FR2815765A1 - Buse isolante pour disjoncteur a soufflage d'arc - Google Patents

Buse isolante pour disjoncteur a soufflage d'arc Download PDF

Info

Publication number
FR2815765A1
FR2815765A1 FR0013559A FR0013559A FR2815765A1 FR 2815765 A1 FR2815765 A1 FR 2815765A1 FR 0013559 A FR0013559 A FR 0013559A FR 0013559 A FR0013559 A FR 0013559A FR 2815765 A1 FR2815765 A1 FR 2815765A1
Authority
FR
France
Prior art keywords
sep
weight
nozzle
bars
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0013559A
Other languages
English (en)
Other versions
FR2815765B1 (fr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8855633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=FR2815765(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom SA filed Critical Alstom SA
Priority to FR0013559A priority Critical patent/FR2815765B1/fr
Priority to EP01982527A priority patent/EP1330831B1/fr
Priority to AU2002214087A priority patent/AU2002214087A1/en
Priority to PCT/FR2001/003263 priority patent/WO2002035567A1/fr
Priority to CA002426702A priority patent/CA2426702C/fr
Priority to US10/398,755 priority patent/US7211614B2/en
Priority to MXPA03003508A priority patent/MXPA03003508A/es
Priority to DE60134165T priority patent/DE60134165D1/de
Priority to AT01982527T priority patent/ATE396492T1/de
Publication of FR2815765A1 publication Critical patent/FR2815765A1/fr
Publication of FR2815765B1 publication Critical patent/FR2815765B1/fr
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7076Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by the use of special materials

Landscapes

  • Circuit Breakers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Contacts (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne une buse isolante pour disjoncteur à soufflage d'arc. Selon l'invention, le matériau constituant la buse comprend (A) de 90 à 99, 9% en poids d'un polymère fluoré, et (B) de 0, 1 à 10% en poids d'une charge à base d'au moins un oxyde choisi parmi (B1) SiO2 et d'autres formes oxydées des métaux de la colonne IVA de la classification des éléments, (B2) TiO2, ZrO2 et d'autres formes oxydées des métaux de la colonne IVB de la classification des éléments, et (B3) ZnO, CdO et d'autres formes oxydées des métaux de la colonne IIB de la classification des éléments.

Description

<Desc/Clms Page number 1>
Figure img00010001
Buse isolante pour disjoncteur à soufflage d'arc
Figure img00010002

La présente invention concerne les disjoncteurs haute ou moyenne tension à soufflage d'arc utilisant un gaz isolant. L'invention concerne plus particulièrement les buses isolantes pour de tels disjoncteurs.
Un disjoncteur à soufflage d'arc utilise pour couper l'arc électrique un gaz diélectrique isolant, tel que l'hexafluorure de soufre par exemple. La chambre de coupure de ces disjoncteurs comprend une buse isolante qui sert à canaliser le gaz, et ainsi à augmenter la pression de gaz isolant au voisinage de l'arc électrique, ce qui favorise la coupure de l'arc électrique. Au fur et à mesure de l'utilisation, la buse subit une usure par l'abrasion mécanique qui résulte du passage du flux de gaz sur la surface de la buse. La buse subit également une usure par pyrolyse résultant de l'interaction entre le rayonnement provenant de l'arc électrique et le matériau de la buse.
Dans les disjoncteurs de technologie récente, l'usure de la buse est mise à profit pour faciliter la coupure de l'arc électrique. En effet, du fait de l'abrasion mécanique ou de l'usure par pyrolyse, la matière perdue par la buse produit, au contact de l'arc électrique, un gaz isolant. Ceci augmente la pression au niveau de l'arc et favorise ainsi l'extinction de l'arc.
Mais si l'usure du matériau de buse est trop importante, l'endurance du disjoncteur est affectée. En effet, avec un matériau fortement générateur de gaz, on améliore la montée en pression et l'extinction de l'arc lors des premières coupures, mais alors l'aptitude du disjoncteur à couper des petits courants après avoir coupé des forts courants de courtcircuit est diminuée.
A l'inverse, si l'usure du matériau est trop faible, la quantité de matière perdue par érosion et donc la quantité de gaz isolant, ce qui réduit la pression de soufflage d'arc et la performance d'extinction de l'arc.
Par ailleurs, si le matériau de buse est mal choisi, la pyrolyse incomplète de ce matériau peut entraîner le dépôt de particules conductrices dans la chambre de coupure, entraînant ainsi une dégradation de la tenue diélectrique du disjoncteur.
Beaucoup de solutions ont été proposées pour disposer de matériaux produisant un gaz isolant en quantité importante pour favoriser l'extinction de l'arc, tout en évitant le dépôt
<Desc/Clms Page number 2>
Figure img00020001

