FR2900855A1 - METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD - Google Patents

METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD Download PDF

Info

Publication number
FR2900855A1
FR2900855A1 FR0604299A FR0604299A FR2900855A1 FR 2900855 A1 FR2900855 A1 FR 2900855A1 FR 0604299 A FR0604299 A FR 0604299A FR 0604299 A FR0604299 A FR 0604299A FR 2900855 A1 FR2900855 A1 FR 2900855A1
Authority
FR
France
Prior art keywords
template
feelers
axis
support
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0604299A
Other languages
French (fr)
Other versions
FR2900855B1 (en
Inventor
Bruno Lucien Bizet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luneau Technology Operations SAS
Original Assignee
BRIOT INTERNATIONAL SA
Briot International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRIOT INTERNATIONAL SA, Briot International SA filed Critical BRIOT INTERNATIONAL SA
Priority to FR0604299A priority Critical patent/FR2900855B1/en
Priority to KR1020087030131A priority patent/KR101341236B1/en
Priority to PCT/FR2007/000741 priority patent/WO2007132079A1/en
Publication of FR2900855A1 publication Critical patent/FR2900855A1/en
Application granted granted Critical
Publication of FR2900855B1 publication Critical patent/FR2900855B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • B24B47/225Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation for bevelling optical work, e.g. lenses

Abstract

Ce procédé concerne une machine d'usinage de lentilles ophtalmologiques comprenant un bâti fixe, un train de meules (5) rotatif, un support de lentille (9), et une paire de palpeurs (20A, 20B).Ce procédé d'étalonnage comprend un procédé de détermination de la position de l'axe (X0) des palpeurs (20A, 20B), qui comprend les étapes élémentaires consistant à :- amener un gabarit, dont le contour a une forme prédéterminée connue, et préalablement montée sur le support, entre les palpeurs (20A, 20B),- piloter des déplacements du gabarit et mesurer les déplacements correspondants des palpeurs (20A, 20B),- en déduire une information de position de l'axe (X0) des palpeurs (20A, 20B).The method relates to an ophthalmic lens machining machine comprising a fixed frame, a rotating set of wheels (5), a lens holder (9), and a pair of feelers (20A, 20B). a method for determining the position of the axis (X0) of the feelers (20A, 20B), which comprises the elementary steps of: - bringing a template, whose contour has a known predetermined shape, and previously mounted on the support between the feelers (20A, 20B), - controlling displacements of the template and measuring the corresponding displacements of the feelers (20A, 20B), - deriving a position information of the axis (X0) of the feelers (20A, 20B) .

Description

1 La présente invention concerne un procédé d'étalonnage d'une machineThe present invention relates to a method of calibrating a machine

