FR3012258A1 - Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant - Google Patents
Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant Download PDFInfo
- Publication number
- FR3012258A1 FR3012258A1 FR1360303A FR1360303A FR3012258A1 FR 3012258 A1 FR3012258 A1 FR 3012258A1 FR 1360303 A FR1360303 A FR 1360303A FR 1360303 A FR1360303 A FR 1360303A FR 3012258 A1 FR3012258 A1 FR 3012258A1
- Authority
- FR
- France
- Prior art keywords
- substrate
- region
- transistor
- insulating
- lateral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 239000012212 insulator Substances 0.000 claims abstract description 14
- 230000000284 resting effect Effects 0.000 claims abstract description 8
- 238000000407 epitaxy Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000005530 etching Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 2
- 229910052986 germanium hydride Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41733—Source or drain electrodes for field effect devices for thin film transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78618—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Circuit intégré comprenant au moins un transistor du type NMOS (TRN) et au moins un transistor du type PMOS (TRP) sur respectivement des zones différentes (10, 11) d'un substrat du type silicium sur isolant, chaque transistor (TRP, TRN) comprenant au dessus du substrat une région de grille (RGP, RGN) deux régions isolantes latérales multicouches (40-42, 50-52) s'appuyant respectivement sur deux flancs de la région de grille, reposant sur le substrat et comportant chacune une portion inclinée (44, 54) s'évasant en s'éloignant du substrat, une région de source et une région de drain comportant chacune un bloc semiconducteur (6, 8) reposant sur le substrat, séparé du flanc correspondant de la région de grille par la région isolante latérale correspondante et possédant une portion inclinée (60, 80) s'appuyant sur la portion inclinée (44, 54) de ladite région latérale isolante.
Description
Procédé de réalisation de transistors NMOS et PMOS sur un substrat du type SOI, en particulier FDSOI, et circuit intégré correspondant L'invention concerne les circuits intégrés, et plus particulièrement la réalisation de transistors NMOS et PMOS sur un substrat du type silicium sur isolant communément désigné par l'homme du métier sous l'acronyme anglosaxon « SOI » (« Silicon-OnInsulator ») et tout particulièrement les substrats du type silicium sur isolant totalement désertés, connus par l'homme du métier sous l'acronyme anglosaxon « FDSOI » (« Fully Depleted Silicon-OnInsulator »). Un substrat du type silicium sur isolant comporte un film semiconducteur, par exemple en silicium ou en alliage de silicium, par exemple un alliage de silicium-germanium, situé au-dessus d'une couche isolante enterrée, communément désignée sous l'acronyme anglosaxon de « BOX » (« Buried-OXide ») elle-même située au-dessus d'un substrat porteur, par exemple un caisson semiconducteur. Dans une technologie FDSOI, le film semiconducteur est totalement déserté, c'est-à-dire qu'il est composé du matériau semiconducteur intrinsèque. Son épaisseur est généralement de l'ordre de quelques nanomètres. Par ailleurs, la couche isolante enterrée est elle-même généralement fine, de l'ordre de la dizaine de nanomètres. Compte tenu de l'épaisseur fine du film semiconducteur, les régions de source et de drain des transistors comportent des portions surélevées par rapport au film semiconducteur de façon à assurer une connexion électrique adéquate entre ces régions et la région de canal du transistor. De telles régions de source et de drain surélevées (communément désignées par l'homme du métier sous l'acronyme anglosaxon « RSD » : Raised Source and Drain) sont typiquement obtenues par épitaxie. Ces procédés épitaxiaux mettent en oeuvre soit du silicium intrinsèque combiné avec une implantation de dopants soit une épitaxie dopée in situ avec des masques de protection adéquats de façon à différencier les régions de source et de drain des transistors NMOS d'une part et des transistors PMOS d'autre part.
