ES2692897T3 - Sistema energizado eléctricamente, modular, móvil para uso en formaciones subterráneas de fracturación - Google Patents
Sistema energizado eléctricamente, modular, móvil para uso en formaciones subterráneas de fracturación Download PDFInfo
- Publication number
- ES2692897T3 ES2692897T3 ES12767292.1T ES12767292T ES2692897T3 ES 2692897 T3 ES2692897 T3 ES 2692897T3 ES 12767292 T ES12767292 T ES 12767292T ES 2692897 T3 ES2692897 T3 ES 2692897T3
- Authority
- ES
- Spain
- Prior art keywords
- fluid
- fracturing
- module
- source
- site
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000015572 biosynthetic process Effects 0.000 title description 7
- 238000005755 formation reaction Methods 0.000 title description 7
- 239000012530 fluid Substances 0.000 claims abstract description 150
- 239000000654 additive Substances 0.000 claims abstract description 37
- 230000000996 additive effect Effects 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 58
- 239000003345 natural gas Substances 0.000 claims description 29
- 238000005086 pumping Methods 0.000 claims description 24
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 230000005611 electricity Effects 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 8
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 description 14
- 239000000446 fuel Substances 0.000 description 11
- 239000002283 diesel fuel Substances 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001095 motoneuron effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005380 natural gas recovery Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- -1 proppant Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2607—Surface equipment specially adapted for fracturing operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/30—Driving arrangements; Transmissions; Couplings; Brakes
- B01F35/32—Driving arrangements
- B01F35/32005—Type of drive
- B01F35/3204—Motor driven, i.e. by means of an electric or IC motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D63/00—Motor vehicles or trailers not otherwise provided for
- B62D63/06—Trailers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0085—Adaptations of electric power generating means for use in boreholes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/267—Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/20—Other positive-displacement pumps
- F04B19/22—Other positive-displacement pumps of reciprocating-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/06—Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B47/00—Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
- F04B47/02—Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/20—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Transportation (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Jet Pumps And Other Pumps (AREA)
- Control Of Eletrric Generators (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Reciprocating Pumps (AREA)
- Earth Drilling (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Accessories For Mixers (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Un método para suministrar fluido de fracturación a un recinto de pozo, el método comprende las etapas de: proporcionar una fuente dedicada de energía (30) eléctrica a un sitio que contiene un recinto de pozo que se va a fracturar; proporcionar uno o más módulos (20) de fracturación eléctrica en el sitio, el módulo (20) de fracturación eléctrica que comprende un motor (21) eléctrico y una bomba (22) de fluido acoplada, el motor (21) eléctrico asociado operativamente con la fuente dedicada de energía (30) eléctrica; proporcionar un módulo (40) mezclador eléctrico, el módulo (40) mezclador eléctrico comprende: una fuente (48) de fluido, una fuente (44) aditiva de fluido, y una cubeta (46) de mezclador; suministrar energía eléctrica desde la fuente (30) dedicada hasta el módulo (40) mezclador eléctrico para efectuar mezcla de un fluido desde la fuente (48) de fluido con un aditivo de fluido desde la fuente (44) aditiva de fluido para generar el fluido de fracturación; proporcionar el fluido de fracturación para suministro presurizado a un recinto de pozo; y operar los módulos (20) de fracturación utilizando energía eléctrica desde la fuente dedicada para bombear el fluido de fracturación hasta el recinto de pozo.
Description
5
10
15
20
25
30
35
40
45
50
55
DESCRIPCION
Sistema energizado electricamente, modular, movil para uso en formaciones subterraneas de fracturacion
1. Campo de la invencion
Esta invencion se relaciona en general con la estimulacion hidraulica de formaciones subterraneas con hidrocarburos y mas particularmente con la generacion y el uso de energia electrica para suministrar fluido de fracturacion a un recinto de pozo.
2. Descripcion de la tecnica relacionada
Durante el ciclo de vida de un recinto de pozo que produce hidrocarburos tipicos se pueden suministrar diversos fluidos (junto con aditivos, agente apuntalante, geles, cemento, etc...) al recinto de pozo bajo presion y se inyectan en el recinto de pozo. Los sistemas de bombeo de superficie tienen que tener la capacidad de acomodar estos diversos fluidos. Dichos sistemas de bombeo normalmente se movilizan en patines o tractores con remolques y se energizan utilizando motores diesel.
Los avances tecnologicos han mejorado enormemente la capacidad de identificar y recuperar recursos de petroleo y gas no convencionales. Notablemente, la perforacion horizontal y la fracturacion en multiples etapas han llevado al surgimiento de nuevas oportunidades para la produccion de gas natural a partir de formaciones de esquistos. Por ejemplo, se han reportado mas de veinte intervalos fracturados en un unico recinto de pozo horizontal en una formacion de gas natural compacta. Sin embargo, se requieren operaciones de fracturacion significativas para recuperar estos recursos.
Actualmente, las oportunidades de recuperacion de gas natural contempladas requieren una infraestructura operativa considerable que incluye grandes inversiones en equipos de fracturacion y personal relacionado. Notablemente, las bombas de fluidos estandar requieren grandes cantidades de combustible diesel y programas de mantenimiento de equipos frecuentes. Normalmente, tal como se divulga en el documento US2007/277982 A1, cada bomba de fluido se aloja en una configuracion de remolque y camion dedicados. Las operaciones de fracturacion promedio requieren tanto como cincuenta bombas de fluido, el area del sitio, o "espacio ocupado" que se requiere para acomodar estas operaciones de fracturacion es enorme. Como resultado, la infraestructura operativa requerida para soportar estas operaciones de fracturacion es extensa. Seria deseable una mayor eficiencia operativa en la recuperacion del gas natural. El documento US 2007/125544 A1 divulga un dispositivo de agrietamiento con una bomba central para proporcionar medio presurizado para diversos recintos de pozos y en virtud del documento US2008/264640 A1 se divulga un tratamiento de pozo que utiliza un sistema de bombeo sumergible electrico.
Cuando se planifican grandes operaciones de fracturacion, una cuestion logistica importante es la disponibilidad de combustible diesel. Los excesivos volumenes de combustible diesel requeridos necesitan transporte constante de diesel en camiones cisterna hacia el sitio y resultan en emisiones de dioxido de carbono significativas. Otros han intentado reducir el consumo de combustible y las emisiones al hacer funcionar motores de grandes bombas con "Bicombustible", mezclar gas natural y combustible diesel pero con exito limitado. Adicionalmente, los intentos de reducir la cantidad de personal en el sitio al implementar monitorizacion remota y control operativo no han tenido exito ya que todavia se requiere personal en el sitio para transportar el equipo y el combustible hacia y desde la ubicacion.
Resumen
Diversas realizaciones ilustrativas de un sistema y metodo para estimulacion hidraulica de formaciones subterraneas con hidrocarburos se proporcionan en el presente documento. De acuerdo con un aspecto de la materia objeto divulgada, se proporciona un metodo para suministrar fluido de fracturacion a un recinto de pozo. El metodo puede comprender las etapas de: proporcionar una fuente dedicada de energia electrica a un sitio que contiene un recinto de pozo que se va a fracturar; proporcionar uno o mas modulos de fracturacion electrica en el sitio, cada modulo de fracturacion electrica que comprende un motor electrico y una bomba de fluido acoplada, cada motor electrico asociado operativamente con la fuente dedicada de energia electrica; proporcionar un fluido de tratamiento de recinto de pozo para suministro presurizado a un recinto de pozo, en el que el fluido de tratamiento de recinto de pozo puede ser continuo con la bomba de fluido y con el recinto de pozo; y operar la unidad de fracturacion utilizando energia electrica desde la fuente dedicada para bombear el fluido de tratamiento hasta el recinto de pozo.
En ciertas realizaciones ilustrativas, la fuente dedicada de energia electrica es un generador de turbina. Se puede proporcionar una fuente de gas natural, por lo cual el gas natural acciona el generador de turbina en la produccion de energia electrica. Por ejemplo, se puede proporcionar gas natural en tuberia, o gas natural producido en sitio. Los combustibles liquidos tales como condensado tambien se pueden proporcionar para accionar el generador de turbina.
En ciertas realizaciones ilustrativas, el motor electrico puede ser un motor de iman permanente de CA y/o a motor de velocidad variable. El motor electrico puede ser capaz de operacion en el rango de hasta 1500 rpms y hasta 20.000 pies/libras de torque. La bomba puede ser una bomba de fluido de estilo embolo triple o quintuple.
5
10
15
20
25
30
35
40
45
50
55
60
En ciertas realizaciones ilustrativas, el metodo puede comprender adicionalmente las etapas de: proporcionar un modulo mezclador electrico continuo y/o asociado operativamente con la bomba de fluido, el modulo de mezclador comprende: una fuente de fluido, una fuente aditiva de fluido, y una cubeta de mezclador centrifuga, y suministrar energia electrica desde la fuente dedicada hasta el modulo de mezclador para efectuar mezcla del fluido con aditivos de fluido para generar el fluido de tratamiento.
De acuerdo con otro aspecto de la materia objeto divulgada, se proporciona un sistema para uso en suministrar fluido presurizado a un recinto de pozo. El sistema puede comprender: un sitio de pozo que comprende un recinto de pozo y una fuente dedicada de electricidad; un modulo de fracturacion energizado electricamente asociado operativamente con la fuente dedicada de electricidad, el modulo de fracturacion energizado electricamente que comprende un motor electrico y una bomba de fluido acoplada al motor electrico; una fuente de fluido de tratamiento, en la que el fluido de tratamiento puede ser continuo con la bomba de fluido y con el recinto de pozo; y un sistema de control para regular el modulo de fracturacion en el suministro de fluido de tratamiento desde la fuente de fluido de tratamiento hasta el recinto de pozo.
En ciertas realizaciones ilustrativas, la fuente de fluido de tratamiento puede comprender un modulo de mezclador energizado electricamente asociado operativamente con la fuente dedicada de electricidad. El sistema puede comprender adicionalmente un remolque de fracturacion en el sitio de pozo para alojar uno o mas modulos de fracturacion. Cada modulo de fracturacion se puede adaptar para montar de forma desmontable sobre el remolque. El sistema puede comprender adicionalmente un modulo de bombeo de repuesto que comprende una bomba y un motor electrico, el modulo de bombeo de repuesto adaptado para montar de forma desmontable sobre el remolque. En ciertas realizaciones ilustrativas, el modulo de bombeo de repuesto puede ser un modulo de bombeo de nitrogeno, o un modulo de bombeo de dioxido de carbono. El modulo de bombeo de repuesto puede ser, por ejemplo, un torque alto, motor de baja velocidad o un torque bajo, motor de alta velocidad.
De acuerdo con otro aspecto de la materia objeto divulgada, se proporciona un modulo de fracturacion para uso en suministrar fluido presurizado a un recinto de pozo. El modulo de fracturacion puede comprender: un motor de iman permanente de CA capaz de operacion en el rango de hasta 1 500 rpms y hasta 20.000 pies/libras de torque; y una bomba de fluido estilo embolo acoplado al motor.
De acuerdo con otro aspecto de la materia objeto divulgada, se proporciona un metodo para mezclar un fluido de fracturacion para suministro a un recinto de pozo que se va a fracturar. Se puede proporcionar una fuente dedicada de energia electrica a un sitio que contiene un recinto de pozo que se va a fracturar. Se puede proporcionar por lo menos un modulo mezclador electrico en el sitio. El modulo mezclador electrico puede incluir una fuente de fluido, una fuente aditiva de fluido, y una cubeta de mezclador. Se puede suministrar energia electrica desde la fuente dedicada hasta el modulo mezclador electrico para efectuar mezcla de un fluido desde la fuente de fluido con un aditivo de fluido desde la fuente aditiva de fluido para generar el fluido de fracturacion. La fuente dedicada de energia electrica puede ser un generador de turbina. Se puede proporcionar una fuente de gas natural, en la que el gas natural se utiliza para accionar el generador de turbina en la produccion de energia electrica. El fluido de la fuente de fluido se puede mezclar con el aditivo de fluido de la fuente aditiva de fluido en la cubeta de mezclador. El modulo mezclador electrico tambien puede incluir por lo menos un motor electrico que se asocia operativamente con la fuente dedicada de energia electrica y que efectua la mezcla del fluido de la fuente de fluido con el aditivo de fluido de la fuente aditiva de fluido.