d'usinage de lentilles ophtalmiques comprenant - un bâti fixe ; - un train de meules monté rotatif par rapport au bâti autour d'un premier axe ; - un support de lentille ophtalmique déplaçable par rapport au bâti et muni de moyens d'entraînement en rotation de la lentille autour d'un deuxième axe sensiblement parallèle au premier ; - un dispositif de pilotage du support et des moyens d'entraînement ; et - une paire de palpeurs déplaçables en translation par rapport au bâti selon un même axe sensiblement parallèle au premier, prévus pour venir chacun en contact avec l'une respective des deux faces de la lentille et mesurer sa position axiale, les palpeurs étant sollicités axialement l'un vers l'autre. Les palpeurs, qui permettent de mesurer la position précise des faces avant et arrière de la lentille (ou verre) à usiner, sont nécessaires au bon positionnement des biseaux, rainures, contre-biseaux et trous. Par exemple, pour réaliser précisément un biseau dit moitié-moitié , il est nécessaire de former le sommet du biseau précisément à égale distance de la face avant et de la face arrière du verre, sur le bord périphérique de ce dernier. Généralement, dans les machines de meulage connues, la position de l'axe des palpeurs, fixe par rapport au bâti, n'est connue qu'avec une imprécision de l'ordre du millimètre. Cette imprécision peut se traduire par un positionnement approximatif des formes d'usinage citées précédemment. 2 L'invention a pour but de remédier à cet inconvénient et d'améliorer la précision des machines d'usinage de lentilles ophtalmiques. A cet effet, l'invention a pour objet un procédé d'étalonnage d'une machine du type précité, comprenant un procédé de détermination de la position de l'axe des palpeurs, qui comprend les étapes élémentaires consistant à : - amener un gabarit, dont le contour a une forme prédéterminée connue, et préalablement monté sur le support, entre les palpeurs, de sorte que les palpeurs soient en contact avec les faces respectives du gabarit, - piloter des déplacements du gabarit par rapport aux palpeurs et mesurer les déplacements correspondants des 15 palpeurs, -er.. déduire une information de position de l'axe des palpeurs. Suivant d'autres caractéristiques du procédé conforme à l'invention : 20 - le support étant monté pivotant par rapport au bâti, on réalise une première fois les étapes élémentaires avec un premier gabarit ayant un contour dont une partie est rectiligne, ledit premier gabarit étant monté sur le support et positionné autour du deuxième axe de façon telle que la 25 partie rectiligne de son contour soit coplanaire et perpendiculaire à l'axe de pivotement du support par rapport au bâti, le support étant ensuite entraîné en pivotement pour déplacer le gabarit entre les palpeurs jusqu'à une position dans laquelle on détecte une distance nulle entre 30 les palpeurs significative du franchissement de la partie rectiligne, de façon à déterminer le plan passant par l'axe de rotation du support et dans lequel se trouve l'axe des palpeurs ; 3 - on réalise une deuxième fois les étapes élémentaires avec un gabarit ayant un contour dont une partie est anguleuse et forme une pointe, ledit gabarit étant déplacé par rotation combinée du support autour de son axe de pivotement et du gabarit autour du deuxième axe, de façon à déplacer la pointe sur le plan déterminé lors de la première exécution des étapes élémentaires, la position de l'axe des palpeurs sur ce plan étant déduite des déplacements correspondants des palpeurs ; - un gabarit unique est utilisé pour les première et deuxième exécutions des étapes élémentaires, ledit gabarit unique ayant un contour dont une première partie est rectiligne et une deuxième partie est anguleuse et forme une pointe ; - le procédé de détermination de l'axe des palpeurs comprend une étape de réalisation du gabarit, dans laquelle on usine dans la machine d'usinage une lentille ophtalmique selon la forme prédéterminée du gabarit, préalablement à l'exécution des étapes élémentaires, le gabarit étant constitué par la lentille ophtalmique ainsi réalisée ; et - les palpeurs ayant des extrémités formant parties de contact avec la lentille, le procédé d'étalonnage comprend un procédé de vérification de l'état desdites parties de contact, qui comprend les étapes consistant à : • amener un gabarit, dont le contour a une forme prédéterminée connue, et préalablement montée sur le support, entre les palpeurs, de sorte que les palpeurs soient en contact avec les faces respectives du gabarit, • piloter des déplacements du gabarit par rapport aux palpeurs et mesurer les déplacements correspondants des palpeurs, et: • en déduire une information relative à la forme des parties de contact. 4 L'invention a également pour objet une machine d'usinage de lentilles ophtalmiques adaptée pour mettre en ouvre un procédé tel que décrit précédemment. Un mode particulier de réalisation de l'invention va 5 maintenant être décrit plus en détail en référence aux dessins annexés, sur lesquels : - la Figure 1 est une vue simplifiée en perspective d'une machine d'usinage adaptée pour la mise en oeuvre d'un procédé conforme à l'invention ; 10 -la Figure 2 est une vue à plus grande échelle d'un détail de la Figure 1 montrant le train de meules, la lentille et les palpeurs - la Figure 3 est une vue schématique illustrant une première étage d'un procédé selon l'invention ; 15 - la Figure 4 et la Figure 5 sont des vues schématiques illustrant une deuxième étape du procédé selon l'invention. Sur les Figures 1 et 2, on a représenté une machine 1 d'usinage de verres ophtalmiques, d'un type adapté pour 20 mettre en oeuvre un procédé d'étalonnage conforme à l'invention. Cette machine 1 comprend un bâti 3 supposé fixe, auquel est attaché un repère fixe 0, X, Y, Z. Dans ce repère, les axes X et Y définissent un plan 25 supposé horizontal, et l'axe Z représente l'axe vertical orienté vers le haut. La machine 1 comporte en outre un train de meules 5 monté rotatif sur le bâti 3, autour d'un premier axe de rotation X1 parallèle à l'axe X. Le train de meules 5 est 30 entraîné en rotation par un moteur de meulage non représenté. La machine 1 comporte en outre un support 7 pour une lentille ophtalmique 9.  ophthalmic lens machining apparatus comprising - a fixed frame; - A wheel train rotatably mounted relative to the frame about a first axis; an ophthalmic lens support movable relative to the frame and provided with means for rotating the lens around a second axis substantially parallel to the first axis; a device for controlling the support and driving means; and a pair of feelers displaceable in translation relative to the frame along a same axis substantially parallel to the first, provided to each come into contact with a respective one of the two faces of the lens and measure its axial position, the feelers being stressed axially towards each other. Probes, which measure the precise position of the front and rear of the lens (or glass) to be machined, are necessary for the proper positioning of bevels, grooves, bevels and holes. For example, to precisely make a bevel said half-half, it is necessary to form the apex of the bevel precisely equidistant from the front face and the rear face of the glass, on the peripheral edge of the latter. Generally, in known grinding machines, the position of the probe axis, fixed relative to the frame, is known only with a inaccuracy of the order of a millimeter. This inaccuracy may result in an approximate positioning of the machining forms mentioned above. The object of the invention is to overcome this disadvantage and to improve the accuracy of ophthalmic lens machining machines. To this end, the object of the invention is a method of calibrating a machine of the aforementioned type, comprising a method for determining the position of the probe axis, which comprises the elementary steps of: - bringing a template , whose contour has a predetermined predetermined shape, and previously mounted on the support, between the feelers, so that the feelers are in contact with the respective faces of the template, - control movements of the template relative to the feelers and measure displacements corresponding of the 15 probes, -er .. derive a position information of the probe axis. According to other characteristics of the process according to the invention: since the support is pivotally mounted relative to the frame, the elementary steps are carried out a first time with a first template having a contour of which a portion is rectilinear, said first template being mounted on the support and positioned around the second axis so that the straight portion of its contour is coplanar and perpendicular to the axis of pivoting of the support relative to the frame, the support then being pivotally driven to move the template between the probes to a position in which there is detected a zero distance between the probes significant of the crossing of the rectilinear part, so as to determine the plane passing through the axis of rotation of the support and in which is the axis of feelers; 3 - the elementary steps are carried out a second time with a template having a contour of which part is angular and forms a point, said template being displaced by combined rotation of the support about its pivot axis and the template around the second axis, way to move the tip on the plane determined during the first execution of the elementary steps, the position of the probe axis on this plane being deduced from the corresponding movements of the feelers; a single jig is used for the first and second executions of the elementary steps, said single jig having an outline of which a first portion is rectilinear and a second portion is angular and forms a tip; the method for determining the axis of the feelers comprises a step of producing the template, in which an ophthalmic lens is machined in the machining machine according to the predetermined shape of the template, prior to the execution of the elementary steps, the jig being constituted by the ophthalmic lens thus produced; and - the probes having lens contacting end portions, the calibration method comprises a method of checking the state of said contact portions, which comprises the steps of: • bringing a template, the contour of which has a predetermined predetermined shape, and previously mounted on the support, between the feelers, so that the feelers are in contact with the respective faces of the template, • control movements of the template relative to the feelers and measure the corresponding movements of the feelers, and • to deduce information relating to the form of the contact parts. The invention also relates to an ophthalmic lens machining machine adapted to implement a method as described above. A particular embodiment of the invention will now be described in more detail with reference to the accompanying drawings, in which: FIG. 1 is a simplified perspective view of a machining machine adapted for the implementation of FIG. a process according to the invention; FIG. 2 is an enlarged view of a detail of FIG. 1 showing the mill train, the lens and the feelers; FIG. 3 is a schematic view illustrating a first stage of a method according to FIG. invention; Figure 4 and Figure 5 are schematic views illustrating a second step of the method according to the invention. Figures 1 and 2 show a machine 1 for machining ophthalmic lenses, of a type adapted to implement a calibration method according to the invention. This machine 1 comprises a frame 3 supposed fixed, which is attached a fixed reference 0, X, Y, Z. In this reference, the X and Y axes define a plane 25 assumed horizontal, and the Z axis represents the vertical axis upwards. The machine 1 further comprises a wheel set 5 rotatably mounted on the frame 3, around a first axis of rotation X1 parallel to the axis X. The mill set 5 is rotated by a non-grinding motor. represent. The machine 1 further comprises a support 7 for an ophthalmic lens 9.

