ES2927625T3 - Procedimiento y aparato para el seguimiento preciso de la carga disponible en un sistema de transferencia de energía por vía transcutánea - Google Patents
Procedimiento y aparato para el seguimiento preciso de la carga disponible en un sistema de transferencia de energía por vía transcutánea Download PDFInfo
- Publication number
- ES2927625T3 ES2927625T3 ES11850952T ES11850952T ES2927625T3 ES 2927625 T3 ES2927625 T3 ES 2927625T3 ES 11850952 T ES11850952 T ES 11850952T ES 11850952 T ES11850952 T ES 11850952T ES 2927625 T3 ES2927625 T3 ES 2927625T3
- Authority
- ES
- Spain
- Prior art keywords
- controller
- battery pack
- charge
- remaining
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/538—Regulation using real-time blood pump operational parameter data, e.g. motor current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/585—User interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
- A61M60/873—Energy supply devices; Converters therefor specially adapted for wireless or transcutaneous energy transfer [TET], e.g. inductive charging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
- A61M60/876—Implantable batteries
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/17—General characteristics of the apparatus with redundant control systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3507—Communication with implanted devices, e.g. external control
- A61M2205/3523—Communication with implanted devices, e.g. external control using telemetric means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8237—Charging means
- A61M2205/8243—Charging means by induction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/20—The network being internal to a load
- H02J2310/23—The load being a medical device, a medical implant, or a life supporting device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Human Computer Interaction (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electrotherapy Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Se proporcionan dispositivos y métodos mejorados para rastrear el consumo de energía y la carga disponible en un sistema de transferencia de energía transcutánea (TET). El método incluye medir la carga disponible en una batería y la tasa actual de consumo de energía en un dispositivo médico implantado, determinar el tiempo restante antes de que el nivel de carga de la batería alcance un nivel de umbral predeterminado y comunicar el tiempo restante a un usuario. (Traducción automática con Google Translate, sin valor legal)
Description
DESCRIPCIÓN
Procedimiento y aparato para el seguimiento preciso de la carga disponible en un sistema de transferencia de energía por vía transcutánea
SOLICITUDES RELACIONADAS
Esta solicitud reivindica la prioridad de la Patente provisional US61/425,162, presentada el 20 de diciembre de 2010 y titulada “Method and Apparatus for Accurately Tracking Available Charge in a Transcutaneous Energy Transfer System”.
SECTOR
La invención se refiere a los sistemas de transferencia transcutánea de energía (TET, Transcutaneous Energy Transfer) y, más concretamente, a un dispositivo y procedimiento mejorados para el seguimiento preciso de la carga de la batería en un sistema de TET y para proporcionar al paciente un tiempo de autonomía preciso de la batería. ESTADO DE LA TÉCNICA ANTERIOR
Muchos dispositivos médicos adaptados para su implantación presentan también necesidades de potencia altas, y deben ser conectados con frecuencia a fuentes de alimentación externas. Los sistemas de transferencia transcutánea de energía (TET) acoplados por inducción son cada vez más populares para su uso junto con estos dispositivos implantables de alta potencia. Se puede emplear un sistema de TET para complementar, reemplazar o cargar una fuente de energía implantada, tal como una batería recargable. A diferencia de otros tipos de sistemas de transferencia de energía, los sistemas de TET tienen la ventaja de poder proporcionar energía al dispositivo eléctrico y/o mecánico implantado, o recargar la fuente de energía interna, sin perforar la piel. De esta manera, se reducen las posibilidades de infección y se aumenta la comodidad y la conveniencia.
Los dispositivos de TET incluyen una bobina principal externa y una bobina secundaria implantada, separadas por capas intermedias de tejido. La bobina principal está diseñada para inducir corriente alterna en la bobina secundaria subcutánea, habitualmente para su transformación en corriente continua para alimentar un dispositivo implantado. Por lo tanto, los dispositivos de TET también suelen incluir un oscilador y otros circuitos eléctricos para proporcionar una corriente alterna adecuada a la bobina principal. Estos circuitos reciben, habitualmente, su energía de una fuente de energía externa.
Los sistemas de TET incluyen, comúnmente, un paquete de baterías recargables implantado, que puede ser utilizado para alimentar cualquier dispositivo implantado cuando la fuente de alimentación externa no está disponible. Sin embargo, cuando se desconectan de la fuente de alimentación externa, los pacientes a menudo no están seguros de cuánto tiempo durará el paquete de baterías interno antes de requerir un ciclo de carga. Los procedimientos de la técnica anterior para calcular la carga restante se basan en la tensión de la batería, no en la carga restante real. Debido a que la tensión de la batería no es lineal con respecto a la carga, estos procedimientos pueden notificar una carga casi total durante un largo período de tiempo y, a continuación, acercarse rápidamente al agotamiento total, en lugar de notificar una disminución lineal con el tiempo. Esta indicación engañosa de la carga de la batería puede suponer un riesgo extremadamente alto para pacientes que dependen de su sistema de TET implantado para sobrevivir, y que tal vez no se puedan volver a conectar inmediatamente a una fuente de alimentación o carga externa.
La Patente US2003/114899 describe un sistema de dispositivo implantable que puede alertar o informar a un paciente o a un médico sobre el estado de la batería recargable en un dispositivo médico implantado.
CARACTERÍSTICAS
Para superar los inconvenientes anteriores y otros, de los sistemas convencionales, la presente invención da a conocer un procedimiento y un dispositivo mejorados para el seguimiento de la carga y descarga de un paquete de baterías, o dispositivo de almacenamiento de carga, en un sistema de transferencia transcutánea de energía (TET). La invención está definida por las reivindicaciones independientes 1 y 6.
Un aspecto de la invención da a conocer un procedimiento de seguimiento del consumo de energía y la reposición en un sistema de transferencia transcutánea de energía, que incluye determinar la carga actual que queda en un paquete de baterías y medir la velocidad actual de consumo de potencia para un dispositivo de asistencia cardíaca, determinar el tiempo restante antes de que el nivel de energía del paquete de baterías esté por debajo de un nivel umbral predeterminado a la velocidad medida de consumo de potencia, y comunicar a un usuario el tiempo que queda antes de que se agote el paquete de baterías.
En una realización, estas etapas se repiten de manera iterativa para actualizar el tiempo restante notificado al usuario.
En ciertas realizaciones, el tiempo que queda puede ser comunicado a un usuario a través de una pantalla externa, mientras que en otras realizaciones se utiliza una señal vibratoria o auditiva para comunicar el tiempo que queda antes de que se agote el paquete de baterías.
Un segundo aspecto de la invención da a conocer un dispositivo implantable que incluye un dispositivo de asistencia cardíaca, un paquete de baterías recargables y un controlador. El controlador está conectado al dispositivo de asistencia cardíaca y al paquete de baterías recargables. El controlador está configurado para medir el nivel de carga del paquete de baterías y la velocidad de consumo de potencia del dispositivo de asistencia cardíaca. El controlador está configurado, además, para calcular el tiempo que queda antes de que el nivel de carga del paquete de baterías alcance un nivel umbral predeterminado, y comunicar ese tiempo a un usuario.
En una realización, el controlador está configurado, además, para medir repetidamente el nivel de carga de las baterías y la velocidad de consumo de potencia y comunicar de manera continua al usuario el tiempo restante actualizado. El controlador puede predecir el tiempo restante de las baterías basándose en la monitorización del historial de carga y en la capacidad restante de las baterías.
En ciertas realizaciones, el controlador comunica al usuario el tiempo restante a través de una pantalla externa. En otras realizaciones, el controlador puede utilizar una señal vibratoria o auditiva para comunicar al usuario el tiempo restante.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La invención se comprenderá mejor a partir de la siguiente descripción detallada tomada junto con los dibujos adjuntos, en los que:
la figura 1 es un diagrama de un sistema de TET, a modo de ejemplo, con el dispositivo implantable de la presente invención;
la figura 2 es una ilustración de una bobina secundaria implantable a modo de ejemplo;
la figura 3 es una ilustración de una bobina principal a modo de ejemplo;
la figura 4 es una vista frontal, en perspectiva, de un dispositivo de asistencia ventricular, a modo de ejemplo, alimentado por un sistema de TET;
la figura 5 es un diagrama de un controlador implantable, a modo de ejemplo, que contiene una circuitería de potencia y de control, así como un paquete de baterías recargables;
la figura 6 es una ilustración de una pantalla, a modo de ejemplo, para comunicar a un usuario el tiempo de carga restante; y
la figura 7 es un diagrama de circuito, a modo de ejemplo, del controlador mostrado en la figura 1.
DESCRIPCIÓN DETALLADA
A continuación se describirán ciertas realizaciones a modo de ejemplo para proporcionar una comprensión general de los principios de los procedimientos y dispositivos dados a conocer en el presente documento. Uno o varios ejemplos de estas realizaciones se muestran en los dibujos adjuntos. Los expertos en la materia comprenderán que los procedimientos y dispositivos específicamente descritos en el presente documento y mostrados en los dibujos adjuntos son realizaciones, a modo de ejemplo, no limitativas, y que el alcance de la presente invención está definido solamente por las reivindicaciones. Las características mostradas o descritas junto con una realización a modo de ejemplo pueden ser combinadas con las características de otras realizaciones. Está previsto que dichas modificaciones y variaciones estén incluidas dentro del alcance de la presente invención.
