FI127451B - Method and apparatus for preheating and smelting manganese ore sinter - Google Patents

Method and apparatus for preheating and smelting manganese ore sinter Download PDF

Info

Publication number
FI127451B
FI127451B FI20155868A FI20155868A FI127451B FI 127451 B FI127451 B FI 127451B FI 20155868 A FI20155868 A FI 20155868A FI 20155868 A FI20155868 A FI 20155868A FI 127451 B FI127451 B FI 127451B
Authority
FI
Finland
Prior art keywords
gas
carbonaceous
carbon dioxide
arc furnace
feed mixture
Prior art date
Application number
FI20155868A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20155868A (en
Inventor
Helge Krogerus
Pasi Mäkelä
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FI20155868A priority Critical patent/FI127451B/en
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Priority to CN202010360609.5A priority patent/CN111394578B/en
Priority to AU2016360842A priority patent/AU2016360842B2/en
Priority to UAA201805936A priority patent/UA122912C2/en
Priority to CN201680068082.0A priority patent/CN108291273A/en
Priority to EA201891065A priority patent/EA033946B1/en
Priority to PCT/FI2016/050821 priority patent/WO2017089651A1/en
Priority to EP16816320.2A priority patent/EP3380638B1/en
Priority to BR112018010149-4A priority patent/BR112018010149B1/en
Publication of FI20155868A publication Critical patent/FI20155868A/en
Priority to ZA2018/03599A priority patent/ZA201803599B/en
Application granted granted Critical
Publication of FI127451B publication Critical patent/FI127451B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0027Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0036Treating ocean floor nodules by dry processes, e.g. smelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/103Methods of introduction of solid or liquid refining or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/106General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/226Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Described is a method and an apparatus for preheating and smelting manganese ore sinter. The method comprises feeding feed mixture (1) containing manganese ore sinter (2), reducing agent (3), and fluxing agent (4) into an submerged electric arc furnace (5), smelting feed mixture (1) to form a layer containing liquid manganese alloy and a layer containing slag, withdrawing liquid manganese and, discharging carbon monoxide containing carbonaceous gas (6), combusting carbon monoxide containing carbonaceous gas (6) in presence of oxygen such as air in a burner (7) to form carbon dioxide containing carbonaceous gas (9), and heating said feed mixture (1) in a pre-treatment silo (8) prior feeding said feed mixture (1) into the submerged electric arc furnace (5) with said carbon dioxide containing carbonaceous gas (9).