En ciertas realizaciones ilustrativas, el modulo mezclador electrico puede incluir un primer motor electrico y un segundo motor electrico, cada uno de los cuales se asocia operativamente con la fuente dedicada de energia electrica. El primer motor electrico puede efectuar el suministro del fluido desde la fuente de fluido hasta la cubeta de mezclador. El segundo motor electrico puede efectuar la mezcla del fluido de la fuente de fluido con el aditivo de fluido de la fuente aditiva de fluido en la cubeta de mezclador. En ciertas realizaciones ilustrativas, tambien puede estar presente un tercer motor electrico opcional, que tambien se puede asociar operativamente con la fuente dedicada de energia electrica, El tercer motor electrico puede efectuar el suministro del aditivo de fluido desde la fuente aditiva de fluido hasta la cubeta de mezclador.
En ciertas realizaciones ilustrativas, el modulo mezclador electrico puede incluir una primera unidad de mezclador y una segunda unidad de mezclador, cada uno dispuesto adyacente entre si sobre el modulo de mezclador y cada uno capaz de operacion independiente, o colectivamente capaz de operacion cooperativa, segun se desee. La primera unidad de mezclador y la segunda unidad de mezclador puede cada una incluir una fuente de fluido, una fuente aditiva de fluido, y una cubeta de mezclador. La primera unidad de mezclador y la segunda unidad de mezclador cada una pueden tener por lo menos un motor electrico que se asocia operativamente con la fuente dedicada de energia electrica y que efectua la mezcla del fluido de la fuente de fluido con el aditivo de fluido desde la fuente aditiva de fluido. Alternativamente, la primera unidad de mezclador y la segunda unidad de mezclador puede cada tener un primer motor electrico y un segundo motor electrico, ambos asociados operativamente con la fuente dedicada de energia electrica, en la que el primer motor electrico efectua el suministro del fluido desde la fuente de fluido hasta la cubeta de mezclador y el segundo motor electrico efectua la mezcla del fluido de la fuente de fluido con el aditivo de fluido de la fuente aditiva de fluido en la cubeta de mezclador. En ciertas realizaciones ilustrativas, la primera unidad de mezclador y la segunda unidad de mezclador cada una tambien puede tener un tercer motor
5
10
15
20
25
30
35
40
45
50
electrico asociado operativamente con la fuente dedicada de energia electrica, en la que el tercer motor electrico efectua suministro del aditivo de fluido desde la fuente aditiva de fluido hasta la cubeta de mezclador.
De acuerdo con otro aspecto de la materia objeto divulgada, se proporciona un modulo mezclador electrico para uso en suministrar un fluido de fracturacion mezclado a un recinto de pozo. El modulo mezclador electrico puede incluir una primera unidad de mezclador accionada electricamente y un primer multiple de entrada acoplado a la primera unidad de mezclador accionada electricamente y capaz de suministrar un fluido de fracturacion no mezclado a la misma. Un primer multiple de salida se puede acoplar a la primera unidad de mezclador accionada electricamente y puede ser capaz de suministrar el fluido de fracturacion mezclado lejos de esta. Se puede proporcionar una segunda unidad de mezclador accionada electricamente. Un segundo multiple de entrada se puede acoplar a la segunda unidad de mezclador accionada electricamente y capaz de suministrar el fluido de fracturacion no mezclado a esta. Un segundo multiple de salida se puede acoplar a la segunda unidad de mezclador accionada electricamente y puede ser capaz de suministrar el fluido de fracturacion mezclado lejos de esta. Una linea de cruce de entrada se puede acoplar a tanto el primer multiple de entrada y el segundo multiple de entrada y puede ser capaz de suministrar el fluido de fracturacion no mezclado entre ellos. Una linea de cruce de salida se puede acoplar a tanto el primer multiple de salida como el segundo multiple de salida y puede ser capaz de suministrar el fluido de fracturacion mezclado entre ellos. Se puede proporcionar un patin para alojar la primera unidad de mezclador accionada electricamente, el primer multiple de entrada, la segunda unidad de mezclador accionada electricamente, y el segundo multiple de entrada.
Otros aspectos y caracteristicas de la presente invencion seran evidentes para aquellos expertos en la tecnica luego de analizar la siguiente descripcion detallada en conjunto con las figuras acompanantes.
Breve descripcion de los dibujos
Una mejor comprension de la materia objeto divulgada actualmente se puede obtener cuando se considere la siguiente descripcion detallada en conjunto con los siguientes dibujos en los que:
La Figura 1 es una vista de plano esquematica de un sitio de fracturacion tradicional;
La Figura 2 es una vista de plano esquematica de un sitio de fracturacion de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 3 es una vista en perspectiva esquematica de un remolque de fracturacion de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 4A es una vista en perspectiva esquematica de un modulo de fracturacion de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 4B es una vista en perspectiva esquematica de un modulo de fracturacion con personal de mantenimiento de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 5A es una vista lateral esquematica de un modulo de mezclador de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 5B es una vista de extremo del modulo de mezclador mostrado en la Figura 4A;
La Figura 5C es una vista superior esquematica de un modulo de mezclador de acuerdo con ciertas realizaciones ilustrativas descritas en este documento;
La Figura 5D es una vista lateral esquematica del modulo de mezclador mostrado en la Figura 5C;
La Figura 5E es una vista en perspectiva esquematica del modulo de mezclador mostrado en la Figura 5C;
La Figura 6 es una vista superior esquematica de un multiple de entrada para un modulo de mezclador de acuerdo con ciertas realizaciones ilustrativas descritas en este documento; y
La Figura 7 es una vista superior esquematica de un multiple de salida para un modulo de mezclador de acuerdo con ciertas realizaciones ilustrativas descritas en este documento.
Descripcion detallada
La materia objeto actualmente divulgada se refiere en general a un sistema de fracturacion energizado electricamente y un sistema y metodo para la provision de energia electrica en el sitio y el suministro de fluido de fracturacion a un recinto de pozo en una operacion de fracturacion.
En una operacion de fracturacion convencional, una "suspension" de fluidos y aditivos se inyecta en una formacion rocosa con hidrocarburos en un recinto de pozo para propagar la fracturacion. Los fluidos de baja presion se mezclan con productos quimicos, arena y si es necesario acido y luego se transfieren a media presion y alta
5
10
15
20
25
30
35
40
45
50
55
60
velocidad a porciones verticales y/o desviadas del recinto de pozo por medio de multiples bombas de tipo embolo de alta presion accionadas por motores primarios energizados con diesel. La mayoria de los fluidos inyectados fluiran nuevamente a traves del recinto de pozo y seran recuperados mientras que la arena se mantendra en la fractura recien creada, de esta manera se "apuntala" para abrirlo y se proporciona una membrana permeable para los fluidos de hidrocarburos y gases para que fluyan a traves de modo que se puedan recuperar.
De acuerdo con las realizaciones ilustrativas descritas en el presente documento, el gas natural (ya sea que se suministra al sitio o se produzca en el sitio) se puede utilizar para accionar una fuente dedicada de energia electrica, tal como un generador de turbina, para las terminaciones de recintos de pozos que producen hidrocarburos. Se proporciona una flota dimensionable de fracturacion energizada electricamente para suministrar fluido de tratamiento presurizado, tal como fluido de fracturacion, a un recinto de pozo en una operacion de fracturacion en la que no se necesita un suministro constante de combustible diesel al sitio y se reduce el espacio ocupado de sitio y la infraestructura requerida para la operacion de fracturacion cuando se compara con las operaciones convencionales. En ciertas realizaciones ilustrativas, el fluido de tratamiento proporcionado para un suministro presurizado al recinto de pozo puede ser continuo con el recinto de pozo y con uno o mas componentes de la flota de fracturacion. En estas realizaciones, generalmente continuo significa que la hidrodinamica de fondo de pozo depende del flujo constante (velocidad y presion) de los fluidos suministrados y que no tiene que haber interrupcion alguna en el flujo de fluido durante el suministro al recinto de pozo si se desea que la fractura se propague. Sin embargo, esto no se debe interpretar que significa que las operaciones de la flota de fracturacion no se pueden generalmente detener e iniciar, como lo comprendera un experto en la tecnica.
Con referencia a la Figura 1, se muestra un plan de sitio para una operacion de fracturacion tradicional en un sitio en tierra firme. Se proporcionan multiples remolques 5, cada uno tiene por lo menos un tanque de diesel instalado o dispuesto de otro modo en el mismo. Cada remolque 5 se conecta a un camion 6 para permitir el reabastecimiento de los tanques de diesel segun se requiera. Los camiones 6 y remolques 5 se localizan dentro de la region A en el sitio de fracturacion. Cada camion 6 requiere un operador dedicado. Una o mas motores primarios son abastecidos con diesel y se utilizan para energizar la operacion de fracturacion. Se proporcionan uno o mas patines 7 de manipulacion de productos quimicos separados para el alojamiento de tanques de mezcla y equipos relacionados.
Con referencia a la Figura 2, se muestra una realizacion ilustrativa de un plan de sitio para una operacion de fracturacion energizada electricamente en un sitio en tierra firme. La operacion de fracturacion incluye uno o mas remolques 10, cada uno aloja uno o mas modulos 20 de fracturacion (vease Figura 3). Los remolques 10 se localizan en la region B en el sitio de fracturacion. Uno o mas generadores 30 de turbinas energizados con gas natural se localizan en la region C en el sitio que se localiza a una distancia remota D de la region B en la que los remolques 10 y los modulos 20 de fracturacion se localizan por razones de seguridad. Los generadores 30 de turbina reemplazan los motores primarios de diesel utilizadas en el plan de sitio de la Figura 1. Los generadores 30 de turbina proporcionan una fuente dedicada de energia electrica en el sitio. Preferiblemente existe una separacion fisica entre la generacion de energia a base de gas natural en la region C y la operacion de fracturacion y recinto de pozo localizados en la region B. La generacion de energia a base de gas natural puede requerir mayores precauciones de seguridad que la operacion de fracturacion y el cabezal de pozo. De acuerdo con lo anterior, se pueden tomar medidas de seguridad en la region C para limitar el acceso a esta localizacion mas peligrosa mientras que se mantienen estandares de seguridad separados en la region B en la que normalmente se encuentra la mayoria del personal del sitio. Adicionalmente, el suministro energizado con gas natural se puede monitorizar y regular de forma remota de modo tal que si se desea no se requiere que el personal se encuentre dentro de la region C durante la operacion.
Notablemente, la configuracion de la Figura 2 requiere una infraestructura significativamente menor que la configuracion que se muestra en la Figura 1 y al mismo tiempo proporciona una capacidad de bombeo comparable. Menos remolques 10 estan presentes en la region B de la Figura 2 que los camiones 6 y remolques 5 en la region A de la Figura 1 como consecuencia de la falta de necesidad de un suministro constante de combustible diesel. Adicionalmente, cada remolque 10 en la Figura 2 no necesita un camion 6 y un operador dedicado como en la Figura 1. Menos patines 7 de manipulacion de productos quimicos se requieren en la region B de la Figura 2 que en la region A de la Figura 1 porque los patines 7 en la Figura 2 pueden ser energizados electricamente. Tambien, al eliminar los motores primarios de diesel, se puede eliminar toda la maquinaria asociada necesaria para la transferencia de energia, tal como transmision, conversor de torque, embrague, arbol de transmision, sistema hidraulico, etc. y se reduce significativamente la necesidad de sistemas de enfriamiento que incluyen bombas y fluidos de circulacion. En una realizacion ilustrativa, el espacio fisico ocupado del area en el sitio en la region B de la Figura 2 es aproximadamente 80% menor que el espacio ocupado por el sistema convencional en la region A de la Figura 1.