Ce support (ou chariot) 7 est muni de moyens d'entraînement en rotation de la lentille 9 autour d'un deuxième axe X2 lié au support 7, et sensiblement parallèle au premier axe X1.  This support (or carriage) 7 is provided with means for rotating the lens 9 around a second axis X2 connected to the support 7, and substantially parallel to the first axis X1.

Les moyens d'entraînement comprennent en particulier deux demi-arbres 11A, 11B coaxiaux, adaptés pour saisir entre eux la lentille 9 (ou ébauche de lentille), et un moteur d'entraînement 13. Le moteur 13 a son arbre de sortie relié au demi-arbre 11B, et entraîne en rotation la lentille 9 autour de l'axe X2 par l'intermédiaire des demi-arbres 11A, 11B. Le support 7 est lui-même monté pivotant par rapport au bâti 3 autour d'un troisième axe X3 également parallèle à l'axe X.  The drive means comprise in particular two coaxial half-shafts 11A, 11B adapted to grip the lens 9 (or lens blank) between them, and a drive motor 13. The motor 13 has its output shaft connected to the half-shaft 11B, and rotates the lens 9 about the axis X2 through the half-shafts 11A, 11B. The support 7 is itself pivotally mounted relative to the frame 3 about a third axis X3 also parallel to the axis X.

La machine 1 comprend à cet effet un moteur 15 d'entraînement du support 7 en pivotement autour de l'axe X3 par rapport au bâti 3. Ce moteur 15 entraîne le support 7 par l'intermédiaire d'un mécanisme de transmission qui ne sera pas décrit ici.  The machine 1 comprises for this purpose a drive motor 15 of the support 7 pivoting about the axis X3 relative to the frame 3. This motor 15 drives the support 7 by means of a transmission mechanism which will not not described here.

La machine 1 comprend en outre un dispositif 19 de pilotage des moteurs 13 et 15, auxquels le dispositif de pilotage 19 est relié. Ce dispositif 19 est adapté pour piloter les déplacements du support 7 par rapport au bâti 3, et la rotation de la lentille 9 par rapport au support 7 autour de l'axe X2, de sorte à piloter de façon contrôlée les déplacements de la lentille 9 par rapport aux meules 5. La machine 1 comprend en outre une paire de palpeurs, schématisés sous la forme de flèches avec les références numériques 20A, 20B sur la Figure 1.  The machine 1 further comprises a device 19 for controlling the motors 13 and 15, to which the control device 19 is connected. This device 19 is adapted to control the displacements of the support 7 with respect to the frame 3, and the rotation of the lens 9 with respect to the support 7 around the axis X 2, so as to control in a controlled manner the displacements of the lens 9 relative to the grinding wheels 5. The machine 1 further comprises a pair of feelers, schematized in the form of arrows with the reference numerals 20A, 20B in FIG.

Ces palpeurs sont montés coulissants coaxialement par rapport au bâti 3 selon la direction X, chacun des palpeurs 20A, 20B étant monté coulissant sur une tige 21A, 21B fixe par rapport au bâti 3 et parallèle à l'axe X. 6 Chaque palpeur 20A, 20B comprend une partie d'extrémité libre 23 formant partie de contact, de forme sensiblement semi-circulaire dans le plan horizontal (comme cela a été schématisé sur la Figure 5). Les parties de contact 23 des deux palpeurs 20A, 2CB sont tournées l'une vers l'autre, les palpeurs étant disposés et prévus pour venir en contact avec respectivement les deux faces de la lentille ophtalmique en cours de meulage. Le contact d'un palpeur 20A, 20B avec la face de lentille respective est quasi-ponctuel. Les palpeurs 20A, 20B sont associés à des moyens de rappel (non représentés) les sollicitant l'un vers l'autre, c'est-à-dire dans leur position de contact avec la lentille 9 lorsque cette dernière est engagée entre les palpeurs.  These feelers are slidably mounted coaxially relative to the frame 3 in the X direction, each of the feelers 20A, 20B being slidably mounted on a rod 21A, 21B fixed relative to the frame 3 and parallel to the axis X. 6 Each probe 20A, 20B comprises a free end portion 23 forming a contact portion, of substantially semicircular shape in the horizontal plane (as shown schematically in Figure 5). The contact portions 23 of the two feelers 20A, 2CB are turned towards each other, the feelers being arranged and provided to come into contact with the two faces of the ophthalmic lens being grinded respectively. The contact of a probe 20A, 20B with the respective lens face is quasi-punctual. The feelers 20A, 20B are associated with return means (not shown) urging them towards each other, that is to say in their position of contact with the lens 9 when the latter is engaged between the feelers .