Un sistema de transferencia transcutánea de energía (TET) funciona acoplando inductivamente una bobina principal a una bobina secundaria. La bobina principal, configurada para su disposición fuera del paciente, está conectada a una fuente de alimentación y crea un campo magnético variable en el tiempo. Cuando se alinea correctamente con una bobina secundaria, el campo magnético variable en el tiempo de la bobina principal induce una corriente eléctrica alterna en la bobina secundaria. La bobina secundaria está configurada para su implantación en el interior del paciente, y puede ser conectada a un controlador que aprovecha la corriente eléctrica y la utiliza, por ejemplo, para cargar un paquete de baterías o alimentar un dispositivo implantable, tal como un dispositivo de asistencia ventricular (VAD, Ventricular Assist Device), un dispositivo de asistencia cardíaca u otro dispositivo implantable. Al utilizar la inducción para transferir energía, los sistemas de TET evitan tener que mantener un paso abierto a través de la piel del paciente para alimentar un dispositivo implantable.
Los sistemas de TET incluyen un paquete de baterías recargables implantado, que permite al paciente pasar una cierta cantidad de tiempo desconectado de la bobina principal externa y de la fuente de alimentación. Un controlador conectado al paquete de baterías recargables está configurado para medir su carga y alertar al paciente, basándose en la autonomía restante, cuando la batería está casi agotada.
Los procedimientos y dispositivos de la técnica anterior determinan la carga restante basándose en la tensión del
propio paquete de baterías. Sin embargo, esto puede ser engañoso, debido a que la relación entre la tensión de las baterías y la carga restante no es lineal. Como resultado, las baterías pueden notificar una carga completa durante un período de tiempo más largo de lo esperado. Peor aún, después de que la tensión medida de las baterías comienza a descender, puede disminuir rápidamente hasta un estado de agotamiento total. Esto supone un riesgo extremadamente elevado para los pacientes con sistemas de TET implantados debido a que, en muchos casos, su consciencia y supervivencia depende del funcionamiento del paquete de baterías y del dispositivo de asistencia cardíaca conectado.
La presente invención resuelve estos problemas dando a conocer un dispositivo implantable y un procedimiento de seguimiento del consumo de energía en un sistema de TET que mide la carga que queda en un paquete de baterías, así como la velocidad de consumo de potencia de un dispositivo de asistencia cardíaca conectado, calcula el tiempo restante antes de que el nivel de carga del paquete de baterías alcance un nivel umbral predeterminado a la velocidad de consumo medida, y comunica a un usuario el tiempo restante. Este procedimiento proporciona a los usuarios una indicación más precisa del tiempo restante antes de que se requiera un ciclo de carga. Esto, a su vez, mejora la calidad de vida del paciente, al proporcionar una estimación más segura del período de tiempo durante el cual la fuente de alimentación externa no es necesaria.
La figura 1 muestra un diagrama de un sistema de TET, a modo de ejemplo, de la presente invención. Un dispositivo implantable comprende una pluralidad de bobinas secundarias 100, o una sola bobina secundaria, adaptada para su disposición en un paciente. La bobina o las bobinas secundarias están conectadas a un controlador 102, que está adaptado para recibir corriente eléctrica desde una sola o una pluralidad de bobinas secundarias, para su utilización o almacenamiento. A continuación, el controlador puede dirigir la corriente eléctrica para, por ejemplo, cargar una batería (que puede estar integrada con el controlador 102) o alimentar un dispositivo de asistencia ventricular 104 u otro dispositivo implantable.
La figura 1 también muestra una realización a modo de ejemplo de la bobina principal 106, que está adaptada para permanecer fuera del cuerpo y transferir energía de manera inductiva a la bobina o las bobinas secundarias. La bobina principal 106 está conectada a una fuente de alimentación externa, que puede incluir, por ejemplo, circuitos de control y acondicionamiento. Opcionalmente, se pueden utilizar simultáneamente más de una bobina principal 106 con las múltiples bobinas secundarias 100, para reducir el tiempo requerido para cargar una batería implantada. En uso, la bobina o las bobinas principales 106 están dispuestas sobre el área de las bobinas secundarias 100, de modo que estén sustancialmente en alineación axial. La fuente de potencia 108, que puede incluir un circuito de acondicionamiento para producir un perfil de tensión y corriente de salida deseados, es activada a continuación para producir un campo magnético variable en el tiempo en la bobina o las bobinas principales 106. El campo magnético variable en el tiempo induce el flujo de una corriente eléctrica en las bobinas secundarias 100 y la corriente es distribuida posteriormente al controlador 102 y a cualquier dispositivo de asistencia ventricular 104 o dispositivos de almacenamiento de carga conectados.
La figura 2 muestra una bobina secundaria 200, a modo de ejemplo, adaptada para su disposición en un paciente. La bobina secundaria 200 presenta una parte de bobina 202 que consta de varias vueltas de cable conductor, una parte de conexión 204 y una parte de interfaz 206 opcional. La parte de bobina 202 puede variar en tamaño y vueltas de cable, dependiendo de numerosos factores, tal como el sitio de implantación previsto. En una realización, a modo de ejemplo, la parte de bobina 202 comprende 12 vueltas de alambre de Litz en una bobina de dos pulgadas de diámetro. Además del cable, la bobina 202 puede contener un núcleo ferroso y un circuito electrónico que rectifica la corriente alterna y se comunica con la bobina externa y el controlador para proporcionar una tensión de salida de CC regulada. Una bobina secundaria, a modo de ejemplo, se describe en la Patente US2003/0171 792. La parte de bobina 202 está acoplada eléctricamente a la parte de conexión 204, que puede estar formada a partir de un segmento del mismo cable utilizado para formar la parte de bobina. La longitud de la parte de conexión 204 también puede variar en función, por ejemplo, de la distancia desde el sitio de implantación de una bobina secundaria al de un controlador.
La parte de conexión 204 también está eléctricamente acoplada a la parte de interfaz 206 opcional. La parte de interfaz 206 se utiliza para conectar la bobina secundaria 200 a un controlador 102. La parte de interfaz puede incluir cualquier conector eléctrico conocido en la técnica, para facilitar la conexión modular a un controlador 102, o puede consistir en un extremo terminal de la parte de conexión 204 que es capaz de ser conectado eléctricamente a un controlador.
La figura 3 muestra una bobina principal 300, a modo de ejemplo, configurada para transmitir energía de manera transcutánea a una bobina secundaria como la mostrada en la figura 2. De manera similar a la bobina secundaria 200 de la figura 2, la bobina principal 300 puede incluir una parte de bobina 302, una parte de conexión 304 y una parte de interfaz 306. Sin embargo, la bobina principal 300 está adaptada para su disposición fuera del paciente, e induce corriente eléctrica en la bobina secundaria 200, emitiendo un campo magnético variable en el tiempo desde la parte de bobina 302.
La parte de bobina 302 puede variar en tamaño y vueltas de cable dependiendo de varios factores que incluyen, por ejemplo, el tamaño de cualquier bobina secundaria con la que se utilizará. La parte de bobina 302 está acoplada eléctricamente a la parte de conexión 304. La parte de conexión 304 puede estar formada a partir de una parte del cable utilizado para formar la parte de bobina 302. La parte de conexión 304 puede variar en longitud dependiendo de cualquiera de varios factores que incluyen, por ejemplo, la distancia a la que está el paciente de una fuente de alimentación. La parte de conexión 304 está, a su vez, acoplada eléctricamente a la parte de interfaz 306, que está adaptada para ser conectada a una fuente de alimentación (o a una circuitería de control o acondicionamiento asociada) tal como la fuente de alimentación 108 de la figura 1. La parte de interfaz 306 puede incluir cualquier conector eléctrico conocido en la técnica para facilitar las conexiones modulares a la fuente de alimentación externa 108, o puede consistir en un extremo terminal de la parte de conexión 304 que está adaptado para conectarse eléctricamente a la fuente de alimentación 108.
La bobina principal 300 se utiliza para transferir energía de manera transcutánea con el fin, finalmente, de dar soporte a un dispositivo implantable, tal como el dispositivo de asistencia ventricular (VAD) 400 representado en la figura 4. El dispositivo de asistencia ventricular 400 ayuda al corazón a hacer circular la sangre por el cuerpo. Si bien un dispositivo de asistencia ventricular es una realización, a modo de ejemplo, de un dispositivo implantable que se puede beneficiar de los sistemas de TET, en modo alguno es el único dispositivo implantable que puede ser alimentado de esta manera. Se pueden utilizar otros dispositivos de asistencia cardiaca, así como muchos otros tipos de dispositivos implantables alimentados, con el sistema de la presente invención.