Ces zones épitaxiées doivent être situées aussi près que possible du canal pour réduire la longueur effective de grille mais elles doivent également être situées aussi loin que possible des bords de la grille pour réduire les capacités parasites latérales. En conséquence, la réalisation des régions surélevées de source et de drain avec des formes appropriées est un point critique et coûteux dans le procédé de réalisation des transistors. Actuellement, on réalise des régions de source et de drain surélevées facettées c'est-à-dire présentant un profil incliné de sorte que la distance entre la région de source ou de drain et le flanc latéral correspondant de la région de grille augmente entre la partie inférieure de la région épitaxiée et la partie supérieure de cette région épitaxiée. Par ailleurs, les régions latérales isolantes disposées sur les flancs de la région de grille sont formées par des couches successivement déposées. La combinaison de ces régions isolantes latérales multicouches et des épitaxies facettées mises en oeuvre pour chaque type de transistor (N ou P) conduit à des coûts prohibitifs. Par ailleurs, l'utilisation d'épitaxies facettées pour réaliser les régions de source et de drain surélevées pose des problèmes car les épitaxies dopées in situ N et P présentent des mécanismes de croissance différents. Il est donc particulièrement difficile d'obtenir des formes optimales pour chaque type de transistor N ou P. En outre, selon le type de transistor, la région de source ou de drain épitaxiée et facettée est exposée à une ultime gravure de la région latérale isolante, ce qui peut conduire à un amincissement local du canal dégradant alors le comportement électrique du transistor. Selon un mode de mise en oeuvre et de réalisation, il est proposé un procédé et un dispositif apportant une solution plus efficace pour la réalisation des régions de source et de drain surélevées et facettées des transistors NMOS et PMOS.
Selon un aspect, il est proposé un procédé de réalisation d'au moins un transistor du type NMOS et d'au moins un transistor du type PMOS sur respectivement des zones différentes d'un substrat du type silicium sur isolant, en particulier un substrat du type silicium sur isolant totalement déserté. Le procédé selon cet aspect comprend pour chaque transistor une réalisation au-dessus du substrat d'une région de grille flanquée d'une première couche isolante latérale, et une première épitaxie facettée d'un premier matériau semiconducteur sur le substrat de part et d'autre de ladite première couche isolante latérale de façon à former deux premiers blocs semiconducteurs sur le substrat de part et d'autre de ladite première couche isolante latérale de façon à former deux premiers blocs semiconducteurs facettés. Ce premier matériau a un premier type de conductivité, par exemple le type de conductivité P, adapté à un premier type de transistor, par exemple un transistor PMOS, et ce premier matériau est identique pour les deux types de transistors (NMOS et PMOS). En d'autres termes, on réalise cette première épitaxie facettée sans faire de lithographie préalable pour protéger l'un des types de transistors, par exemple les transistors NMOS. Le procédé selon cet aspect comprend par ailleurs une formation d'au moins une deuxième couche isolante latérale, en général plusieurs autres couches isolantes latérales, de façon à combler l'espace entre chaque premier bloc facetté et la première couche isolante latérale correspondante et à recouvrir ledit premier bloc facetté. On a ainsi réalisé une région latérale isolante (« Spacer » en langue anglaise) multicouches. Le procédé selon cet aspect comprend par ailleurs pour chaque deuxième type de transistor, par exemple les transistors NMOS, un retrait de la portion de couche isolante latérale recouvrant chaque premier bloc facetté, un retrait de chaque premier bloc facetté laissant subsister une région latérale isolante multicouches ayant de ce fait elle-même un profil facetté.