de produits conducteurs à la surface de la buse et une usure prématurée de la buse (cf. Mass-Spectroscopy Study of the Influence of Nozzle Material on High-Pressure SF6 Arcs , Meier R. et al, Applied Physics B, 1989).
On a ainsi proposé d'utiliser un matériau formé d'un mélange de polymère fluoroplastique et de nitrure de bore (brevet américain 4 791 256) ; - un matériau ayant la propriété de filtrer le rayonnement électromagnétique, contenant un mélange de A1203, TiO2, carbone et CaF2 (brevet suisse 596 641) ;
Figure img00020002

un matériau stabilisé vis-à-vis de l'action des arcs électriques, contenant un mélange de CoO, Al203 et Ca103 (brevet européen 0 673 965).
Cependant, lorsque certaines propriétés de ces matériaux sont améliorées, d'autres propriétés également importantes se trouvent affectées. Ainsi ces matériaux ne présentent pas les caractéristiques optimales recherchées.
L'invention vise à procurer une buse isolante pour disjoncteur présentant une combinaison de propriétés avantageuses du point de vue de l'efficacité du disjoncteur et de sa durée de
Figure img00020003

vie.
Selon l'invention, il est prévu une buse isolante pour disjoncteur à soufflage d'arc, caractérisée par le fait que le matériau constituant la buse comprend (A) de 90 à 99,9% en poids d'un polymère fluoré, et (B) de 0,1 à 10% en poids d'une charge à base d'au moins un oxyde choisi parmi (BI) SiO2 et d'autres formes oxydées des métaux de la colonne IVA de la classification des éléments, (B2) TiO2, Zr02 et d'autres formes oxydées des métaux de la colonne IVB de la classification des éléments, et (B3) ZnO, CdO et d'autres formes oxydées des métaux de la colonne IIB de la classification des éléments.
Selon une forme de réalisation, le matériau constituant la buse comprend de 99 à 99,5% en poids de polymère (A) et de 0,5 à 1% en poids de charge (B). Selon un exemple de réalisation, le matériau comprend 99,4% en poids de polymère (A) et 0,6% en poids de charge (B).
Selon une autre forme de réalisation, le matériau constituant la buse comprend de 92 à 99% en poids de polymère (A) et de 1 à 8 % en poids de charge (B). Selon un exemple de
<Desc/Clms Page number 3>
réalisation, le matériau comprend 98% en poids de polymère (A) et 2% en poids de charge (B) De façon appropriée, la charge (B) a une granulométrie inférieure à 50 um.
De préférence, la granulométrie est inférieure à 1 jan.
Les propriétés et avantages de l'invention sont mis en évidence dans la description ciaprès, qui comprend une série d'Exemples.
On effectue des essais comparatifs sur des buses conformes à l'invention et sur des buses selon l'état de la technique.
La fabrication des buses est réalisée selon les procédés connus. On produit un mélange de la composition à tester par mélange intime de poudre de fluoropolymère et de poudre de la charge. Puis on réalise une ébauche à partir de cette composition.
Pour le PTFE, l'ébauche est réalisée par pressage isostatique puis est cuite au four. La forme définitive de la buse est ensuite obtenue par usinage de l'ébauche.
Pour les autre fluoropolymères (thermoplastiques), la buse définitive est directement obtenue par injection du mélange, préalablement fondu, dans un moule.
On réalise deux séries d'essais. Pour la première série d'essais, on utilise un disjoncteurmaquette à auto-expansion comprenant une chambre remplie de gaz isolant SF6 dans laquelle est placée une buse cylindrique formée du matériau à tester et de contacts engagés dans la buse de part et d'autre de celle-ci. La buse a un diamètre intérieur de l'ordre de 20 mm et une épaisseur de l'ordre de 10 mm. On établit l'arc entre les contacts et on attend la coupure. On effectue les mesures suivantes.