La figura 1 muestra las bobinas secundarias 100 conectadas al dispositivo de asistencia ventricular 104 a través de un controlador tal como el mostrado en la figura 5. La figura 5 representa un controlador integrado y un paquete de baterías 500 que está adaptado para su disposición en un paciente. El paquete de baterías recargables incluye celdas de batería 502 que pueden ser cargadas utilizando la corriente eléctrica recibida de la bobina o las bobinas secundarias 100. La corriente eléctrica recibida de la bobina o las bobinas secundarias 100 es procesada a través de la circuitería 514 de interfaz de TET, y es acondicionada para ser utilizada con las celdas de batería 502 a través de la circuitería 518 de cargador o para alimentar la electrónica interna y el dispositivo de asistencia ventricular 104 mediante el circuito 504 de regulación de potencia. El circuito 504 de regulación de potencia puede contener cualquiera de varios diseños de circuito conocidos en la técnica, que son efectivos para convertir la tensión y la corriente recibidos del circuito 514 de interfaz de TET en una tensión y corriente de salida deseadas que pueden ser utilizadas para alimentar la circuitería electrónica interna 506, 508, 510, 512 y el dispositivo de asistencia ventricular 104 a través del controlador 516 del motor de la bomba de sangre.
El controlador 500 también puede incluir circuitería 506 y 516 de VAD, que está configurada para controlar el dispositivo de asistencia ventricular 104. La circuitería de VAD puede incluir características de monitorización, de modo que cualquier fallo en el dispositivo de asistencia ventricular 104 sea detectado en el controlador 500. El controlador 500 puede incluir, además, un procesador central 510, que coordina las funciones ejecutadas por la circuitería 518 de cargador, la circuitería 504 de regulación de potencia, la circuitería 516 del controlador del motor de la bomba de sangre y la circuitería 506 de A/D.
El procesador 510 monitoriza, asimismo, la función de las bobinas secundarias 100 y del dispositivo de asistencia ventricular 104. Si se detecta un fallo en cualquiera de los componentes, el procesador 510 puede utilizar el módulo 508 de telemetría de RF para permitirle comunicar información del fallo a un usuario a través de una pantalla o consola de control externa. La pantalla o consola de control podría adoptar la forma de un ordenador de escritorio común, un teléfono móvil, un PDA, una consola de control al lado de la cama o cualquier otro tipo de dispositivo informático o de señalización conocido en la técnica. La información del fallo comunicada a un usuario también puede ser en forma de una alarma emitida por una pantalla o consola de control, tal como se ha descrito anteriormente. Alternativamente, el controlador 500 puede incluir un módulo 512 de alarma, que puede emitir una alarma vibratoria en caso de fallo. Además, la fuente de alimentación externa 108 también se puede configurar para detectar fallos en una bobina secundaria 100 acoplada y alertar a un paciente en consecuencia.
El controlador 500 incluye, asimismo, circuitería 520 de medición de combustible, que está configurada para medir tanto la carga actual que queda en las celdas de batería 502 como la velocidad de consumo de potencia del VAD 104. Para determinar la carga que queda, la circuitería 520 de medición de combustible registra una pluralidad de métricas, tales como impedancia de la batería, tensión del circuito abierto, temperatura, velocidad de descarga y envejecimiento de la celda. La medición resultante es más precisa que los sistemas de la técnica anterior, que miden la carga basándose solamente en la tensión.
La monitorización de estas métricas de celdas de batería adicionales tiene también otros beneficios. Por ejemplo, la velocidad de carga puede ser ajustada basándose en la temperatura de la celda de batería, para evitar períodos prolongados de tiempo a altas temperaturas. Reducir la temperatura de funcionamiento de la batería de esta manera retrasa el envejecimiento de la celda, y reduce la necesidad de cambiar el paquete de baterías. Además, se pueden realizar ciclos de carga/descarga totalmente monitorizados, mientras se está conectado de manera segura a una fuente de alimentación externa. La realización periódica de estos ciclos completos de descarga/carga mejora la vida útil del ciclo cuando el paciente está lejos de la fuente de alimentación externa.
Un sistema a modo de ejemplo para determinar con precisión la carga de la batería es la plataforma bq20z95 de la firma Texas Instruments, Inc. con la tecnología de medición Impedance Track™. Se puede encontrar más información sobre este sistema en http://focus.ti.com/lit/an/slua364/slua364.pdf y http://focus.ti.com/lit/ds/slus757b/s1us757b.pdf. Un experto en la materia apreciará que se pueden utilizar otros sistemas de seguimiento de la energía que proporcionen una precisión similar o mejor, y la plataforma bq20z95 se ofrece solo a modo de ejemplo.
Después de determinar un nivel preciso de carga restante en las celdas de batería 502 y la velocidad de consumo de potencia del VAD 104, la circuitería 520 de medición de combustible o el microprocesador 510 pueden calcular el tiempo que queda, basándose en el nivel actual de consumo, hasta que la batería alcance un nivel umbral predeterminado. Esto se puede hacer, por ejemplo, dividiendo una cantidad de carga medida (que se puede expresar como una unidad de carga eléctrica) por una velocidad de consumo medida (que se puede expresar como una unidad de carga eléctrica por unidad de tiempo). El resultado es el tiempo esperado hasta que se agote la cantidad de carga medida. Este cálculo puede ser ajustado para medir el tiempo esperado hasta que se alcance un nivel de carga umbral predeterminado, simplemente restando el nivel de carga umbral del nivel de carga medido antes del cálculo. Un experto en la materia puede apreciar procedimientos alternativos para calcular el tiempo que queda hasta que la batería alcance un nivel predeterminado, todos los cuales se consideran dentro del alcance de la invención.
El nivel umbral predeterminado puede ser establecido por encima del nivel de agotamiento de la batería, para proporcionar algún tiempo de reserva y permitir que un paciente acceda a una fuente de alimentación externa. Además, se pueden establecer múltiples niveles umbral para proporcionar a un paciente múltiples advertencias a medida que la propia batería se agota.
El microprocesador 510 puede utilizar el módulo 508 de telemetría de RF o el módulo 512 de alarma para comunicar a un usuario el tiempo que queda. Por ejemplo, y tal como se muestra en la figura 6, el módulo 508 de telemetría de RF se puede utilizar para comunicar a un usuario el tiempo que queda, a través de una pantalla 600 externa. La pantalla 600 externa puede ser cualquier pantalla conocida en la técnica, incluidas las pantallas integradas en consolas de control o equipos de diagnóstico, un PDA, ordenadores portátiles o de escritorio, etc.
Cuando funciona con la potencia de la batería, la pantalla 600 externa puede ser configurada para mostrar la velocidad de consumo 602 actual y la carga restante 604 actual medida por la circuitería de medición de combustible y de cargador 518, el nivel umbral 608 en uso y el tiempo que queda 606 hasta que la batería alcance ese nivel umbral. Cuando la bobina principal 106 está acoplada con la bobina secundaria 100, la pantalla 600 externa puede ser configurada para mostrar el tiempo hasta que la batería esté completamente cargada 610. Un experto en la materia apreciará que muchas combinaciones diferentes de estos y otros datos de funcionamiento pueden ser comunicadas desde el controlador 500 a la pantalla 600 externa utilizando el módulo 508 de telemetría de RF. En otras realizaciones, el controlador 500 puede comunicar al paciente el tiempo que queda mediante una señal vibratoria. En estas realizaciones, el módulo 512 de alarma está configurado para crear la señal vibratoria, o se puede utilizar el módulo 508 de telemetría de RF para comunicarse con un dispositivo de señalización auditiva o vibratoria situado fuera del controlador 500.
En el caso de la señalización auditiva, la señal puede tener la forma de un anuncio del tiempo que queda, o puede ser una serie de pitidos que indican el nivel de carga que queda. En el caso de señalización vibratoria, la señal puede ser una serie de encendidos-apagados de vibración o vibraciones cronometradas que señalan el nivel de carga que queda. Por ejemplo, si el nivel umbral se estableció en 30 minutos, cuando la capacidad de carga de las celdas de batería 502 alcance los 30 minutos, el módulo 512 de alarma puede crear una señal vibratoria durante 3 segundos cada 30 segundos, hasta que se aplique la fuente de alimentación externa. De manera similar, un nivel de umbral críticamente bajo puede ser establecido en 15 minutos y, cuando la capacidad de las celdas de batería 502 alcanza ese nivel, el módulo 512 de alarma puede crear una señal vibratoria durante 3 segundos cada 10 segundos hasta que se aplica la TET externa. Los umbrales de alarma y los patrones de vibración pueden ser configurados en el software según los requisitos del paciente, del profesional de la salud o del fabricante. Como último recurso, el VAD puede ser configurado para entrar automáticamente en un modo de bajo consumo, con el fin de extender el tiempo de funcionamiento del dispositivo.