Le procédé selon cet aspect comprend alors également une épitaxie sur le substrat semiconducteur d'un deuxième matériau semiconducteur ayant un deuxième type de conductivité opposé au premier, par exemple le type de conductivité N, de façon à former à l'emplacement du premier bloc facetté un deuxième bloc semiconducteur facetté, par exemple de type N, adapté au deuxième type de transistor, par exemple un transistor NMOS, et épousant le profil facetté de ladite région latérale isolante correspondante. De ce fait, le deuxième bloc semiconducteur est facetté sans avoir à utiliser une épitaxie facettée. Par ailleurs, la région de ce deuxième bloc facetté situé au plus près du canal étant protégée par la région latérale isolante facettée, elle n'est pas exposée à la gravure finale de la région isolante visant à retirer la portion de couche isolante latérale recouvrant chaque premier bloc de chaque transistor du premier type, par exemple les transistors P. Selon un autre aspect, il est proposé un circuit intégré comprenant au moins un transistor du type NMOS et au moins un transistor du type PMOS sur respectivement des zones différentes d'un substrat du type silicium sur isolant. Chaque transistor comprend au- dessus du substrat une région de grille, deux régions isolantes latérales multicouches s'appuyant respectivement sur deux flancs de la région de grille, reposant sur le substrat et comportant chacune une portion inclinée s'évasant en s'éloignant du substrat, une région de source et une région de drain comportant chacune un bloc semiconducteur reposant sur le substrat, séparées du flanc correspondant de la région de grille par la région isolante latérale correspondante et possédant une portion inclinée s'appuyant sur la portion incliné de ladite région latérale isolante. L'épaisseur au pied de chaque région isolante latérale est par exemple comprise entre environ 5 nanomètres et environ 7 nanomètres. D' autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée de modes de mise en oeuvre et de réalisation, nullement limitatifs, et des dessins annexés sur lesquels : - Les figures 1 à 4 ont trait à différents modes de mise en oeuvre et de réalisation de l'invention. Sur la figure 1, les références 10 et 11 désignent respectivement différentes zones d'un substrat semiconducteur du type silicium sur isolant totalement déserté (FDSOI). Ce substrat est formé ici d'un film semiconducteur 10, 11 ayant typiquement une épaisseur de l'ordre de quelques nanomètres et repose sur une couche d'oxyde enterrée 20, 21 communément désignée par l'homme du métier sous la dénomination anglosaxonne de BOX. Cette couche isolante enterrée, typiquement en dioxyde de silicium, repose elle-même sur un substrat porteur 30, 31 qui peut être formé d'un caisson. Sur la zone de substrat 10 va être réalisé un transistor NMOS, tandis que sur la zone de substrat 11 va être réalisé un transistor PMOS. Le noeud technologique envisagé est un noeud technologique 28 nm bien que l'invention puisse s'appliquer à des noeuds technologiques plus avancés (inférieurs à 28 nm). On réalise tout d'abord au-dessus de la zone 10 de substrat et de la zone 11 de substrat une région de grille RGN et une région de grille RGP comportant classiquement un matériau à forte permittivité (High-k) par exemple de l'oxynitrure de Silicium-Hafnium (HfSiON) surmonté d'un empilement métallique lui-même surmonté de silicium amorphe. Il s'agit ici typiquement d'une architecture type « gate first » puisque l'on réalise la grille avant la réalisation des régions de source et de drain. On forme ensuite de façon classique et connue en soi, sur les flancs latéraux de ces deux régions de grille RGN et RGP, des premières couches latérales isolantes 40 et 50, par exemple formées de nitrure de silicium. Puis, pour chacun des futurs transistors, que ce soit les transistors NMOS ou PMOS, on réalise une première épitaxie sélective facettée d'un premier matériau semiconducteur, par exemple du silicium dopé P in situ, sur le substrat 10 et 11 de part et d'autre de la première couche latérale 40 et 50 de façon à former deux premiers blocs semiconducteurs facettés 6. Ces blocs sont facettés en ce sens qu'ils possèdent un profil incliné 60 s'évasant en s'éloignant du substrat. En d'autres termes, l'espace 7 entre le profil incliné 60 et la couche isolante latérale correspondante 40 ou 50 croît au fur et à mesure que l'on s'éloigne du substrat 10 ou 11. Cette épitaxie sélective et facetté peut se faire entre 500 et 750°C. La pression de travail est typiquement entre quelques torr et 200 torr. Dans le cas d'une épitaxie type SiGeB, on peut utiliser un mélange H2 (gaz porteur)/dichlorosilane (DCS) et GeH4 (précurseurs)/B2H6 (précurseur dopant bore)/HCL (gaz permettant la sélectivité et modulant l'apparition des facettes). L'homme du métier saura ajuster notamment les différentes concentrations pour obtenir une morphologie voulue avec les dopages visés.