Con referencia a las realizaciones ilustrativas de la Figura 3, se muestra el remolque 10 para alojar uno o mas modulos 20 de fracturacion. El remolque 10 tambien puede ser un patin en ciertas realizaciones ilustrativas. Cada modulo 20 de fracturacion puede incluir un motor 21 electrico y una bomba 22 de fluido acoplada al mismo. Durante la fracturacion, el modulo 20 de fracturacion se asocia operativamente con un generador 30 de turbina para recibir energia electrica del mismo. En ciertas realizaciones ilustrativas, una pluralidad de motores 21 electricos y bombas 22 pueden ser transportados en un unico remolque 10. En las realizaciones ilustrativas de la Figura 3, cuatro motores 21 electricos y bombas 22 son transportados en un unico remolque 10. Cada motor 21 electrico esta
5
10
15
20
25
30
35
40
45
50
55
emparejado con una bomba 22 como un unico modulo 20 de fracturacion. Cada modulo 20 de fracturacion se puede instalar de modo separable en el remolque 10 para facilitar el reemplazo segun sea necesario. Los modulos 20 de fracturacion utilizan energia electrica del generador 30 de turbina para bombear el fluido de fracturacion directamente al recinto de pozo.
Generacion de energia electrica
El uso de una turbina para accionar directamente una bomba ha sido investigado previamente. En dichos sistemas, se utiliza una transmision para regular la potencia de la turbina a la bomba de modo de permitir el control de la velocidad y del torque. En la presente operacion, se utiliza en su lugar gas natural para accionar una fuente de energia dedicada para la produccion de electricidad. En realizaciones ilustrativas, la fuente de energia dedicada es un generador de turbina en el sitio. Se elimina la necesidad de una transmision y la electricidad generada se puede utilizar para energizar los modulos de fracturacion, los mezcladores y otras operaciones en el sitio segun sea necesario.
En el sitio puede estar accesible la energia electrica de la red electrica en ciertas operaciones de fracturacion, pero se prefiere el uso de una fuente de energia dedicada. Durante el inicio de una operacion de fracturacion, se requieren enormes cantidades de energia de modo tal que el uso de la energia electrica de la red electrica no seria practico. Los generadores energizados a gas natural son mas apropiados para esta aplicacion con base en la posible disponibilidad de gas natural en el sitio y la capacidad de los generadores de gas natural para producir grandes cantidades de energia. Notablemente, la posibilidad de ajustes instantaneos muy grandes de la energia extraida de la red electrica durante una operacion de fracturacion puede poner en peligro la estabilidad y confiabilidad del sistema de red de energia electrica. De acuerdo con lo anterior, una fuente de electricidad dedicada y generada en el sitio proporciona una solucion mas factible para abastecer un sistema electrico de fracturacion. Adicionalmente, una operacion en el sitio dedicada se puede utilizar para proporcionar energia para la operacion de otros equipos locales, que incluyen sistemas de tuberia enrollada, plataformas de servicio, etc.
En una realizacion ilustrativa, un unico generador 30 de turbina energizado con gas natural que se aloja en un area restringida C de la Figura 2 puede generar suficiente energia (por ejemplo 31 MW a 13.800 voltios de energia CA) para abastecer varios motores 21 electricos y bombas 22 y evitar la necesidad actual de suministrar y operar cada bomba de fluido desde un camion separado energizado con diesel. Una turbina apropiada para este proposito es un generador de turbina TM2500+ vendido por General Electric. Otros paquetes de generacion pueden ser suministrados, por ejemplo, por Pratt & Whitney o Kawasaki. Estan disponibles muchas opciones para la generacion de energia con turbinas que dependen de la cantidad de electricidad requerida. En una realizacion ilustrativa, combustibles liquidos tales como condensados tambien se pueden proporcionar para accionar un generador 30 de turbina en lugar o ademas de gas natural. El condensado es mas barato que el combustible diesel y rediciendo de esta manera los costes operativos.
Modulo de fracturacion
Con referencia a las Figuras 4A y 4B, se proporciona una realizacion ilustrativa del modulo 20 de fracturacion. En ciertas realizaciones ilustrativas, el modulo 20 de fracturacion puede incluir un motor 21 electrico acoplado a una o mas bombas 22 electricas. Una bomba apropiada es una bomba de tipo embolo quintuple o triple, por ejemplo, la Well Service Pump SWGS-2500 vendida por Gardner Denver, Inc.
En ciertas realizaciones el motor 21 electrico se asocia operativamente con el generador 30 de turbina. Normalmente, cada modulo 20 de fracturacion estara asociado con un alojamiento de accionamiento para controlar el motor 21 electrico y las bombas 22 y asi como tambien un transformador electrico y unidad 50 de accionamiento (vease Figura 3) para reducir el voltaje de la potencia del generador 30 de turbina a un voltaje apropiado para el motor 21 electrico. En varias realizaciones, el transformador electrico y la unidad 50 de accionamiento se pueden proporcionar como una unidad independiente para asociarse con el modulo 20 de fracturacion o se pueden fijar de manera permanente en el remolque 10. Si estan permanentemente fijos, entonces el transformador y unidad 50 de accionamiento se pueden dimensionar para permitir la adicion o sustraccion de bombas 22 u otros componentes para acomodarse a los requisitos operativos.
Cada bomba 22 y motor 21 electrico son de tipo modular en naturaleza con el fin de simplificar el retiro y reemplazo del modulo 20 de fracturacion con propositos de mantenimiento. El retiro de un unico modulo 20 de fracturacion del remolque 10 tambien se simplifica. Por ejemplo, cualquier modulo 20 de fracturacion se puede desconectar y separar del remolque 10 y retirar y otro modulo 20 de fracturacion se puede instalar en su lugar en cuestion de minutos.
En la realizacion ilustrativa de la Figura 3, el remolque 10 puede alojar cuatro modulos 20 de fracturacion junto con un transformador y una unidad 50 de accionamiento. En esta configuracion particular, cada uno de los remolques 10 proporciona mas capacidad de bombeo que cuatro de los remolques 5 de fracturacion energizados con diesel tradicionales de la Figura 1 porque las perdidas parasitas son minimas en el sistema de fracturacion electrico en comparacion con las perdidas parasitas tipicas de los sistemas energizados con diesel. Por ejemplo, una bomba de fluido energizada con diesel convencional tiene 2250 hp nominales. Sin embargo, como consecuencia de las
5
10
15
20
25
30
35
40
45
50
55
perdidas parasitas en la transmision, el conversor de torque y los sistemas de enfriamiento, los sistemas energizados con diesel normalmente solo proporcionan 1800 hp a las bombas. En contraste, el sistema actual puede suministrar 2500 hp reales directamente a cada bomba 22 porque la bomba 22 se acopla directamente al motor 21 electrico. Adicionalmente, el peso nominal de una bomba de fluido convencional es de hasta 120.000 libras. En la operacion actual, cada modulo 20 de fracturacion pesa aproximadamente 28.000 libras y permitiendo de esta manera la colocacion de cuatro bombas 22 en la misma dimension fisica (tamano y peso) que el espacio necesario para una sola bomba en los sistemas de diesel convencionales, asi como tambien permite hasta 10.000 hp totales para las bombas. En otras realizaciones, mas o menos modulos 20 de fracturacion pueden estar localizados en el remolque 10, segun se desee o requiera con propositos operativos.
En ciertas realizaciones ilustrativas, el modulo 20 de fracturacion puede incluir un motor 21 electrico que es un motor de iman permanente de CA con capacidad de operacion en el rango de hasta 1500 rpm y hasta 20.000 pies/libras de torque. El modulo 20 de fracturacion tambien puede incluir una bomba 22 que es una bomba de fluido de tipo embolo acoplada a un motor 21 electrico. En ciertas realizaciones ilustrativas, el modulo 20 de fracturacion puede tener dimensiones de aproximadamente 136" de ancho x 108" de largo x 100" de altura. Estas dimensiones permiten que el modulo 20 de fracturacion sea facilmente portatil y se ajuste con un contenedor intermodal ISO para propositos de transporte sin necesidad de desmontarlo. Las longitudes del contenedor segun la norma ISO de tamano estandar son normalmente 20’, 40' o 53'. En ciertas realizaciones ilustrativas, el modulo 20 de fracturacion puede tener dimensiones no mayores que 136" de ancho x 108" de largo x 100" de altura. Estas dimensiones del modulo 20 de fracturacion tambien permiten que miembros de la cuadrilla entren facilmente dentro de los limites del modulo 20 de fracturacion para realizar reparaciones, tal como se ilustra en la Figura 4b. En ciertas realizaciones ilustrativas, el modulo 20 de fracturacion puede tener un ancho no mayor que 102" para estar dentro de las configuraciones de transporte y restricciones de rutas. En una realizacion especifica, el modulo 20 de fracturacion tiene la capacidad de operar 2500 hp mientras que todavia tiene las dimensiones anteriormente especificadas y cumple las especificaciones anteriormente mencionadas para rpm y pies/libras de torque.
Motor electrico
Con referencia a las realizaciones ilustrativas de las Figuras 2 y 3, un motor 21 electrico de iman permanente de CA de voltaje bajo medio recibe energia electrica del generador 30 de turbina y se acopla directamente a la bomba 22. En ciertas realizaciones ilustrativas, con el fin de asegurar la adecuabilidad de uso en la fracturacion, el motor 21 electrico tiene que tener capacidad de operacion de hasta 1500 rpm con un torque de hasta 20.000 pies/libras. Un motor apropiado para este proposito se vende bajo la marca comercial TeraTorq® que esta disponible de Comprehensive Power, Inc. de Marlborough, Massachusetts. Un motor compacto con torque suficiente permitira que se maximice la cantidad de modulos 20 de fracturacion colocados en cada remolque 10.
Mezclador
Para mayor eficiencia, los mezcladores convencionales energizados con diesel y las unidades de adicion de productos quimicos se pueden reemplazar con unidades de mezclador energizadas electricamente. En ciertas realizaciones ilustrativas, como se describe en el presente documento, las unidades de mezclado energizadas electricamente pueden ser de naturaleza modular y son alojadas en el remolque 10 en lugar del modulo 20 de fracturacion o son alojadas de forma independiente y estan asociadas con cada remolque 10. Una operacion de mezcla electrica permite mayor precision y control de los aditivos de fluido de fracturacion. Adicionalmente, las cubetas de mezclador centrifugas normalmente utilizadas en remolques de mezcla para mezclar fluidos con agente apuntalante, arena, productos quimicos, acido, etc. antes de suministrarlos al recinto de pozo son una fuente comun de costes de mantenimiento en las operaciones de fracturacion tradicionales.
Con referencia a las figuras 5A-5E y las Figuras 6-7, se proporcionan realizaciones ilustrativas de un modulo 40 de mezclador y sus componentes. El modulo 40 de mezclador puede estar asociado operativamente con el generador 30 de turbina y tiene la capacidad de proporcionar fluido de fracturacion a la bomba 22 para suministrarlo al recinto de pozo. En ciertas realizaciones, el modulo 40 de mezclador puede incluir por lo menos una fuente 44 de aditivo de fluido, por lo menos una fuente 48 de fluido y por lo menos una cubeta 46 de mezclador centrifuga. La energia electrica puede suministrarse desde el generador 30 de turbina al modulo 40 de mezclador para efectuar la mezcla de un fluido de la fuente 48 de fluido con un aditivo de fluido de la fuente 44 de aditivo de fluido para generar el fluido de fracturacion. En ciertas realizaciones, el fluido de la fuente 48 de fluido puede ser, por ejemplo, agua, aceites o mezclas de metanol y el aditivo de fluido de la fuente 44 de aditivo de fluido puede ser, por ejemplo, reductor de friccion, gelificante, rompedor de gelificante o biocidas.
