A1 (fr) | Procede de demineralisation d'une composition proteique laitiere, et composition proteique laitiere susceptible d'etre obtenue par ledit procede | |
JP2006142265A (ja) | 高濃度ミネラル液の製造方法およびその製造装置 | |
CA2079617C (fr) | Recuperation des solvants polaires aprotiques a partir de leurs solutions aqueuses salines | |
JP5090657B2 (ja) | ミネラル水の粉末 | |
JP2002191331A (ja) | 海洋深層水を利用した清涼飲料水の製造方法 | |
JP2006007084A (ja) | ミネラル組成物、その製造方法およびその使用方法 | |
FR3108471A1 (fr) | Procédé de déminéralisation d’une composition protéique laitière, composition protéique laitière susceptible d’être obtenue par ledit procédé, et installation pour la mise en œuvre dudit procédé. | |
JP2002238515A (ja) | ミネラル飲料製造方法 | |
CA3171792A1 (fr) | Procede de demineralisation d'une composition proteique laitiere, composition proteique laitiere susceptible d'etre obtenue par ledit procede, et installation pour la mise en oeuvre dudit procede | |
EP4303191A1 (fr) | Procédé de préparation d'eau minérale personnalisée | |
JP3765716B2 (ja) | 飲料用濃縮梅果汁の製造方法 | |
WO2022200531A1 (fr) | Procede de traitement d'une composition proteique laitiere pour la fabrication d'une composition liquide riche en lactose | |
Roux-de Balmann et al. | Electrodialysis in integrated processes for food applications | |
TWI591021B (zh) | 礦泉水及其粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
EXTE | Extension to a french territory |
Extension state: PF |
|
PLSC | Publication of the preliminary search report |
Effective date: 20190927 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |