FR2949846A1 - PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION - Google Patents
PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION Download PDFInfo
- Publication number
- FR2949846A1 FR2949846A1 FR0956179A FR0956179A FR2949846A1 FR 2949846 A1 FR2949846 A1 FR 2949846A1 FR 0956179 A FR0956179 A FR 0956179A FR 0956179 A FR0956179 A FR 0956179A FR 2949846 A1 FR2949846 A1 FR 2949846A1
- Authority
- FR
- France
- Prior art keywords
- air
- pressure
- flow
- purification unit
- bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04121—Steam turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04133—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04145—Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04533—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04551—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
- F25J3/04557—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
- F25J3/04618—Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04951—Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
- F25J3/04957—Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/62—Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/06—Adiabatic compressor, i.e. without interstage cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/24—Multiple compressors or compressor stages in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/40—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Dans un procédé de production d'oxygène par distillation d'air alimenté par de l'air à la pression atmosphérique pour produire un premier et un second débits d'air pressurisés, une première unité d'épuration (5), une deuxième unité d'épuration (7), les premier et second débits d'air pressurisés sortant du moyen de compression à une première et deuxième pression, les première et deuxième pressions étant à des pressions différentes d'au moins 0,5 bar, on envoie le premier débit d'air pressurisé d'une première sortie du moyen de compression à la première unité d'épuration à la première pression pour produire un premier débit d'air épuré, on envoie le premier débit d'air épuré de la première unité d'épuration à une colonne du système de colonnes (15), on envoie le deuxième débit d'air épuré de la deuxième unité d'épuration à une colonne du système de colonnes au moins sous forme partiellement condensée, on soutire un liquide riche en oxygène du système de colonnes, on le vaporise par échange de chaleur au moins avec le deuxième débit épuré et on le fournit comme produit.In a process for producing oxygen by distilling air fed with air at atmospheric pressure to produce first and second pressurized air flows, a first purification unit (5), a second purification unit (7), the first and second pressurized air flows leaving the compression means at a first and second pressure, the first and second pressures being at different pressures of at least 0.5 bar, the first pressurized air flow from a first outlet of the compression means to the first purification unit at the first pressure to produce a first stream of purified air, the first purified air flow of the first unit is sent; one-column purification of the column system (15), the second purified air flow of the second purification unit is sent to a column of the column system at least in partially condensed form, a liquid rich in ox In the column system, it is vaporized by heat exchange at least with the second purified flow rate and is supplied as a product.
Description
La présente invention est relative à un procédé et à une installation de production d'oxygène par distillation d'air. L'invention s'applique par exemple à la production de très grandes quantités d'oxygène où la pression d'oxygène requise est dans une plage comprise, par exemple, entre 5 et 20 bars. L'oxygène est produit dans une ou plusieurs unités de distillation d'air de grande taille, où il est avantageux d'amener à ces pressions l'oxygène liquide produit dans la ou les unité(s) de distillation au moyen de pompes et de vaporiser l'oxygène liquide par échange de chaleur avec un fluide calorigène comprimé à une pression suffisante pour permettre la vaporisation de l'oxygène, ce fluide calorigène étant typiquement de l'air surpressé. On évite ainsi l'utilisation de compresseurs d'oxygène, toujours délicate. Il est classique dans de telles unités de séparation d'air (ASU) de comprimer de l'air à la pression atmosphérique dans un ou plusieurs compresseur(s) d'air principal(aux) installé(s) en parallèle. L'air ainsi comprimé est refroidi par des moyens de réfrigération, typiquement dans une plage comprise, par exemple entre 5 et 40°C. L'air ainsi réfrigéré est traité dans une ou plusieurs unité(s) de purification où les impuretés comme l'eau, le CO2 et les hydrocarbures sont pour la plupart éliminées. Une partie de cet air ainsi épuré est envoyée dans un surpresseur où elle subit une étape supplémentaire de compression, typiquement au-delà de 10 bars, et constitue, par exemple, le fluide calorigène permettant la vaporisation du ou des produits comme l'oxygène. La production de grandes quantités d'oxygène par des ASU nécessite d'épurer de grandes quantités d'air dans les unités de purification et pour cela de minimiser la taille des ces unités de purification pouvant traiter un volume d'air donné. L'utilisation d'unités de purification à lits concentriques permet de réduire la taille de ces unités, ce qui peut être obtenu également en augmentant la pression de l'air purifié dans ces unités, ou en abaissant sa température. La présente invention vise à pallier les défauts de l'art antérieur et peut permettre de réduire l'investissement en évitant l'ajout d'un surpresseur d'air après la ou les unité(s) de purification, et d'avoir en lieu et place une compression équivalente avant l'étape de purification de l'air dans la ou les unité(s) d'épuration. Les unités d'épuration traiteront deux débits d'air à deux pressions différentes, le premier débit d'air à une première pression comprise entre 5 et 9 bars voire entre 2 et 4 bars, et le second débit d'air à une seconde pression comprise entre 11 et 50 bars, voire entre 4,5 et 8 bars. The present invention relates to a method and an installation for producing oxygen by air distillation. The invention applies for example to the production of very large amounts of oxygen where the required oxygen pressure is in a range of, for example, between 5 and 20 bar. The oxygen is produced in one or more large air distillation units, where it is advantageous to bring to these pressures the liquid oxygen produced in the distillation unit (s) by means of pumps and pumps. vaporizing the liquid oxygen by heat exchange with a compressed caloric fluid at a pressure sufficient to allow the vaporization of oxygen, the circulating fluid typically being supercharged air. This avoids the use of oxygen compressors, always delicate. It is conventional in such air separation units (ASUs) to compress air at atmospheric pressure into one or more main air compressor (s) installed in parallel. The air thus compressed is cooled by refrigeration means, typically in a range of, for example, between 5 and 40 ° C. The refrigerated air is treated in one or more purification units where impurities such as water, CO2 and hydrocarbons are mostly removed. Part of this air thus purified is sent to a booster where it undergoes an additional compression step, typically above 10 bars, and is, for example, the heat transfer fluid for the vaporization of the product or products such as oxygen. The production of large amounts of oxygen by ASUs requires the purification of large amounts of air in the purification units and for this purpose minimizes the size of these purification units that can treat a given volume of air. The use of concentric-bed purification units makes it possible to reduce the size of these units, which can also be obtained by increasing the pressure of the purified air in these units, or by lowering its temperature. The present invention aims to overcome the defects of the prior art and can reduce the investment by avoiding the addition of an air booster after the purification unit (s), and to have in place and placing an equivalent compression prior to the step of purifying the air in the purification unit (s). The purification units will treat two air flows at two different pressures, the first air flow at a first pressure between 5 and 9 bars or between 2 and 4 bars, and the second air flow at a second pressure. between 11 and 50 bar, or between 4.5 and 8 bar.
Selon un objet de l'invention, il est prévu un procédé de production d'oxygène par distillation d'air dans un appareil comprenant au moins un système de colonnes, au moins une ligne d'échange, au moins un moyen de compression entraîné par un moteur électrique et/ou une turbine à vapeur et alimenté par de l'air à la pression atmosphérique pour produire un premier et un second débits d'air pressurisés, une première unité d'épuration, une deuxième unité d'épuration, les premier et second débits d'air pressurisés sortant du moyen de compression à une première et deuxième pression, la deuxième pression étant plus élevée que la première d'au moins 0,5 bar, éventuellement d'au moins 5 bars, voire d'au moins 10 bars, même d'au moins 25 bars ; dans lequel on envoie le premier débit d'air pressurisé d'une première sortie du moyen de compression à la première unité d'épuration substantiellement à la première pression pour produire un premier débit d'air épuré en eau et en dioxyde de carbone, on envoie le deuxième débit d'air pressurisé d'une deuxième sortie du moyen de compression à la deuxième unité d'épuration substantiellement à la deuxième pression pour produire un deuxième débit d'air épuré en eau et en dioxyde de carbone, on refroidit le premier débit épuré dans la ligne d'échange éventuellement à la première pression, on refroidit le deuxième débit épuré dans la ligne d'échange éventuellement à la deuxième pression, on envoie le premier débit d'air épuré de la première unité d'épuration à une colonne du système de colonnes, on envoie le deuxième débit d'air épuré provenant de la deuxième unité d'épuration à une colonne du système de colonnes au moins sous forme partiellement condensée, on soutire un liquide riche en oxygène du système de colonnes, on le vaporise, éventuellement dans la ligne d'échange ou dans un vaporiseur auxiliaire, par échange de chaleur au moins avec le deuxième débit épuré et on le fournit comme produit. Selon d'autres caractéristiques facultatives : - la différence de pression entre les deux débits d'air pressurisés est au plus 4 bar ou éventuellement au moins de 1 bar et au plus de 3 bars. - la différence de pression entre les deux débits d'air pressurisés est au moins 5 bars et au plus 30 bars, ou éventuellement au moins de 15 bars et au plus de 25 bars. - au moins une partie du premier débit d'air épuré est envoyée dans la même colonne du système de colonnes que le second débit d'air épuré. L'invention a également pour objet une installation de production d'oxygène par distillation d'air comprenant au moins un système de colonnes, au moins une ligne d'échange, au moins un moyen de compression entraîné par une turbine à vapeur et/ou par au moins un moteur électrique, le moyen de compression ayant une première et une deuxième sortie, une première unité d'épuration, une deuxième unité d'épuration, le moyen de compression étant adapté pour être alimenté par de l'air à la pression atmosphérique et pour produire à partir de la première sortie un premier débit d'air pressurisé à une première pression et à partir de la deuxième sortie un deuxième débit d'air pressurisé à une deuxième pression, la deuxième pression étant plus élevée que la première, les premier et deuxième débits d'air pressurisés étant à des pressions différentes d'au moins 0,5 bar, éventuellement d'au moins 5 bars, voire d'au moins 10 bars, même d'au moins 25 bars, une première conduite pour relier la première sortie à la première unité d'épuration, une deuxième conduite pour relier la deuxième sortie à la deuxième unité d'épuration, une troisième conduite pour relier la première unité d'épuration à la ligne d'échange, une quatrième conduite pour relier la deuxième unité d'épuration avec la ligne d'échange, une cinquième conduite reliant la ligne d'échange avec une colonne du système de colonnes, une sixième conduite pour relier la ligne d'échange avec une colonne du système de colonnes, une conduite pour soutirer un liquide riche en oxygène liquide du système de colonnes et pour l'envoyer à un vaporiseur, éventuellement constitué par la ligne d'échange, des moyens pour envoyer au moins une partie du deuxième débit épuré au vaporiseur pour s'y condenser et dans laquelle il n'y a aucun moyen de compression d'air entre la première sortie et la première unité d'épuration et il n'y a aucun moyen de compression d'air entre la deuxième sortie et la ligne d'échange, voire le système de colonnes. Dans cette installation, au moins une partie du premier débit d'air épuré est envoyée dans la même colonne du système de colonnes que le second débit d'air épuré. De plus, l'installation peut présenter les caractéristiques suivantes : - le moyen de compression comprend un premier compresseur et un deuxième compresseur, des moyens pour alimenter le premier compresseur et le second compresseur avec de l'air à la pression atmosphérique, le premier et le deuxième compresseur étant éventuellement entraînés par une turbine à vapeur commune - seul l'un des premier et deuxième compresseurs d'air comprend des réfrigérants intermédiaires (compression isotherme). - l'installation comprend des moyens pour envoyer de l'air provenant de la sortie de celui des deux compresseurs d'air ne comprenant pas de réfrigérant intermédiaire à un échangeur de chaleur et des moyens pour envoyer au moins un fluide provenant du système de colonnes et/ou de l'eau à l'échangeur pour s'y réchauffer. - l'installation ne comprend aucun moyen reliant la première conduite avec la deuxième conduite, aucun moyen reliant la troisième conduite avec la quatrième conduite et aucun moyen reliant la cinquième conduite avec la sixième conduite. Selon un autre objet de l'invention, il est prévu un procédé de production d'oxygène par distillation d'air dans un appareil comprenant n systèmes de colonnes, où n>2, n lignes d'échange, au moins un premier compresseur comprimant de l'air atmosphérique pour produire un débit d'air à une première pression, au moins un deuxième compresseur comprimant de l'air atmosphérique pour produire un débit d'air à une deuxième pression, la première pression inférieure d'au moins 0,5 bar, éventuellement d'au moins 5 bars, voire d'au moins 10 bars, même d'au moins 25 bars à la deuxième pression ; dans lequel de l'air à la première pression est envoyé d'au moins un premier compresseur à au moins une première unité d'épuration, de l'air à la deuxième pression est envoyé d'au moins un deuxième compresseur à au moins une deuxième unité d'épuration, de l'air à la première pression est envoyé de la première unité d'épuration à au moins deux systèmes de colonnes, de l'air à la deuxième pression est envoyé de la deuxième unité d'épuration à au moins deux systèmes de colonnes et on produit de l'oxygène à partir d'au moins un des systèmes de colonnes. Selon un autre objet de l'invention, il est prévu une installation de production d'oxygène par distillation d'air dans un appareil comprenant n systèmes de colonnes, où n>2, n lignes d'échange, au moins un premier compresseur comprimant de l'air atmosphérique pour produire un débit d'air à une première pression, au moins un deuxième compresseur comprimant de l'air atmosphérique pour produire un débit d'air à une deuxième pression, la première pression inférieure d'au moins 0,5 bar, éventuellement d'au moins 5 bars, voire d'au moins 10 bars, même d'au moins 25 bars à la deuxième pression, au moins une première unité d'épuration, au moins une deuxième unité d'épuration, des moyens pour envoyer de l'air à la première pression provenant du ou des premier(s) compresseur(s) à la ou les première(s) unité(s) d'épuration, des moyens pour envoyer de l'air à la deuxième pression provenant du ou des deuxième(s) compresseur(s) à la ou les deuxième(s) unité(s) d'épuration, des moyens pour envoyer de l'air à au moins deux systèmes de colonnes à partir de la ou les première(s) unité(s) d'épuration et des moyens pour envoyer de l'air aux deux systèmes de colonnes à partir de la ou les deuxième(s) unité(s) d'épuration, dans laquelle il n'y a aucun moyen de compression entre le ou les premier(s) compresseur(s) et la ou les première(s) unité(s) d'épuration et il n'y a aucun moyen de compression entre le ou les deuxième(s) compresseur(s) et les lignes d'échanges, voire les systèmes de colonnes. De préférence, il n'y a aucun moyen pour relier la sortie du premier compresseur (d'un des premiers compresseurs) avec la sortie du deuxième compresseur (d'un des deuxième compresseurs) et/ou aucun moyen pour relier la sortie de la première unité d'épuration (d'une des premières unités d'épuration) avec la sortie de la deuxième unité d'épuration (d'une des deuxième unités d'épuration). De cette façon, il y a un circuit indépendant alimenté par au moins deux compresseurs produisant de l'air à la première pression et un circuit indépendant alimenté par au moins deux compresseur produisant de l'air à la deuxième pression, chacun des deux circuits alimentant au moins deux systèmes de colonnes indépendants. Des exemples de réalisation vont maintenant être décrits en regard des dessins annexés qui représentent des installations de séparation d'air selon l'invention. L'installation représentée à la figure 1 est destinée à alimenter en oxygène une ou plusieurs unité(s) de fusion réduction de fer (Corex /Finex ), ou une ou plusieurs unité(s) d'oxycombustion, par exemple. Dans le premier cas, la pression de l'oxygène fourni est comprise dans une plage allant de 5 à 15 bars. Dans le second cas, la pression de l'oxygène fourni est comprise dans une plage allant de 1 à 5 bars (préférentiellement 1 à 2 bar abs). L'installation comprend un premier compresseur 1 et un deuxième compresseur 3 installés sur le même site, des moyens pour alimenter le premier compresseur et le second compresseur avec de l'air à la pression atmosphérique, le premier et le deuxième compresseur étant entraînés par des moteurs électriques, et amenant respectivement l'air à une première pression comprise entre 2.5 et 8 bars et à une seconde pression comprise entre 4 et 30 bars. According to one object of the invention, there is provided a method for producing oxygen by air distillation in an apparatus comprising at least one column system, at least one exchange line, at least one compression means driven by an electric motor and / or a steam turbine and supplied with air at atmospheric pressure to produce first and second pressurized air flows, a first purification unit, a second purification unit, the first and second pressurized air flows exiting the compression means at a first and second pressure, the second pressure being higher than the first pressure by at least 0.5 bar, optionally at least 5 bar, or even at least 10 bars, even at least 25 bars; wherein the first pressurized air flow is fed from a first outlet of the compression means to the first purification unit substantially at the first pressure to produce a first flow of air purified with water and carbon dioxide, sends the second pressurized air flow from a second outlet of the compression means to the second purification unit substantially at the second pressure to produce a second flow of air purified with water and carbon dioxide, the first flow purified in the exchange line optionally at the first pressure, the second purified flow is cooled in the exchange line optionally at the second pressure, the first purified air flow of the first purification unit is sent to a column of the column system, the second stream of purified air from the second purification unit is sent to a column of the column system at least in p-form. in a condensed manner, an oxygen-rich liquid is withdrawn from the column system, vaporized, optionally in the exchange line or in an auxiliary vaporizer, by heat exchange at least with the second purified flow rate and supplied as a product. According to other optional features: the pressure difference between the two pressurized air flows is at most 4 bar or possibly at least 1 bar and at most 3 bars. the pressure difference between the two pressurized air flows is at least 5 bars and at most 30 bars, or possibly at least 15 bars and at most 25 bars. - At least a portion of the first purified air flow is sent in the same column of the column system as the second purified air flow. The subject of the invention is also an installation for producing oxygen by air distillation comprising at least one column system, at least one exchange line, at least one compression means driven by a steam turbine and / or by at least one electric motor, the compression means having a first and a second outlet, a first purification unit, a second purification unit, the compression means being adapted to be supplied with air under pressure atmospheric and to produce from the first outlet a first pressurized air flow at a first pressure and from the second outlet a second pressurized air flow at a second pressure, the second pressure being higher than the first, the first and second pressurized air flows being at different pressures of at least 0.5 bar, possibly at least 5 bars, or even at least 10 bars, even at least 25 bars, a first conduit for connecting the first output to the first purification unit, a second conduit for connecting the second output to the second purification unit, a third conduit for connecting the first purification unit to the exchange line, a fourth pipe for connecting the second purification unit with the exchange line, a fifth pipe connecting the exchange line with a column of the column system, a sixth pipe for connecting the exchange line with a column of the system of columns, a line for withdrawing a liquid rich in liquid oxygen from the column system and for sending it to a vaporizer, possibly constituted by the exchange line, means for sending at least a portion of the second purified flow to the vaporizer for to condense in it and in which there is no means of air compression between the first outlet and the first purification unit and there is no way to compress air ion between the second output and the exchange line, or even the system of columns. In this installation, at least a portion of the first flow of purified air is sent in the same column of the column system as the second flow of purified air. In addition, the installation can have the following characteristics: the compression means comprises a first compressor and a second compressor, means for supplying the first compressor and the second compressor with air at atmospheric pressure, the first and the second compressor being possibly driven by a common steam turbine - only one of the first and second air compressors comprises intermediate refrigerants (isothermal compression). the installation comprises means for sending air coming from the outlet of the one of the two air compressors not comprising an intermediate refrigerant to a heat exchanger and means for sending at least one fluid coming from the column system and / or water at the exchanger to warm up. - The installation does not include any means connecting the first pipe with the second pipe, no means connecting the third pipe with the fourth pipe and no means connecting the fifth pipe with the sixth pipe. According to another object of the invention, there is provided a process for producing oxygen by air distillation in an apparatus comprising n column systems, where n> 2, n exchange lines, at least one first compressor compressing atmospheric air to produce an air flow at a first pressure, at least a second compressor compressing atmospheric air to produce an air flow at a second pressure, the first pressure at least 0, 5 bar, optionally at least 5 bar, or even at least 10 bar, even at least 25 bar at the second pressure; in which air at the first pressure is sent from at least one first compressor to at least one first purification unit, air at the second pressure is sent from at least one second compressor to at least one second purification unit, air at the first pressure is sent from the first purification unit to at least two column systems, air at the second pressure is sent from the second purification unit to at at least two column systems and oxygen is produced from at least one of the column systems. According to another object of the invention, there is provided an installation for producing oxygen by air distillation in an apparatus comprising n column systems, where n> 2, n exchange lines, at least one first compressor compressing atmospheric air to produce an air flow at a first pressure, at least a second compressor compressing atmospheric air to produce an air flow at a second pressure, the first pressure at least 0, 5 bar, optionally at least 5 bar, or even at least 10 bar, even at least 25 bar at the second pressure, at least a first purification unit, at least a second purification unit, means for sending air at the first pressure from the first compressor (s) to the first purification unit (s), means for supplying air to the second pressure from the second compressor (s) to the second unit (s) purification means for sending air to at least two column systems from the first purification unit (s) and means for supplying air to the two column systems at from the second purification unit (s), in which there is no means of compression between the first compressor (s) and the first unit (s) (s) ( s) and there is no means of compression between the second (s) compressor (s) and the exchange lines, or even the column systems. Preferably, there is no means for connecting the output of the first compressor (of one of the first compressors) with the output of the second compressor (of one of the second compressors) and / or no means for connecting the output of the first compressor. first purification unit (of one of the first purification units) with the exit of the second purification unit (from one of the second purification units). In this way, there is an independent circuit powered by at least two compressors producing air at the first pressure and an independent circuit powered by at least two compressors producing air at the second pressure, each of the two circuits supplying air. at least two independent column systems. Exemplary embodiments will now be described with reference to the accompanying drawings which show air separation plants according to the invention. The installation shown in Figure 1 is intended to supply oxygen to one or more iron reduction melting unit (s) (Corex / Finex), or one or more oxyfuel combustion unit (s), for example. In the first case, the pressure of oxygen supplied is in the range of 5 to 15 bar. In the second case, the pressure of the oxygen supplied is in a range from 1 to 5 bar (preferably 1 to 2 bar abs). The installation comprises a first compressor 1 and a second compressor 3 installed on the same site, means for supplying the first compressor and the second compressor with air at atmospheric pressure, the first and the second compressor being driven by electric motors, and respectively bringing the air at a first pressure of between 2.5 and 8 bars and at a second pressure of between 4 and 30 bars.
Les deux débits d'air comprimés distincts sortant des deux compresseurs d'air sont refroidis par exemple au moyen d'un réfrigérant final, avant d'être envoyés dans une première et une deuxième unités d'épuration 5 et 7, les débits d'air étant l'un substantiellement à la première pression et le second substantiellement à la seconde pression. The two separate compressed air flows leaving the two air compressors are cooled, for example by means of a final refrigerant, before being sent to a first and a second purification unit 5 and 7, the flow rates of air being one at substantially the first pressure and the second substantially at the second pressure.
Le premier débit d'air épuré est envoyé dans la ligne d'échange principale 13 au moyen de la conduite 11 et le second débit d'air épuré est envoyé dans la ligne d'échange principale 13 au moyen de la conduite 9. Le premier débit d'air une fois refroidi dans l'échangeur 13 est introduit dans le système de colonnes 15, le second débit d'air est introduit dans le système de colonnes 15 au moins sous forme partiellement condensée après un passage dans un vaporiseur auxiliaire 25 utilisant un liquide riche en oxygène soutiré du système de colonnes 15 au moyen d'une conduite 17 et d'une pompe 23. Le premier débit d'air introduit dans le système de colonne 15 l'est au moins en partie dans la même colonne que le second débit d'air introduit dans le système de colonnes 15 au moins partiellement condensé (par exemple la colonne haute pression d'une double colonne comprenant une colonne haute pression et une colonne basse pression). La figure 2 illustre une première variante de cette installation où seul l'un des premier et deuxième compresseurs d'air comprend des réfrigérants intermédiaires (compression isotherme), à savoir le compresseur 1, des moyens pour envoyer de l'air provenant de la sortie de celui des deux compresseurs d'air ne comprenant pas de réfrigérant intermédiaire à un échangeur de chaleur 31 et des moyens pour envoyer au moins un fluide provenant du système de colonnes et/ou de l'eau à l'échangeur pour s'y réchauffer. The first flow of purified air is sent to the main exchange line 13 by means of the pipe 11 and the second purified air flow is sent into the main exchange line 13 by means of the pipe 9. Once the air flow has been cooled in the exchanger 13, it is introduced into the column system 15, the second air flow is introduced into the column system 15 at least partially condensed after passing through an auxiliary vaporizer 25 using an oxygen-rich liquid withdrawn from the column system 15 by means of a pipe 17 and a pump 23. The first air flow introduced into the column system 15 is at least partly in the same column as the second air flow introduced into the column system at least partially condensed (for example the high pressure column of a double column comprising a high pressure column and a low pressure column). FIG. 2 illustrates a first variant of this installation where only one of the first and second air compressors comprises intermediate refrigerants (isothermal compression), namely the compressor 1, means for sending air from the outlet that of the two air compressors not comprising an intermediate refrigerant to a heat exchanger 31 and means for sending at least one fluid from the column system and / or water to the exchanger to heat it up .
Les deux débits d'air comprimé sortant des deux compresseurs d'air sont envoyés dans deux unités d'épuration 5 et 7 , l'un substantiellement à la première pression et le second substantiellement à la seconde pression. Le premier débit d'air épuré est envoyé dans la ligne d'échange principale 13 au moyen de la conduites 11 et le second débit d'air épuré est envoyé dans la ligne d'échange 20 principale 13 au moyen de la conduite 9. Le premier débit d'air une fois refroidi dans l'échangeur 13 est introduit dans le système de colonnes 15, le second débit d'air est introduit dans le système de colonnes 15 au moins sous forme partiellement condensée après un passage dans un vaporiseur auxiliaire 25 utilisant un liquide riche en oxygène soutiré du système de colonnes 15 au 25 moyen d'une conduite 17 et d'une pompe 23. Le premier débit d'air introduit dans le système de colonne 15 l'est au moins en partie dans la même colonne que le second débit d'air 15 au moins partiellement condensé. Le liquide riche en oxygène soutiré du système de colonne 15 au moyen de la conduite 17 et qui s'est vaporisé dans le vaporiseur auxiliaire 25 contre le second débit d'air épuré, est introduit dans l'échangeur de chaleur 30 31, permet de refroidir l'air comprimé dans le compresseur 1 ne comportant pas de réfrigérants intermédiaires. L'installation représentée à la figure 3 représente une seconde variante, destinée à alimenter en oxygène une unité de fusion réduction de fer (Corex /Finex ). La pression de l'oxygène fourni est comprise dans une plage allant de 5 à 15 bars (préférentiellement de 8 à 12 bar abs). L'installation comprend un premier compresseur 1 et un deuxième compresseur 3, des moyens pour alimenter le premier compresseur et le second compresseur avec de l'air à la pression atmosphérique, le premier et le deuxième compresseur étant entraînés par une turbine à vapeur commune 39, et amenant respectivement l'air à une première pression comprise entre 4 et 7 bars et à une seconde pression comprise entre 10 et 30 bars. Les deux débits d'air comprimé sortant des deux compresseurs d'air sont envoyés dans deux unités d'épuration 5 et 7 l'une substantiellement à la première pression et la seconde substantiellement à la seconde pression. Une première portion du premier débit d'air épuré est envoyée dans la ligne d'échange principale 13 au moyen de la conduites 11 et le second débit d'air épuré est envoyé dans la ligne d'échange principale 13 au moyen de la conduite 9. La seconde portion du premier débit d'air épuré est envoyée dans le compresseur 33 d'une turbine-booster au moyen de la conduite 29, avant d'être refroidie dans la ligne d'échange principale 13 puis détendue dans la partie turbine 35 de la turbine-booster. L'air détendu dans la turbine 35 est envoyé dans le système de colonne au moyen de la conduite 41. Le second débit d'air épuré une fois refroidi dans la ligne d'échange est introduit 20 dans le système de colonnes 15 au moyen de la conduite 43. Comme dans les autres cas, le premier débit d'air introduit dans le système de colonne 15 l'est au moins en partie dans la même colonne que le second débit d'air introduit dans le système de colonnes 15 au moins partiellement condensé. La figure 4 illustre une troisième variante dérivée de la figure 3 où seul l'un des 25 premier et deuxième compresseurs d'air (le compresseur 3) comprend des réfrigérants intermédiaires (compression isotherme), comprenant des moyens pour envoyer de l'air provenant de la sortie de celui des deux compresseurs d'air ne comprenant pas de réfrigérant intermédiaire à un échangeur de chaleur et des moyens pour envoyer au de l'eau à l'échangeur pour s'y réchauffer. 