Description

METHOD AND APPARATUS FOR PREHEATING AND SMELTING MANGANESE ORE SINTER
Field of the invention
The invention relates to a method for preheating and smelting manganese ore sinter as defined in the preamble of independent claim 1.
The invention also relates to an apparatus for preheating and smelting manganese ore sinter as defined in the preamble of independent claim 14.
Objective of the invention
The object of the invention is to provide a method and an arrangement for energy efficient smelting manganese ore sinter.
Short description of the invention
The method for preheating and smelting manganese ore sinter is characterized by the definitions of independent claim 1.
Preferred embodiments of the method are defined in the dependent claims 2 to 13.
The apparatus for preheating smelting manganese ore sinter is correspondingly characterized by the definitions of independent claim 14.
Preferred embodiments of the apparatus are defined in the dependent claims 16 to 26.
The invention is based on preheating the feed mixture containing at least manganese ore sinter and 30 reducing agent in order to eliminate the moisture from the feed mixture and to preheat the feed mixture to as high a temperature as possible without burning or loosing carbon in the reduction agent required for reduction purposes in the feed mixture.
In preheating of manganese containing, the carbon consuming reactions, especially the Boudouard reaction (C(s) + CO2(g) θ 2CO (g) ) , is an limiting factor. Water gas reaction occurs also, H2O + C H2 + CO. Thus the
20155868 prh 16-01-2018 preheating temperature in the pre-treatment silo can locally be maximum 600 to 700 °C, depending on the reactivity of the carbon in the reducing agent of the feed mixture. The average temperature of the hot charge to the electric furnace is typically below 600°C.
Preheating of the feed mixture saves electrical energy of the submerged electric arc furnace, improves the operation, improves production and safety of the smelting by preventing reaction between carbon and oxygen in the feed mixture and prevents thus uncontrolled increase of temperature and possible explosions .
List of figures
In the following the method and the apparatus for preheating and smelting manganese ore sinter will described in more detail by referring to the figures, of which
Figure 1 shows a flow sheet of first embodiment,
0 and
Figure 2 shows a flow sheet of second embodiment.
Detailed description of the invention
First the method for preheating of smelting manganese ore sinter and some preferred embodiments and variants of the method will be described in greater detail.
The method comprises a feeding step for feeding feed mixture 1 comprising at least manganese ore sinter 2, reducing agent 3 , and fluxing agent 4 into an submerged electric arc furnace 5.
The method comprises a smelting step for smelting said feed mixture 1 in the submerged electric arc furnace 5 to form a layer containing liquid manganese alloy (not shown in the drawings) and a layer containing slag (not shown in the drawings) above the layer containing liquid manganese alloy.
The method comprises a withdrawing step for
20155868 prh 16-01-2018 withdrawing liquid manganese alloy and slag separately or simultaneously from the submerged electric arc furnace 5.
The method comprises a first discharging step for 5 discharging carbon monoxide containing carbonaceous gas from the submerged electric arc furnace 5.
The method comprises a combusting step for combusting carbon monoxide containing carbonaceous gas 6 discharged in the first discharging step from the submerged electric arc furnace 5 in presence of oxygen such as air in a burner 7 to form carbon dioxide containing carbonaceous gas 9.
The feeding step of the method comprises a heating step for heating said feed mixture 1 with said carbon dioxide containing carbonaceous gas 9 formed in the combusting step in a pre-treatment silo 8 prior feeding feed mixture 1 into the submerged electric arc furnace
5.
The submerged electric arc furnace 5 that is used in the method is preferably an alternating current (AC) submerged electric arc furnace 5.
The burner 7 is preferably connected to the pretreatment silo 8 and the pre-treatment silo 8 is preferably connected to the submerged electric arc furnace 5 so that gases such as oxygen from the ambient air is prevented from entering the burner 7, the pretreatment silo 9 and the submerged electric arc furnace 5 so as to prevent uncontrolled reactions of said feed material 1.
The manganese ore sinter 9 may have a particle size between 6 and 75 mm.
The method may include heating the feed mixture 1 in the heating step to a temperature in the range between 400 and 700°C preferably to a temperature between 500 and 650°C.
The method includes preferably, but not necessarily, adjusting the temperature of said carbon dioxide containing carbonaceous gas 9 that is used in
20155868 prh 16-01-2018 the heating step. The temperature of the said carbon dioxide containing carbonaceous gas 9 that is used in the heating step may be controlled to a temperature in the range between 600 and 900°C.
In the burner 7, the carbon monoxide containing carbonaceous gas 6 received from the submerged electric arc furnace 5 is preferably burned by an air ratio below 1, such as between 0.9 and 0.95. Oxygen (O2) content in the carbon dioxide containing carbonaceous gas 9 formed in the combusting step should be very low to minimize the oxidation of carbon in the feed mixture 1. The content of carbon monoxide (CO) and hydrogen (H2) in the carbon dioxide containing carbonaceous gas 9 formed in the combusting step should be very low for avoiding the explosions in the gas lines especially between the burner 7 and the pre-treatment silo 8 or in the pre-treatment silo 8.
The method may include burning carbon monoxide containing carbonaceous gas 6 discharged from the submerged electric arc furnace 5 by means of butane in the burning step.
The method may include burning carbon monoxide containing carbonaceous gas 6 discharged from the submerged electric arc furnace 5 by means of CO gas or
e.g. butane (C4H10) in the burning step so that the molar ratio of air to butane is in the range between 0.9 - 0.95.
The carbon dioxide containing carbonaceous gas 9 that is formed in the combusting step and that is used in the heating step, may containing in percentages of volume :
CO2: : between 25 and 35 %,
N2: between 50 and 65 %,
H2O: : between 3 and 8 % H2O
O2: less than 1 g. 0
H2: less than 1 g. 0 r and
CO: less than 2 g, 0 ·
20155868 prh 16-01-2018
The heating step comprises preferably heating said feed mixture 1 by feeding said carbon dioxide containing carbonaceous gas 9 formed in the combusting step into the pre-treatment silo 8. In such case, the heating step includes preferably feeding said carbon dioxide containing carbonaceous gas 9 formed in the combusting step into the pre-treatment silo 8 from below so that carbon dioxide containing carbonaceous gas 9 flows in the opposite direction, such as upwards, with respect the feed mixture in the pre-treatment silo 8 .