- On mesure le nombre moyen de zéros de courant avant coupure de l'arc (ZER), ce nombre étant optimal s'il est égal à 1.
On mesure l'augmentation du diamètre intérieur de la buse après 5 coupures, par une moyenne sur 10 essais. Cette augmentation (AUG) reflète l'érosion de la buse.
On mesure la pression maximale (PMAXI) atteinte dans la chambre à la première coupure. Ce paramètre correspond à la production de gaz isolant provenant du matériau de la buse.
<Desc/Clms Page number 4>
- On mesure également la pression maximale (PMAX5) atteinte dans la chambre à la cinquième coupure, afin de vérifier si la capacité du matériau de produire du gaz isolant se conserve après plusieurs coupures.
Une seconde série d'essais est réalisée avec un disjoncteur industriel moyenne tension de type puffer. Les mesures effectuées sont alors les suivantes.
On mesure, comme dans la première série d'essais, l'augmentation de diamètre de la buse (USUCOL) après 5 coupures, en prenant la moyenne sur 10 essais.
- On mesure aussi l'usure de la buse en déterminant la perte de volume (USUVOL) de la buse après 5 coupures en prenant la moyenne sur 10 essais.
- Enfin, on mesure l'usure des contacts (USUCONT) en déterminant la perte de volume subie par les contacts après 5 coupures. Ce paramètre caractérise l'influence du matériau de la buse sur l'état des contacts.
Exemple 1 Le mélange est composé de polytétrafluoréthylène (PTFE) et de 0,6% en poids de SiO2.
Les résultats des essais sont les suivants :
Figure img00040001
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAX <SEP> 1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 8 <SEP> 20, <SEP> 2 <SEP> 18, <SEP> 0 <SEP> 10, <SEP> 4 <SEP> 3, <SEP> 45 <SEP> 9, <SEP> 40 <SEP> 3, <SEP> 94
<tb>
Exemple 2 Le mélange est composé d'un PTFE modifié connu sous le nom de TFM (marque déposée de la société Dyneon) et de 0,6% en poids de SiO2. Les résultats des essais sont les suivants :
Figure img00040002
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 4 <SEP> 18, <SEP> 0 <SEP> 18, <SEP> 4 <SEP> 9, <SEP> 3 <SEP> 6, <SEP> 67 <SEP> 16, <SEP> 9 <SEP> 3, <SEP> 94
<tb>
Exemple 3
Figure img00040003

Le mélange est composé de PTFE et de 2 % en poids de SiO2. Les résultats des essais sont les suivants :
<Desc/Clms Page number 5>
Figure img00050001
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 2 <SEP> 23, <SEP> 1 <SEP> 18, <SEP> 8 <SEP> 10, <SEP> 3 <SEP> 6 <SEP> 13, <SEP> 8 <SEP> 5, <SEP> 4
<tb>
Figure img00050002

Exemple 4 Le mélange est composé de PTFE et de 0, 6% en poids de BaTiO3. Les résultats des essais sont les suivants :
Figure img00050003
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 3, <SEP> 0 <SEP> 28, <SEP> 5 <SEP> 19, <SEP> 9 <SEP> 9, <SEP> 8 <SEP> 13, <SEP> 1 <SEP> 18, <SEP> 4 <SEP> 4, <SEP> 4
<tb>
Exemple 5 Le mélange est composé de polymère TFM et de 0,6% en poids de SiO2. Les résultats des essais sont les suivants :
Figure img00050004
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAX1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 2 <SEP> 24, <SEP> 2 <SEP> 17, <SEP> 0 <SEP> 8, <SEP> 9 <SEP> 12, <SEP> 5 <SEP> 18, <SEP> 0 <SEP> 4, <SEP> 1
<tb>
Exemple 6 Le mélange est composé de PTFE et de 2 % en poids de TiO2. Les résultats des essais sont les suivants :
Figure img00050005
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXl <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 1, <SEP> 3 <SEP> 20,4 <SEP> 11,1 <SEP> 10,4 <SEP> 15,7 <SEP> 4,8
<tb>
Exemple 7
Figure img00050006