A titre d'exemple non limitatif on peut utiliser pour une température de 642°C et une pression totale de 20 Torr, les pressions partielles suivantes : GeH4 : 6,5 10-3 Torr B2H6 : 4,6 10-4 Torr DCS : 7,8 10-2 Torr H2 : 19,8 Torr HCL : 1,6 10-1 Torr D'autres gaz porteurs (ex : N2), précurseurs (ex : SiH4, Si2H6), dopant, ou ajusteur de sélectivité (ex : CL2) peuvent être également être utilisés. Il convient de noter ici que selon ce procédé, on n'effectue aucune lithographie préalable de façon à protéger l'un ou l'autre des transistors. Puis, comme illustré sur la figure 2, on forme au moins une deuxième couche isolante latérale 41, 51, et en l'espèce ici une troisième couche isolante latérale 42, 52, de façon à combler l'espace 7 entre chaque premier bloc 6 et la première couche isolante latérale 40, 50.
La dernière couche isolante latérale déposée 42, 52, recouvre également la partie supérieure du premier bloc semiconducteur facetté 6 correspondant. Puis, après avoir protégé la structure destinée à former le futur transistor PMOS, par exemple par une résine photolithographiée, on retire la portion de couche isolante latérale 52 recouvrant les deux premiers blocs épitaxiés 6 du futur transistor NMOS et on procède à un retrait de ces deux premiers blocs 60 en utilisant une gravure sélective.
Une telle gravure peut être de type gravure « humide » (par exemple ammoniac et eau oxygénée diluée dans de l'eau : ce mélange est connu par l'homme du métier sous l'acronyme SC1) ou bien une gravure « sèche » par exemple un plasma radiofréquence avec des mélanges de gaz comme CH3F/ 02/ Ar ou He).
On obtient alors, comme illustré sur la figure 2, une région isolante latérale 50, 51, 52 comportant un profil facetté 54. On procède ensuite, comme illustré sur la figure 3, à une épitaxie d'un deuxième matériau semiconducteur, par exemple du silicium dopé N in situ, de façon à former à la place du premier bloc facetté 6 un deuxième bloc facetté 8 dont le profil incliné 80 épouse le profil incliné 54 de la région isolante 50, 51, 52. On notera ici que cette seconde épitaxie n'est pas une épitaxie facettée mais une épitaxie classique ou moins facettée que la précédente. L'espaceur (région isolante 50, 51, 52) ayant lui-même adopté la forme laissée par la première épitaxie plus agressive, on obtient alors avec la deuxième épitaxie une région source/drain collée à l'espaceur. Ce type d'épitaxie se distingue d'une épitaxie fortement facettée par une modulation du ratio entre les différents gaz précurseurs et/ou de la température de procédé qui influence les vitesses relatives entre les différentes facettes et donc leur apparition sur la morphologie finale. A titre d'exemple non limitatif, on pourra effectuer une épitaxie de type N sous une température de 700°C et une pression totale de 300 Torr en utilisant les gaz et les pressions partielles suivants : DCS : 5 Torr H2 : 293,5 Torr PH3 : 0,2 Torr HCL : 1,3 Puis, comme illustré sur la figure 4, on retire la portion de la couche latérale isolante 42 recouvrant les deux premiers blocs facettés 6 du transistor PMOS TRP.