30 La figure 5 décrit une quatrième variante de l'installation décrite à la figure 1 où les deux compresseurs sont combinés dans la même machine 3, par exemple un compresseur axial-radial. La figure 6 décrit une variante supplémentaire où n installations décrites à la figure 1 sont interconnectées. Cette figure présente pour des raisons de clarté le cas n=2 : elle présente ainsi deux installations telles que décrites à la figure 1, interconnectées au moyen des conduites 45 et 47 d'une part, et 49 et 51 d'autre part. Ainsi la conduite 45 relie la sortie du compresseur 1 et celle du compresseur 1', et la conduite 47 relie la sortie du compresseur 3 et celle du compresseur 3' ; la conduite 49 relie la sortie de l'épuration 7 avec celle de l'épuration 7', et enfin la conduite 51 relie la sortie de l'épuration 5 avec celle de l'épuration 5'. La première des deux installations interconnectées comprend un premier et un deuxième compresseur 1 et 3, la seconde installation comprend un premier et un deuxième compresseur 1' et 3'. Les premiers compresseurs let 1' et les seconds compresseurs 3 et 3' sont alimentés par de l'air à la pression atmosphérique, les premiers et seconds compresseurs étant entraînés par des moteurs électriques, amènent respectivement l'air à une première pression comprise entre 2,5 et 8 bars et à une seconde pression comprise entre 4 et 30 bars. Les débits d'air pressurisés par les compresseurs 1 et 1' d'une part, et 3 et 3' d'autre part sont refroidis par exemple au moyen d'un réfrigérant final avant d'être envoyés dans les premières unités d'épuration 7 et 7' d'une part et dans les deuxièmes unités d'épuration 5 et 5' d'autre part, les débits d'air étant substantiellement à la première pression d'une part pour ceux provenant des compresseurs 1 et 1', et substantiellement à la seconde pression d'autre part pour ceux provenant des compresseurs 3 et 3'. The two flows of compressed air leaving the two air compressors are sent to two purification units 5 and 7, one at substantially the first pressure and the second substantially at the second pressure. The first flow of purified air is sent to the main exchange line 13 by means of the pipes 11 and the second flow of purified air is sent to the main exchange line 13 by means of the pipe 9. first air flow when cooled in the exchanger 13 is introduced into the column system 15, the second air flow is introduced into the column system 15 at least partially condensed after passing through an auxiliary vaporizer 25 using an oxygen-rich liquid withdrawn from the column system 15 by means of a pipe 17 and a pump 23. The first air flow introduced into the column system 15 is at least partly in the same column that the second air flow 15 at least partially condensed. The oxygen-rich liquid withdrawn from the column system 15 through line 17 and vaporized in the auxiliary vaporizer 25 against the second purified air flow is introduced into the heat exchanger 31, allows cooling the compressed air in the compressor 1 having no intermediate refrigerants. The installation shown in FIG. 3 represents a second variant, intended to supply oxygen to an iron reduction melting unit (Corex / Finex). The pressure of the oxygen supplied is in a range from 5 to 15 bars (preferably from 8 to 12 bar abs). The installation comprises a first compressor 1 and a second compressor 3, means for supplying the first compressor and the second compressor with air at atmospheric pressure, the first and the second compressor being driven by a common steam turbine. and respectively supplying air at a first pressure of between 4 and 7 bar and at a second pressure of between 10 and 30 bar. The two compressed air flows leaving the two air compressors are sent to two purification units 5 and 7, one at substantially the first pressure and the second substantially at the second pressure. A first portion of the first purified air flow is sent to the main exchange line 13 by means of the ducts 11 and the second purified air flow is sent to the main exchange line 13 by means of the duct 9. The second portion of the first flow of purified air is sent into the compressor 33 of a turbine-booster by means of the pipe 29, before being cooled in the main exchange line 13 and then expanded in the turbine part 35. turbine-booster. The air expanded in the turbine 35 is sent into the column system by means of the pipe 41. The second stream of purified air once cooled in the exchange line is introduced into the column system 15 by means of 43. As in the other cases, the first air flow introduced into the column system 15 is at least partly in the same column as the second air flow introduced into the column system 15 at least partially condensed. FIG. 4 illustrates a third variant derived from FIG. 3 where only one of the first and second air compressors (the compressor 3) comprises intermediate refrigerants (isothermal compression), comprising means for sending air from the output of the one of the two air compressors not including an intermediate refrigerant to a heat exchanger and means for sending water to the exchanger to heat it. FIG. 5 describes a fourth variant of the installation described in FIG. 1 where the two compressors are combined in the same machine 3, for example an axial-radial compressor. FIG. 6 describes a further variant where n installations described in FIG. 1 are interconnected. This figure presents for the sake of clarity the case n = 2: it thus has two installations as described in Figure 1, interconnected by means of the lines 45 and 47 on the one hand, and 49 and 51 on the other hand. Thus the pipe 45 connects the output of the compressor 1 and that of the compressor 1 ', and the pipe 47 connects the outlet of the compressor 3 and that of the compressor 3'; the pipe 49 connects the outlet of the purification 7 with that of the purification 7 ', and finally the pipe 51 connects the outlet of the purification 5 with that of the purification 5'. The first of the two interconnected installations comprises a first and a second compressor 1 and 3, the second installation comprises a first and a second compressor 1 'and 3'. The first compressors let 1 'and the second compressors 3 and 3' are powered by air at atmospheric pressure, the first and second compressors being driven by electric motors, respectively bring the air to a first pressure of between 2 , 5 and 8 bar and at a second pressure of between 4 and 30 bar. The air flows pressurized by the compressors 1 and 1 'on the one hand, and 3 and 3' on the other hand are cooled for example by means of a final refrigerant before being sent to the first purification units 7 and 7 'on the one hand and in the second purification units 5 and 5' on the other hand, the air flows being substantially at the first pressure on the one hand for those from the compressors 1 and 1 ', and substantially at the second pressure on the other hand for those from compressors 3 and 3 '.