Le mélange est composé de polymère TFM et de 0, 6% en poids de SiO2. Les résultats des essais sont les suivants :
<Desc/Clms Page number 6>
Figure img00060001
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 2 <SEP> 26, <SEP> 8 <SEP> 17, <SEP> 4 <SEP> 9, <SEP> 4 <SEP> 15, <SEP> 4 <SEP> 20, <SEP> 0 <SEP> 4, <SEP> 5
<tb>
Exemple 8 Le mélange est composé de PTFE et de 0,6% en poids de ZnO. Les résultats des essais sont les suivants :
Figure img00060002
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 2 <SEP> 22, <SEP> 7 <SEP> 15, <SEP> 7 <SEP> 9, <SEP> 4 <SEP> 16, <SEP> 5 <SEP> 22, <SEP> 7 <SEP> 4, <SEP> 9
<tb>
Exemple 9 Le mélange est composé de polymère TFM et de 0,6% en poids de BaTiO3. Les résultats des essais sont les suivants :
Figure img00060003
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 0 <SEP> 25, <SEP> 4 <SEP> 17, <SEP> 0 <SEP> 9, <SEP> 1 <SEP> 15, <SEP> 3 <SEP> 22, <SEP> 0 <SEP> 4, <SEP> 8
<tb>
Exemple 10 Le mélange est composé de PTFE et de 0,6% en poids de TiO2. Les résultats des essais sont les suivants :
Figure img00060004
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAX <SEP> 1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 1, <SEP> 6 <SEP> 25, <SEP> 8 <SEP> 18, <SEP> 4 <SEP> 9, <SEP> 8 <SEP> 15, <SEP> 5 <SEP> 19, <SEP> 4 <SEP> 4, <SEP> 8
<tb>
Figure img00060005

Exemple 11 Le mélange est composé de PTFE et de 5 % en poids de TiO2. Les résultats des essais sont les suivants. Dans cet Exemple comme dans les Exemples 12-15, seules sont disponibles les mesures AUG et PMAXI.
<Desc/Clms Page number 7>
Figure img00070001
<tb>
<tb> ZER <SEP> PMAX1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (mm)
<tb> 1,8 <SEP> 30,4 <SEP> 23 <SEP> - <SEP> - <SEP> - <SEP> -
<tb>
Figure img00070002

Exemple 12 Le mélange est composé de polymère TFM et de 5% en poids de TiO2. Les résultats des essais sont les suivants :
Figure img00070003
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 1, <SEP> 6 <SEP> 42, <SEP> 4 <SEP> 22, <SEP> 4---
<tb>
Exemple 13 Le mélange est composé de PTFE et de 5 % en poids de SiO2. Les résultats des essais sont les suivants :
Figure img00070004
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAX1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2,0 <SEP> 20 <SEP> 20,8 <SEP> - <SEP> - <SEP> - <SEP> -
<tb>
Exemple 14 Le mélange est composé de polymère TFM et de 5% en poids de SiO2. Les résultats des essais sont les suivants :
Figure img00070005
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAX1 <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2,0 <SEP> 21,3 <SEP> 22,1 <SEP> - <SEP> - <SEP> - <SEP> -
<tb>
Exemple 15 Le mélange est composé de polymère TFM et de 5% en poids de BaTiO3. Les résultats des essais sont les suivants :
<Desc/Clms Page number 8>
Figure img00080001
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 1, <SEP> 6 <SEP> 41 <SEP> 20, <SEP> 4----
<tb>
Les mélanges des Exemples 1-15 sont conformes à l'invention. Les buses fabriquées à partir de ces mélanges présentent un ensemble de propriétés satisfaisantes.
A titre de comparaison, on a procédé aux mêmes essais en utilisant comme matériau pour la buse des mélanges classiques, décrits aux Exemples 16-20 ci-après.
Exemple 16 La composition ne contient que le polymère TFM. Les résultats des essais sont les suivants :
Figure img00080002
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 3, <SEP> 0 <SEP> 22, <SEP> 8 <SEP> 19, <SEP> 4 <SEP> 10, <SEP> 6 <SEP> 4, <SEP> 95 <SEP> 17, <SEP> 9 <SEP> 4, <SEP> 76
<tb>
Exemple 17 Le mélange est composé de PTFE et de 20% en poids de CaF2. Les résultats des essais sont les suivants :
Figure img00080003
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 4, <SEP> 0 <SEP> 19, <SEP> 5 <SEP> 17, <SEP> 1 <SEP> Pas <SEP> de <SEP> 9, <SEP> 3 <SEP> 16, <SEP> 3 <SEP> 4, <SEP> 85
<tb> résultat
<tb>
Exemple 18
Figure img00080004