En ciertas realizaciones ilustrativas, el modulo 40 de mezclador puede tener una configuracion dual con una primera unidad 47a de mezclador y una segunda unidad 47b de mezclador que estan adyacentes entre si. Esta configuracion dual se disena para proporcionar redundancia y facilitar el acceso para mantenimiento y reemplazo de componentes segun sea necesario. En ciertas realizaciones, cada unidad 47a y 47b de mezclador puede tener sus propios motores de cubeta y de succion energizados electricamente dispuestos en la misma y opcionalmente se pueden utilizar otros motores energizados electricamente para funciones operativas adicionales de productos quimicos y/o otras funciones operativas auxiliares, como se describe con mas detalle en el presente documento.
5
10
15
20
25
30
35
40
45
50
55
60
Por ejemplo, en ciertas realizaciones ilustrativas, la primera unidad 47a de mezclador puede tener una pluralidad de motores electricos que incluye un primer motor 43a electrico y un segundo motor 41a electrico que se utilizan para accionar varios componentes del modulo 40 de mezclador. Los motores 41a y 43a electricos pueden ser energizados por el generador 30 de turbina. El fluido puede ser bombeado hacia el modulo 40 de mezclador a traves de un multiple 48a de entrada por el primer motor 43a electrico y se agrega a la cubeta 46a. Por lo tanto, el primer motor 43a electrico actua como un motor de succion. El segundo motor 41a electrico puede accionar el proceso de mezcla centrifuga en la cubeta 46a. El segundo motor 41a electrico tambien puede accionar el suministro de fluido mezclado fuera del modulo 40 de mezclador y hacia el recinto de pozo a traves de un multiple 49a de salida. Por lo tanto, el segundo motor 41a electrico actua como un motor de cubeta y un motor de descarga. En ciertas realizaciones ilustrativas, tambien se puede proporcionar un tercer motor 42a electrico. El tercer motor 42a electrico tambien puede ser energizado por el generador 30 de turbina y puede suministrar aditivos de fluido a l mezclador 46a. Por ejemplo, un agente apuntalante desde una tolva 44a puede ser suministrado hasta una cubeta 46a de mezclador, por ejemplo, una cubeta de mezclador centrifuga por una barrena 45a que es energizada por el tercer motor 42a electrico.
De modo similar, en ciertas realizaciones ilustrativas, la segunda unidad 47a de mezclador puede tener una pluralidad de motores electricos que incluyen un primer motor 43b electrico y un segundo motor 41 b electrico que se utilizan para accionar varios componentes del modulo 40 de mezclador. Los motores 41b y 43b electricos pueden ser energizados por el generador 30 de turbina. El fluido puede ser bombeado hacia el modulo 40 de mezclador a traves de un multiple 48b de entrada por el primer motor 43b electrico y se agrega a la cubeta 46b. Por lo tanto, el segundo motor 43a electrico actua como un motor de succion. El segundo motor 41b electrico puede accionar el proceso de mezcla centrifuga en la cubeta 46b. El segundo motor 41b electrico tambien puede accionar el suministro de fluido mezclado fuera del modulo 40 de mezclador y hacia el recinto de pozo a traves de un multiple 49b de salida. Por lo tanto, el segundo motor 41b electrico actua como un motor de cubeta y un motor de descarga. En ciertas realizaciones ilustrativas, tambien se puede proporcionar un tercer motor 42b electrico. El tercer motor 42b electrico tambien puede ser energizado por el generador 30 de turbina y puede suministrar aditivos de fluido al mezclador 46b. Por ejemplo, un agente apuntalante de una tolva 44b puede ser suministrado a una cubeta 46b de mezclador, por ejemplo, una cubeta de mezclador centrifuga por una barrena 45b que es energizada por el tercer motor 42b electrico.
El modulo 40 de mezclador tambien puede incluir una cabina 53 de control para alojar los controles de equipamiento de la primera unidad 47a de mezclador y la segunda unidad 47b de mezclador y puede incluir adicionalmente, segun se requiera, accionadores y enfriadores apropiados.
Los mezcladores convencionales energizados por un sistema hidraulico de diesel estan normalmente alojados en un remolque de tractor de cuarenta y cinco pies y tienen capacidad para aproximadamente 100 barriles/minuto. En contraste, la configuracion dual de modulo 40 de mezclador que tiene una primera unidad 47a de mezclador y una segunda unidad 47b de mezclador puede proporcionar una capacidad de produccion total de 240 barriles/minuto en el mismo espacio ocupado fisico que un mezclador convencional, sin la necesidad de una unidad de emergencia separada en caso de falla.
En el pasado se han intentado mezcladores de sistemas redundantes con exito limitado, principalmente como consecuencia de los problemas con los contrapesos de los remolques sin dejar de suministrar la cantidad de energia apropiada. Normalmente, dos motores separados cada uno de aproximadamente 650 hp, se instalan lado a lado en la nariz del remolque. Con el fin de accionar todos los sistemas necesarios, cada motor debe accionar una cubeta de mezclador por medio de una transmision, caja de caida y arbol de transmision extendido. Tambien se coloca un gran sistema hidraulico para cada motor para accionar todos los sistemas auxiliares, tales como aditivos quimicos y bombas de succion. Las perdidas parasitas de energia son muy grandes y el sistema de manguera y cableado es complejo.
En contraste, el modulo 40 de mezclador energizado electricamente descrito en ciertas realizaciones ilustrativas en el presente documento puede disminuir las perdidas de potencia parasitas de los sistemas convencionales por el accionamiento directo de cada pieza de equipo critico con un motor electrico dedicado. Adicionalmente, el modulo 40 de mezclador energizado electricamente descrito en ciertas realizaciones ilustrativas en el presente documento permite rutas de tuberia que no estan disponibles en las aplicaciones convencionales. Por ejemplo, en ciertas realizaciones ilustrativas, la fuente de fluido puede ser un multiple 48 de entrada que puede tener una o mas lineas
50 de cruce de entrada (vease Figura 7) que conectan la seccion de multiple 48 de entrada dedicado para suministrar fluido a la primera unidad 47a de mezclador con la seccion del multiple 48 de entrada dedicado para suministrar fluido a la segunda unidad 47b de mezclador. De modo similar, en ciertas realizaciones ilustrativas, el multiple 49 de salida puede tener una o mas lineas 51 de cruce de salida (vease Figura 6) que conectan la seccion de multiple 49 de salida dedicado para suministrar fluido desde la primera unidad 47a de mezclador con la seccion de multiple 49 de salida dedicado para suministrar fluido desde la segunda unidad 47b de mezclador. Las lineas 50 y
51 de cruce permiten que se enrute o desvie el flujo entre la primera unidad 47a de mezclador y la segunda unidad 47b de mezclador. Por lo tanto, el modulo 40 de mezclador se puede mezclar desde cualquier lado o desde ambos lados y/o descargar en cualquiera de los lados o en ambos lados, si es necesario. Como resultado, las velocidades alcanzables por el modulo 40 de mezclador energizado electricamente son mucho mas grandes que las de un mezclador convencional. En ciertas realizaciones ilustrativas, cada lado (es decir, primera unidad 47a de mezclador
5
10
15
20
25
30
35
40
45
50
55
y segunda unidad 47b de mezclador) del modulo 40 de mezclador tiene una capacidad de aproximadamente 120 barriles/minuto. Tambien, cada lado (es decir, primera unidad 47a de mezclador y segunda unidad 47b de mezclador) puede desplazar aproximadamente 15 t/min de arena, por lo menos en parte porque la longitud de la barrena 45 es mas corta (aproximadamente 6') si se compara con las unidades convencionales (aproximadamente 12').
En ciertas realizaciones ilustrativas, el modulo 40 de mezclador se puede acortar o "reducir" a un unico modulo compacto comparable en tamano y dimensiones al modulo 20 de fracturacion descrito en el presente documento. Para trabajos de fracturacion o tratamiento mas pequenos que requieren menos que cuatro modulos 20 de fracturacion, un modulo 40 de mezclador reducido puede reemplazar uno de los modulos 20 de fracturacion en el remolque 10, reduciendo de esta manera los costes operativos y mejorando la facilidad de transporte del sistema.
Sistema de control
Se puede proporcionar un sistema de control para regular diversos equipos y sistemas dentro de la operacion de fracturacion energizada electricamente. Por ejemplo, en ciertas realizaciones ilustrativas, el sistema de control puede regular el modulo 20 de fracturacion en el suministro del fluido de tratamiento desde el modulo 30 de mezclador hasta las bombas 22 para suministrarlo al recinto de pozo. Los controles para la operacion energizada electricamente que se describen en el presente documento son una mejora significativa sobre aquellas de los sistemas de motor de diesel convencionales. Debido a que los motores electricos son controlados por accionamientos de frecuencia variables, el control absoluto de todos los equipos sobre el sitio se puede mantener desde un punto central. Cuando el operador del sistema establece una presion maxima para el tratamiento, el software de control y los accionamientos de frecuencia variables calculan una corriente maxima disponible para los motores. Los accionamientos de frecuencia variables esencialmente "informan" a los motores lo que les esta perm itido.
Los motores electricos controlados por medio de accionamientos de frecuencia variables son mucho mas seguros y mas faciles de controlar que los equipos convencionales de motor de diesel. Por ejemplo, flotas convencionales con bombas energizadas con diesel utilizan transmision y motor controlados electronicamente en la unidad. Puede haber hasta catorce parametros diferentes que necesitan ser monitorizados y controlados para una operacion apropiada. Estas senales normalmente se suelen enviar a traves de cables permanentemente conectados a una consola de operador controlada por el accionador de bomba. Las senales se convierten de digitales a analogicas de modo que las entradas se pueden hacer a traves de conmutadores y mandos de control. Las entradas se convierten entonces de analogicas nuevamente a digitales y se envian de nuevo a la unidad. El modulo de control de la unidad informa entonces al motor o transmision que realice la tarea requerida y la senal se convierte en una operacion mecanica. Este proceso toma tiempo.
Las sobrepresiones accidentales son bastante comunes en estas operaciones convencionales porque la senal debe viajar a la consola, nuevamente a la unidad y luego realizar una funcion mecanica. Las sobrepresiones pueden ocurrir en milisegundos como consecuencia de la naturaleza de las operaciones. Estas en general se deben a errores humanos y puede ser tan simple como que un unico operador falla en reaccionar a un comando. Tambien con frecuencia se deben a una valvula que se cierra, que accidentalmente crea una situacion de "punto muerto".
Por ejemplo, en enero de 2011, una operacion de fracturacion de gran escala se llevo a cabo en la cuenca del Rio Horn en el noreste de la Columbia Britanica, Canada. Se produjo una fuga en una de las lineas y se dio una orden de cierre. La valvula principal en el cabezal de pozo se cerro entonces de forma remota. Desafortunadamente, multiples bombas siguieron funcionando y sobrevino un sistema de sobrepresion. El tratamiento con hierro clasificado para 10.000 psi fue llevado a mas de 15.000 psi. Una linea conectada con el pozo tambien se separo y comenzo a golpear a su alrededor. El incidente provoco una parada de toda la operacion durante mas de una semana mientras se realizaba una investigacion y se evaluaban los danos.
El sistema de control provisto, de acuerdo con las realizaciones ilustrativas presentes, al ser accionado electricamente elimina virtualmente la posibilidad de que ocurran estos tipos de escenarios. Un valor maximo de presion fijado al comienzo de la operacion es la cantidad maxima de energia que se puede enviar al motor 21 electrico para la bomba 22. Al extrapolar un valor de corriente maxima de esta entrada, el motor 21 electrico no tiene la energia disponible para superar su presion de operacion. Tambien, dado que virtualmente no existen sistemas mecanicos entre la bomba 22 y el motor 21 electrico, hay que lidiar con un "momento de inercia" mas pequeno de los engranajes y embragues. Una detencion casi instantanea del motor 21 electrico resulta en una detencion casi instantanea de la bomba 22.