The method may, as shown in figure 2, include a first scrubbing step of the carbon monoxide gas 6 discharged from the submerged electric arc furnace 5.
This is prior burning the carbon monoxide gas 6 in the burner 7.
The method may, as shown in figure 2, include a second discharging step for discharging carbon dioxide containing carbonaceous gas 9 from the pre-treatment silo 8 and for feeding carbon dioxide containing carbonaceous gas 9 discharged from the pre-treatment silo 8 to the burner 7 and/or into the carbon dioxide containing carbonaceous gas 9 that is formed in the combusting step by means of the burner 7 to adjust the temperature of the carbon dioxide containing carbonaceous gas 9 that is formed in the combusting step. In such case, the method may include a second scrubbing step for scrubbing carbon dioxide containing carbonaceous gas 9 discharged in the second discharging step from the pre-treatment silo 8 in a second scrubber
11.
The reducing agent 3 of the feed mixture 1 may contain carbonaceous material such as metallurgical coke, anthracite or charcoal.
The fluxing agent 4 of the feed mixture 1 may contain e.g. calcite, coarse burned lime, quartz, dolomite .
The chemical analysis of the manganese ore sinter is depending on the chemical analysis of manganese ore. Manganese ores are calcium based, carbonate based and oxidized based which of chemical analyses greatly
varies. A possible content of the manganese ore sinter
5 2 is :
Mn: 40 to 55 %,
Fe: 1 to 10 %,
SiO2 :4 to 10 %
MgO: 0.4 to 8 %
10 CaO: 1.0 - 15 %
A2O3 : 1-15 %
K2O: less than 1.5 %
BaO: less than 0.6 %.
15 Next the apparatus for preheating and smelting
manganese ore sinter and some preferred embodiments and
20155868 prh 16-01-2018 variants of the method will be described in greater detail.
The apparatus comprises a submerged electric arc 20 furnace 5 for smelting feed mixture 1 comprising at least manganese ore sinter 2, reducing agent 3, and fluxing agent 4. A layer containing liquid manganese alloy and a layer containing slag above the layer containing liquid manganese alloy are formed in the smelting in the submerged electric arc furnace 5.
The apparatus comprises first feeding means 12 configured to feed said feed mixture 1 into the submerged electric arc furnace 5.
The apparatus comprises withdrawing means 13 for 30 withdrawing liquid manganese and slag separately or simultaneously from the submerged electric arc furnace
5.
The apparatus comprises first discharging means 14 for discharging carbon monoxide containing carbonaceous gas 6 from the submerged electric arc furnace 5.
The apparatus comprises a burner 7 for combusting carbon monoxide containing carbonaceous gas 6 received from the first discharging means 14 in presence of
20155868 prh 16-01-2018 oxygen such as air to form carbon dioxide containing carbonaceous gas 9.
The first feeding means 12 of the apparatus comprises a pre-treatment silo 8 for heating said feed mixture 1 with said carbon dioxide containing carbonaceous gas 9 formed by means of the burner 7 prior feeding said feed mixture 1 into the submerged electric arc furnace 5.
The submerged electric arc furnace 5 in the 10 apparatus is preferably an alternating current (AC) submerged electric arc furnace 5.
The burner 7 is preferably connected to the pretreatment silo 8 and the pre-treatment silo 8 is preferably connected to the submerged electric arc furnace 5 so that gases such as oxygen from the ambient air is prevented from entering the burner 7, the pretreatment silo 9 and the submerged electric arc furnace 5 so as to prevent uncontrolled reactions of said feed material 1.
The manganese ore sinter 9 may have a particle size between 6 and 75 mm.
The pre-treatment silo 8 of the apparatus may be configured to heat the feed mixture 1 to a temperature in the range between 400 and 700°C, preferable to a temperature in the range between 500 and 650°C.
The apparatus comprises preferably, but not necessarily, gas temperature adjusting means (not shown in the figures) configured to adjust the temperature of said carbon dioxide containing carbonaceous gas 9 prior feeding said carbon dioxide containing carbonaceous gas 9 to the pre-treatment silo 8. The temperature of the feed carbon dioxide containing carbonaceous gas 9 that is fed to the pre-treatment silo 8 may be controlled to the range between 600 and 900°C.
In the burner 7, the carbon monoxide containing carbonaceous gas 6 received from the submerged electric arc furnace 5 is preferably burned by an air ratio below 1, such as between 0.9 and 0.95. Oxygen (O2)
20155868 prh 16-01-2018 content in the carbon dioxide containing carbonaceous gas 9 formed in the combusting step should be very low to minimize the oxidation of carbon in the feed mixture 1. The content of carbon monoxide (CO) and hydrogen (¾) in the carbon dioxide containing carbonaceous gas formed in the combusting step should be very low for avoiding the explosions in the gas lines or in the pretreatment silo 8.
The burner 7 may be a CO, a butane, and a LPG 10 burner.
Said carbon dioxide containing carbonaceous gas 9, that is produced by the burner 7 contains preferably, but not necessarily, in percentages of volume
CO2: between 25 and 35 %,
N2: between 50 and 65 %,
H2O: between 5 and 15 % H2O
02: less than 1 %
H2: less than 1 %, and
CO: less than 2 %.
The arrangement, preferably the burner 7, is preferably configured to feed said carbon dioxide containing carbonaceous gas 9 into the pre-treatment silo 8 from below so that said carbon dioxide containing carbonaceous gas 9 flows upwards in the pretreatment silo 8 through the feed mixture.
The apparatus may, as shown in figure 2, comprise a first scrubber 10 configured to scrub carbon monoxide containing carbonaceous gas 6 discharged from the electric arc furnace 5 prior combusting carbon monoxide to the burner 7.
The apparatus may, as shown in figure 2, comprise second discharging means 15 configured to discharge carbon dioxide containing carbonaceous gas 9 from the pre-treatment silo 8 and third feeding means (not marked with a reference numeral) configured to feed carbon dioxide containing carbonaceous gas 9 discharged from the second discharging means 15 to the burner 7
20155868 prh 16-01-2018 and/or to into carbon dioxide containing carbonaceous gas 9 formed by the burner 7 to adjust the temperature of the carbon dioxide containing carbonaceous gas 9 formed by the burner 7.
The second discharging means 15 of the apparatus may, as shown in figure 2, comprise a second scrubber 11 configured to scrub carbon dioxide containing carbonaceous gas 9 discharged from the pre-treatment silo 8. Cold and scrubbed gases removed from the carbon dioxide containing carbonaceous gas 9 in the second scrubber 11 may be used in the optional temperature adjustment means for adjusting the temperature of the carbon dioxide containing carbonaceous gas 9 that is fed to the pre-treatment silo 8.
The first feeding means 12 of the apparatus may be configured to feed reducing agent 3 containing carbonaceous material such as metallurgical coke, anthracite and/or charcoal.
The first feeding means 12 of the apparatus may be configured to feed fluxing agent 4 containing at least one of calcite, coarse burned lime, dolomite and quartz .