El procedimiento de la presente invención puede ser ejecutado una vez para determinar el tiempo que queda hasta que las celdas de batería 502 alcancen un nivel umbral determinado, o las etapas del procedimiento pueden ser iteradas repetidamente para proporcionar una estimación actualizada de manera continua del tiempo que queda, que puede cambiar debido a variaciones en la potencia consumida por el VAD. Un experto en la materia apreciará que también es posible un híbrido de estos dos procedimientos, las etapas del procedimiento pueden ser iteradas según una planificación, por ejemplo, una vez cada dos minutos, y se puede utilizar un temporizador en el ínterin para realizar una cuenta atrás desde la última estimación de tiempo restante calculada.
La figura 7 muestra un diagrama de circuito, a modo de ejemplo, para el dispositivo implantable de la presente invención. El diagrama muestra las conexiones eléctricas entre la circuitería del VAD (incluido el controlador 516 del
motor de la bomba de sangre), las celdas de batería 502, la circuitería 520 de medición de combustible, la circuitería 518 de cargador de batería, el microprocesador 510, el módulo 508 de telemetría de RF y el módulo 512 de alarma. Un experto en la materia apreciará que este es solo un diagrama de circuito a modo de ejemplo, y que existen varias configuraciones adicionales que también serían efectivas para crear el dispositivo implantable de la presente invención.
El sistema de la presente invención proporciona varios beneficios sobre los sistemas de TET de la técnica anterior. Por ejemplo, el procedimiento de la presente invención proporciona una estimación más precisa del tiempo que queda hasta que el paquete de baterías recargables alcance un nivel umbral predeterminado. Esto permite a los pacientes planificar con mayor confianza su tiempo lejos de una fuente de alimentación externa, y mejora su calidad de vida.
Un experto en la materia apreciará características y ventajas adicionales de la invención basándose en las realizaciones descritas anteriormente. En consecuencia, la invención no debe estar limitada a lo que se ha mostrado y descrito en concreto, excepto lo indicado en las reivindicaciones adjuntas.
Claims (13)
1. Procedimiento para el seguimiento preciso de la carga disponible almacenada en un sistema de transferencia transcutánea de energía, que comprende:
utilizar circuitería (520) de medición de combustible para registrar una pluralidad de métricas de celdas de batería de un sistema de energía transcutánea asociado con un dispositivo implantable (104, 400), incluyendo dicha pluralidad de métricas la temperatura de la batería;
utilizar un controlador (500) para determinar la carga actual que queda en un paquete de baterías recargables (502) basándose en dicha pluralidad de métricas;
utilizar la circuitería (520) de medición de combustible para medir la velocidad actual de consumo de potencia del dispositivo implantable (104, 400);
utilizar el controlador (500) para calcular el tiempo que queda antes de que el nivel de energía del paquete de baterías (502) esté por debajo de un nivel umbral predeterminado a la velocidad de consumo de energía medida; y utilizar el controlador (500) para comunicar a un usuario el tiempo que queda antes de que se agote el paquete de baterías (502).
2. Procedimiento, según la reivindicación 1, en el que las etapas son repetidas de manera iterativa para actualizar el tiempo restante antes de que se agote el paquete de baterías.
3. Procedimiento, según la reivindicación 1, en el que el tiempo que queda se comunica al usuario a través de una pantalla (600) externa.
4. Procedimiento, según la reivindicación 1, en el que el tiempo que queda se comunica al usuario a través de una señal vibratoria interna.
5. Procedimiento, según la reivindicación 1, en el que el tiempo que queda se comunica al usuario a través de una señal auditiva externa.
6. Dispositivo implantable, que comprende:
un dispositivo de asistencia implantable (104, 400);
un paquete de baterías recargables (502); y
un controlador (500) conectado al dispositivo de asistencia implantable (104, 400) y al paquete de baterías recargables;
en el que el controlador (500) está configurado para:
medir el nivel de carga del paquete de baterías (502), basándose en una pluralidad de métricas de celdas de batería registradas por la circuitería (520) de medición de combustible, incluyendo dichas métricas la temperatura de la batería,
medir una velocidad de consumo de potencia del dispositivo de asistencia implantable (104, 400),
calcular el tiempo que queda antes de que el nivel de energía del paquete de baterías alcance un nivel umbral predeterminado y
comunicar a un usuario el tiempo que queda.
7. Dispositivo, según la reivindicación 6, en el que el controlador (500) mide repetidamente el nivel de carga disponible y la velocidad de consumo de energía, y comunica de manera continua al usuario el tiempo que queda actualizado.
8. Dispositivo, según la reivindicación 6, en el que el controlador (500) comunica al usuario el tiempo que queda a través de una pantalla (600) externa.
9. Dispositivo, según la reivindicación 6, en el que el controlador (500) comunica al usuario el tiempo que queda a través de una señal vibratoria.
10. Dispositivo, según la reivindicación 6, en el que el controlador (500) comunica al usuario el tiempo que queda a través de una señal auditiva.
11. Dispositivo, según la reivindicación 6, en el que el dispositivo de asistencia implantable (104, 400) es un dispositivo de asistencia ventricular.
12. Dispositivo, según la reivindicación 6, en el que el controlador (500) está configurado, además, para controlar una velocidad de carga del paquete de baterías recargables basándose, en parte, en la temperatura de la batería.
13. Procedimiento, según la reivindicación 1, que comprende, además:
utilizar el controlador (500) para recargar el paquete de baterías recargables a una velocidad de carga de la batería y controlar la velocidad de carga de la batería basándose, en parte, en la temperatura de la batería.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201061425162P | 2010-12-20 | 2010-12-20 | |
PCT/US2011/065463 WO2012087816A2 (en) | 2010-12-20 | 2011-12-16 | Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2927625T3 true ES2927625T3 (es) | 2022-11-08 |
Family
ID=46235249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES11850952T Active ES2927625T3 (es) | 2010-12-20 | 2011-12-16 | Procedimiento y aparato para el seguimiento preciso de la carga disponible en un sistema de transferencia de energía por vía transcutánea |
Country Status (6)
Country | Link |
---|---|
US (1) | US9220826B2 (es) |
EP (2) | EP2654883B1 (es) |
JP (1) | JP2014502528A (es) |
DK (1) | DK2654883T3 (es) |
ES (1) | ES2927625T3 (es) |
WO (1) | WO2012087816A2 (es) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8766788B2 (en) | 2010-12-20 | 2014-07-01 | Abiomed, Inc. | Transcutaneous energy transfer system with vibration inducing warning circuitry |
EP2654878B1 (en) | 2010-12-20 | 2019-05-15 | Abiomed, Inc. | Transcutaneous energy transfer system with multiple secondary coils |
US8620447B2 (en) | 2011-04-14 | 2013-12-31 | Abiomed Inc. | Transcutaneous energy transfer coil with integrated radio frequency antenna |
US9002468B2 (en) | 2011-12-16 | 2015-04-07 | Abiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
US9283397B2 (en) | 2012-01-31 | 2016-03-15 | Christopher C. Stancer | Charge control for high voltage therapy energy storage component |
US9630018B2 (en) * | 2012-01-31 | 2017-04-25 | Medtronic, Inc. | Charge control for high voltage therapy energy storage component |
US9805863B2 (en) | 2012-07-27 | 2017-10-31 | Thoratec Corporation | Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays |
EP2878061B1 (en) | 2012-07-27 | 2023-10-25 | Tc1 Llc | Thermal management for implantable wireless power transfer systems |
WO2014018972A1 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Computer modeling for resonant power transfer systems |
US10525181B2 (en) | 2012-07-27 | 2020-01-07 | Tc1 Llc | Resonant power transfer system and method of estimating system state |
EP2878062A4 (en) | 2012-07-27 | 2016-04-20 | Thoratec Corp | RESONANT COILS AND RESONANT TRANSMISSION SYSTEMS |