On obtient donc comme illustré sur cette figure 4, un circuit intégré CI comportant au moins un transistor PMOS TRP et au moins un transistor NMOS TRN réalisés sur respectivement des zones différentes 10 et 11 d'un substrat du type silicium sur isolant, chaque transistor comprenant, au-dessus du substrat, une région de grille RGP, RGN, deux régions isolantes latérales multicouches 40-42, 50-52 s'appuyant respectivement sur deux flancs de la région de grille correspondante RGP, RGN. Chacune de ces régions latérales isolantes possède une portion inclinée 44, 54 qui s'évase en s'éloignant du substrat.
Chaque transistor possède une région de source et une région de drain comportant chacune un bloc semiconducteur 6 (pour le transistor TRP) et un bloc semiconducteur 8 (pour le transistor TRN) reposant sur le substrat, et séparé du flanc correspondant de la région de grille par la région isolante latérale correspondante 40-42, 50-52.
Chaque bloc semiconducteur de source et de drain possède une portion inclinée 60, 80 s'appuyant sur la portion inclinée 44, 54 de la région latérale isolante correspondante. Le circuit intégré est réalisé ici dans une technologie 28 nanomètres. Et l'espace e au pied de chaque région isolante latérale est compris entre environ 5 nanomètres et environ 7 nanomètres. L'invention selon cet aspect permet notamment un contrôle efficace du profil facetté des régions de source et de drain pour les deux types de transistors (N ou P), avec suppression du risque de gravure localisé de la région de canal au pied de la région de grille, tout en économisant une étape de lithographie (puisque la première épitaxie facettée s'effectue pour les deux types de transistors sans protection d'un des deux types). Dans ce qui précède, la première épitaxie était une épitaxie type P adaptée aux transistors PMOS, mais on aurait pu effectuer une épitaxie facettée type N adaptée aux transistors NMOS et effectuer par la suite sur le futur transistor PMOS, ce qui a été décrit ci-avant pour le transistor NMOS.
Claims (7)
- REVENDICATIONS1. Procédé de réalisation d'au moins un transistor du type NMOS et d'au moins un transistor du type PMOS sur respectivement des zones différentes (11, 10) d'un substrat du type silicium sur isolant, comprenant pour chaque transistor une réalisation au dessus du substrat d'une région de grille (RGP, RGN) flanquée d'une première couche isolante latérale (40, 50), une première épitaxie facettée d'un premier matériau semiconducteur sur le substrat de part et d'autre de ladite première couche isolante latérale (40, 50) de façon à former deux premiers blocs semiconducteurs facettés (6), ledit premier matériau ayant un premier type de conductivité (P) adapté à un premier type de transistor et étant identique pour les deux types transistors, une formation d'au moins une deuxième couche isolante latérale (41-42, 51-52) de façon à combler l'espace (7) entre chaque premier bloc et la première couche isolante latérale correspondante et à recouvrir ledit premier bloc (6), et pour chaque deuxième type de transistor, un retrait de la portion de couche isolante latérale (52) recouvrant chaque premier bloc (6), un retrait de chaque premier bloc (6) laissant subsister une région latérale isolante (50-52) ayant un profil facetté (54), et une épitaxie sur le substrat semiconducteur d'un deuxième matériau semiconducteur ayant un type de conductivité opposé au premier de façon à former à l'emplacement du premier bloc (6) un deuxième bloc semiconducteur facetté (8) adapté au deuxième type de transistor et épousant le profil facetté (54) de ladite région latérale isolante correspondante.
- 2. Procédé selon la revendication 1, comprenant en outre un retrait de la portion de couche isolante latérale (42) recouvrant chaque premier bloc (6) de chaque transistor du premier type.
- 3. Procédé selon l'une des revendications précédentes, dans lequel le substrat est un substrat du type silicium sur isolant totalement déserté.