L'axe des palpeurs X0, défini par la ligne passant par les parties de contact 23 (c'est-à-dire par les points de contact lorsqu'une lentille est engagée entre les palpeurs), est parallèle à l'axe horizontal X. Dans le procédé d'étalonnage de la machine 1, tel qu'il est prévu dans l'invention, on exécute un procédé de détermination de la position de l'axe Xo des palpeurs 20A, 20B, dans le repère 0, X, Y, Z, fixe par rapport au bâti 3. Dans une première étape du procédé de détermination de la position de l'axe Xo, on usine, dans la machine 1, une lentille ophtalmique 29 dont le contour a une forme prédéterminée. Cette lentille ophtalmique 29, utilisée comme gabarit, a une première partie 31 de son contour rectiligne, et une deuxième partie 32 anguleuse formant pointe, à une extrémité de cette partie rectiligne 31. La partie anguleuse 32 définit un angle inférieur à 180 , de préférence inférieur à 90 , et de préférence encore inférieur à 45 . Dans l'exemple représenté, la lentille ophtalmique 29 formant gabarit a une forme générale triangulaire avec un 7 angle droit 33 à l'autre extrémité de la partie rectiligne 31, et une partie arrondie 34 opposée à la partie rectiligne 31. La lentille 29 a un bord périphérique d'épaisseur très sensiblement supérieure à 0. Sur la Figure 3, on a matérialisé les axes de rotation X2 de la lentille 29 par rapport au support 7, et X3 du support par rapport au bâti 3. Ces axes X2, X3 sont perpendiculaires au plan de la figure.  The axis of the feelers X0, defined by the line passing through the contact portions 23 (that is to say by the contact points when a lens is engaged between the touch probes), is parallel to the horizontal axis X In the method of calibrating the machine 1, as provided for in the invention, a method of determining the position of the axis Xo of the feelers 20A, 20B, in the coordinate system 0, X, is carried out. Y, Z, fixed with respect to the frame 3. In a first step of the method for determining the position of the axis Xo, an ophthalmic lens 29, the contour of which has a predetermined shape, is machined in the machine 1. This ophthalmic lens 29, used as a template, has a first portion 31 of its rectilinear contour, and a second angular portion 32 forming a tip at one end of this rectilinear portion 31. The angular portion 32 defines an angle less than 180, preferably less than 90, and more preferably less than 45. In the example shown, the ophthalmic lens 29 forming a template has a generally triangular shape with a right angle 33 at the other end of the rectilinear portion 31, and a rounded portion 34 opposite to the rectilinear portion 31. The lens 29a a peripheral edge of a thickness very substantially greater than 0. In FIG. 3, the axes of rotation X2 of the lens 29 with respect to the support 7, and X3 of the support relative to the frame 3 have been materialized. These axes X2, X3 are perpendicular to the plane of the figure.