The first feeding means 12 of the apparatus may be configured to feed manganese ore sinter 2 containing in percentages of mass:
Mn: 40 to 55 %.
Fe: 1 to 10 %,
SiO2: 4 to 10 %
MgO: 0.4 to 8 %
CaO: 1 to 15 %
A2O3: 1 to 15 %
K2O: less than 1.5 %, and BaO: less than 0.6 %.
The first feeding means 12 may, as shown in figure
2, comprise a silo arrangement 16 comprising a first silo 17 for manganese ore sinter 2, a second silo 18 for reducing agent 3, and a third silo 19 for fluxing agent 4.
Example 1
Metallurgical coke having the composition defined 5 in table 1 and calcite manganese ore sinter having the composition defined in column Original sinter in table 2 was mixed in ratio 80 percentages by weight (wt.%) calcite ore and 20 wt. % and heated in a vessel to four different temperatures: 500°C, 600°C, 700°C and
800°C. The calcite manganese ore sinter was prior the mixing crushed and sieved into a particle size of 2.38 to 6.73 mm and the metallurgical coke was prior the mixing crushed and sieved into a particle size of 0.595 to 4.76 mm
The heating was performed by induction heating and gas containing carbon dioxide and nitrogen in ratio 30% carbon dioxide and 70% was blown into the vessel to simulate actual heating conditions.
The composition of the calcite manganese ore sinter was measured in each case: 500°C, 600°C, 700°C and 800°C. As can be seen from columns 500°C, 600°C, 700°C and 800°C table 3, the change in the composition of the calcite manganese ore sinter was only marginal, which means for example that hardly any reduction of the oxides occurred.
20155868 prh 16-01-2018
Table 1. Chemical analysis of metallurgical coke
Coke g. 0 wt. Ash, wt. g. 0
c Leco 11 84
CO. 6) ^fix kem. 2) 85
s Leco 11 0.78
Volatiles kem. 1.2
ash kem. 12.7
Fe ICP 3> 0.61 4) 4.8
SiO2 kem. 7.14 4) 56.2
CaO ICP 3> 0.23 4) 1.8
MgO ICP 3> 0.24 4) 1.9
A12O3 ICP 3> 3.07 4) 24.2
11 Leco on C, S -analyzer 2) by wet chemically 3) ICP (plasma emission spectrometer) 4) wt. % of the coke 5) ash amount in coke is 12.7 wt. % 6) CfiX - value: 100 % - (volatiles + ash + sulphur)
Table 2. Chemical analysis of the preheated sinters of 10 calcite ore as function of preheating temperature
20155868 prh 16-01-2018
Component Original sinter 500°C 600°C 700°C 800°C
Mn 43.7 43.9 44.5 44.5 4.42
C 0.07 0.05 0.05 0.04 0.04
Fe 5.2 5.2 5.1 5, 2 5.0
SiO2 8.2 8.0 7.5 7.6 7.8
MgO 4.5 4.7 4.8 4.7 4.5
CaO 15.2 15.2 14.7 14.6 15.0
A12O3 0.71 0.72 0.68 0.71 0.68
K2O 0.02 0.01 0.02 0.02 0.01
BaO 0.24 0.24 0.24 0.23 0.24
TiO2 0.04 0.04 0.04 0.03 0.03
p2o5 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03
CoO 0.01 0.01 0.01 0.01 0.01
Cr2O3 0.03 0.03 0.03 0.03 0.03
CuO < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NiO < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ZnO 0.01 0.01 0.01 0.01 0.01
Fe 4> 0.44 0.39 0.36 0.39 0.37
11 Metallic amount
Example 2
Metallurgical coke having the composition defined in table 1 and oxidized manganese ore sinter having the composition defined in column Original sinter in table 3 was mixed in ratio 80 wt. % calcite ore and 20 wt. % charcoal and heated in a vessel to four different temperatures: 500°C, 600°C, 700°C and 800°C. The oxidized manganese ore sinter was prior the mixing crushed and sieved into a particle size of 2.38 to 6.73 mm and the metallurgical coke was prior the mixing crushed and sieved into a particle size of 0.595 to 4.76 mm.
The heating was performed by induction heating and gas containing carbon dioxide and nitrogen in ratio 30% carbon dioxide and 70% was blown into the vessel to simulate actual heating conditions.
The composition of the oxidized manganese ore sinter was measured in each case: 500°C, 600°C, 700°C and 800°C. As can be seen from columns 500°C,
600°C, 700°C and 800°C table 3, the change in the composition of the oxidized manganese ore sinter was only marginal, which means for example that hardly any reduction of the oxides occurred.
20155868 prh 16-01-2018
Table 3. Chemical analysis of the preheated sinters of oxidized ore as function of preheating temperature
Component Original sinter 500°C 600°C 700°C 800°C
Mn 59.0 60.8 58.9 59.8 59.7
C 0.03 0.03 0.03 0.15 0.04
Fe 2.7 2.6 3.1 2.7 3.0
SiO2 3.4 3.4 3.3 3.4 3.1
MgO 0.28 0.24 0.41 0.26 0.39
CaO 0.62 0.66 0.53 0.58 0.66
A12O3 6.0 5.9 5.8 5.9 5.7
K2O 0.87 0.97 0.83 0.90 0.84
BaO 0.28 0.28 0.29 0.27 0.30
TiO2 0.17 0.17 0.16 0.17 0.16
p2o5 0.18 0.21 0.20 0.20 0.16
CoO 0.17 0.18 0.18 0.18 0.17
Cr2O3 0.32 0.22 1.0 0.28 0.86
CuO 0.06 0.06 0.06 0.06 0.06
NiO 0.04 0.04 0.04 0.04 0.04
ZnO 0.06 0.06 0.06 0.06 0.06
Fe 0.57 0.53 0.37 0.35 0.42
metallic amount
20155868 prh 16-01-2018
Example 3
In an apparatus according to figure 2, manganese sinter as defined in table 4 was fed at a feed rate of
131 kg/h, and reducing agent as defined in row charcoal in table 5 was fed at a feed rate of 24 kg/h into the pre-treatment silo 8. Carbonaceous gas containing 57 vol-% N2, 30 vol.%, CO2 and 11 vol.% H2O and having a temperature of 850°C was fed at a feed rate of 970 m3/h into the pre-treatment silo 8.
Table 4: Chemical analysis of the manganese sinter, wt. %
Component Analysis, wt. %
Mn 50.2
FΘ total 6.6
Fe 2+ < 0.05
FΘ metallic < 0.1
SiO2 6.7
CaO 1.0
MgO 0.43
A2O3 13.2
K 1.2
Ba 0.43
C- total (volatiles) 0.03
H2O 0.26
Table 5. Chemical analysis of reducing agents in examples 3 and 4, wt. %
20155868 prh 16-01-2018
Component Charcoal Coke
C total 75
Cfix 72 85.0
Volatiles 26 3.0
ASH 2.3 10.2
S 0.01 0.65
Analysis of volatiles of charcoal
h2 24.6
o2 0.1
n2 0.5
CO 36.9
CO2 16.5
ch4 21.4
h2o 8.0
Carbon components of charcoal starts to gasify at 10 450°C.
It was observed that a mixture of where charcoal is used as reducing agent 3 can be preheated to a temperature of 400°C without the carbon gasification. The charcoal starts to oxidize either through the
Boudouard reaction or through the water-gas-reaction.
20155868 prh 16-01-2018
In addition, the oxygen content and the water in the carbon dioxide containing carbonaceous gas 9 should be low to avoid oxidizing of the carbon.
Example 4
In an apparatus according to figure 2, manganese sinter as defined table 4 was fed at a feed rate of 131 kg/h, and reducing agent as defined in row Coke in table 5 was fed at a feed rate of 24 kg/h into the pre10 treatment silo 8. Carbonaceous gas containing 57 vol-% N2, 30 vol-%, CO2 and 11 vol.% H2O and having a temperature of 850°C was fed at a feed rate of 970 m3/h into the pre-treatment silo 8
Carbon of coke starts to gasify at 700°C.
It was observed that a mixture of where coke is used as reducing agent 3 can be preheated to a temperature of 650°C without the carbon in the coke starts to oxidize either through the Boudouard reaction or through the water-gas-reaction. In addition, the oxygen content and the water in the carbon dioxide containing carbonaceous gas 9 should be low to avoid oxidizing of the carbon.
It is apparent to a person skilled in the art that as technology advanced, the basic idea of the invention can be implemented in various ways. The invention and its embodiments are therefore not restricted to the above examples, but they may vary within the scope of the claims .