- 4. Circuit intégré comprenant au moins un transistor du type NMOS (TRN) et au moins un transistor du type PMOS (TRP) surrespectivement des zones différentes (10, 11) d'un substrat du type silicium sur isolant, chaque transistor (TRP, TRN) comprenant au dessus du substrat une région de grille (RGP, RGN) deux régions isolantes latérales multicouches (40-42, 50-52) s' appuyant respectivement sur deux flancs de la région de grille, reposant sur le substrat et comportant chacune une portion inclinée (44, 54) s'évasant en s'éloignant du substrat, une région de source et une région de drain comportant chacune un bloc semiconducteur (6, 8) reposant sur le substrat, séparé du flanc correspondant de la région de grille par la région isolante latérale correspondante et possédant une portion inclinée (60, 80) s'appuyant sur la portion inclinée (44, 54) de ladite région latérale isolante.
- 5. Circuit intégré selon la revendication 4, dans lequel l'épaisseur (e) au pied de chaque région isolante latérale est comprise entre environ 5 nm et environ 7 nm.
- 6. Circuit intégré selon l'une des revendications 4 ou 5, dans lequel le substrat (10, 11) est un substrat du type silicium sur isolant totalement déserté.
- 7. Circuit intégré selon l'une des revendications précédentes, réalisé dans une technologie 28 nm ou moins.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1360303A FR3012258A1 (fr) | 2013-10-23 | 2013-10-23 | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant |
US14/501,639 US9412589B2 (en) | 2013-10-23 | 2014-09-30 | Method for fabricating NMOS and PMOS transistors on a substrate of the SOI, in particular FDSOI, type and corresponding integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1360303A FR3012258A1 (fr) | 2013-10-23 | 2013-10-23 | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant |
Publications (1)
Publication Number | Publication Date |
---|---|
FR3012258A1 true FR3012258A1 (fr) | 2015-04-24 |
Family
ID=50101960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1360303A Pending FR3012258A1 (fr) | 2013-10-23 | 2013-10-23 | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant |
Country Status (2)
Country | Link |
---|---|
US (1) | US9412589B2 (fr) |
FR (1) | FR3012258A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3012258A1 (fr) * | 2013-10-23 | 2015-04-24 | St Microelectronics Crolles 2 | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant |
WO2017006207A1 (fr) * | 2015-07-08 | 2017-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Dispositif à semi-conducteur et son procédé de fabrication |
US11049939B2 (en) * | 2015-08-03 | 2021-06-29 | Semiwise Limited | Reduced local threshold voltage variation MOSFET using multiple layers of epi for improved device operation |
US20180366579A1 (en) * | 2017-06-14 | 2018-12-20 | Globalfoundries Inc. | Laterally diffused field effect transistor in soi configuration |
US11373696B1 (en) | 2021-02-19 | 2022-06-28 | Nif/T, Llc | FFT-dram |
CN114121613B (zh) * | 2022-01-27 | 2022-04-22 | 广东省大湾区集成电路与系统应用研究院 | 一种改善fdsoi外延生长的薄膜工艺优化方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040097047A1 (en) * | 2002-11-20 | 2004-05-20 | International Business Machines Corporation | Method of manufacture of MOSFET device with in-situ doped, raised source and drain structures |
US20110037125A1 (en) * | 2009-08-17 | 2011-02-17 | International Business Machines Corporation | Extremely thin silicon on insulator (etsoi) complementary metal oxide semiconductor (cmos) with in-situ doped source and drain regions formed by a single mask |
US20110227157A1 (en) * | 2010-03-18 | 2011-09-22 | Globalfoundries Inc. | Etsoi with reduced extension resistance |
US20110233688A1 (en) * | 2010-03-25 | 2011-09-29 | International Business Machines Corporation | Novel devices with vertical extensions for lateral scaling |