Un sistema energizado electricamente y controlado como se describe en el presente documento aumenta en gran medida la facilidad con la que se puede sincronizar o subordinar todo el equipo entre si. Esto significa que un cambio en un unico punto lo llevaran a cabo todas las piezas del equipo, a diferencia de los equipos de diesel. Por ejemplo, en las operaciones energizadas con diesel convencionales, el mezclador normalmente suministra todos los fluidos necesarios para todo el sistema. Con el fin de realizar un cambio de velocidad de la operacion, el mezclador debe cambiar la velocidad antes que las bombas cambien sus velocidades. Esto con frecuencia puede resultar en un
sobreflujo accidental de las cubetas de mezclador y/o la cavitacion de las bombas debido al desfase temporal de cada pieza del equipo a las que se les dan comandos manuales.
En contraste, en ciertas realizaciones ilustrativas, la presente operacion utiliza un control de punto unico que no se vincula unicamente con las operaciones de mezclado. Todos los parametros de operacion pueden ser ingresados 5 antes de comenzar la fracturacion. Si se requiere un cambio de velocidad, el sistema aumentara la velocidad de todo el sistema con un unico comando. Esto significa que, si se informa a las bombas 22 que aumenten la velocidad, entonces el modulo 40 de mezclador junto con las unidades de productos quimicos e incluso los equipos auxiliares, como las correas abrasivas, aumentaran las velocidades para compensar de forma automatica.
Se pueden realizar controles apropiados y monitoreo computacional de toda la operacion de fracturacion en una 10 unica localizacion central, que facilita la adherencia a los parametros de seguridad preestablecidos. Por ejemplo, un centro 40 de control se indica en la Figura 2 desde el cual se pueden administrar las operaciones por medio del enlace 41 de comunicaciones. Ejemplos de operaciones que pueden ser controladas y monitorizadas remotamente desde el centro 40 de control por medio del enlace 41 de comunicaciones pueden ser la funcion de generar energia en el Area B o el suministro de fluido de tratamiento desde el modulo 40 de mezclador hasta las bombas 22 para 15 suministrarlo al recinto de pozo.
Ejemplo comparacion
La Tabla 1 que se muestra a continuacion compara y contrasta los costes operativos y los requerimientos de mano de obra para una operacion energizada con diesel convencional (tal como se muestra en la Figura 1) con aquellos de la operacion energizada electricamente (tal como se muestra en la Figura 2).
20 Tabla 1
- Comparacion de operacion con operacion energizada con diesel convencional vs. operacion con energizacion electrica
- Operacion energizada con diesel
- Operacion energizada electrica
- Coste total de combustible (diesel): alrededor de $80.000 por dia
- Coste total de combustible (gas natural): alrededor de $2.300 por dia
- Intervalo de servicio para motores diesel - aproximadamente cada 200-300 horas
- Intervalo de servicio para motor electrico - aproximadamente cada 50.000 horas
- Tamano de personal dedicado: alrededor de 40 personas
- Tamano de personal dedicado: alrededor de 10 personas
En la Tabla 1, la "operacion de motor de diesel" utiliza por lo menos 24 bombas y 2 mezcladores y requiere por lo menos 54.000 hp para ejecutar el programa de fracturacion en ese sitio. Cada bomba quema aproximadamente 300400 litros por hora de funcionamiento y las unidades de mezclado queman una cantidad similar de combustible 25 diesel. Debido al consumo de combustible y la capacidad de combustible de esta unidad convencional, la misma requiere el reabastecimiento de combustible durante la operacion, lo que es extremadamente peligroso y representa un peligro de incendio. Adicionalmente, cada pieza de equipo convencional necesita un tractor dedicado para desplazarla y un conductor/operador para conducirlo. El tamano de la cuadrilla requerida para operar y mantener una operacion convencional, tal como la de la Figura 1, representa un coste directo para el operador del sitio.
30 En contraste, la operacion energizada electricamente, como se describe en el presente documento, utiliza una turbina que solo consume alrededor de 6 mm scf de gas natural cada 24 horas. En tasas de mercado actuales (aproximadamente $2.50 por mmbtu), esto equivale a una reduccion en el coste directo para el operador del sitio de mas de $77.000 por dia en comparacion con la operacion energizada con diesel. Tambien, el intervalo de mantenimiento de los motores electricos es de aproximadamente 50.000 horas, lo que permite que desaparezca la 35 mayor parte de los costes de confiabilidad y mantenimiento. Adicionalmente, la necesidad de multiples accionadores/operadores se reduce significativamente y la operacion energizada electricamente significa que un unico operador puede ejecutar todo el sistema desde una ubicacion central. El tamano de la cuadrilla se puede reducir en aproximadamente 75%, ya que solo se necesitan aproximadamente 10 personas en el mismo sitio para llevar a cabo las mismas tareas que en las operaciones convencionales, con las 10 personas que incluyen el 40 personal de mantenimiento fuera del sitio. Adicionalmente, el tamano de la cuadrilla no se modifica con la cantidad de equipos utilizados. De esta manera, la operacion energizada electricamente es significativamente mas economica.
Diseno modular y realizaciones alternativas
5
10
15
20
25
30
35
40
45
50
55
60
Como se senalo anteriormente, la naturaleza modular de la operacion de fracturacion energizada electricamente que se describe en el presente documento proporciona ventajas operativas y eficiencias significativas sobre los sistemas de fracturacion tradicionales. Cada modulo 20 de fracturacion esta situado en el remolque 10 que aloja los soportes necesarios y los sistemas multiples para succiones de baja presion y descargas de alta presion. Cada modulo 20 de fracturacion se puede retirar del servicio y reemplazar sin cerrar o comprometer la dispersion de fracturacion. Por ejemplo, la bomba 22 se puede aislar con respecto al remolque 10, se retira y reemplaza por una nueva bomba 22 en pocos minutos. Si el modulo 20 de fracturacion requiere mantenimiento, se puede aislar de las lineas de fluido, desconectar, separar y retirar con un montacargas. Otro modulo 20 de fracturacion se puede entonces reinsertar de la misma manera y realizar un ahorro de tiempo drastico. Adicionalmente, el modulo 20 de fracturacion retirado se puede reparar o se realiza su mantenimiento en el sitio. En cambio, si una de las bombas en un sistema energizado con diesel convencional sale del servicio o requiere mantenimiento, la combinacion tractor/remolque debe ser desconectada del sistema multiple y trasladada del sitio. A continuacion, una unidad de reemplazo debe ser respaldada en la linea y reconectada. La manipulacion de estas unidades dentro de estos limites estrechos es dificil y peligrosa.
La operacion de fracturacion energizada electricamente que se describe actualmente puede facilmente adaptarse para acomodar tipos adicionales de capacidades de bombeo segun sea necesario. Por ejemplo, se puede proporcionar un modulo de bombeo de reemplazo que esta adaptado para ser instalado de modo separable en el remolque 10. El modulo de bombeo de reemplazo se puede utilizar para bombear nitrogeno liquido, dioxido de carbono u otros productos quimicos o fluidos segun sea necesario para aumentar la versatilidad del sistema y ampliar el rango y la capacidad operativa. En un sistema convencional, si se requiere una bomba de nitrogeno, una unidad de camion/remolque separada se debe llevar al sitio y unir en la extension de fracturacion. En contraste, la operacion actualmente descrita permite un modulo de nitrogeno de reemplazo con generalmente las mismas dimensiones que el modulo 20 de fracturacion, de modo que el modulo de reemplazo puede entrar en la misma ranura sobre el remolque que el modulo 20 de fracturacion. El remolque 10 puede contener todas las distribuciones necesarias de energia electrica segun requiere un modulo de bomba de nitrogeno de modo que no se requieren modificaciones. El mismo concepto se aplica a los modulos de bomba de dioxido de carbono o cualquier otra pieza de equipo que podria requerirse. En lugar de otro camion/remolque se puede utilizar en cambio un modulo de reemplazo especializado.
Se considera que el gas natural es la fuente de combustible disponible mas eficiente y mas limpia. Mediante el diseno y construccion de "equipo adecuado para el objetivo" que se energiza con gas natural, se espera que cada uno del espacio ocupado de fracturacion, mano de obra y requisitos de mantenimiento se pueda reducir en mas de 60% en comparacion con las operaciones energizadas con diesel tradicionales.
Adicionalmente, la operacion de fracturacion energizada electricamente actualmente descrita resuelve o mitiga los impactos ambientales de las operaciones energizadas por diesel tradicionales. Por ejemplo, la operacion energizada con gas natural descrita actualmente puede proporcionar una reduccion significativa de las emisiones de dioxido de carbono en comparacion con las operaciones energizadas con diesel. En una realizacion ilustrativa, un sitio de fracturacion que utiliza la operacion energizada con gas natural actualmente descrita tendria un nivel de emisiones de dioxido de carbono de aproximadamente 2200 kg/h dependiendo de la calidad del gas combustible lo que representa una reduccion de aproximadamente 200% de las emisiones de dioxido de carbono respecto de las operaciones energizadas con diesel. Tambien, en una realizacion ilustrativa, la operacion energizada con gas natural actualmente descrita puede producir no mas que aproximadamente 80 decibeles de sonido con un empaque de silenciador utilizado en la turbina 30 que cumple con los requisitos de OSHA para emisiones de ruido. En comparacion, una bomba de fracturacion energizada con diesel convencional que funciona a maximas rpm emite alrededor de 105 decibeles de sonido. Cuando multiples bombas de fracturacion energizadas con diesel funcionan simultaneamente, el ruido es un riesgo significativo asociado con las operaciones convencionales.
En ciertas realizaciones ilustrativas, la operacion de fracturacion energizada electricamente que se describe en el presente documento tambien se puede utilizar para aplicaciones de petroleo y gas en alta mar, por ejemplo, la fracturacion de un recinto de pozo en un sitio en alta mar. Las operaciones convencionales en alta mar ya poseen la capacidad de generar energia electrica en el sitio. Estos buques son normalmente a diesel mas que electricos, lo que significa que la planta de energia de diesel en el buque genera electricidad para satisfacer todos los requisitos de potencia que incluyen la propulsion. La conversion de los servicios de bombeo en alta mar para que funcionen con un suministro de energia electrica permitira que el combustible diesel transportado se utilice en la generacion de energia mas que para accionar la operacion de fracturacion, reduciendo de ese modo el consumo de combustible diesel. La energia electrica generada a partir de la planta de energia del buque de alta mar (que no es necesaria durante el mantenimiento de la estacion) puede ser utilizada para energizar uno o mas modulos 10 de fracturacion. Esto es mucho mas limpio, mas seguro y mas eficiente que el uso de equipos energizados con diesel. Los modulos 10 de fracturacion son tambien mas pequenos y mas livianos que el equipo normalmente utilizado en la cubierta de los buques en alta mar, por lo tanto, se suprimen algunos de los problemas de lastre actuales y permite que los buques en alta mar transporten mas equipos o materias primas.
En un diseno de cubierta para un buque de estimulacion de alta mar convencional, los equipos de bombeo energizados con diesel basados en patines y las instalaciones de almacenamiento en la cubierta del buque crean problemas de lastre. En la cubierta del buque, demasiado equipo pesado hace que el buque tenga un centro de
gravedad mas alto. Tambien, las lineas de combustible deben dirigirse a cada pieza de equipo lo que aumenta enormemente el riesgo de derrames de combustible. En las realizaciones ilustrativas de un diseno de cubierta de un buque en alta mar que utiliza operaciones de fracturacion energizadas electricamente como se describe en el presente documento, el espacio ocupado fisico del diseno de equipo se reduce significativamente cuando se 5 compara con el diseno convencional. Mas espacio libre esta disponible en la cubierta y el peso del equipo se reduce drasticamente, por lo tanto, se eliminan la mayor parte de los problemas de lastre. Se puede utilizar un buque ya disenado como diesel-electrico. Cuando el buque esta en la estacion en una plataforma y en el modo de mantenimiento de estacion, la mayor parte de la potencia que los motores del buque generan se puede llevar hasta la cubierta para energizar los modulos. Las instalaciones de almacenamiento en el buque se pueden ubicar por 10 debajo de la cubierta, y esto hace descender aun mas el centro de gravedad, mientras que el equipo adicional, por ejemplo, un separador trifasico o unidad de tuberia enrollada, se puede proporcionar sobre la cubierta, lo que es dificil en los buques energizados con diesel existentes. Estos beneficios junto con el sistema de control electronico proporcionan ventajas muy superiores sobre los buques convencionales.