L'installation comprend une conduite 45 reliant les premiers débits d'airs comprimés par les premiers compresseurs 1 et 1', et une conduite 47 reliant les seconds débits d'air comprimés par les seconds compresseurs 3 et 3'. L'installation comprend en outre une conduite 49 reliant les premiers débits d'air épurés par les épurations 7 et 7', et une conduite 51 reliant les seconds débits d'air épurés par les épurations 5 et 5'. The installation comprises a pipe 45 connecting the first compressed air flow rates by the first compressors 1 and 1 ', and a pipe 47 connecting the second compressed air flow rates by the second compressors 3 and 3'. The installation further comprises a pipe 49 connecting the first purified air flows by the purges 7 and 7 ', and a pipe 51 connecting the second purified air flows by the purges 5 and 5'.
Le système de colonnes 15 de toutes les figures peut comprendre une seule colonne, une double colonne classique ou une triple colonne avec colonne haute pression, colonne à pression intermédiaire et colonne basse pression, entre autres. The column system 15 of all the figures may comprise a single column, a conventional double column or a triple column with high pressure column, intermediate pressure column and low pressure column, among others.
Claims (8)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956179A FR2949846B1 (en) | 2009-09-10 | 2009-09-10 | PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION |
AU2010294093A AU2010294093B2 (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
PCT/FR2010/051854 WO2011030050A2 (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
IN957DEN2012 IN2012DN00957A (en) | 2009-09-10 | 2010-09-07 | |
CA2771205A CA2771205A1 (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
JP2012528420A JP2013509558A (en) | 2009-09-10 | 2010-09-07 | Method and equipment for producing oxygen by air distillation |
CN201080039753.3A CN102859303B (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
US13/394,874 US20120167622A1 (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
EP10763822A EP2475945A2 (en) | 2009-09-10 | 2010-09-07 | Method and facility for producing oxygen through air distillation |
ZA2012/01601A ZA201201601B (en) | 2009-09-10 | 2012-03-02 | Method and facility for producing oxygen through air distillation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956179A FR2949846B1 (en) | 2009-09-10 | 2009-09-10 | PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2949846A1 true FR2949846A1 (en) | 2011-03-11 |
FR2949846B1 FR2949846B1 (en) | 2012-02-10 |
Family
ID=42238760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0956179A Expired - Fee Related FR2949846B1 (en) | 2009-09-10 | 2009-09-10 | PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION |
Country Status (10)
Country | Link |
---|---|
US (1) | US20120167622A1 (en) |
EP (1) | EP2475945A2 (en) |
JP (1) | JP2013509558A (en) |
CN (1) | CN102859303B (en) |
AU (1) | AU2010294093B2 (en) |
CA (1) | CA2771205A1 (en) |
FR (1) | FR2949846B1 (en) |
IN (1) | IN2012DN00957A (en) |
WO (1) | WO2011030050A2 (en) |
ZA (1) | ZA201201601B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020169900A1 (en) | 2019-02-21 | 2020-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plant and process for aerial gas separation using a parallelepipedal adsorber |
WO2020169901A1 (en) | 2019-02-21 | 2020-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | System and method for separating low-pressure gases in the air |
US12076688B2 (en) | 2019-02-21 | 2024-09-03 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and facility for purifying a high-flow gas stream |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2551619A1 (en) * | 2011-07-26 | 2013-01-30 | Linde Aktiengesellschaft | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air |
EP2600089B1 (en) * | 2011-12-01 | 2014-09-03 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of operation of a cryogenic air separation unit |
WO2015014485A2 (en) * | 2013-08-02 | 2015-02-05 | Linde Aktiengesellschaft | Method and device for producing compressed nitrogen |
US9995530B2 (en) * | 2016-02-24 | 2018-06-12 | Charles Bliss | Method for the capture of carbon dioxide through cryogenically processing gaseous emissions from fossil-fuel power generation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4342201A (en) * | 1980-02-19 | 1982-08-03 | Kawasaki Jukogyo Kabushiki Kaisha | Energy recovery apparatus for a gas compressor plant |
US5337570A (en) * | 1993-07-22 | 1994-08-16 | Praxair Technology, Inc. | Cryogenic rectification system for producing lower purity oxygen |
US5571309A (en) * | 1995-07-28 | 1996-11-05 | The Boc Group, Inc. | Adsorption process |
US5666823A (en) * | 1996-01-31 | 1997-09-16 | Air Products And Chemicals, Inc. | High pressure combustion turbine and air separation system integration |
US6141950A (en) * | 1997-12-23 | 2000-11-07 | Air Products And Chemicals, Inc. | Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen |
US20020116945A1 (en) * | 2000-10-12 | 2002-08-29 | Linde Aktiengesellschaft | Process and apparatus for air separation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2903089A1 (en) * | 1979-01-26 | 1980-07-31 | Linde Ag | METHOD FOR OBTAINING OXYGEN FROM AIR |
US4895583A (en) * | 1989-01-12 | 1990-01-23 | The Boc Group, Inc. | Apparatus and method for separating air |
FR2681415B1 (en) * | 1991-09-18 | 1999-01-29 | Air Liquide | PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER HIGH PRESSURE BY AIR DISTILLATION. |
FR2819583B1 (en) * | 2001-01-12 | 2003-03-07 | Air Liquide | INTEGRATED AIR SEPARATION AND ENERGY GENERATION PROCESS AND INSTALLATION FOR CARRYING OUT SUCH A PROCESS |
US6536234B1 (en) * | 2002-02-05 | 2003-03-25 | Praxair Technology, Inc. | Three column cryogenic air separation system with dual pressure air feeds |