US9287040B2 (en) | 2012-07-27 | 2016-03-15 | Thoratec Corporation | Self-tuning resonant power transfer systems |
US10383990B2 (en) | 2012-07-27 | 2019-08-20 | Tc1 Llc | Variable capacitor for resonant power transfer systems |
US9825471B2 (en) | 2012-07-27 | 2017-11-21 | Thoratec Corporation | Resonant power transfer systems with protective algorithm |
EP2746874A3 (en) * | 2012-12-19 | 2017-11-08 | Seiko Epson Corporation | Electronic device having power generation function, control method of electronic device having power generation function, and portable electronic device having power generation function, and control method of portable electronic device having power generation function |
US9364596B2 (en) | 2013-01-04 | 2016-06-14 | HeartWave, Inc. | Controller and power source for implantable blood pump |
US9680310B2 (en) | 2013-03-15 | 2017-06-13 | Thoratec Corporation | Integrated implantable TETS housing including fins and coil loops |
EP2984731B8 (en) | 2013-03-15 | 2019-06-26 | Tc1 Llc | Malleable tets coil with improved anatomical fit |
EP3072210B1 (en) | 2013-11-11 | 2023-12-20 | Tc1 Llc | Resonant power transfer systems with communications |
WO2015070200A1 (en) | 2013-11-11 | 2015-05-14 | Thoratec Corporation | Resonant power transfer systems with communications |
US9855437B2 (en) | 2013-11-11 | 2018-01-02 | Tc1 Llc | Hinged resonant power transfer coil |
WO2015134871A1 (en) | 2014-03-06 | 2015-09-11 | Thoratec Corporation | Electrical connectors for implantable devices |
US9641012B2 (en) | 2014-04-18 | 2017-05-02 | Medtronic, Inc. | Methods, implantable medical devices, and systems that abort a high voltage charge when a transformer is impaired |
EP4213298A1 (en) | 2014-09-22 | 2023-07-19 | Tc1 Llc | Antenna designs for communication between a wirelessly powered implant to an external device outside the body |
CN107223062B (zh) | 2014-10-01 | 2019-12-17 | 心脏器械股份有限公司 | 具有更新的备用控制器系统 |
EP3204989B1 (en) | 2014-10-06 | 2019-08-21 | Tc1 Llc | Multiaxial connector for implantable devices |
WO2017040317A1 (en) * | 2015-08-28 | 2017-03-09 | Thoratec Corporation | Blood pump controllers and methods of use for improved energy efficiency |
US10148126B2 (en) | 2015-08-31 | 2018-12-04 | Tc1 Llc | Wireless energy transfer system and wearables |
EP3902100A1 (en) | 2015-10-07 | 2021-10-27 | Tc1 Llc | Resonant power transfer systems having efficiency optimization based on receiver impedance |
EP3377136B1 (en) | 2015-11-20 | 2020-05-06 | Tc1 Llc | Energy management of blood pump controllers |
WO2017087728A1 (en) | 2015-11-20 | 2017-05-26 | Tc1 Llc | Improved connectors and cables for use with ventricle assist systems |
EP4084271A1 (en) | 2016-09-21 | 2022-11-02 | Tc1 Llc | Systems and methods for locating implanted wireless power transmission devices |
US11197990B2 (en) | 2017-01-18 | 2021-12-14 | Tc1 Llc | Systems and methods for transcutaneous power transfer using microneedles |
CA3066361A1 (en) | 2017-06-07 | 2018-12-13 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
EP3735733B1 (en) | 2018-01-04 | 2024-01-17 | Tc1 Llc | Systems and methods for elastic wireless power transmission devices |
DE102018201030A1 (de) | 2018-01-24 | 2019-07-25 | Kardion Gmbh | Magnetkuppelelement mit magnetischer Lagerungsfunktion |
WO2019152875A1 (en) | 2018-02-01 | 2019-08-08 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
DE102018206754A1 (de) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Verfahren und Vorrichtung zur Bestimmung der Temperatur an einer Oberfläche sowie Verwendung des Verfahrens |
DE102018206725A1 (de) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Empfangseinheit, Sendeeinheit, Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung |
DE102018206724A1 (de) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung |
JP2022540616A (ja) | 2019-07-12 | 2022-09-16 | シファメド・ホールディングス・エルエルシー | 血管内血液ポンプならびに製造および使用の方法 |
WO2021016372A1 (en) | 2019-07-22 | 2021-01-28 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
WO2021062265A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
WO2021062270A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US11883675B2 (en) | 2019-12-20 | 2024-01-30 | Medtronic, Inc. | Transcutaneous energy transfer system including alarm |
US11497905B2 (en) * | 2020-05-13 | 2022-11-15 | Medtronic, Inc. | Algorithm for utilizing multiple inputs to modulate the charging rate of a fully implantable system |
CN114123368A (zh) * | 2020-09-01 | 2022-03-01 | 深圳迈瑞生物医疗电子股份有限公司 | 医疗设备及其控制方法和存储介质 |
US11699551B2 (en) | 2020-11-05 | 2023-07-11 | Kardion Gmbh | Device for inductive energy transmission in a human body and use of the device |
Family Cites Families (204)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL278413A (es) | 1961-05-15 | |||
US3195540A (en) | 1963-03-29 | 1965-07-20 | Louis C Waller | Power supply for body implanted instruments |
US3357434A (en) | 1964-04-06 | 1967-12-12 | Avco Corp | Inductively linked receiver |
US3357432A (en) | 1965-02-09 | 1967-12-12 | Edwards Lab Inc | Anastomotic coupling |
JPS50497Y1 (es) | 1970-08-13 | 1975-01-09 | ||
US3867950A (en) | 1971-06-18 | 1975-02-25 | Univ Johns Hopkins | Fixed rate rechargeable cardiac pacemaker |
US3756246A (en) | 1971-07-15 | 1973-09-04 | American Optical Corp | Apparatus for externally determining actual output of an implanted energy source |
FR2179507B1 (es) | 1972-04-10 | 1975-03-21 | Drusch Gaston | |
US3888260A (en) | 1972-06-28 | 1975-06-10 | Univ Johns Hopkins | Rechargeable demand inhibited cardiac pacer and tissue stimulator |
US3824129A (en) | 1973-03-14 | 1974-07-16 | Mallory & Co Inc P R | Heart pacer rechargeable cell and protective control system |
JPS5232625B2 (es) | 1973-03-29 | 1977-08-23 | ||
US3987799A (en) | 1973-07-12 | 1976-10-26 | Coratomic Inc. | Heart pacer |
US3866616A (en) | 1973-07-12 | 1975-02-18 | Coratomic | Heart pacer |
US3942535A (en) | 1973-09-27 | 1976-03-09 | G. D. Searle & Co. | Rechargeable tissue stimulating system |
US3915038A (en) | 1973-10-09 | 1975-10-28 | Walter Malin | Fiber board cutter |
US3934177A (en) | 1975-01-09 | 1976-01-20 | Stephen Horbach | Heat sink casing for circuit board components |
US4068292A (en) | 1975-03-27 | 1978-01-10 | International Medical Electronics, Inc. | Electrostatic shield for diathermy treatment head |
US4012769A (en) | 1975-08-04 | 1977-03-15 | Thermalloy Incorporated | Heat sink with parallel flat faces |
US4071032A (en) | 1976-01-29 | 1978-01-31 | Pacesetter Systems Inc. | Implantable living tissue stimulators |
US4041955A (en) | 1976-01-29 | 1977-08-16 | Pacesetter Systems Inc. | Implantable living tissue stimulator with an improved hermetic metal container |
US4011499A (en) | 1976-02-11 | 1977-03-08 | The Bendix Corporation | Low loss a.c. voltage regulator |
US4134408A (en) | 1976-11-12 | 1979-01-16 | Research Corporation | Cardiac pacer energy conservation system |
US4266532A (en) | 1976-11-17 | 1981-05-12 | Electro-Biology, Inc. | Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment |
US4104701A (en) | 1976-11-22 | 1978-08-01 | Powercube Corporation | Mounting assembly for electronic power devices |
US4186749A (en) | 1977-05-12 | 1980-02-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Induction powered biological radiosonde |
US4143661A (en) | 1977-12-12 | 1979-03-13 | Andros Incorporated | Power supply for body implant and method for operation |
US4441210A (en) | 1981-09-18 | 1984-04-03 | Hochmair Erwin S | Transcutaneous signal transmission system and methods |
US4441498A (en) | 1982-05-10 | 1984-04-10 | Cardio-Pace Medical, Inc. | Planar receiver antenna coil for programmable electromedical pulse generator |
FR2527832A1 (fr) | 1982-05-25 | 1983-12-02 | Barthelemy Louis | Transformateur electrique a circuits primaires modulaires alimentes selectivement |
US4517585A (en) | 1982-08-13 | 1985-05-14 | Lucas Chloride Ev Systems Limited | Heat sink for semi-conductor devices having terminals projecting from a heat sink transfer face |
US4539433A (en) | 1982-11-24 | 1985-09-03 | Tdk Corporation | Electromagnetic shield |
US4586508A (en) | 1984-03-23 | 1986-05-06 | Cordis Corporation | Implant communication system with patient coil |
CA1246680A (en) | 1984-10-22 | 1988-12-13 | James M. Harrison | Power transfer for implanted prosthesis |
US4679560A (en) | 1985-04-02 | 1987-07-14 | Board Of Trustees Of The Leland Stanford Junior University | Wide band inductive transdermal power and data link |