Après l'étape d'usinage de la lentille 29 formant gabarit, la lentille 29 étant toujours montée sur le support 7, on positionne la lentille 29 autour de son axe de rotation X2 de telle sorte à aligner le centre de rotation du support 7 dans le plan moyen de la lentille 29 (matérialisé sur la Figure par la trace de l'axe X3) avec la partie rectiligne 31. En d'autres termes, on positionne la lentille 29 de façon à rendre la partie rectiligne 31 coplanaire et orthogonale à l'axe X3. La lentille formant gabarit 29 étant placée entre les palpeurs 20A, 20B de façon que ces derniers fassent contact avec: les faces respectives avant et arrière de la lentille 29, on déplace ensuite le support 7 en rotation autour de son axe X3, dans le sens indiqué par la flèche F sur la Figure 3, dirigé depuis la partie rectiligne 31 vers le centre de rotation de la lentille 29 correspondant à l'axe X2. Le pivotement du support 7 autour de son axe X3 est piloté par le dispositif 19 de façon à déplacer la lentille formant gabarit 29 entre les palpeurs 20A, 20B jusqu'à une position dans laquelle les palpeurs détectent une épaisseur nulle, qui est significative du franchissement de la partie rectiligne 31, les parties de contact 23 des palpeurs tombant alors dans le vide. On passe alors, au niveau de la partie rectiligne 31, d'un état dans lequel on détecte une 8 distance entre les palpeurs 20A, 20B correspondant à l'épaisseur de la lentille 29, à un état dans lequel on détecte une distance nulle entre les palpeurs. Les déplacements des palpeurs 20A, 20B étant mesurés en temps réel au cours du déplacement de la lentille 29, on détecte ainsi le passage de la partie rectiligne 31 au niveau de l'axe des palpeurs X0. En pratique, cette étape est réalisée pas-à-pas, avec une mesure de l'écartement des palpeurs 20A, 20B à chaque pas. A chaque pas, on écarte les palpeurs de façon à les séparer du gabarit 29, on fait pivoter le support 7 d'un angle élémentaire, on sollicite les palpeurs l'un vers l'autre, et on mesure la distance séparant les palpeurs. La position de la partie rectiligne définit à cet instant avec l'axe X3 un plan P dans lequel se situe l'axe des palpeurs X0. Dans une étape ultérieure du procédé de détermination de l'axe X0, illustrée sur la Figure 4, on engage de nouveau la lentille 29 entre les palpeurs 20A, 20B, au niveau de la pointe 32. On déplace la pointe 32 de la lentille formant gabarit 29 sur le plan P ainsi déterminé, par rotation combinée du support 7 autour de l'axe X3 et de la lentille 29 autour de l'axe X2. Cette rotation combinée est commandée et contrôlée par le dispositif de pilotage 19, et les déplacements des palpeurs 20A, 20B sont enregistrés à chaque position de mesure. Sur la Figure 5, on a illustré la pointe 32 de la lentille formant gabarit 29 dans trois positions de mesure successives vis-à-vis des palpeurs 20A, 20B, lors de son déplacement sur le plan P identifié précédemment. La pointe 32 se présente sensiblement sous la forme d'un segment s'étendant dans le sens de l'épaisseur de la lentille formant gabarit 29.  After the step of machining the lens 29 forming a template, the lens 29 always being mounted on the support 7, the lens 29 is positioned around its axis of rotation X 2 so as to align the center of rotation of the support 7 in the mean plane of the lens 29 (shown in Figure by the trace of the axis X3) with the rectilinear portion 31. In other words, the lens 29 is positioned so as to make the rectilinear portion 31 coplanar and orthogonal to the X3 axis. The template lens 29 being placed between the feelers 20A, 20B so that they contact the respective front and rear faces of the lens 29, the carrier 7 is then rotated about its axis X3, in the direction indicated by the arrow F in Figure 3, directed from the straight portion 31 to the center of rotation of the lens 29 corresponding to the axis X2. The pivoting of the support 7 about its axis X3 is controlled by the device 19 so as to move the template lens 29 between the feelers 20A, 20B to a position in which the probes detect a zero thickness, which is significant crossing of the rectilinear portion 31, the contact portions 23 of the feelers then falling into the void. Then, at the rectilinear portion 31, a state in which a distance is detected between the feelers 20A, 20B corresponding to the thickness of the lens 29, to a state in which a zero distance is detected between the feelers. The movements of the feelers 20A, 20B being measured in real time during the movement of the lens 29, thus detecting the passage of the rectilinear portion 31 at the axis of the feelers X0. In practice, this step is performed step by step, with a measurement of the spacing of the probes 20A, 20B at each step. At each step, the probes are separated so as to separate them from the template 29, the support 7 is pivoted by an elementary angle, the probes are urged toward each other, and the distance separating the probes is measured. The position of the rectilinear part defines at this instant with the axis X3 a plane P in which lies the axis of the probes X0. In a subsequent step of the method of determining the axis X0, illustrated in FIG. 4, the lens 29 is again engaged between the feelers 20A, 20B, at the tip 32. The tip 32 of the forming lens is moved. template 29 on the plane P thus determined, by combined rotation of the support 7 about the axis X3 and the lens 29 around the axis X2. This combined rotation is controlled and controlled by the control device 19, and the movements of the feelers 20A, 20B are recorded at each measurement position. In Figure 5, there is illustrated the tip 32 of the template lens 29 in three successive measurement positions vis-à-vis the feelers 20A, 20B, during its movement on the plane P identified above. The tip 32 is substantially in the form of a segment extending in the direction of the thickness of the template lens 29.

Les parties de contact 23 des palpeurs ayant une forme semi-circulaire dans le plan de déplacement, le déplacement de la pointe 32 entre les palpeurs produit des déplacements de ces derniers selon leur axe X0.  The contact portions 23 of the feelers having a semicircular shape in the plane of displacement, the movement of the tip 32 between the feelers produces displacements of the latter along their axis X0.

L'écartement maximum des palpeurs 23 se produit lorsque le segment d'épaisseur correspondant à la pointe 32 s'aligne avec l'axe X0 des palpeurs. Lors de cette étape du procédé de détermination de l'axe X0, la mesure des déplacements des palpeurs sur le plan P (par exemple dans environ 80 positions différentes de la pointe) conduit à la déduction précise de la position de l'axe Xo, correspondant au maximum d'écartement des palpeurs. Cette situation est illustrée en partie centrale de la Figure 5.  The maximum spacing of the feelers 23 occurs when the thickness segment corresponding to the tip 32 aligns with the axis X0 probes. During this step of the method of determining the axis X0, the measurement of the movements of the probes on the plane P (for example in about 80 different positions of the tip) leads to the precise deduction of the position of the axis Xo, corresponding to the maximum spacing of the probes. This situation is illustrated in the central part of Figure 5.

On notera que, de façon analogue, on peut réaliser une telle étape consistant à déplacer la pointe 32 entre les palpeurs 20A, 20B sur le plan P et. mesurer les déplacements des palpeurs, afin de contrôler la forme des parties de contact 23. En effet, les formes de la lentille formant gabarit 29 étant parfaitement connues, et la position de l'axe X0 des palpeurs étant identifiée, on conçoit qu'il est possible de déduire une information relative à la forme des parties de contact 23 en mesurant le déplacement des palpeurs au passage de la pointe 32.  Note that, similarly, one can achieve such a step of moving the tip 32 between the feelers 20A, 20B on the plane P and. measuring the movements of the feelers, in order to control the shape of the contact parts 23. Indeed, since the shapes of the lens forming template 29 are perfectly known, and the position of the axis X0 of the probes being identified, it is conceivable that It is possible to deduce information relating to the shape of the contact portions 23 by measuring the movement of the feelers at the passage of the tip 32.