FR2961586B1 (en) * | 2010-06-18 | 2014-02-14 | Air Liquide | INSTALLATION AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
-
2009
- 2009-09-10 FR FR0956179A patent/FR2949846B1/en not_active Expired - Fee Related
-
2010
- 2010-09-07 WO PCT/FR2010/051854 patent/WO2011030050A2/en active Application Filing
- 2010-09-07 CN CN201080039753.3A patent/CN102859303B/en not_active Expired - Fee Related
- 2010-09-07 AU AU2010294093A patent/AU2010294093B2/en not_active Ceased
- 2010-09-07 EP EP10763822A patent/EP2475945A2/en not_active Withdrawn
- 2010-09-07 JP JP2012528420A patent/JP2013509558A/en not_active Withdrawn
- 2010-09-07 CA CA2771205A patent/CA2771205A1/en not_active Abandoned
- 2010-09-07 IN IN957DEN2012 patent/IN2012DN00957A/en unknown
- 2010-09-07 US US13/394,874 patent/US20120167622A1/en not_active Abandoned
-
2012
- 2012-03-02 ZA ZA2012/01601A patent/ZA201201601B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4342201A (en) * | 1980-02-19 | 1982-08-03 | Kawasaki Jukogyo Kabushiki Kaisha | Energy recovery apparatus for a gas compressor plant |
US5337570A (en) * | 1993-07-22 | 1994-08-16 | Praxair Technology, Inc. | Cryogenic rectification system for producing lower purity oxygen |
US5571309A (en) * | 1995-07-28 | 1996-11-05 | The Boc Group, Inc. | Adsorption process |
US5666823A (en) * | 1996-01-31 | 1997-09-16 | Air Products And Chemicals, Inc. | High pressure combustion turbine and air separation system integration |
US6141950A (en) * | 1997-12-23 | 2000-11-07 | Air Products And Chemicals, Inc. | Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen |
US20020116945A1 (en) * | 2000-10-12 | 2002-08-29 | Linde Aktiengesellschaft | Process and apparatus for air separation |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020169900A1 (en) | 2019-02-21 | 2020-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plant and process for aerial gas separation using a parallelepipedal adsorber |
WO2020169901A1 (en) | 2019-02-21 | 2020-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | System and method for separating low-pressure gases in the air |
FR3093169A1 (en) | 2019-02-21 | 2020-08-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Installation and process for separating gases from air using a parallelepiped shaped adsorber |
FR3093008A1 (en) | 2019-02-21 | 2020-08-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Low pressure air gas separation plant and process |
US12076688B2 (en) | 2019-02-21 | 2024-09-03 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and facility for purifying a high-flow gas stream |
US12098883B2 (en) | 2019-02-21 | 2024-09-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | System and method for separating air gases at low pressure |
Also Published As
Publication number | Publication date |
---|---|
CA2771205A1 (en) | 2011-03-17 |
WO2011030050A2 (en) | 2011-03-17 |
AU2010294093B2 (en) | 2015-01-15 |
CN102859303B (en) | 2014-12-03 |
CN102859303A (en) | 2013-01-02 |
JP2013509558A (en) | 2013-03-14 |
WO2011030050A3 (en) | 2014-01-09 |
FR2949846B1 (en) | 2012-02-10 |
EP2475945A2 (en) | 2012-07-18 |
IN2012DN00957A (en) | 2015-04-10 |
AU2010294093A1 (en) | 2012-04-05 |
ZA201201601B (en) | 2014-06-25 |
US20120167622A1 (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
FR2949846A1 (en) | PROCESS AND PLANT FOR PRODUCING OXYGEN BY AIR DISTILLATION | |
FR2895068A1 (en) | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION | |
JP4908634B2 (en) | Method and apparatus for separating air by cryogenic distillation | |
US9360250B2 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
EP1623172A1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
WO2013167817A2 (en) | Method and apparatus for air separation by cryogenic distillation | |
EP2691718B1 (en) | Method for producing a gas from pressurised air by means of cryogenic distillation | |
FR2805339A1 (en) | PROCESS FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC RECTIFICATION | |
EP3069091B1 (en) | Process and apparatus for separating air by cryogenic distillation | |
FR2913760A1 (en) | METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION | |
US20140208798A1 (en) | Apparatus and Integrated Process for Separating a Mixture of Carbon Dioxide and at Least One Other Gas and for Separating Air by Cryogenic Distillation | |
EP1189003B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR2831249A1 (en) | Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column | |
US20060272353A1 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
EP3058297B1 (en) | Method and device for separating air by cryogenic distillation | |
EP2895811B1 (en) | Method and apparatus for separating air by cryogenic distillation | |
FR2973485A1 (en) | Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen | |
WO2009112744A2 (en) | Apparatus for separating air by cryogenic distillation | |
EP2938414B1 (en) | Method and apparatus for separating a carbon dioxide-rich gas | |
FR2819046A1 (en) | Cryogenic distillation air separation plant uses compressor to compress nitrogen-rich flow with inlet temperature below that of heat exchanger | |
WO2009136074A2 (en) | Method and apparatus for separating air by cryogenic distillation | |
EP1063485B1 (en) | Device and process for air separation by cryogenic distillation | |
FR2915271A1 (en) | Air separating method, involves operating extracted nitrogen gas from high pressure column at pressure higher than pressure of systems operating at low pressure, and compressing gas till pressure is higher than high pressure of systems | |
FR2985305A1 (en) | Method for separation of air by cryogenic distillation for production of gas, involves pressurizing and vaporizing liquid flow in one of two exchange lines, and coupling cold booster with driving mechanism e.g. electrical motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
ST | Notification of lapse |
Effective date: 20200910 |