US4665896A (en) | 1985-07-22 | 1987-05-19 | Novacor Medical Corporation | Power supply for body implant and method of use |
US5000178A (en) | 1986-05-23 | 1991-03-19 | Lti Biomedical, Inc. | Shielded electromagnetic transducer |
US4716353A (en) | 1986-09-02 | 1987-12-29 | Electro-Voice Inc. | Battery charger |
US4673888A (en) | 1986-09-02 | 1987-06-16 | Electro-Voice, Inc. | Power control system |
US4717889A (en) | 1986-09-02 | 1988-01-05 | Electro-Voice, Incorporated | Power control system for periodically and selectively energizing or shorting primary windings of transformers for controlling the output voltage across a common secondary winding |
US4808924A (en) | 1987-02-19 | 1989-02-28 | Atomic Energy Of Canada Limited | Circumferentially compensating eddy current probe with alternately polarized transmit coils and receiver coils |
US4925443A (en) | 1987-02-27 | 1990-05-15 | Heilman Marlin S | Biocompatible ventricular assist and arrhythmia control device |
JP2597623B2 (ja) | 1987-10-08 | 1997-04-09 | 株式会社トキメック | 電磁誘導結合による電源供給方式 |
US4837497A (en) | 1987-12-29 | 1989-06-06 | Gregory Leibovich | Variable transformer, reactor and method of their control |
US5214392A (en) | 1988-11-08 | 1993-05-25 | Murata Mfg. Co., Ltd. | Multilayered ceramic type electromagnetic coupler apparatus |
FR2643362B1 (fr) | 1989-02-22 | 1993-04-09 | Air Liquide | Procede d'elaboration d'une liaison verre-metal et appareil pour sa mise en oeuvre |
US4944299A (en) | 1989-08-08 | 1990-07-31 | Siemens-Pacesetter, Inc. | High speed digital telemetry system for implantable device |
US5350413B1 (en) | 1990-06-21 | 1999-09-07 | Heart Inst Research Corp | Transcutaneous energy transfer device |
US5136231A (en) * | 1990-10-12 | 1992-08-04 | Compaq Computer Corporation | Ni-cad battery charge rate controller |
US5109843A (en) | 1990-11-30 | 1992-05-05 | University Of Cincinnati | Extra to-intracorporeal power supply |
DE69210458T2 (de) | 1991-01-30 | 1996-09-05 | Boeing Co | Bus-Ankoppler in Strombetriebsart mit flachen Spulen und Abschirmungen |
US5314453A (en) | 1991-12-06 | 1994-05-24 | Spinal Cord Society | Position sensitive power transfer antenna |
US5312439A (en) | 1991-12-12 | 1994-05-17 | Loeb Gerald E | Implantable device having an electrolytic storage electrode |
US5193539A (en) | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5358514A (en) | 1991-12-18 | 1994-10-25 | Alfred E. Mann Foundation For Scientific Research | Implantable microdevice with self-attaching electrodes |
CA2076205C (en) | 1992-08-14 | 1999-04-20 | Valentino S. Cecco | Differential transmit-receive eddy current probe incorporating bracelets of multi-coil units |
US5355296A (en) | 1992-12-10 | 1994-10-11 | Sundstrand Corporation | Switching converter and summing transformer for use therein |
US5383912A (en) | 1993-05-05 | 1995-01-24 | Intermedics, Inc. | Apparatus for high speed data communication between an external medical device and an implantable medical device |
US5411536A (en) | 1993-06-03 | 1995-05-02 | Intermedics, Inc. | Method and apparatus for communicating data between medical devices to improve detectability of errors |
US5350411A (en) | 1993-06-28 | 1994-09-27 | Medtronic, Inc. | Pacemaker telemetry system |
JPH0746164A (ja) | 1993-07-26 | 1995-02-14 | Tokin Corp | 磁気通信装置 |
US5569156A (en) | 1993-09-10 | 1996-10-29 | Ottawa Heart Institute Research Corporation | Electrohydraulic ventricular assist device |
US5411537A (en) | 1993-10-29 | 1995-05-02 | Intermedics, Inc. | Rechargeable biomedical battery powered devices with recharging and control system therefor |
JPH07198807A (ja) * | 1993-12-30 | 1995-08-01 | Tokyo Gas Co Ltd | 電池残量算出装置 |
US5545191A (en) | 1994-05-06 | 1996-08-13 | Alfred E. Mann Foundation For Scientific Research | Method for optimally positioning and securing the external unit of a transcutaneous transducer of the skin of a living body |
US5613935A (en) | 1994-12-16 | 1997-03-25 | Jarvik; Robert | High reliability cardiac assist system |
US5630836A (en) | 1995-01-19 | 1997-05-20 | Vascor, Inc. | Transcutaneous energy and information transmission apparatus |
US5527348A (en) | 1995-02-03 | 1996-06-18 | Medtronic, Inc. | Magnetically permeable E-shield and method of connection thereto |
US5556421A (en) | 1995-02-22 | 1996-09-17 | Intermedics, Inc. | Implantable medical device with enclosed physiological parameter sensors or telemetry link |
US20080065290A1 (en) | 2000-09-08 | 2008-03-13 | Automotive Technologies International, Inc. | Component Monitoring System |
US5690693A (en) | 1995-06-07 | 1997-11-25 | Sulzer Intermedics Inc. | Transcutaneous energy transmission circuit for implantable medical device |
US5722998A (en) | 1995-06-07 | 1998-03-03 | Intermedics, Inc. | Apparatus and method for the control of an implantable medical device |
US5702431A (en) | 1995-06-07 | 1997-12-30 | Sulzer Intermedics Inc. | Enhanced transcutaneous recharging system for battery powered implantable medical device |
US5621369A (en) | 1995-09-18 | 1997-04-15 | Gardner; Harris L. | Flexible magnet |
US6051017A (en) | 1996-02-20 | 2000-04-18 | Advanced Bionics Corporation | Implantable microstimulator and systems employing the same |
EP0902999A1 (en) | 1996-06-04 | 1999-03-24 | Murphy, Timothy M. | A device for transferring electromagnetic energy between primary and secondary coils |
US5755748A (en) | 1996-07-24 | 1998-05-26 | Dew Engineering & Development Limited | Transcutaneous energy transfer device |
US5733313A (en) | 1996-08-01 | 1998-03-31 | Exonix Corporation | RF coupled, implantable medical device with rechargeable back-up power source |
US5713939A (en) | 1996-09-16 | 1998-02-03 | Sulzer Intermedics Inc. | Data communication system for control of transcutaneous energy transmission to an implantable medical device |
US5963132A (en) | 1996-10-11 | 1999-10-05 | Avid Indentification Systems, Inc. | Encapsulated implantable transponder |
US5749909A (en) | 1996-11-07 | 1998-05-12 | Sulzer Intermedics Inc. | Transcutaneous energy coupling using piezoelectric device |
US5741316A (en) | 1996-12-02 | 1998-04-21 | Light Sciences Limited Partnership | Electromagnetic coil configurations for power transmission through tissue |
US5735887A (en) | 1996-12-10 | 1998-04-07 | Exonix Corporation | Closed-loop, RF-coupled implanted medical device |
JPH10172616A (ja) * | 1996-12-17 | 1998-06-26 | Sanyo Electric Co Ltd | 充電装置 |
US5740257A (en) | 1996-12-19 | 1998-04-14 | Lucent Technologies Inc. | Active noise control earpiece being compatible with magnetic coupled hearing aids |
EP0854669B1 (en) | 1997-01-20 | 2003-03-26 | Daido Steel Company Limited | Soft magnetic alloy powder for electromagnetic and magnetic shield, and shielding members containing the same |
US5861019A (en) | 1997-07-25 | 1999-01-19 | Medtronic Inc. | Implantable medical device microstrip telemetry antenna |
DE69840306D1 (de) | 1997-08-01 | 2009-01-15 | Mann Alfred E Found Scient Res | Implantierbare Einrichtung mit verbesserter Anordnung zur Ladung der Batterie und zur Energiezufuhr |
US5951459A (en) | 1997-08-29 | 1999-09-14 | Orthosoft, L.L.C. | Magnetic coil for pulsed electromagnetic field |
US5991665A (en) * | 1997-09-18 | 1999-11-23 | Sulzer Intermedics Inc. | Self-cooling transcutaneous energy transfer system for battery powered implantable device |
US6947795B2 (en) | 2001-10-01 | 2005-09-20 | Transoma Medical, Inc. | Frame length modulation and pulse position modulation for telemetry of analog and digital data |
US5959522A (en) | 1998-02-03 | 1999-09-28 | Motorola, Inc. | Integrated electromagnetic device and method |
US5978713A (en) | 1998-02-06 | 1999-11-02 | Intermedics Inc. | Implantable device with digital waveform telemetry |
US5995874A (en) | 1998-02-09 | 1999-11-30 | Dew Engineering And Development Limited | Transcutaneous energy transfer device |
US6141592A (en) | 1998-03-06 | 2000-10-31 | Intermedics Inc. | Data transmission using a varying electric field |
US6058330A (en) | 1998-03-06 | 2000-05-02 | Dew Engineering And Development Limited | Transcutaneous energy transfer device |
US6144841A (en) | 1998-03-10 | 2000-11-07 | Nortel Networks Corporation | Method and system for managing forward link power control within a code-division multiple access mobile telephone communication network |