Le mélange est composé de PTF Le mélange est composé de PTFE. Les résultats des essais sont les suivants :
Figure img00080005
<tb>
<tb> ZER <SEP> USUCONT
<tb> (bars) <SEP> (mm)
<tb> 2,2 <SEP> 16,2 <SEP> 15,7 <SEP> 9,6 <SEP> 6,7 <SEP> 16,6 <SEP> 4,5
<tb>
<Desc/Clms Page number 9>
Exemple 19 Le mélange est composé de PTFE et de 0,3 % en poids de MoS2. Les résultats des essais sont les suivants :
Figure img00090001
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 3, <SEP> 2 <SEP> 23, <SEP> 5 <SEP> 12, <SEP> 8 <SEP> 7, <SEP> 8 <SEP> 7, <SEP> 9 <SEP> 15, <SEP> 1 <SEP> 4, <SEP> 4
<tb>
Exemple 20
Figure img00090002

Le mélange est composé de PTFE et de 0, 6 % en poids de A12CoO4. Les résultats des essais sont les suivants :
Figure img00090003
<tb>
<tb> ZER <SEP> AUG <SEP> (%) <SEP> PMAXI <SEP> PMAX5 <SEP> USUCOL <SEP> USUVOL <SEP> USUCONT
<tb> (bars) <SEP> (bars) <SEP> (mm) <SEP> (mm) <SEP> (mm)
<tb> 2, <SEP> 6 <SEP> 21, <SEP> 9 <SEP> 13, <SEP> 3 <SEP> 8, <SEP> 1 <SEP> 15, <SEP> 4 <SEP> 20, <SEP> 0 <SEP> 4, <SEP> 4
<tb>
Figure img00090004

Les résultats des Exemples 16-20 sont parfois meilleurs en ce qui concerne certaines propriétés que ceux des Exemples 1-15 conformes à l'invention, mais ils sont défectueux pour d'autres propriétés. Ainsi qu'il a été souligné plus haut, les résultats des Exemples 1- 15 conformes à l'invention ont l'avantage d'être satisfaisants pour l'ensemble des propriétés analysées.

Claims (8)