Aunque la presente descripcion ha contemplado especificamente un sistema de fracturacion, el sistema se puede 15 utilizar para energizar bombas con otros propositos o para energizar otros equipos de campos petroliferos. Por ejemplo, los equipos de bombeo de alta velocidad y presion, equipos de fracturacion hidraulica, equipos de bombeo de estimulacion de pozos y/o equipos de mantenimiento de pozos tambien pueden ser energizados con el presente sistema. Adicionalmente, el sistema se puede adaptar para ser utilizado en otros campos de la tecnica que requieren operaciones de bombeo de alto torque o alta velocidad, tales como limpieza de tuberias o desague de minas.
20
Claims (16)
- 51015202530354045REIVINDICACIONES1. Un metodo para suministrar fluido de fracturacion a un recinto de pozo, el metodo comprende las etapas de:proporcionar una fuente dedicada de energfa (30) electrica a un sitio que contiene un recinto de pozo que se va a fracturar;proporcionar uno o mas modulos (20) de fracturacion electrica en el sitio, el modulo (20) de fracturacion electrica que comprende un motor (21) electrico y una bomba (22) de fluido acoplada, el motor (21) electrico asociado operativamente con la fuente dedicada de energfa (30) electrica;proporcionar un modulo (40) mezclador electrico, el modulo (40) mezclador electrico comprende: una fuente (48) de fluido, una fuente (44) aditiva de fluido, y una cubeta (46) de mezclador;suministrar energfa electrica desde la fuente (30) dedicada hasta el modulo (40) mezclador electrico para efectuar mezcla de un fluido desde la fuente (48) de fluido con un aditivo de fluido desde la fuente (44) aditiva de fluido para generar el fluido de fracturacion;proporcionar el fluido de fracturacion para suministro presurizado a un recinto de pozo; yoperar los modulos (20) de fracturacion utilizando energfa electrica desde la fuente dedicada para bombear el fluido de fracturacion hasta el recinto de pozo.
- 2. El metodo de la reivindicacion 1, en el que la fuente dedicada de energfa electrica es un generador (30) de turbina.
- 3. El metodo de la reivindicacion 2, que comprende adicionalmente la etapa de proporcionar una fuente de gas natural, en el que el gas natural se utiliza para accionar el generador (30) de turbina en la produccion de energfa electrica.
- 4. El metodo de la reivindicacion 1, en el que el motor (21) electrico es un motor de iman permanente de CA capaz de operacion en el rango de hasta 1500 rpms y hasta 20,000 pies/libras de torque.
- 5. El metodo de la reivindicacion 1, en el que la bomba es una bomba (22) de fluido estilo de embolo qumtuple.
- 6. El metodo de la reivindicacion 1, en el que la fuente dedicada de energfa (30) electrica se dispone en unaubicacion remota desde uno o mas modulos (20) de fracturacion electrica.
- 7. El metodo de la reivindicacion 1, en el que el sitio es un sitio en tierra.
- 8. El metodo de la reivindicacion 2, en el que el sitio es un sitio en alta mar.
- 9. Un sistema para uso en suministrar fluido presurizado a un recinto de pozo, el sistema comprende:un sitio de pozo que comprende un recinto de pozo y una fuente (30) dedicada de electricidad;un modulo (20) de fracturacion energizado electricamente asociado operativamente con la fuente (30) dedicada de electricidad, el modulo (20) de fracturacion energizado electricamente que comprende un motor (21) electrico y una bomba (22) de fluido acoplada al motor (21) electrico;una fuente de fluido de tratamiento, en la que la fuente de fluido de tratamiento comprende un modulo de mezclador energizado electricamente (40) asociado operativamente con la fuente (30) dedicada de electricidad; yun sistema de control para regular el modulo (20) de fracturacion en el suministro de fluido de tratamiento desde la fuente de fluido de tratamiento hasta el recinto de pozo.
- 10. El sistema de la reivindicacion 9, que comprende adicionalmente un remolque de fracturacion en el sitio de pozo para alojar uno o mas modulos (20) de fracturacion.
- 11. El sistema de la reivindicacion 9, en el que el modulo (20) de fracturacion se adapta para montar de forma desmontable sobre el remolque.
- 12. El sistema de la reivindicacion 9, que comprende adicionalmente un modulo de bombeo de repuesto que comprende una bomba y un motor electrico, en el que el modulo de bombeo de repuesto se adapta para montar de forma desmontable sobre el remolque.
- 13. El sistema de la reivindicacion 12, en el que el modulo de bombeo de repuesto se selecciona del grupo que comprende un modulo de bombeo de nitrogeno y un modulo de bombeo de dioxido de carbono.
- 14. El sistema de la reivindicacion 12, en el que el modulo de bombeo de repuesto se selecciona del grupo que comprende un torque alto, motor de baja velocidad y un torque bajo, motor de alta velocidad.
- 15. El sistema de la reivindicacion 9, en el que la fuente dedicada de electricidad se dispone en una ubicacion remota desde el modulo de fracturacion energizado electricamente.5 16. El sistema de la reivindicacion 9, en el que el sitio de pozo es un sitio en tierra.
- 17. El sistema de la reivindicacion 9, en el que el sitio de pozo es un sitio en alta mar y la fuente dedicada de electricidad y el modulo de fracturacion energizado electricamente se ubican sobre un buque en alta mar.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161472861P | 2011-04-07 | 2011-04-07 | |
US201161472861P | 2011-04-07 | ||
PCT/IB2012/000832 WO2012137068A2 (en) | 2011-04-07 | 2012-04-06 | Mobile, modular, electrically powered system for use in fracturing underground formations |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2692897T3 true ES2692897T3 (es) | 2018-12-05 |
Family
ID=46965206
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES18189394T Active ES2858330T3 (es) | 2011-04-07 | 2012-04-06 | Sistema energizado eléctricamente para uso en la fracturación de formaciones subterráneas |
ES12767292.1T Active ES2692897T3 (es) | 2011-04-07 | 2012-04-06 | Sistema energizado eléctricamente, modular, móvil para uso en formaciones subterráneas de fracturación |
ES18189402T Active ES2981520T3 (es) | 2011-04-07 | 2012-04-06 | Sistema energizado eléctricamente para uso en la fracturación de formaciones subterráneas |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES18189394T Active ES2858330T3 (es) | 2011-04-07 | 2012-04-06 | Sistema energizado eléctricamente para uso en la fracturación de formaciones subterráneas |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES18189402T Active ES2981520T3 (es) | 2011-04-07 | 2012-04-06 | Sistema energizado eléctricamente para uso en la fracturación de formaciones subterráneas |
Country Status (10)
Country | Link |
---|---|
US (12) | US9366114B2 (es) |
EP (12) | EP2726705B1 (es) |
AR (10) | AR104823A2 (es) |
BR (10) | BR122020025357B8 (es) |
CA (9) | CA3012331C (es) |
ES (3) | ES2858330T3 (es) |
HU (1) | HUE040293T2 (es) |
MX (5) | MX365889B (es) |
PL (5) | PL3444430T3 (es) |
WO (1) | WO2012137068A2 (es) |
Families Citing this family (213)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8870233B2 (en) | 2007-07-03 | 2014-10-28 | S.P.M. Flow Control, Inc. | Swivel joint with uniform ball bearing requirements |
WO2010123889A2 (en) | 2009-04-20 | 2010-10-28 | Weir Spm, Inc. | Flowline flapper valve |
WO2010141651A2 (en) | 2009-06-03 | 2010-12-09 | Weir Spm, Inc. | Plug valve indicator |
US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
US9366114B2 (en) | 2011-04-07 | 2016-06-14 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations |
US9140110B2 (en) | 2012-10-05 | 2015-09-22 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
CN104254666B (zh) * | 2012-02-15 | 2016-09-07 | 四川宏华石油设备有限公司 | 一种页岩气作业方法 |
WO2013148342A1 (en) * | 2012-03-27 | 2013-10-03 | Kevin Larson | Hydraulic fracturing system and method |
CA2813935C (en) * | 2012-04-26 | 2020-09-22 | Ge Oil & Gas Pressure Control Lp | Delivery system for fracture applications |
US20130306322A1 (en) * | 2012-05-21 | 2013-11-21 | General Electric Company | System and process for extracting oil and gas by hydraulic fracturing |
US8997904B2 (en) | 2012-07-05 | 2015-04-07 | General Electric Company | System and method for powering a hydraulic pump |
US10077610B2 (en) | 2012-08-13 | 2018-09-18 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
WO2014028498A2 (en) | 2012-08-16 | 2014-02-20 | S.P.M. Flow Control, Inc. | Plug valve having preloaded seal segments |
US9273543B2 (en) | 2012-08-17 | 2016-03-01 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
US9322243B2 (en) | 2012-08-17 | 2016-04-26 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
US20140095114A1 (en) * | 2012-09-28 | 2014-04-03 | Hubertus V. Thomeer | System And Method For Tracking And Displaying Equipment Operations Data |
WO2014078236A1 (en) * | 2012-11-13 | 2014-05-22 | Tucson Embedded Systems, Inc. | Pump system for high pressure applications |
US9970278B2 (en) | 2012-11-16 | 2018-05-15 | U.S. Well Services, LLC | System for centralized monitoring and control of electric powered hydraulic fracturing fleet |
US10020711B2 (en) | 2012-11-16 | 2018-07-10 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
US9995218B2 (en) * | 2012-11-16 | 2018-06-12 | U.S. Well Services, LLC | Turbine chilling for oil field power generation |
US10119381B2 (en) * | 2012-11-16 | 2018-11-06 | U.S. Well Services, LLC | System for reducing vibrations in a pressure pumping fleet |
US9840901B2 (en) | 2012-11-16 | 2017-12-12 | U.S. Well Services, LLC | Remote monitoring for hydraulic fracturing equipment |
US11476781B2 (en) * | 2012-11-16 | 2022-10-18 | U.S. Well Services, LLC | Wireline power supply during electric powered fracturing operations |
US9650879B2 (en) | 2012-11-16 | 2017-05-16 | Us Well Services Llc | Torsional coupling for electric hydraulic fracturing fluid pumps |
US10232332B2 (en) | 2012-11-16 | 2019-03-19 | U.S. Well Services, Inc. | Independent control of auger and hopper assembly in electric blender system |
US11449018B2 (en) | 2012-11-16 | 2022-09-20 | U.S. Well Services, LLC | System and method for parallel power and blackout protection for electric powered hydraulic fracturing |
US10407990B2 (en) | 2012-11-16 | 2019-09-10 | U.S. Well Services, LLC | Slide out pump stand for hydraulic fracturing equipment |
US9893500B2 (en) | 2012-11-16 | 2018-02-13 | U.S. Well Services, LLC | Switchgear load sharing for oil field equipment |
US10526882B2 (en) | 2012-11-16 | 2020-01-07 | U.S. Well Services, LLC | Modular remote power generation and transmission for hydraulic fracturing system |
US10254732B2 (en) | 2012-11-16 | 2019-04-09 | U.S. Well Services, Inc. | Monitoring and control of proppant storage from a datavan |