Ainsi, il est possible de détecter l'usure ou une casse des parties de contact 23 des palpeurs, en vue d'effectuer leur déplacement ou leur réparation. Le procédé d'étalonnage conforme à l'invention peut ainsi comporter, outre un procédé de détermination de la position de l'axe des palpeurs, un procédé de vérification de l'état des parties de contact, avec des étapes élémentaires analogues. On notera que le procédé de détermination de la position de l'axe des palpeurs peut également être exécuté 10 en utilisant un gabarit fabriqué à l'avance, et éventuellement réutilisable, qui peut en outre être réalisé dans un matériau différent de celui d'une lentille ophtalmique. Un tel gabarit, dont les formes sont parfaitement connues et enregistrées dans le dispositif de pilotage peut être, de la même façon, monté avec précision sur le support 7, engagé entre les palpeurs 20A, 20B, et déplacé selon les mêmes étapes que celles qui ont été décrites précédemment.  Thus, it is possible to detect wear or breakage of the contact portions 23 of the feelers, in order to perform their movement or repair. The calibration method according to the invention can thus comprise, in addition to a method for determining the position of the probe axis, a method of checking the state of the contact parts, with similar elementary steps. It will be appreciated that the method of determining the position of the probe axis can also be performed using a template manufactured in advance, and possibly reusable, which may furthermore be made of a material different from that of a ophthalmic lens. Such a template, whose shapes are perfectly known and recorded in the control device can be, in the same way, mounted accurately on the support 7, engaged between the feelers 20A, 20B, and moved in the same steps as those which have been described previously.

D'autre part, il est également envisageable que les étapes successives consistant à déplacer le gabarit, d'abord en utilisant sa partie rectiligne 31 pour trouver le plan P, et ensuite en utilisant sa pointe 32 pour trouver la position de l'axe X0 dans le plan P, soient réalisées au moyen de gabarits distincts. Pour l'exécution de la première étape (détermination du plan P), telle qu'elle a été décrite précédemment, toute forme de gabarit convient à condition de posséder une partie rectiligne de dimension suffisante.  On the other hand, it is also conceivable that the successive steps of moving the template, first using its rectilinear portion 31 to find the plane P, and then using its tip 32 to find the position of the axis X0 in the plane P, be realized by means of separate jigs. For the execution of the first step (determination of the plane P), as described above, any template shape is suitable provided to have a rectilinear portion of sufficient size.

Pour l'exécution de la deuxième étape (détermination de la position sur le plan P), telle qu'elle a été décrite précédemment, toute forme de gabarit peut également convenir à condition de présenter une pointe, définie par un angle suffisamment faible pour procurer une précision acceptable.  For the execution of the second step (determination of the position on the plane P), as described previously, any shape of template can also be suitable provided to present a tip, defined by an angle sufficiently low to provide acceptable accuracy.

Grâce à l'invention qui vient d'être décrite, selon laquelle on déplace de façon contrôlée entre les palpeurs un gabarit de forme précisément connue, en mesurant les déplacements des palpeurs, pour en déduire la position précise de l'axe de ces derniers, on peut augmenter très sensiblement la précision de certaines formes d'usinage (biseaux, contre-biseaux, rainures sur le bord du verre, ou encore trous). Cet accroissement de la précision de la machine est obtenu sans accroissement de la complexité des pièces mécaniques, et sans accroissement sensible du temps d'opération nécessaire à l'étalonnage de la machine. La fonction consistant à déterminer avec précision la position de l'axe des palpeurs, qui permet un gain de précision, a un coût quasiment nul grâce à l'utilisation du procédé conforme à l'invention.  Thanks to the invention which has just been described, according to which a probe of precisely known shape is moved in a controlled manner between the feelers, by measuring the movements of the feelers, to deduce the precise position of the axis of the latter, the accuracy of certain machining shapes (bevels, bevel-side grids, grooves on the edge of the glass, or holes) can be very substantially increased. This increase in the precision of the machine is obtained without increasing the complexity of the mechanical parts, and without any significant increase in the operating time necessary for the calibration of the machine. The function of accurately determining the position of the probe axis, which allows a gain in accuracy, has a virtually zero cost through the use of the method according to the invention.

Claims (7)