Revendications
1. Buse isolante pour disjoncteur à soufflage d'arc, caractérisée par le fait que le matériau constituant la buse comprend (A) de 90 à 99,9% en poids d'un polymère fluoré, et (B) de 0,1 à 10% en poids d'une charge à base d'au moins un oxyde choisi parmi (BI) SiO2 et d'autres formes oxydées des métaux de la colonne IVA de la classification des éléments, (B2) TiO2, Zr02 et d'autres formes oxydées des métaux de la colonne IVB de la classification des éléments, et (B3) ZnO, CdO et d'autres formes oxydées des métaux de la colonne IIB de la classification des éléments.
2. Buse isolante selon la revendication 1, dans laquelle le matériau constituant la buse comprend de 92 à 99% en poids de polymère (A) et de 1 % à 8% en poids de charge (B).
3. Buse isolante selon la revendication 2, dans laquelle le matériau constituant la buse comprend environ 98% en poids de polymère (A) et environ 2 % en poids de charge (B).
4. Buse isolante selon la revendication 1, dans laquelle le matériau constituant la buse comprend de 99 à 99,5% en poids de polymère (A) et de 0,5% à 1% en poids de charge (B).
5. Buse isolante selon la revendication 4, dans laquelle le matériau constituant la buse comprend environ 99,4% en poids de polymère (A) et environ 0,6 % en poids de charge (B).
6. Buse isolante selon l'une des revendications 1 à 5, dans laquelle le polymère (A) est du PTFE ou du PTFE modifié.
7. Buse isolante selon l'une des revendications 1 à 6, dans laquelle la charge a une granulométrie inférieure à 50 Jlm.
8. Buse isolante selon la revendication 7, dans laquelle la charge a une granulométrie inférieure à 1 um.
FR0013559A 2000-10-23 2000-10-23 Buse isolante pour disjoncteur a soufflage d'arc Expired - Fee Related FR2815765B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR0013559A FR2815765B1 (fr) 2000-10-23 2000-10-23 Buse isolante pour disjoncteur a soufflage d'arc
MXPA03003508A MXPA03003508A (es) 2000-10-23 2001-10-19 Boquilla aislante para disyuntor de soplado del arco.
AU2002214087A AU2002214087A1 (en) 2000-10-23 2001-10-19 Isolating nozzle for arc blow circuit breaker
PCT/FR2001/003263 WO2002035567A1 (fr) 2000-10-23 2001-10-19 Buse isolante pour disjoncteur a soufflage d'arc
CA002426702A CA2426702C (fr) 2000-10-23 2001-10-19 Buse isolante pour disjoncteur a soufflage d'arc
US10/398,755 US7211614B2 (en) 2000-10-23 2001-10-19 Insulating nozzle for gas blast circuit breaker
EP01982527A EP1330831B1 (fr) 2000-10-23 2001-10-19 Buse isolante pour disjoncteur a soufflage d'arc
DE60134165T DE60134165D1 (de) 2000-10-23 2001-10-19 Isolierstoffdüse für lastschalter mit lichtbogenbeblasung
AT01982527T ATE396492T1 (de) 2000-10-23 2001-10-19 Isolierstoffdüse für lastschalter mit lichtbogenbeblasung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0013559A FR2815765B1 (fr) 2000-10-23 2000-10-23 Buse isolante pour disjoncteur a soufflage d'arc

Publications (2)

Publication Number Publication Date
FR2815765A1 true FR2815765A1 (fr) 2002-04-26
FR2815765B1 FR2815765B1 (fr) 2003-04-11

Family

ID=8855633

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0013559A Expired - Fee Related FR2815765B1 (fr) 2000-10-23 2000-10-23 Buse isolante pour disjoncteur a soufflage d'arc

Country Status (9)

Country Link
US (1) US7211614B2 (fr)
EP (1) EP1330831B1 (fr)
AT (1) ATE396492T1 (fr)
AU (1) AU2002214087A1 (fr)
CA (1) CA2426702C (fr)
DE (1) DE60134165D1 (fr)
FR (1) FR2815765B1 (fr)
MX (1) MXPA03003508A (fr)
WO (1) WO2002035567A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306907B2 (en) * 2003-05-30 2012-11-06 Jpmorgan Chase Bank N.A. System and method for offering risk-based interest rates in a credit instrument
CN101986405B (zh) * 2010-06-18 2012-10-03 江苏常新密封材料有限公司 一种断路器用喷口的制造方法
JP5679873B2 (ja) * 2011-03-11 2015-03-04 株式会社東芝 耐アーク性絶縁物および遮断器
FR3011976B1 (fr) * 2013-10-10 2015-12-18 Alstom Technology Ltd Sectionneur a pouvoir d'etablissement et de coupure ameliores

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2346823A1 (fr) * 1976-04-02 1977-10-28 Sprecher & Schuh Ag Element isolant synthetique pour buse de soufflage d'un disjoncteur a gaz comprime
US5828026A (en) * 1995-05-12 1998-10-27 Abb Research Ltd. Stock giving off arc-extinguishing gas, and gas-blast circuit breaker comprising such a stock