US9745840B2 (en) | 2012-11-16 | 2017-08-29 | Us Well Services Llc | Electric powered pump down |
US8789601B2 (en) | 2012-11-16 | 2014-07-29 | Us Well Services Llc | System for pumping hydraulic fracturing fluid using electric pumps |
US9410410B2 (en) | 2012-11-16 | 2016-08-09 | Us Well Services Llc | System for pumping hydraulic fracturing fluid using electric pumps |
US11959371B2 (en) | 2012-11-16 | 2024-04-16 | Us Well Services, Llc | Suction and discharge lines for a dual hydraulic fracturing unit |
US9650871B2 (en) | 2012-11-16 | 2017-05-16 | Us Well Services Llc | Safety indicator lights for hydraulic fracturing pumps |
US9611728B2 (en) * | 2012-11-16 | 2017-04-04 | U.S. Well Services Llc | Cold weather package for oil field hydraulics |
US10036238B2 (en) | 2012-11-16 | 2018-07-31 | U.S. Well Services, LLC | Cable management of electric powered hydraulic fracturing pump unit |
US20160138456A1 (en) * | 2013-03-06 | 2016-05-19 | Willard Harvey Wattenburg | Moveable, fuel-localized-power (flp) plant |
EP3447238A1 (en) | 2013-03-07 | 2019-02-27 | Prostim Labs, LLC | Fracturing systems and methods for a wellbore |
US9187982B2 (en) * | 2013-03-14 | 2015-11-17 | Baker Hughes Incorporated | Apparatus and methods for providing natural gas to multiple engines disposed upon multiple carriers |
US9638101B1 (en) | 2013-03-14 | 2017-05-02 | Tucson Embedded Systems, Inc. | System and method for automatically controlling one or multiple turbogenerators |
USD707332S1 (en) | 2013-03-15 | 2014-06-17 | S.P.M. Flow Control, Inc. | Seal assembly |
US20140318638A1 (en) * | 2013-03-15 | 2014-10-30 | Encana Oil & Gas (Usa) Inc. | Gas distribution trailer for natural gas delivery to engines |
US9605525B2 (en) | 2013-03-26 | 2017-03-28 | Ge Oil & Gas Pressure Control Lp | Line manifold for concurrent fracture operations |
CA2851304C (en) | 2013-06-13 | 2016-01-19 | Force Energy Management Corporation | Apparatuses and methods for supplying natural gas to a frac water heater |
WO2015002863A1 (en) | 2013-07-01 | 2015-01-08 | S.P.M. Flow Control, Inc. | Manifold assembly |
US9395049B2 (en) * | 2013-07-23 | 2016-07-19 | Baker Hughes Incorporated | Apparatus and methods for delivering a high volume of fluid into an underground well bore from a mobile pumping unit |
US10633174B2 (en) | 2013-08-08 | 2020-04-28 | Schlumberger Technology Corporation | Mobile oilfield materialtransfer unit |
US10150612B2 (en) | 2013-08-09 | 2018-12-11 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
US10876523B2 (en) | 2013-08-13 | 2020-12-29 | Ameriforge Group Inc. | Well service pump system |
AU2014331738A1 (en) * | 2013-10-10 | 2016-05-19 | Prostim Labs, Llc | Fracturing systems and methods for a wellbore |
US9435175B2 (en) | 2013-11-08 | 2016-09-06 | Schlumberger Technology Corporation | Oilfield surface equipment cooling system |
EP2910711B1 (en) * | 2014-02-24 | 2020-11-04 | Caterpillar Energy Solutions GmbH | Assembly comprising an engine |
US11819810B2 (en) | 2014-02-27 | 2023-11-21 | Schlumberger Technology Corporation | Mixing apparatus with flush line and method |
US11453146B2 (en) | 2014-02-27 | 2022-09-27 | Schlumberger Technology Corporation | Hydration systems and methods |
US12102970B2 (en) * | 2014-02-27 | 2024-10-01 | Schlumberger Technology Corporation | Integrated process delivery at wellsite |
CA2941532C (en) | 2014-03-31 | 2023-01-10 | Schlumberger Canada Limited | Reducing fluid pressure spikes in a pumping system |
US10610842B2 (en) | 2014-03-31 | 2020-04-07 | Schlumberger Technology Corporation | Optimized drive of fracturing fluids blenders |
MX2016011576A (es) | 2014-04-14 | 2016-11-29 | Halliburton Energy Services Inc | Planta de fluido de perforacion movil. |
US10008880B2 (en) | 2014-06-06 | 2018-06-26 | Bj Services, Llc | Modular hybrid low emissions power for hydrocarbon extraction |
US9759054B2 (en) * | 2014-07-30 | 2017-09-12 | Energy Recovery, Inc. | System and method for utilizing integrated pressure exchange manifold in hydraulic fracturing |
US9938808B2 (en) | 2014-08-19 | 2018-04-10 | Adler Hot Oil Service, LLC | Wellhead gas separator system |
US10767859B2 (en) | 2014-08-19 | 2020-09-08 | Adler Hot Oil Service, LLC | Wellhead gas heater |
WO2016064886A1 (en) * | 2014-10-20 | 2016-04-28 | Littoral Power Systems Inc. | Modular tidal and river current energy production system |
US9562420B2 (en) | 2014-12-19 | 2017-02-07 | Evolution Well Services, Llc | Mobile electric power generation for hydraulic fracturing of subsurface geological formations |
US10378326B2 (en) | 2014-12-19 | 2019-08-13 | Typhon Technology Solutions, Llc | Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations |
US9638194B2 (en) | 2015-01-02 | 2017-05-02 | General Electric Company | System and method for power management of pumping system |
US9587649B2 (en) | 2015-01-14 | 2017-03-07 | Us Well Services Llc | System for reducing noise in a hydraulic fracturing fleet |
WO2016122978A1 (en) | 2015-01-26 | 2016-08-04 | Schlumberger Canada Limited | Method for minimizing vibration in a multi-pump system |
CA2978706C (en) * | 2015-03-04 | 2023-09-26 | Stewart & Stevenson, LLC | Well fracturing systems with electrical motors and methods of use |
WO2016199075A1 (en) * | 2015-06-10 | 2016-12-15 | Prostim Labs, Llc | Fracturing system layouts |
WO2016205208A1 (en) | 2015-06-15 | 2016-12-22 | S.P.M. Flow Control, Inc. | Full-root-radius-threaded wing nut having increased wall thickness |
US10221856B2 (en) | 2015-08-18 | 2019-03-05 | Bj Services, Llc | Pump system and method of starting pump |
US10677365B2 (en) | 2015-09-04 | 2020-06-09 | S.P.M. Flow Control, Inc. | Pressure relief valve assembly and methods |
US10273791B2 (en) | 2015-11-02 | 2019-04-30 | General Electric Company | Control system for a CO2 fracking system and related system and method |
US12078110B2 (en) | 2015-11-20 | 2024-09-03 | Us Well Services, Llc | System for gas compression on electric hydraulic fracturing fleets |
EA034444B1 (ru) | 2016-01-11 | 2020-02-07 | Нэшнл Ойлвэл Варко, Л.П. | Насосные агрегаты с прямым приводом |
EP3426888B1 (en) | 2016-03-08 | 2021-04-21 | Typhon Technology Solutions, LLC | Utilizing wet fracturing sand for hydraulic fracturing operations |
US9662597B1 (en) * | 2016-03-09 | 2017-05-30 | NANA WorleyParsons LLC | Methods and systems for handling raw oil and structures related thereto |
US11273421B2 (en) | 2016-03-24 | 2022-03-15 | Halliburton Energy Services, Inc. | Fluid management system for producing treatment fluid using containerized fluid additives |
US10545002B2 (en) | 2016-04-10 | 2020-01-28 | Forum Us, Inc. | Method for monitoring a heat exchanger unit |
US10514205B2 (en) | 2016-04-10 | 2019-12-24 | Forum Us, Inc. | Heat exchanger unit |
US10502597B2 (en) | 2016-04-10 | 2019-12-10 | Forum Us, Inc. | Monitored heat exchanger system |
US10480820B2 (en) | 2016-04-10 | 2019-11-19 | Forum Us, Inc. | Heat exchanger unit |
US10533881B2 (en) | 2016-04-10 | 2020-01-14 | Forum Us, Inc. | Airflow sensor assembly for monitored heat exchanger system |
US10855142B2 (en) * | 2016-04-19 | 2020-12-01 | Supreme Electrical Services, Inc. | Power system for well service pumps |
US11209124B2 (en) * | 2016-06-23 | 2021-12-28 | Spm Oil & Gas Inc. | Power frame and lubrication system for a reciprocating pump assembly |
US10436693B2 (en) * | 2016-07-27 | 2019-10-08 | Chevron U.S.A. Inc. | Portable apparatus and methods for analyzing injection fluids |
WO2018044323A1 (en) | 2016-09-02 | 2018-03-08 | Halliburton Energy Services, Inc. | Hybrid drive systems for well stimulation operations |
US10030579B2 (en) * | 2016-09-21 | 2018-07-24 | General Electric Company | Systems and methods for a mobile power plant with improved mobility and reduced trailer count |
US10184397B2 (en) | 2016-09-21 | 2019-01-22 | General Electric Company | Systems and methods for a mobile power plant with improved mobility and reduced trailer count |
US9790080B1 (en) | 2016-10-11 | 2017-10-17 | Fuel Automation Station, LLC | Mobile distribution station with fail-safes |
CN106501488B (zh) * | 2016-11-29 | 2019-09-03 | 中国石油大学(北京) | 真三轴加砂压裂试验机及其试验方法 |
CA2987665C (en) | 2016-12-02 | 2021-10-19 | U.S. Well Services, LLC | Constant voltage power distribution system for use with an electric hydraulic fracturing system |
US20220333536A1 (en) * | 2017-01-25 | 2022-10-20 | Electronic Power Design, Inc. | Mobile electric fracking trailer power supply system |
US20180231184A1 (en) * | 2017-02-13 | 2018-08-16 | Compass Natural Gas Partners, LP | Method and System for Transfer of Natural Gas |
US11624326B2 (en) | 2017-05-21 | 2023-04-11 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
EP3645833A4 (en) | 2017-06-29 | 2021-06-09 | Typhon Technology Solutions, LLC | HYDRATION MIXER TRANSPORT FOR FRACTURING OPERATIONS |
US10280724B2 (en) | 2017-07-07 | 2019-05-07 | U.S. Well Services, Inc. | Hydraulic fracturing equipment with non-hydraulic power |
CN107237617A (zh) * | 2017-07-27 | 2017-10-10 | 中石化石油工程机械有限公司第四机械厂 | 一种单机双泵结构的电驱压裂装备 |
US10704422B2 (en) | 2017-08-29 | 2020-07-07 | On-Power, Inc. | Mobile power generation system including noise attenuation |
US10458334B2 (en) | 2017-08-29 | 2019-10-29 | On-Power, Inc. | Mobile power generation system including closed cell base structure |
US10371012B2 (en) | 2017-08-29 | 2019-08-06 | On-Power, Inc. | Mobile power generation system including fixture assembly |
US10704472B2 (en) | 2017-08-29 | 2020-07-07 | On-Power, Inc. | Mobile power generation system including air filtration |
WO2019071086A1 (en) | 2017-10-05 | 2019-04-11 | U.S. Well Services, LLC | SYSTEM AND METHOD FOR FLOWING INSTRUMENTED FRACTURING SLUDGE |
US10794541B2 (en) * | 2017-10-06 | 2020-10-06 | CleanWorld | Apparatus for flexible, programmed, controlled transfer of liquids in multi-tank systems |
US10408031B2 (en) | 2017-10-13 | 2019-09-10 | U.S. Well Services, LLC | Automated fracturing system and method |
AR114805A1 (es) | 2017-10-25 | 2020-10-21 | U S Well Services Llc | Método y sistema de fracturación inteligente |
CA3084596A1 (en) | 2017-12-05 | 2019-06-13 | U.S. Well Services, LLC | Multi-plunger pumps and associated drive systems |
WO2019113153A1 (en) * | 2017-12-05 | 2019-06-13 | U.S. Well Services, Inc. | High horsepower pumping configuration for an electric hydraulic fracturing system |
WO2019136017A1 (en) | 2018-01-02 | 2019-07-11 | Typhon Technology Solutions, Llc | Exhaust heat recovery from mobile power generation system |
CN107975350B (zh) * | 2018-01-12 | 2024-02-13 | 中石化四机石油机械有限公司 | 一种钻塞泵注作业设备 |
CA3090408A1 (en) * | 2018-02-05 | 2019-08-08 | U.S. Well Services, LLC | Microgrid electrical load management |
AR115054A1 (es) | 2018-04-16 | 2020-11-25 | U S Well Services Inc | Flota de fracturación hidráulica híbrida |