Claims (22)

PatenttivaatimuksetThe claims 1. Menetelmä mangaanimalmisintterin esikuumennusta ja sulatusta varten, tunnettu siitä, että siinä onA process for preheating and melting a manganese ore sinter, characterized in that 5 syöttövaihe ainakin mangaanimalmisintteriä (2), pelkistintä (3) ja sulatinta (4) sisältävän syöttöseoksen (1) syöttämiseksi uppovalokaariuuniin (5) , sulatusvaihe syöttöseoksen (1) sulattamiseksi 10 uppovalokaariuunissa (5) nestemäistä mangaanilejeerinkiä sisältävän kerroksen ja nestemäistä mangaanilejeerinkiä sisältävän kerroksen yläpuolella olevan kuonaa sisältävän kerroksen muodostamiseksi, poistovaihe nestemäisen mangaanin ja kuonan5 feeding steps for feeding a feed mixture (1) containing at least a manganese ore sinter (2), a reducing agent (3) and a melting furnace (5), a melting step for melting a feed mixture (1) with a layer of liquid manganese to form a slag-containing layer, the step of removing liquid manganese and slag 15 poistamiseksi uppovalokaariuunista (5), ensimmäinen purkausvaihe hiilimonoksidia sisältävän hiilipitoisen kaasun (6) purkamiseksi uppovalokaariuunista (5), polttovaiheesta uppovalokaariuunista (5)15 for discharging from the submerged arc furnace (5), a first discharge step for discharging the carbon monoxide containing carbonaceous gas (6) from the submerged arc furnace (5), the incineration step from the submerged arc furnace (5). 20 ensimmäisessä purkausvaiheessa puretun hiilimonoksidia sisältävän hiilipitoisen kaasun (6) polttamiseksi polttimessa (7) hapen, kuten ilman, ollessa läsnä hiilidioksidia sisältävän hiilipitoisen kaasun (9) muodostamiseksi,In a first discharge step for burning the decarbonated carbonaceous gas (6) in the burner (7) in the presence of oxygen such as air to form a carbonaceous carbonaceous gas (9), 25 kuumennusvaiheen mainitun syöttöseoksen (1) kuumentamiseksi polttovaiheessa muodostetulla hiilidioksidia sisältävällä hiilipitoisella kaasulla (9) esikäsittelysiilossa (8) ennen mainitun syöttöseoksen (1) syöttämistä uppovalokaariuuniin (5),A heating step for heating said feed mixture (1) with carbon dioxide-containing gas (9) formed in the combustion step in a pretreatment silo (8) prior to feeding said feed mixture (1) to a submerged arc furnace (5), 30 ja siitä, että syöttöseosta (1) kuumennetaan kuumennusvaiheessa syöttämällä mainittua hiilidioksidia sisältävää hiilipitoista kaasua (9) esikäsittelysiiloon (8) .And wherein the feed mixture (1) is heated in a heating step by feeding said carbonaceous carbonaceous gas (9) to a pretreatment silo (8). 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että uppovalokaariuuni (5) on vaihtovirta(AC)uppovalokaariuuni (5).Method according to claim 1, characterized in that the submerged arc furnace (5) is an alternating current (AC) submerged arc furnace (5). 20155868 prh 16-01-201820155868 prh 16-01-2018 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, tunnettu siitä, että mangaanimalmisintterin (2) hiukkaskoko 5 on välillä 6-75 mm.Method according to claim 1 or 2, characterized in that the manganese ore (2) has a particle size 5 in the range of 6-75 mm. 4. Jonkin patenttivaatimuksista 1-3 mukainen menetelmä, tunnettu siitä, että syöttöseosta (1) kuumennetaanMethod according to one of Claims 1 to 3, characterized in that the feed mixture (1) is heated 10 esikäsittelysiilossa (8) kuumennusvaiheessa alueella 400 - 700°C olevaan lämpötilaan, edullisesti alueella 500 - 650°C olevaan lämpötilaan.10 in the pre-treatment silo (8) during the heating step to a temperature in the range of 400-700 ° C, preferably in the range of 500-650 ° C. 5. Jonkin patenttivaatimuksista 1-4 mukainenA process according to any one of claims 1 to 4 15 menetelmä, tunnettu siitä, että kuumennusvaiheessa käytettävän mainitun hiilidioksidia sisältävän hiilipitoisen kaasun (9) lämpötilaa säädetään alueella 580 - 900°C olevaan lämpötilaan.15, characterized in that the temperature of said carbonaceous carbonaceous gas (9) used in the heating step is adjusted to a temperature in the range of from 580 to 900 ° C. 6. Jonkin patenttivaatimuksista 1-5 mukainen menetelmä, tunnettu siitä, että kuumennusvaiheessa käytettävä mainittu hiilidioksidia sisältävä hiilipitoinen kaasu (9)Method according to one of Claims 1 to 5, characterized in that said carbonaceous carbonaceous gas (9) is used in the heating step. 25 sisältää tilavuusprosentteina:25% by volume: CO2: välillä 25 - 35 %,CO 2 : 25 to 35%, N2: välillä 50 - 65 %,N2: between 50% and 65%, H2O: välillä 3 - 8 %,H2O: between 3% and 8%, O2: alle 1 %,O2: less than 1%, 30 H2: alle 1 %, ja30 H2: less than 1%, and CO: alle 2 %.CO: less than 2%. 7. Jonkin patenttivaatimuksen 1-6 mukainen menetelmä, tunnettuMethod according to one of claims 1 to 6, characterized 35 siitä, että mainittua hiilidioksidia sisältävää hiilipitoista kaasua (9) syötetään esikäsittelysiiloon (8) kuumennusvaiheessa altapäin, niin että mainittu hiilidioksidia sisältävä hiilipitoinen kaasu (9) virtaa35, wherein said carbonaceous carbonaceous gas (9) is fed from below to the pretreatment silo (8) so that said carbonaceous carbonaceous gas (9) flows 20155868 prh 16-01-2018 esikäsittelysiilossa (8) ylöspäin esikäsittelysiilossa (8) olevan syöttöseoksen (1) läpi.20155868 prh 16-01-2018 up through the feed mixture (1) in the pre-treatment silo (8). 8. Jonkin patenttivaatimuksista 1-7 mukainen 5 menetelmä, tunnettu siitä, että uppovalokaariuunista (5) ensimmäisessä purkausvaiheessa purettu hiilimonoksidia sisältävä hiilipitoinen kaasu (6) pestään ensimmäisessä kaasunpesulaitteessa (10) ennen kuin ensimmäisessäMethod according to one of Claims 1 to 7, characterized in that the carbon monoxide-containing gas (6) discharged from the submerged arc furnace (5) in the first discharge step is washed in the first scrubber (10) before the first 10 purkausvaiheessa purettu hiilimonoksidia sisältävä hiilipitoinen kaasu (6) syötetään polttimeen (7).In step 10, the carbon monoxide-containing carbon dioxide gas (6) discharged is fed to the burner (7). 