US6047214A (en) | 1998-06-09 | 2000-04-04 | North Carolina State University | System and method for powering, controlling, and communicating with multiple inductively-powered devices |
US6243608B1 (en) | 1998-06-12 | 2001-06-05 | Intermedics Inc. | Implantable device with optical telemetry |
US6324431B1 (en) | 1998-07-06 | 2001-11-27 | Abiomed, Inc. | Transcutaneous energy transfer device with magnetic field protected components in secondary coil |
US6389318B1 (en) | 1998-07-06 | 2002-05-14 | Abiomed, Inc. | Magnetic shield for primary coil of transcutaneous energy transfer device |
US8489200B2 (en) | 1998-07-06 | 2013-07-16 | Abiomed, Inc. | Transcutaneous energy transfer module with integrated conversion circuitry |
US6324430B1 (en) | 1998-07-06 | 2001-11-27 | Abiomed, Inc. | Magnetic shield for primary coil of transcutaneous energy transfer device |
US6149683A (en) | 1998-10-05 | 2000-11-21 | Kriton Medical, Inc. | Power system for an implantable heart pump |
US5948006A (en) | 1998-10-14 | 1999-09-07 | Advanced Bionics Corporation | Transcutaneous transmission patch |
US6275737B1 (en) | 1998-10-14 | 2001-08-14 | Advanced Bionics Corporation | Transcutaneous transmission pouch |
US6321118B1 (en) | 1999-01-28 | 2001-11-20 | Advanced Bionics Corporation | Method and apparatus for power link detection with implantable medical devices |
US6166518A (en) | 1999-04-26 | 2000-12-26 | Exonix Corporation | Implantable power management system |
US6212430B1 (en) | 1999-05-03 | 2001-04-03 | Abiomed, Inc. | Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils |
SE9902734D0 (sv) * | 1999-07-19 | 1999-07-19 | Pacesetter Ab | Battery status detection |
US7177690B2 (en) | 1999-07-27 | 2007-02-13 | Advanced Bionics Corporation | Implantable system having rechargeable battery indicator |
US7295878B1 (en) | 1999-07-30 | 2007-11-13 | Advanced Bionics Corporation | Implantable devices using rechargeable zero-volt technology lithium-ion batteries |
US6553263B1 (en) | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6445956B1 (en) | 1999-10-18 | 2002-09-03 | Abiomed, Inc. | Implantable medical device |
US6442434B1 (en) | 1999-10-19 | 2002-08-27 | Abiomed, Inc. | Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system |
JP4426682B2 (ja) * | 1999-11-30 | 2010-03-03 | オリンパス株式会社 | 電子カメラ |
US6415186B1 (en) | 2000-01-14 | 2002-07-02 | Advanced Bionics Corporation | Active feed forward power control loop |
US6694191B2 (en) * | 2000-01-21 | 2004-02-17 | Medtronic Minimed, Inc. | Ambulatory medical apparatus and method having telemetry modifiable control software |
US6348777B1 (en) * | 2000-02-29 | 2002-02-19 | Alaris Medical Systems, Inc. | Power management system |
US6631296B1 (en) | 2000-03-17 | 2003-10-07 | Advanced Bionics Corporation | Voltage converter for implantable microstimulator using RF-powering coil |
US6395027B1 (en) | 2000-04-25 | 2002-05-28 | The Penn State Research Foundation | Artificial heart with arrhythmia signalling |
US6478820B1 (en) | 2000-04-25 | 2002-11-12 | The Penn State Research Foundation | Artificial heart with synchronous rectification |
US6327504B1 (en) | 2000-05-10 | 2001-12-04 | Thoratec Corporation | Transcutaneous energy transfer with circuitry arranged to avoid overheating |
US6591139B2 (en) | 2000-09-06 | 2003-07-08 | Advanced Bionics Corporation | Low-power, high-modulation-index amplifier for use in battery-powered device |
US6443891B1 (en) | 2000-09-20 | 2002-09-03 | Medtronic, Inc. | Telemetry modulation protocol system for medical devices |
US6745077B1 (en) | 2000-10-11 | 2004-06-01 | Advanced Bionics Corporation | Electronic impedance transformer for inductively-coupled load stabilization |
US6542777B1 (en) | 2001-01-19 | 2003-04-01 | Advanced Bionics Corporation | Spiral shield for a flexible high-Q implantable inductively coupled device |
JP4274276B2 (ja) * | 2001-02-14 | 2009-06-03 | ソニー株式会社 | 充電装置および方法、プログラム格納媒体、並びにプログラム |
KR100606307B1 (ko) | 2001-05-23 | 2006-07-28 | 안태영 | 인체 이식 기구용 무접촉식 동력 전달 장치 |
US7151914B2 (en) | 2001-08-21 | 2006-12-19 | Medtronic, Inc. | Transmitter system for wireless communication with implanted devices |
US6671552B2 (en) * | 2001-10-02 | 2003-12-30 | Medtronic, Inc. | System and method for determining remaining battery life for an implantable medical device |
US6763269B2 (en) | 2001-11-02 | 2004-07-13 | Pacesetter, Inc. | Frequency agile telemetry system for implantable medical device |
US7238151B2 (en) | 2002-02-26 | 2007-07-03 | Frazier O Howard | Permanent heart assist system |
US6968234B2 (en) | 2002-04-25 | 2005-11-22 | Medtronic, Inc. | Implantable medical device having biologically active polymeric casing |
US7515012B2 (en) | 2002-06-20 | 2009-04-07 | Alfred E. Mann Foundation For Scientific Research | System and method for automatic tuning of a magnetic field generator |
US7015769B2 (en) | 2002-06-20 | 2006-03-21 | Alfred E. Mann Foundation For Scientific Research | System and method for automatic tuning of a magnetic field generator |
US7822480B2 (en) | 2002-06-28 | 2010-10-26 | Boston Scientific Neuromodulation Corporation | Systems and methods for communicating with an implantable stimulator |
US7016738B1 (en) | 2002-07-31 | 2006-03-21 | Advanced Bionics Corporation | Digitally controlled RF amplifier with wide dynamic range output |
US6772011B2 (en) | 2002-08-20 | 2004-08-03 | Thoratec Corporation | Transmission of information from an implanted medical device |
US6959217B2 (en) | 2002-10-24 | 2005-10-25 | Alfred E. Mann Foundation For Scientific Research | Multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation |
US7027871B2 (en) | 2002-10-31 | 2006-04-11 | Medtronic, Inc. | Aggregation of data from external data sources within an implantable medical device |
US7076304B2 (en) | 2003-04-07 | 2006-07-11 | Kidney Replacement Services P.C. | Transcutaneous power supply |
AU2003902964A0 (en) | 2003-06-13 | 2003-06-26 | Cochlear Limited | Adjustment mechanism for a coil magnet |
US7286880B2 (en) | 2003-10-02 | 2007-10-23 | Medtronic, Inc. | System and method for transcutaneous energy transfer achieving high efficiency |
US7286881B2 (en) | 2003-10-02 | 2007-10-23 | Medtronic, Inc. | External power source having an adjustable magnetic core and method of use |
US7225032B2 (en) | 2003-10-02 | 2007-05-29 | Medtronic Inc. | External power source, charger and system for an implantable medical device having thermal characteristics and method therefore |
US7515967B2 (en) | 2003-10-02 | 2009-04-07 | Medtronic, Inc. | Ambulatory energy transfer system for an implantable medical device and method therefore |
US20050075696A1 (en) | 2003-10-02 | 2005-04-07 | Medtronic, Inc. | Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device |
US8265770B2 (en) | 2003-10-02 | 2012-09-11 | Medtronic, Inc. | Driver circuitry switchable between energy transfer and telemetry for an implantable medical device |
US7308316B2 (en) | 2003-10-02 | 2007-12-11 | Medtronic, Inc. | Storable implantable medical device assembly allowing in package charging |
US8346361B2 (en) | 2003-10-02 | 2013-01-01 | Medtronic, Inc. | User interface for external charger for implantable medical device |
DE10353943B4 (de) | 2003-11-18 | 2013-01-03 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Anordnung zur drahtlosen Energieübertragung an eine implantierte Einrichtung |
US7471986B2 (en) | 2004-02-20 | 2008-12-30 | Cardiac Pacemakers, Inc. | System and method for transmitting energy to and establishing a communications network with one or more implanted devices |
US7512443B2 (en) | 2004-04-30 | 2009-03-31 | Medtronic, Inc. | Spacers for use with transcutaneous energy transfer system |
US7289855B2 (en) | 2004-06-09 | 2007-10-30 | Medtronic, Inc. | Implantable medical device package antenna |
US20050288740A1 (en) | 2004-06-24 | 2005-12-29 | Ethicon Endo-Surgery, Inc. | Low frequency transcutaneous telemetry to implanted medical device |
US20050288739A1 (en) | 2004-06-24 | 2005-12-29 | Ethicon, Inc. | Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry |
US7599744B2 (en) | 2004-06-24 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | Transcutaneous energy transfer primary coil with a high aspect ferrite core |
US7191007B2 (en) | 2004-06-24 | 2007-03-13 | Ethicon Endo-Surgery, Inc | Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics |
US7599743B2 (en) | 2004-06-24 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | Low frequency transcutaneous energy transfer to implanted medical device |
US20080027513A1 (en) | 2004-07-09 | 2008-01-31 | Advanced Bionics Corporation | Systems And Methods For Using A Butterfly Coil To Communicate With Or Transfer Power To An Implantable Medical Device |
US7437644B2 (en) * | 2004-10-29 | 2008-10-14 | Codman Neuro Sciences Sárl | Automatic self-testing of an internal device in a closed system |
JP2008518711A (ja) * | 2004-11-08 | 2008-06-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 医療機器の無線バッテリー状態管理 |
US7632235B1 (en) | 2004-11-22 | 2009-12-15 | Pacesetter, Inc. | System and method for measuring cardiac output via thermal dilution using an implantable medical device with an external ultrasound power delivery system |
US7237712B2 (en) | 2004-12-01 | 2007-07-03 | Alfred E. Mann Foundation For Scientific Research | Implantable device and communication integrated circuit implementable therein |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7689176B2 (en) | 2005-03-07 | 2010-03-30 | Codman NeuroSciences Sárl | Telemetry system employing DC balanced encoding |
US7532932B2 (en) | 2005-03-08 | 2009-05-12 | Kenergy, Inc. | Implantable medical apparatus having an omnidirectional antenna for receiving radio frequency signals |
US7774069B2 (en) | 2005-04-29 | 2010-08-10 | Medtronic, Inc. | Alignment indication for transcutaneous energy transfer |
US7801620B2 (en) | 2005-08-29 | 2010-09-21 | Cardiac Pacemakers, Inc. | RF telemetry link quality assessment system and method |
US20070106274A1 (en) | 2005-10-19 | 2007-05-10 | Ayre Peter J | Control systems for implantable medical devices |
US20070142696A1 (en) | 2005-12-08 | 2007-06-21 | Ventrassist Pty Ltd | Implantable medical devices |
US7813801B2 (en) | 2005-12-15 | 2010-10-12 | Cardiac Pacemakers, Inc. | Implantable medical device powered by rechargeable battery |
US7738965B2 (en) | 2006-04-28 | 2010-06-15 | Medtronic, Inc. | Holster for charging pectorally implanted medical devices |
US7962211B2 (en) | 2006-04-28 | 2011-06-14 | Medtronic, Inc. | Antenna for an external power source for an implantable medical device, system and method |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US9002445B2 (en) | 2006-07-28 | 2015-04-07 | Boston Scientific Neuromodulation Corporation | Charger with orthogonal PCB for implantable medical device |
US20100076516A1 (en) * | 2006-09-26 | 2010-03-25 | Koninklijke Philips Electronics N.V. | Remaining time indication for a rechargeable implantable medical device |
US20080129517A1 (en) | 2006-11-24 | 2008-06-05 | Ventrassist Pty Ltd | Control System With Alarm |
US20080167531A1 (en) | 2007-01-05 | 2008-07-10 | Cardiac Pacemakers, Inc. | System and method to monitor battery status in an implantable medical device |
WO2008106717A1 (en) | 2007-03-02 | 2008-09-12 | Ventrassist Pty Ltd | Transcutaneous energy transfer system |
US20090069869A1 (en) | 2007-09-11 | 2009-03-12 | Advanced Bionics Corporation | Rotating field inductive data telemetry and power transfer in an implantable medical device system |
EP2211989A4 (en) | 2007-10-16 | 2016-01-20 | Kirk Promotion Ltd | METHOD AND APPARATUS FOR PROVIDING ENERGY TO A MEDICAL DEVICE |
NZ565234A (en) | 2008-01-18 | 2010-11-26 | Telemetry Res Ltd | Selectable resonant frequency transcutaneous energy transfer system |
US8314594B2 (en) * | 2008-04-30 | 2012-11-20 | Medtronic, Inc. | Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method |
US8229567B2 (en) | 2008-04-30 | 2012-07-24 | Medtronic, Inc. | Concentric primary coils for inductively charging an implantable medical device, external power source and method |
US8823382B2 (en) | 2008-04-30 | 2014-09-02 | Medtronic, Inc. | System and method for monitoring a power source of an implantable medical device |
US20100026240A1 (en) * | 2008-07-30 | 2010-02-04 | 3M Innovative Properties Company | Lithium ion battery pack charging system and device including the same |
US8608635B2 (en) | 2008-09-10 | 2013-12-17 | Heartware, Inc. | TET system for implanted medical device |
US7956591B2 (en) | 2008-09-26 | 2011-06-07 | Apple Inc. | Power supply with zero power consumption capability |
WO2010042052A1 (en) | 2008-10-10 | 2010-04-15 | Milux Holding S.A. | Method and apparatus for supplying energy to an implant |
WO2010059096A1 (en) | 2008-11-21 | 2010-05-27 | Milux Holding S.A. | System for supplying energy |
TWI503101B (zh) | 2008-12-15 | 2015-10-11 | Proteus Digital Health Inc | 與身體有關的接收器及其方法 |
US8214042B2 (en) | 2009-05-26 | 2012-07-03 | Boston Scientific Neuromodulation Corporation | Techniques for controlling charging of batteries in an external charger and an implantable medical device |
JP2010284065A (ja) | 2009-06-08 | 2010-12-16 | Nec Tokin Corp | 電力・信号伝送モジュール、非接触充電モジュールならびに非接触充電および信号伝送システム |
US8996121B2 (en) | 2009-07-10 | 2015-03-31 | Cochlear Limited | Varying the effective coil area for an inductive transcutaneous power link |
EP2453980B8 (en) | 2009-07-17 | 2022-07-20 | Implantica Patent Ltd. | Coil system |
US8562508B2 (en) | 2009-12-30 | 2013-10-22 | Thoratec Corporation | Mobility-enhancing blood pump system |
JP5898098B2 (ja) * | 2010-03-05 | 2016-04-06 | ミネトロニクス インコーポレイティド | 機械的循環補助システムのための一体型電源を持つ携帯用コントローラ |
WO2012078873A1 (en) * | 2010-12-09 | 2012-06-14 | Heartware, Inc. | Controller and power source for implantable blood pump |
EP2654878B1 (en) | 2010-12-20 | 2019-05-15 | Abiomed, Inc. | Transcutaneous energy transfer system with multiple secondary coils |
US8766788B2 (en) | 2010-12-20 | 2014-07-01 | Abiomed, Inc. | Transcutaneous energy transfer system with vibration inducing warning circuitry |
US20120157754A1 (en) | 2010-12-20 | 2012-06-21 | Abiomed, Inc. | Compact battery and controller module for a transcutaneous energy transfer system |
US8620447B2 (en) | 2011-04-14 | 2013-12-31 | Abiomed Inc. | Transcutaneous energy transfer coil with integrated radio frequency antenna |
US9002468B2 (en) | 2011-12-16 | 2015-04-07 | Abiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
-
2011
- 2011-12-16 JP JP2013544821A patent/JP2014502528A/ja active Pending
- 2011-12-16 EP EP11850952.0A patent/EP2654883B1/en active Active
- 2011-12-16 ES ES11850952T patent/ES2927625T3/es active Active
- 2011-12-16 US US13/328,610 patent/US9220826B2/en active Active
- 2011-12-16 WO PCT/US2011/065463 patent/WO2012087816A2/en active Application Filing
- 2011-12-16 EP EP22191974.9A patent/EP4112115A1/en active Pending
- 2011-12-16 DK DK11850952.0T patent/DK2654883T3/da active
Also Published As
Publication number | Publication date |
---|---|
WO2012087816A2 (en) | 2012-06-28 |
WO2012087816A3 (en) | 2012-11-22 |
US9220826B2 (en) | 2015-12-29 |
EP2654883A4 (en) | 2018-02-21 |
EP2654883A2 (en) | 2013-10-30 |
EP2654883B1 (en) | 2022-09-14 |
DK2654883T3 (da) | 2022-10-10 |
US20120157755A1 (en) | 2012-06-21 |
EP4112115A1 (en) | 2023-01-04 |
JP2014502528A (ja) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2927625T3 (es) | Procedimiento y aparato para el seguimiento preciso de la carga disponible en un sistema de transferencia de energía por vía transcutánea | |
US8766788B2 (en) | Transcutaneous energy transfer system with vibration inducing warning circuitry | |
US11770016B2 (en) | Medical device temperature estimation | |
US11394226B2 (en) | Sensing temperature within medical devices | |
ES2824836T3 (es) | Sistema de gestión de batería | |
EP2310866B1 (en) | System and method for monitoring a power source of an implantable medical device | |
US10376625B2 (en) | Power scaling | |
ES2704734T3 (es) | Sistema y método de control de capacidad de batería de bomba de infusión y de alerta de carga de batería | |
EP2478935A3 (en) | Implantable cardiac devices with body orientation unit | |
EP2162752B1 (en) | Method and device for determining the state of charge of a battery | |
US20100076516A1 (en) | Remaining time indication for a rechargeable implantable medical device | |
EP2310089A1 (en) | Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method | |
EP2310090B1 (en) | Time to next recharge session feedback while recharging an implantable medical device, system and method therefore | |
Artan et al. | A high-performance transcutaneous battery charger for medical implants | |
US20240044684A1 (en) | Device for measuring rate of body fluid flow through a tube |