REVENDICATIONS 1. Procédé d'étalonnage d'une machine d'usinage de lentilles ophtalmiques comprenant - un bâti fixe (3) ; - un train de meules (5) monté rotatif par rapport au bâti (3) autour d'un premier axe (X1) ; - un support (7) de lentille ophtalmique (9) déplaçable par rapport au bâti (3) et muni de moyens (11A, 11B, 13) d'entraînement en rotation de la lentille autour d'un deuxième axe (X2) sensiblement parallèle au premier (X1) - un dispositif (19) de pilotage du support (7) et des moyens d'entraînement (11A, 11B, 13) ; et - une paire de palpeurs (20A, 20B) déplaçables en translation par rapport au bâti (3) selon un même axe (Xo) sensiblement parallèle au premier (X1), prévus pour venir chacun en contact avec l'une respective des deux faces de la lentille (9) et mesurer sa position axiale, les palpeurs (20A, 20B) étant sollicités axialement l'un vers l'autre, caractérisé en ce que ledit procédé d'étalonnage comprend un procédé de détermination de la position de l'axe (Xo) des palpeurs (20A, 20B), qui comprend les étapes élémentaires consistant à : - amener un gabarit (29), dont le contour a une forme prédéterminée connue, et préalablement monté sur le support (7), entre les palpeurs (20A, 20B), de sorte que les palpeurs soient en contact avec les faces respectives du gabarit (29), - piloter des déplacements du gabarit (29) par 30 rapport aux palpeurs (20A, 20B) et mesurer les déplacements correspondants des palpeurs, - en déduire une information de position de l'axe (Xo) des palpeurs (20A, 20B). 13  A method of calibrating an ophthalmic lens processing machine comprising: a fixed frame (3); - A set of wheels (5) rotatably mounted relative to the frame (3) about a first axis (X1); an ophthalmic lens support (9) displaceable relative to the frame (3) and provided with means (11A, 11B, 13) for driving the lens around a substantially parallel second axis (X2) in rotation; at the first (X1) - a device (19) for controlling the support (7) and drive means (11A, 11B, 13); and a pair of feelers (20A, 20B) displaceable in translation relative to the frame (3) along a same axis (Xo) substantially parallel to the first (X1), each intended to come into contact with a respective one of the two faces of the lens (9) and measuring its axial position, the feelers (20A, 20B) being axially biased toward each other, characterized in that said calibration method comprises a method for determining the position of the axis (Xo) of the feelers (20A, 20B), which comprises the elementary steps of: - bringing a template (29), whose contour has a predetermined predetermined shape, and previously mounted on the support (7), between the feelers (20A, 20B), so that the feelers are in contact with the respective faces of the template (29), - control movements of the template (29) relative to the feelers (20A, 20B) and measure the corresponding movements of the probes , - deduce a position information from the axis (Xo) of probes (20A, 20B). 13 2. Procédé suivant la revendication 1, le support (7) étant monté pivotant par rapport au bâti (3), caractérisé en ce qu'on réalise une première fois les étapes élémentaires avec un premier gabarit (29) ayant un contour dont une partie (31) est rectiligne, ledit premier gabarit (29) étant monté sur le support (7) et positionné autour du deuxième axe (X2) de façon telle que la partie rectiligne (31) de son contour soit coplanaire et perpendiculaire à l'axe (X3) de pivotement du support (7) par rapport au bâti (3), le support (7) étant ensuite entraîné en pivotement pour déplacer le gabarit (29) entre les palpeurs (20A, 20B) jusqu'à une position dans laquelle on détecte une distance nulle entre les palpeurs significative du franchissement de la partie rectiligne (31), de façon à déterminer le plan (P) passant par l'axe (X3) de rotation du support (7) et dans lequel se trouve l'axe (Xo) des palpeurs (20A, 20B).  2. Method according to claim 1, the support (7) being pivotally mounted relative to the frame (3), characterized in that it carries out a first time the elementary steps with a first template (29) having a contour of which a part (31) is rectilinear, said first template (29) being mounted on the support (7) and positioned around the second axis (X2) so that the rectilinear portion (31) of its contour is coplanar and perpendicular to the axis (X3) pivoting the support (7) relative to the frame (3), the support (7) is then pivotally driven to move the template (29) between the feelers (20A, 20B) to a position in which detecting a zero distance between the probes significant of the crossing of the rectilinear portion (31), so as to determine the plane (P) passing through the axis (X3) of rotation of the support (7) and in which is located the axis (Xo) of the probes (20A, 20B). 3. Procédé suivant la revendication 2, caractérisé en ce qu'on réalise une deuxième fois les étapes élémentaires avec un gabarit (29) ayant un contour dont une partie (32) est anguleuse et forme une pointe, ledit gabarit (29) étant déplacé par rotation combinée du support (7) autour de son axe (X3) de pivotement et du gabarit (29) autour du deuxième axe (X2), de façon à déplacer la pointe (32) sur le plan (P) déterminé lors de la première exécution des étapes élémentaires, la position de l'axe (Xo) des palpeurs (20A, 20B) sur ce plan (P) étant déduite des déplacements correspondants des palpeurs.  3. Method according to claim 2, characterized in that a second time the elementary steps with a template (29) having a contour of which a portion (32) is angular and forms a tip, said template (29) being moved by combined rotation of the support (7) about its pivot axis (X3) and the template (29) about the second axis (X2), so as to move the tip (32) on the plane (P) determined during the first execution of the elementary steps, the position of the axis (Xo) of the feelers (20A, 20B) on this plane (P) being deduced from the corresponding movements of the probes. 4. Procédé suivant la revendication 3, caractérisé en ce qu'un gabarit unique (29) est utilisé pour les première et deuxième exécutions des étapes élémentaires, ledit gabarit unique (29) ayant un contour dont une première partie (31) est rectiligne et une deuxième partie (32) est anguleuse et forme une pointe. 14  4. A method according to claim 3, characterized in that a single template (29) is used for the first and second executions of the elementary steps, said single template (29) having a contour of which a first portion (31) is rectilinear and a second portion (32) is angular and forms a point. 14 5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que le procédé de détermination de l'axe (Xo) des palpeurs (20A, 20B) comprend une étape de réalisation du gabarit (29), dans laquelle on usine dans la machine d'usinage une lentille ophtalmique selon la ferme prédéterminée du gabarit, préalablement à l'exécution des étapes élémentaires, le gabarit (29) étant constitué par la lentille ophtalmique ainsi réalisée.  5. Process according to any one of claims 1 to 4, characterized in that the method for determining the axis (Xo) of the feelers (20A, 20B) comprises a step of producing the template (29), in which one in the machining machine an ophthalmic lens according to the predetermined firm of the template, prior to the execution of the elementary steps, the template (29) being constituted by the ophthalmic lens thus produced. 6. Procédé suivant l'une quelconque des revendications 1 à 5, les palpeurs (20A, 20B) ayant des extrémités (23) formant parties de contact avec la lentille, caractérisé en ce qu'il comprend un procédé de vérification de l'état desdites parties de contact (23), qui comprend les étapes consistant à : - amener un gabarit (29), dont le contour a une forme prédéterminée connue, et préalablement montée sur le support (7), entre les palpeurs (20A, 20B), de sorte que les palpeurs soient en contact avec les faces respectives du gabarit (29), - piloter des déplacements du gabarit (29) par rapport aux palpeurs (20A, 20B) et mesurer les déplacements correspondants des palpeurs, et - en déduire une information relative à la forme des parties de contact (23).  6. Method according to any one of claims 1 to 5, the probes (20A, 20B) having ends (23) forming contact parts with the lens, characterized in that it comprises a method of checking the state said contact portions (23), which comprises the steps of: - bringing a template (29), whose contour has a known predetermined shape, and previously mounted on the support (7), between the feelers (20A, 20B) , so that the feelers are in contact with the respective faces of the template (29), - control movements of the template (29) relative to the feelers (20A, 20B) and measure the corresponding movements of the feelers, and - deduce a information relating to the shape of the contact parts (23). 7. Machine d'usinage de lentilles ophtalmiques adaptée pour mettre en œuvre un procédé d'étalonnage conforme à l'une quelconque des revendications 1 à 6.  An ophthalmic lens processing machine adapted to implement a calibration method according to any one of claims 1 to 6.
FR0604299A 2006-05-15 2006-05-15 METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD Active FR2900855B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0604299A FR2900855B1 (en) 2006-05-15 2006-05-15 METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD
KR1020087030131A KR101341236B1 (en) 2006-05-15 2007-04-30 Method for calibrating an ophthalmic lens machining tool, and machining tool for implementing same
PCT/FR2007/000741 WO2007132079A1 (en) 2006-05-15 2007-04-30 Method for calibrating an ophthalmic lens machining tool, and machining tool for implementing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0604299A FR2900855B1 (en) 2006-05-15 2006-05-15 METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD

Publications (2)

Publication Number Publication Date
FR2900855A1 true FR2900855A1 (en) 2007-11-16
FR2900855B1 FR2900855B1 (en) 2008-08-08

Family

ID=37719828

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0604299A Active FR2900855B1 (en) 2006-05-15 2006-05-15 METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD

Country Status (3)

Country Link
KR (1) KR101341236B1 (en)
FR (1) FR2900855B1 (en)
WO (1) WO2007132079A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543039A1 (en) * 1983-03-22 1984-09-28 Essilor Int METHOD FOR BEING THE BEING OF AN OPHTHALMIC LENS, AND CORRESPONDING AUTOMATIC MILLING MACHINE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543039A1 (en) * 1983-03-22 1984-09-28 Essilor Int METHOD FOR BEING THE BEING OF AN OPHTHALMIC LENS, AND CORRESPONDING AUTOMATIC MILLING MACHINE

Also Published As

Publication number Publication date
KR101341236B1 (en) 2013-12-12
FR2900855B1 (en) 2008-08-08
WO2007132079A1 (en) 2007-11-22
KR20090047396A (en) 2009-05-12

Similar Documents

Publication Publication Date Title
EP0512956B1 (en) Numerically controlled grinding machine
EP1392472B1 (en) Automatic or semi-automatic device for trimming an ophthalmic lens
EP1606079B1 (en) Machine for grinding optical lenses
FR2541924A1 (en) METHOD AND DEVICE FOR DETERMINING A POSITION
FR2733709A1 (en) IMPROVEMENTS RELATING TO THE CALIBRATION OF THE DIAMETER OF Eccentric CYLINDRICAL PARTS OF WORKPIECES
FR2467386A1 (en) METHOD AND DEVICE FOR DEFINING THE ROTATION AXIS OF A ROTARY TRAY IN MULTI-COORDINATED MEASURING EQUIPMENT
EP1666833A1 (en) Motorised and orientable measuring head
EP1352708B1 (en) Method and apparatus for polishing an eyeglass lens comprising non-contacting measurement
FR2558097A1 (en) MEASURING HEAD FOR GRINDERS
EP2029322B1 (en) Method and machine tool for machining an optical object
EP3086908B1 (en) Determination of the tool centre point and of the orientation of an acoustic probe in a reference frame by ultrasound method
FR2900855A1 (en) METHOD OF CALIBRATING A MACHINE FOR MACHINING OPHTHALMIC LENSES, AND MACHINE FOR MACHINING SUITABLE FOR CARRYING OUT SUCH A METHOD
FR2910980A1 (en) Automatic lens locking apparatus for fabricating spectacle glasses, has camera permitting to obtain image from shape and position of parisone of lens, and blocker determining locking position, displacing block and adhering block to parison
EP1603708B1 (en) Method for estimating the angular offset, method for calibrating a grinding machine for ophthalmic glasses and device for carrying out said calibrating method
FR2575955A1 (en) Process and installation for grinding trueing and controlling the diameter of a grinding wheel
WO2007045734A1 (en) Appliance for tactile sensing a spectacle frame and related grinding machine
EP1601496B1 (en) Method for machining an ophthalmic lens and machining device for carrying out said method
WO2007065981A2 (en) Grinder auto-calibration method
FR2898690A1 (en) PROBE DRIVING METHOD FOR READING A GOGGLE MOUNT DRAWER AND CORRESPONDING READING APPARATUS
FR2777817A1 (en) Spectacle frame groove profile and dimension sensing equipment employed on a grinding machine
FR2579745A1 (en) Method and device for measuring the dimensions of a body of revolution and their applications
CH677835A5 (en) Alignment of optical fibres during parameter measurement
EP0177402B1 (en) Grinding machines for spectacle glasses
EP1814693B1 (en) Device and method for acquiring geometrical characteristics of a glasses frame
FR2466314A1 (en) MACHINE FOR AFFECTING THE PINS

Legal Events

Date Code Title Description
CD Change of name or company name

Owner name: LUNEAU TECHNOLOGY OPERATIONS, FR

Effective date: 20120330

CJ Change in legal form

Effective date: 20120330

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18