9. Jonkin patenttivaatimuksista 1-8 mukainen menetelmä, tunnettuMethod according to one of Claims 1 to 8, characterized 15 siitä, että siinä on toinen purkausvaihe hiilidioksidia sisältävän hiilipitoisen kaasun (9) purkamiseksi esikäsittelysiilosta (8), ja siitä että toisessa purkausvaiheessa purettu hiilidioksidia sisältävä hiilipitoinen kaasu (9)15 having a second discharge step for discharging carbon dioxide-containing carbonaceous gas (9) from the pretreatment silo (8), and having a carbon dioxide-containing gas containing gas (9) discharged in a second discharge step 20 syötetään polttimeen (7) ja/tai polttovaiheessa muodostetun hiilidioksidia sisältävän hiilipitoisen kaasun (9) lämpötilan säätämiseen käytettävään hiilidioksidia sisältävään hiilipitoiseen kaasuun (9).20 is supplied to the burner (7) and / or to the carbonaceous gas (9) used to control the temperature of the carbon dioxide-containing gas (9) formed in the combustion step. 25 10. Jonkin patenttivaatimuksista 1-9 mukainen menetelmä, tunnettu siitä, että toisessa purkausvaiheessa purettu hiilidioksidia sisältävä hiilipitoinen kaasu (9) pestään toisessa kaasunpesulaitteessa (11) ennen kuinMethod according to one of Claims 1 to 9, characterized in that the carbon dioxide-containing gas (9) discharged in the second discharge step is washed in the second scrubber (11) before 30 toisessa purkausvaiheessa purettu hiilidioksidia sisältävä hiilipitoinen kaasu (9) syötetään polttimeen (7) .In a second discharge step, the decarbonised carbonaceous gas (9) is fed to the burner (7). 11. Jonkin patenttivaatimuksista 1-10 mukainen11. A process according to any one of claims 1-10 35 menetelmä, tunnettu siitä, että pelkistin (3) sisältää hiilipitoista ainetta, kuten koksoa, antrasiittia ja/tai puuhiiltä.35, characterized in that the reducing agent (3) contains a carbonaceous substance such as coke, anthracite and / or charcoal. 12. Jonkin patenttivaatimuksista 1-11 mukainen menetelmä, tunnettu siitä, että sulatin (4) sisältää ainakin yhden seuraavista: kalsiitti, karkea poltettu kalkki, dolomiitti ja kvartsi.Method according to one of Claims 1 to 11, characterized in that the melter (4) contains at least one of calcite, coarse lime, dolomite and quartz. 13. Jonkin patenttivaatimuksista 1 menetelmä, tunnettu siitä, että mangaanimalmisintteri painoprosentteina:Process according to any one of Claims 1, characterized in that the manganese ore sinter, by weight: Mn: Mn: 40 - 55 40-55 O. O r O. O r Fe: Fe: 1 - 10 % 1 - 10% r r SiO2 SiO 2 : 4 - 10 : 4 - 10 g. 0 r g. 0 r MgO: MgO: 0,4-8 0.4 to 8 g. 0 r g. 0 r CaO: CaO: 1-15 1-15 g, 0 r g 0 r A2O3: A2O3: : 1 - 15 : 1 - 15 g, 0 r g 0 r K2O:K 2 O: alle 1,. less than 1 ,. 5 % : 5%: BaO: BaO: alle 0, less than 0, 6 %. 6%.
12 mukainen (2) sisältää12 (2) includes 20155868 prh 16-01-201820155868 prh 16-01-2018 14. Laite mangaanimalmisintterin esikuumentamiseen ja sulattamiseen, tunnettu siitä, että siinä on uppovalokaariuuni (5) ainakin mangaanimalmisintteriä (2), pelkistintä (3) ja sulatinta (4) sisältävän syöttöseoksen (1) sulattamiseen nestemäistä mangaanilejeerinkiä sisältävän kerroksen ja nestemäistä mangaanilejeerinkiä sisältävän kerroksen yläpuolella olevan kuonaa sisältävän kerroksen muodostamiseksi uppovalokaariuunissa (5), siitä, että siinä on ensimmäinen syöttöväline (12), joka on konfiguroitu syöttämään syöttöseos (1) uppovalokaariuuniin (5), siitä, että siinä on poistoväline (13) nestemäisen mangaanilejeeringin ja kuonan poistamiseen uppovalokaariuunista (5), siitä, että siinä on ensimmäinen purkausväline (14) hiilimonoksidia sisältävän hiilipitoisen kaasun (6) purkamiseen uppovalokaariuunista (5),Apparatus for preheating and melting a manganese ore sinter, characterized in that it has a submerged arc furnace (5) for melting at least a manganese ore manganese sinter (2), a reducing agent (3) and a melt (4) feed mixture (1) with a liquid manganese alloy layer and for forming a slag-containing layer in a submerged arc furnace (5), comprising a first feed means (12) configured to supply a feed mixture (1) to a submerged arc furnace (5), comprising a discharge means (13) for ), comprising a first discharge means (14) for discharging a carbon monoxide-containing carbonaceous gas (6) from a submerged arc furnace (5), 20155868 prh 16-01-2018 siitä, että siinä on poltin (7) ensimmäisestä purkausvälineestä (14) vastaanotetun hiilimonoksidia sisältävän hiilipitoisen kaasun (6) polttamiseen hapen, kuten ilman, ollessa läsnä hiilidioksidia sisältävän20155868 prh 16-01-2018, comprising a burner (7) for burning carbon monoxide-containing carbonaceous gas (6) received from a first discharge means (14) in the presence of oxygen containing air, such as air 5 hiilipitoisen kaasun (9) muodostamiseksi, siitä, että ensimmäinen syöttöväline (12) käsittää esikäsittelysiilon (8) mainitun syöttöseoksen (1) kuumentamiseen mainitulla hiilidioksidia sisältävällä hiilipitoisella kaasulla (9) ennen5 for forming a carbonaceous gas (9), characterized in that the first feed means (12) comprises a pretreatment silo (8) for heating said feed mixture (1) with said carbonaceous carbonaceous gas (9) before
10 syöttöseoksen (1) syöttämistä uppovalokaariuuniin, ja siitä, että poltin (7) on konfiguroitu syöttämään mainittua hiilidioksidia sisältävää hiilipitoista kaasua (9) esikäsittelysiiloon (8).Feeding a feed mixture (1) to a submerged arc furnace, and wherein the burner (7) is configured to supply said carbonaceous carbonaceous gas (9) to a pretreatment silo (8). 15 15. Patenttivaatimuksen 14 mukainen laite, tunnettu siitä, että uppovalokaariuuni (5) on vaihtovirta(AC)uppovalokaariuuni (5).Device according to claim 14, characterized in that the submerged arc furnace (5) is an alternating current (AC) submerged arc furnace (5). 16. Patenttivaatimuksen 14 tai 15 mukainen laite,A device according to claim 14 or 15, 2 0 tunnettu siitä, että mangaanimalmisintterin hiukkaskoko on välillä 6-75 mm.2 0 characterized in that the manganese ore sinter has a particle size of 6-75 mm. 17. Jonkin patenttivaatimuksista 14 - 16 mukainenA process according to any one of claims 14 to 16 25 laite, tunnettu siitä, että esikäsittelysiilo (8) on konfiguroitu kuumentamaan syöttöseosta (1) alueella 400 - 700°C olevaan lämpötilaan, edullisesti alueella 500 - 650°C olevaan lämpötilaan.25, characterized in that the pretreatment silo (8) is configured to heat the feed mixture (1) to a temperature in the range of 400 to 700 ° C, preferably in the range of 500 to 650 ° C. 18. Jonkin patenttivaatimuksista 14 - 17 mukainen laite, tunnettu siitä, että siinä on lämpötilansäätöväline, joka on konfiguroitu säätämään mainitun hiilidioksidiaDevice according to one of Claims 14 to 17, characterized in that it comprises a temperature control device configured to regulate said carbon dioxide. 