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202003A (en) * 1981-06-03 1982-12-10 Hitachi Ltd Sf6 gas insulating electric device and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2346823A1 (fr) * 1976-04-02 1977-10-28 Sprecher & Schuh Ag Element isolant synthetique pour buse de soufflage d'un disjoncteur a gaz comprime
US5828026A (en) * 1995-05-12 1998-10-27 Abb Research Ltd. Stock giving off arc-extinguishing gas, and gas-blast circuit breaker comprising such a stock

Also Published As

Publication number Publication date
CA2426702A1 (fr) 2002-05-02
EP1330831B1 (fr) 2008-05-21
CA2426702C (fr) 2009-09-29
US20040014868A1 (en) 2004-01-22
FR2815765B1 (fr) 2003-04-11
DE60134165D1 (de) 2008-07-03
EP1330831A1 (fr) 2003-07-30
ATE396492T1 (de) 2008-06-15
AU2002214087A1 (en) 2002-05-06
MXPA03003508A (es) 2003-08-07
WO2002035567A1 (fr) 2002-05-02
US7211614B2 (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2003053621A2 (fr) Fil pour electroerosion a grande vitesse d&#39;usinage
KR0170798B1 (ko) 은 기초의 전기 접점 재료
CA2426702C (fr) Buse isolante pour disjoncteur a soufflage d&#39;arc
US20030010752A1 (en) Electric contact member and production method thereof
EP1655749B1 (fr) Pastille de contact destinée à un contact électrique mobile de disjoncteur, contact électrique mobile possédant une telle pastille et disjoncteur comportant un tel contact
EP4218038A1 (fr) Contact électrique comprenant une couche composite métal-graphène
CH634436A5 (fr) Procede d&#39;etirage d&#39;un conducteur.
EP1522083B1 (fr) Materiau de contact electrique et son procede de fabrication
FR2772013A1 (fr) Melange gazeux ternaire et application de ce melange a la projection plasma de materiaux refractaires
EP0729162B1 (fr) Procédé de fabrication d&#39;un matériau de contact électrique composite
JP5116538B2 (ja) 接点材料
FR2655206A1 (fr) Materiau composite fritte pour contact electrique, et pastille de contact utilisant ledit materiau.
EP2572364B1 (fr) Buse a soufflage d&#39;arc electrique
EP0794026A1 (fr) Procédé de fabrication d&#39;un fil stratifié de petit diamètre et en particulier d&#39;un fil électrode pour usinage par électroérosion et fil électrode obtenu
JP2013032589A (ja) 接点材料およびその製造方法
FR2515554A1 (fr) Fluide d&#39;usinage electrique et procede d&#39;usinage electrique utilisant un tel fluide
EP0349515A2 (fr) Matériau composite à base de cuivre pour contacts électriques fortement sollicités, procédés de fabrication de ce matériau et organe de contact s&#39;en composant
EP3559321B1 (fr) Procede de traitement chimique d&#39;une paroi reduisant la formation de coke.
FR2644284A1 (fr) Nouveaux materiaux a base d&#39;argent et d&#39;oxyde d&#39;etain pour la realisation de contacts electriques; contacts electriques ainsi realises
Streicher et al. Press-sinter-repress Ag-SnO/sub 2/contacts with lithium and copper sintering additives for contactor applications
JP2005036264A (ja) 電気接点及びこれを用いたブレーカー
JPH08127829A (ja) 電気接点材料及びその製造方法
JPH05242772A (ja) 真空インタラプタ用電極材料
FR2813598A1 (fr) Projection plasma avec melange gazeux ternaire
FR2808808A1 (fr) Projection de titane sur prothese medicale avec refroidissement par co2 ou argon

Legal Events

Date Code Title Description
CA Change of address
CD Change of name or company name
TP Transmission of property
CA Change of address

Effective date: 20121204

CD Change of name or company name

Owner name: ALSTOM GRID SAS, FR

Effective date: 20121204

TP Transmission of property

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20130710

ST Notification of lapse

Effective date: 20150630