US20120211844A1 (en) * | 2011-02-17 | 2012-08-23 | Globalfoundries Inc. | Semiconductor Device Comprising Self-Aligned Contact Elements and a Replacement Gate Electrode Structure |
US20130015525A1 (en) * | 2011-07-11 | 2013-01-17 | International Business Machines Corporation | Cmos with dual raised source and drain for nmos and pmos |
US20130187205A1 (en) * | 2012-01-23 | 2013-07-25 | Internationa Business Machines Corporation | Epitaxial replacement of a raised source/drain |
US8546203B1 (en) * | 2012-07-17 | 2013-10-01 | International Business Machines Corporation | Semiconductor structure having NFET extension last implants |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087235A (en) * | 1999-10-14 | 2000-07-11 | Advanced Micro Devices, Inc. | Method for effective fabrication of a field effect transistor with elevated drain and source contact structures |
US8202767B2 (en) * | 2010-05-28 | 2012-06-19 | International Business Machines Corporation | Device and method of reducing junction leakage |
US8324041B2 (en) * | 2011-02-09 | 2012-12-04 | Globalfoundries Inc. | Complementary stress liner to improve DGO/AVT devices and poly and diffusion resistors |
US8482078B2 (en) * | 2011-05-10 | 2013-07-09 | International Business Machines Corporation | Integrated circuit diode |
US20120329285A1 (en) * | 2011-06-22 | 2012-12-27 | United Microelectronics Corp. | Gate dielectric layer forming method |
US9025356B2 (en) * | 2011-08-30 | 2015-05-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fly-over conductor segments in integrated circuits with successive load devices along a signal path |
FR2980916B1 (fr) * | 2011-10-03 | 2014-03-28 | Soitec Silicon On Insulator | Procede de fabrication d'une structure de type silicium sur isolant |
JP5968708B2 (ja) * | 2012-01-23 | 2016-08-10 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US8673699B2 (en) * | 2012-07-17 | 2014-03-18 | International Business Machines Corporation | Semiconductor structure having NFET extension last implants |
US9269804B2 (en) * | 2012-07-28 | 2016-02-23 | Semiwise Limited | Gate recessed FDSOI transistor with sandwich of active and etch control layers |
US9059292B2 (en) * | 2012-08-02 | 2015-06-16 | International Business Machines Corporation | Source and drain doping profile control employing carbon-doped semiconductor material |
US8759232B2 (en) * | 2012-08-17 | 2014-06-24 | Globalfoundries Inc. | Compressive stress transfer in an interlayer dielectric of a semiconductor device by providing a bi-layer of superior adhesion and internal stress |
CN103779222A (zh) * | 2012-10-23 | 2014-05-07 | 中国科学院微电子研究所 | Mosfet的制造方法 |
US8835936B2 (en) * | 2012-11-15 | 2014-09-16 | Globalfoundries Inc. | Source and drain doping using doped raised source and drain regions |
US8877604B2 (en) * | 2012-12-17 | 2014-11-04 | International Business Machines Corporation | Device structure with increased contact area and reduced gate capacitance |
US8829575B2 (en) * | 2012-12-26 | 2014-09-09 | United Microelectronics Corp. | Semiconductor structure and process thereof |
US8815741B1 (en) * | 2013-03-11 | 2014-08-26 | Globalfoundries Inc. | Method of forming a semiconductor structure including an implantation of ions into a layer of spacer material |
FR3012258A1 (fr) * | 2013-10-23 | 2015-04-24 | St Microelectronics Crolles 2 | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant |
-
2013
- 2013-10-23 FR FR1360303A patent/FR3012258A1/fr active Pending
-
2014
- 2014-09-30 US US14/501,639 patent/US9412589B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040097047A1 (en) * | 2002-11-20 | 2004-05-20 | International Business Machines Corporation | Method of manufacture of MOSFET device with in-situ doped, raised source and drain structures |