35 sisältävän hiilipitoisen kaasun (9) lämpötilaa alueella 580 - 900°C olevaan lämpötilaan.35 containing a carbonaceous gas (9) to a temperature in the range of from 580 to 900 ° C. 19. Jonkin patenttivaatimuksista 14The use of any one of claims 14 18 mukainen laite, tunnettu siitä, että esikäsittelysiiloon (8) syötetty mainittu hiilidioksidia sisältävä hiilipitoinen kaasu (9) sisältää tilavuusprosentteina:18. A device according to claim 18, characterized in that said carbonaceous carbonaceous gas (9) fed to the pretreatment silo (8) contains by volume: CO2: välillä 25 - 35 %,CO 2 : 25 to 35%, 5 N2: välillä 50 - 65 %,5 N2: between 50% and 65%, H2O: välillä 3 - 8 %,H2O: between 3% and 8%, O2: alle 1 %,O2: less than 1%, H2: alle 1 %, ja CO: alle 2 %.H 2 : less than 1%, and CO: less than 2%. 20. Jonkin patenttivaatimuksen 14 - 19 mukainen laite, tunnettu siitä, että esikäsittelysiilo (8) on konfiguroitu syöttämään mainittua hiilidioksidia sisältävääDevice according to one of Claims 14 to 19, characterized in that the pretreatment silo (8) is configured to supply said carbon dioxide-containing 15 hiilipitoista kaasua (9) esikäsittelysiiloon (8) altapäin, niin että mainittu hiilidioksidia sisältävä hiilipitoinen kaasu (9) virtaa esikäsittelysiilossa (8) ylöspäin.15 carbonaceous gases (9) to the pretreatment silo (8) from below so that said carbon dioxide containing carbonaceous gas (9) flows upwardly in the pretreatment silo (8). 2020 21. Jonkin patenttivaatimuksista 14 - 20 mukainen laite, tunnettu siitä, että ensimmäinen purkausväline (14) käsittää ensimmäisen kaasunpesulaitteen (10) uppovalokaariuunista (5) puretun hiilimonoksidiaDevice according to one of Claims 14 to 20, characterized in that the first discharge device (14) comprises carbon monoxide discharged from the submerged arc furnace (5) of the first scrubber device (10). 25 sisältävän hiilipitoisen kaasun (6) uppovalokaariuunista (5) puretun sisältävän hiilipitoisen kaasun polttimessa (7) hapen, kuten ilman, ollessa läsnä hiilidioksidia sisältävän hiilipitoisen kaasun (9) 30 muodostamiseksi.25 containing carbon dioxide gas (6) in a burner (7) discharged from a submerged arc furnace (5) in the presence of oxygen, such as air, to form a carbon dioxide gas (9) containing carbon dioxide. pesemiseen ennen hiilimonoksidia (6) polttamistawashing before burning carbon monoxide (6) 20155868 prh 16-01-201820155868 prh 16-01-2018 22. Jonkin patenttivaatimuksista 14 - 21 mukainen laite, tunnettu siitä, että siinä on toinen purkausväline (15) 35 hiilidioksidia sisältävän hiilipitoisen kaasun (9) purkamiseen esikäsittelysiilosta (8), ja siitä että siinä on kolmas syöttöväline toisesta purkausvälineestä (15) tulevan hiilidioksidia tulevan sisältävän hiilipitoisen kaasun (9) syöttämiseen polttimeen (7) ja/tai polttimen (7) muodostamaan hiilidioksidia sisältävään hiilipitoiseen kaasuun (9).Device according to one of Claims 14 to 21, characterized in that it has a second discharge means (15) for discharging 35 carbonaceous carbonaceous gas (9) from the pretreatment silo (8) and a third feed means for discharging carbon dioxide from the second discharge means (15). feeding the carbonaceous gas containing gas (9) to the burner (7) and / or the carbonaceous gas (9) formed by the burner (7). 5 23. Jonkin patenttivaatimuksista 14 - 22 mukainen laite, tunnettu siitä, että toinen purkausväline (15) käsittää toisen kaasunpesulaitteen (11), joka on konfiguroituDevice according to one of Claims 14 to 22, characterized in that the second discharge means (15) comprises a second gas washing device (11) configured 10 10 pesemään esikäsittelysiilosta ( hiilidioksidia sisältävää hiilipitoista wash the pretreatment silo ( containing carbon dioxide 8) kaasua 8) gas purettua (9) . defused (9). 24. Jonkin patenttivaatimuksista 14 The use of any one of claims 14 - 23 - 23rd mukainen adequate laite, tunnettu device, known siitä, että ensimmäinen syöttöväline that first feeder (12) on (12) is 15 15 konfiguroitu syöttämään syöttöseosta configured to feed the feed mixture (1) , (1), joka which sisältää hiilipitoista ainetta, contains carbonaceous material, kuten like koksia, coke,
antrasiittia ja/tai puuhiiltä sisältävää pelkistintä (3) .a reducing agent containing anthracite and / or charcoal (3).
25. Jonkin patenttivaatimuksista 14 - 24 mukainen laite, tunnettu siitä, että ensimmäinen syöttöväline (12) on konfiguroitu syöttämään syöttöseosta (1), joka sisältää ainakin yhden seuraavista sisältävää sulatinta (4) : kalsiitti, karkea poltettu kalkki, dolomiitti ja kvartsi.Device according to one of Claims 14 to 24, characterized in that the first feeding means (12) is configured to supply a feeding mixture (1) containing at least one of a melting (4) comprising calcite, coarse calcined lime, dolomite and quartz. 20155868 prh 16-01-201820155868 prh 16-01-2018 26. Jonkin patenttivaatimuksista 14 - 25 mukainen laite, tunnettuDevice according to one of Claims 14 to 25, characterized 30 siitä, että että ensimmäinen syöttöväline (12) on konfiguroitu syöttämään syöttöseosta (1), joka sisältää painoprosentteina seuraavia sisältävää mangaanimalmisintteriä (2):30, characterized in that the first feed means (12) is configured to feed a feed mixture (1) containing by weight manganese ore (2) containing: Mn: 40-55%,Mn: 40-55% 35 Fe: 1 - 10 %,35 Fe: 1-10% SiO2: 4 - 10 %,SiO 2 : 4-10%, MgO: 0,4 - 8 %,MgO: 0.4-8%, CaO: 1 - 15 %,CaO: 1-15% A2O3: 1 - 15 %,A 2 O 3 : 1-15% K2O: alle 1,5 % ja BaO: alle 0,6 %.K 2 O: less than 1.5% and BaO: less than 0.6%.
FI20155868A 2015-11-24 2015-11-24 Method and apparatus for preheating and smelting manganese ore sinter FI127451B (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
FI20155868A FI127451B (en) 2015-11-24 2015-11-24 Method and apparatus for preheating and smelting manganese ore sinter
AU2016360842A AU2016360842B2 (en) 2015-11-24 2016-11-23 Method for preheating and smelting manganese ore sinter
UAA201805936A UA122912C2 (en) 2015-11-24 2016-11-23 Method and apparatus for preheating and smelting manganese ore sinter
CN201680068082.0A CN108291273A (en) 2015-11-24 2016-11-23 For preheating and the method and apparatus of melting manganese ore sinter
CN202010360609.5A CN111394578B (en) 2015-11-24 2016-11-23 Method for preheating and smelting manganese ore sinter
EA201891065A EA033946B1 (en) 2015-11-24 2016-11-23 Method and apparatus for preheating and smelting manganese ore sinter
PCT/FI2016/050821 WO2017089651A1 (en) 2015-11-24 2016-11-23 Method and apparatus for preheating and smelting manganese ore sinter
EP16816320.2A EP3380638B1 (en) 2015-11-24 2016-11-23 Method and apparatus for preheating and smelting manganese ore sinter
BR112018010149-4A BR112018010149B1 (en) 2015-11-24 2016-11-23 METHOD FOR PRE-HEATING AND REDUCING FUSION OF MANGANESE ORE SINTER
ZA2018/03599A ZA201803599B (en) 2015-11-24 2018-05-30 "method for preheating and smelting manganese ore sinter."