US20110037125A1 (en) * | 2009-08-17 | 2011-02-17 | International Business Machines Corporation | Extremely thin silicon on insulator (etsoi) complementary metal oxide semiconductor (cmos) with in-situ doped source and drain regions formed by a single mask |
US20110227157A1 (en) * | 2010-03-18 | 2011-09-22 | Globalfoundries Inc. | Etsoi with reduced extension resistance |
US20110233688A1 (en) * | 2010-03-25 | 2011-09-29 | International Business Machines Corporation | Novel devices with vertical extensions for lateral scaling |
US20120211844A1 (en) * | 2011-02-17 | 2012-08-23 | Globalfoundries Inc. | Semiconductor Device Comprising Self-Aligned Contact Elements and a Replacement Gate Electrode Structure |
US20130015525A1 (en) * | 2011-07-11 | 2013-01-17 | International Business Machines Corporation | Cmos with dual raised source and drain for nmos and pmos |
US20130187205A1 (en) * | 2012-01-23 | 2013-07-25 | Internationa Business Machines Corporation | Epitaxial replacement of a raised source/drain |
US8546203B1 (en) * | 2012-07-17 | 2013-10-01 | International Business Machines Corporation | Semiconductor structure having NFET extension last implants |
Also Published As
Publication number | Publication date |
---|---|
US20150108576A1 (en) | 2015-04-23 |
US9412589B2 (en) | 2016-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9805942B2 (en) | Method of modifying epitaxial growth shape on source drain area of transistor | |
FR3012258A1 (fr) | Procede de realisation de transistors nmos et pmos sur un substrat du type soi, en particulier fdsoi, et circuit integre correspondant | |
US10978356B2 (en) | Tri-layer STI liner for nanosheet leakage control | |
EP1638149B1 (fr) | Procédé de fabrication d'un transistor à effet de champ à grille isolée à canal à hétérostructure | |
JP5659416B2 (ja) | 半導体素子の製造方法 | |
US10276685B2 (en) | Heterojunction tunnel field effect transistor fabrication using limited lithography steps | |
EP3142151B1 (fr) | Procede de realisation d'une structure de canal de transistor en contrainte uni-axiale | |
EP2562802A2 (fr) | Procede de realisation d'un circuit integre tridimensionnel | |
US8604552B2 (en) | Semiconductor device and method for fabricating semiconductor device | |
EP3026711B1 (fr) | Procede ameliore pour induire une contrainte dans un canal de transistor a l'aide de regions source/drain sacrificielles et d'un remplacement de grille | |
EP1881533A2 (fr) | Procédé de realisation de transistor a double grilles auto-alignées par reduction de motifs de grille | |
FR3005372A1 (fr) | Procede de realisation d'un film en silicium-germanium a teneur en germanium variable | |
EP3246948B1 (fr) | Procédé de réalisation sur un même substrat de transistors présentant des caractéristiques différentes | |
FR2860919A1 (fr) | Structures et procedes de fabrication de regions semiconductrices sur isolant | |
US7879657B2 (en) | Semiconductor device and manufacturing method thereof | |
FR3036846A1 (fr) | Procede d'isolation locale entre des transistors realises sur un substrat soi, en particulier fdsoi, et circuit integre correspondant | |
US20230207563A1 (en) | Gate all around complementary metal-oxide-semiconductor field effect transistors | |
EP2178111A1 (fr) | Procédé de fabrication de composants empilés et auto-alignés sur un substrat | |
EP0675544A1 (fr) | Procédé de fabrication d'un transistor à effet de champ à grille isolée de longueur de canal réduite, et transistor correspondant | |
FR2947384A1 (fr) | Procede de realisation d'un transistor a source et drain metalliques | |
FR3050315B1 (fr) | Transistor a overlap des regions d'acces maitrise | |
EP3671836B1 (fr) | Circuit 3d dote d'une isolation mesa pour la zone de plan de masse | |
FR3035265A1 (fr) | Procede de fabrication de transistors soi pour une densite d'integration accrue | |
US20240096891A1 (en) | Self-aligned backside contact | |
EP4071827A1 (fr) | Procédé de réalisation d'un dispositif microélectronique |