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20155868A FI127451B (en) 2015-11-24 2015-11-24 Method and apparatus for preheating and smelting manganese ore sinter

Publications (2)

Publication Number Publication Date
FI20155868A FI20155868A (en) 2017-05-25
FI127451B true FI127451B (en) 2018-06-15

Family

ID=57590535

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20155868A FI127451B (en) 2015-11-24 2015-11-24 Method and apparatus for preheating and smelting manganese ore sinter

Country Status (9)

Country Link
EP (1) EP3380638B1 (en)
CN (2) CN111394578B (en)
AU (1) AU2016360842B2 (en)
BR (1) BR112018010149B1 (en)
EA (1) EA033946B1 (en)
FI (1) FI127451B (en)
UA (1) UA122912C2 (en)
WO (1) WO2017089651A1 (en)
ZA (1) ZA201803599B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114980A (en) * 2018-09-30 2019-01-01 河南省德耀节能科技股份有限公司 A kind of energy-efficient mineral hot furnace
CA3134962A1 (en) * 2019-03-27 2020-10-01 The Governing Council Of The University Of Toronto Methods for recovering a target metal from iron or steel slag using at least one of a carbothermic reduction process and a pyro-hydrometallurgical process
NL2026572B1 (en) * 2020-09-29 2022-05-30 Petrus Greyling Frederik Process and system for melting agglomerates
NL2029142B1 (en) * 2021-09-07 2023-03-21 Petrus Greyling Frederik Process for smelting a metalliferous feedstock
CN113981210A (en) * 2021-10-29 2022-01-28 吉铁铁合金有限责任公司 Production process for producing manganese series ferroalloy by roasting manganese ore

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU460313A1 (en) * 1973-05-29 1975-02-15 Днепропетровский Ордена Трудового Красного Знамени Металлургический Институт The method of preparation of the charge for smelting manganese metal
US4307872A (en) * 1980-07-21 1981-12-29 Lectromelt Corporation Apparatus for reducing ore
US4529439A (en) * 1984-09-17 1985-07-16 James C. Barber And Associates, Inc. Energy conservation during the smelting of ores
CN100415909C (en) * 2006-08-17 2008-09-03 偏关县晋电化工有限责任公司 Production method of silicomangan of sintering powder by rotary kiln and hot filling in ore-smelting electric furnace
CN100497683C (en) * 2007-07-13 2009-06-10 太原理工大学 Method for preparing low-carbon metal manganese iron by using manganese-poor powdered ore
CN101775508B (en) * 2010-01-29 2012-05-30 广西新思迪投资贸易有限公司 Production method of low-carbon ferromanganese
CN102041400B (en) * 2011-01-12 2012-11-07 董亚飞 Process and equipment for producing high-content manganese silicon alloy from low-grade ferromanganese ore
CN102230115B (en) * 2011-06-21 2013-03-20 重庆大学 Manganese-base vanadium-containing MnAlV alloy smelted by high-phosphorus manganese ores and smelting method thereof
CN104988264B (en) * 2015-05-28 2017-07-18 北京科技大学 A kind of method for sintering fume treatment and utilizing

Also Published As

Publication number Publication date
BR112018010149A2 (en) 2018-11-13
CN111394578A (en) 2020-07-10
WO2017089651A1 (en) 2017-06-01
EP3380638B1 (en) 2020-03-11
AU2016360842A1 (en) 2018-06-21
EP3380638A1 (en) 2018-10-03
ZA201803599B (en) 2021-01-27
BR112018010149B1 (en) 2021-10-19
EA201891065A1 (en) 2018-11-30
UA122912C2 (en) 2021-01-20
FI20155868A (en) 2017-05-25
EA033946B1 (en) 2019-12-12
CN108291273A (en) 2018-07-17
AU2016360842B2 (en) 2019-08-15
CN111394578B (en) 2021-10-15

Similar Documents

Publication Publication Date Title
FI127451B (en) Method and apparatus for preheating and smelting manganese ore sinter
KR101684378B1 (en) Method for refining hot metal in converter
KR20140084185A (en) Powder injection lance and method of refining molten iron using said powder injection lance
EP0184405B1 (en) Processes and apparatus for the smelting reduction of ores
EP2949765B1 (en) Composite briquette and method for making a steelmaking furnace charge
ES2372170T3 (en) PROCESS AND APPLIANCE TO PRODUCE MINERAL FIBERS.
CA1149175A (en) Recovery of steel from high phosphorous iron ores
CN104024439A (en) Process for the carbothermic or electrothermic production of crude iron or base products
KR101121701B1 (en) Process for production of granular metallic iron and equipment for the production
JPS5811710A (en) Improvement of copper refinement
JP2007277664A (en) Lime-based flux for refining
RU2247159C2 (en) Method of utilization of secondary raw materials containing iron, zinc and lead
JPS6050737B2 (en) Methods and equipment for increasing the value of metallurgical slag
ES2315921T3 (en) TREATMENT OF IODOS DE SIDERURGICAS MANUFACTURERS IN A FLOOR OVEN.
JP4779585B2 (en) Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace
RU2197530C1 (en) Method of production of desulfurized iron
JP4479541B2 (en) Method for producing high chromium molten steel
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
KR101552142B1 (en) Agent for dephosphorization and treatment method of molten metal using the same
KR100840264B1 (en) Magnesia-carbon coating material for the iron making vessel
JP5055794B2 (en) Method for producing reduced metal
JP6167852B2 (en) Method for producing sintered ore
CN110168113B (en) Dephosphorization method of molten iron and refining agent
JPS62228412A (en) Method for adding auxiliary material to metallurgical furnace
AU2022333208A1 (en) Method for producing a melt containing manganese