US11852133B2 (en) * | 2018-04-27 | 2023-12-26 | Ameriforge Group Inc. | Well service pump power system and methods |
US11305233B2 (en) | 2018-06-04 | 2022-04-19 | CleanWorld | System, device and method for production of high-nitrogen organic liquid fertilizer from ammonia rich wastewaters and digester effluents |
US11211801B2 (en) | 2018-06-15 | 2021-12-28 | U.S. Well Services, LLC | Integrated mobile power unit for hydraulic fracturing |
US12018569B2 (en) * | 2018-06-20 | 2024-06-25 | Zeeco, Inc. | Portable electrical energy produced from waste gas or liquid |
US11359462B2 (en) | 2018-08-01 | 2022-06-14 | Typhon Technology Solutions, Llc | Switch gear transport that distributes electric power for fracturing operations |
US11815076B2 (en) | 2018-08-06 | 2023-11-14 | Typhon Technology Solutions (U.S.), Llc | Engagement and disengagement with external gear box style pumps |
US11035348B2 (en) | 2018-08-28 | 2021-06-15 | National Oilwell Varco, L.P. | Reciprocating pumps having a pivoting arm |
US10648270B2 (en) | 2018-09-14 | 2020-05-12 | U.S. Well Services, LLC | Riser assist for wellsites |
US10914155B2 (en) | 2018-10-09 | 2021-02-09 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform |
US11208878B2 (en) | 2018-10-09 | 2021-12-28 | U.S. Well Services, LLC | Modular switchgear system and power distribution for electric oilfield equipment |
US20200199990A1 (en) * | 2018-12-20 | 2020-06-25 | Hi-Crush Canada Inc. | Portable conveying apparatus for transferring proppant from storage container to blender in a hydraulic fracturing operation |
WO2020139630A1 (en) | 2018-12-28 | 2020-07-02 | Typhon Technology Solutions, Llc | Prime mover and lube oil cooling assembly for fracturing pump transport |
US11604169B2 (en) * | 2019-01-10 | 2023-03-14 | Shuyong Paul Du | Renewable power system and method for pipeline inspection tools |
US10753165B1 (en) | 2019-02-14 | 2020-08-25 | National Service Alliance—Houston LLC | Parameter monitoring and control for an electric driven hydraulic fracking system |
US10753153B1 (en) | 2019-02-14 | 2020-08-25 | National Service Alliance—Houston LLC | Variable frequency drive configuration for electric driven hydraulic fracking system |
US10738580B1 (en) | 2019-02-14 | 2020-08-11 | Service Alliance—Houston LLC | Electric driven hydraulic fracking system |
US10794165B2 (en) | 2019-02-14 | 2020-10-06 | National Service Alliance—Houston LLC | Power distribution trailer for an electric driven hydraulic fracking system |
US10988998B2 (en) * | 2019-02-14 | 2021-04-27 | National Service Alliance—Houston LLC | Electric driven hydraulic fracking operation |
US11098962B2 (en) | 2019-02-22 | 2021-08-24 | Forum Us, Inc. | Finless heat exchanger apparatus and methods |
US11578577B2 (en) | 2019-03-20 | 2023-02-14 | U.S. Well Services, LLC | Oversized switchgear trailer for electric hydraulic fracturing |
US11512632B2 (en) | 2019-05-01 | 2022-11-29 | Typhon Technology Solutions (U.S.), Llc | Single-transport mobile electric power generation |
CN113748256B (zh) | 2019-05-01 | 2024-01-26 | 泰福恩技术解决方案有限责任公司 | 单个运输机式移动发电设备 |
WO2020231483A1 (en) | 2019-05-13 | 2020-11-19 | U.S. Well Services, LLC | Encoderless vector control for vfd in hydraulic fracturing applications |
US11560845B2 (en) | 2019-05-15 | 2023-01-24 | Bj Energy Solutions, Llc | Mobile gas turbine inlet air conditioning system and associated methods |
CA3143050A1 (en) | 2019-06-10 | 2020-12-17 | U.S. Well Services, LLC | Integrated fuel gas heater for mobile fuel conditioning equipment |
CN110118127A (zh) * | 2019-06-13 | 2019-08-13 | 烟台杰瑞石油装备技术有限公司 | 一种电驱压裂设备的供电半挂车 |
US11680474B2 (en) | 2019-06-13 | 2023-06-20 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Fracturing apparatus and control method thereof, fracturing system |
US11746636B2 (en) | 2019-10-30 | 2023-09-05 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Fracturing apparatus and control method thereof, fracturing system |
US11946667B2 (en) | 2019-06-18 | 2024-04-02 | Forum Us, Inc. | Noise suppresion vertical curtain apparatus for heat exchanger units |
CN110145399A (zh) * | 2019-06-25 | 2019-08-20 | 烟台杰瑞石油装备技术有限公司 | 一种移动式发电系统 |
US11753991B2 (en) | 2019-06-25 | 2023-09-12 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Intake-exhaust transport apparatus mobile power generation system and assembling method thereof |
AR119483A1 (es) | 2019-07-26 | 2021-12-22 | Typhon Tech Solutions Llc | Vigilancia de sistema de fracturación hidráulica a base de inteligencia artificial |
WO2021022048A1 (en) | 2019-08-01 | 2021-02-04 | U.S. Well Services, LLC | High capacity power storage system for electric hydraulic fracturing |
US11108234B2 (en) | 2019-08-27 | 2021-08-31 | Halliburton Energy Services, Inc. | Grid power for hydrocarbon service applications |
US11002189B2 (en) | 2019-09-13 | 2021-05-11 | Bj Energy Solutions, Llc | Mobile gas turbine inlet air conditioning system and associated methods |
US12065968B2 (en) | 2019-09-13 | 2024-08-20 | BJ Energy Solutions, Inc. | Systems and methods for hydraulic fracturing |
US11015594B2 (en) | 2019-09-13 | 2021-05-25 | Bj Energy Solutions, Llc | Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump |
US11015536B2 (en) | 2019-09-13 | 2021-05-25 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
CA3092865C (en) | 2019-09-13 | 2023-07-04 | Bj Energy Solutions, Llc | Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods |
CA3191280A1 (en) | 2019-09-13 | 2021-03-13 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
CA3092859A1 (en) | 2019-09-13 | 2021-03-13 | Bj Energy Solutions, Llc | Fuel, communications, and power connection systems and related methods |
US10815764B1 (en) | 2019-09-13 | 2020-10-27 | Bj Energy Solutions, Llc | Methods and systems for operating a fleet of pumps |
US10961914B1 (en) | 2019-09-13 | 2021-03-30 | BJ Energy Solutions, LLC Houston | Turbine engine exhaust duct system and methods for noise dampening and attenuation |
US10895202B1 (en) | 2019-09-13 | 2021-01-19 | Bj Energy Solutions, Llc | Direct drive unit removal system and associated methods |
US11555756B2 (en) | 2019-09-13 | 2023-01-17 | Bj Energy Solutions, Llc | Fuel, communications, and power connection systems and related methods |
US10989180B2 (en) | 2019-09-13 | 2021-04-27 | Bj Energy Solutions, Llc | Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods |
CN110485983A (zh) * | 2019-09-20 | 2019-11-22 | 烟台杰瑞石油装备技术有限公司 | 一种涡轮压裂半挂车 |
US11459863B2 (en) | 2019-10-03 | 2022-10-04 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump |
US11512683B2 (en) | 2019-10-08 | 2022-11-29 | Typhon Technology Solutions (U.S.), Llc | Chilled intake air for increased power generation |
CN110608028A (zh) * | 2019-10-14 | 2019-12-24 | 中石化四机石油机械有限公司 | 一种双层电驱压裂撬装设备 |
CN110608030A (zh) * | 2019-10-30 | 2019-12-24 | 烟台杰瑞石油装备技术有限公司 | 一种变频一体机的电驱压裂半挂车 |
US11085259B2 (en) | 2019-11-27 | 2021-08-10 | Chevron U.S.A. Inc. | Systems and processes for improved drag reduction estimation and measurement |
US11898094B2 (en) | 2019-11-27 | 2024-02-13 | Chevron U.S.A. Inc. | Systems and processes for improved drag reduction estimation and measurement |
US11009162B1 (en) | 2019-12-27 | 2021-05-18 | U.S. Well Services, LLC | System and method for integrated flow supply line |
WO2021146726A1 (en) * | 2020-01-16 | 2021-07-22 | Zitting Daniel K | Hydraulic fracturing spread and mechanisms |
US11454226B2 (en) * | 2020-01-21 | 2022-09-27 | Schaeffler Technologies AG & Co. KG | Electric off-axis opposing piston linear actuator pumping system |
US11635071B2 (en) | 2020-01-21 | 2023-04-25 | Schaeffler Technologies AG & Co. KG | Co-axial inverted piston linear actuator pumping system |
US11396868B2 (en) | 2020-03-09 | 2022-07-26 | Schaeffler Technologies AG & Co. KG | Linear actuator pumping system |
US11708829B2 (en) | 2020-05-12 | 2023-07-25 | Bj Energy Solutions, Llc | Cover for fluid systems and related methods |
US10968837B1 (en) | 2020-05-14 | 2021-04-06 | Bj Energy Solutions, Llc | Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge |
US11428165B2 (en) | 2020-05-15 | 2022-08-30 | Bj Energy Solutions, Llc | Onboard heater of auxiliary systems using exhaust gases and associated methods |
US11208880B2 (en) | 2020-05-28 | 2021-12-28 | Bj Energy Solutions, Llc | Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods |
US10961908B1 (en) | 2020-06-05 | 2021-03-30 | Bj Energy Solutions, Llc | Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit |
US11208953B1 (en) | 2020-06-05 | 2021-12-28 | Bj Energy Solutions, Llc | Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit |
US11109508B1 (en) | 2020-06-05 | 2021-08-31 | Bj Energy Solutions, Llc | Enclosure assembly for enhanced cooling of direct drive unit and related methods |
US10954770B1 (en) | 2020-06-09 | 2021-03-23 | Bj Energy Solutions, Llc | Systems and methods for exchanging fracturing components of a hydraulic fracturing unit |
US11111768B1 (en) | 2020-06-09 | 2021-09-07 | Bj Energy Solutions, Llc | Drive equipment and methods for mobile fracturing transportation platforms |
US11022526B1 (en) | 2020-06-09 | 2021-06-01 | Bj Energy Solutions, Llc | Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit |
US11066915B1 (en) | 2020-06-09 | 2021-07-20 | Bj Energy Solutions, Llc | Methods for detection and mitigation of well screen out |
US11939853B2 (en) | 2020-06-22 | 2024-03-26 | Bj Energy Solutions, Llc | Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units |
US11125066B1 (en) | 2020-06-22 | 2021-09-21 | Bj Energy Solutions, Llc | Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing |
US11933153B2 (en) | 2020-06-22 | 2024-03-19 | Bj Energy Solutions, Llc | Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control |
US11028677B1 (en) | 2020-06-22 | 2021-06-08 | Bj Energy Solutions, Llc | Stage profiles for operations of hydraulic systems and associated methods |
US11466680B2 (en) | 2020-06-23 | 2022-10-11 | Bj Energy Solutions, Llc | Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units |
US11473413B2 (en) | 2020-06-23 | 2022-10-18 | Bj Energy Solutions, Llc | Systems and methods to autonomously operate hydraulic fracturing units |
US11149533B1 (en) | 2020-06-24 | 2021-10-19 | Bj Energy Solutions, Llc | Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation |
US11220895B1 (en) | 2020-06-24 | 2022-01-11 | Bj Energy Solutions, Llc | Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods |
US11384629B2 (en) | 2020-07-16 | 2022-07-12 | Caterpillar Inc. | Systems and methods for driving a pump using an electric motor |
CN111794724B (zh) * | 2020-07-17 | 2024-06-21 | 西安中孚凯宏石油科技有限责任公司 | 一种撬装高压注入设备 |
US11193361B1 (en) | 2020-07-17 | 2021-12-07 | Bj Energy Solutions, Llc | Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations |
US11655807B2 (en) | 2020-10-29 | 2023-05-23 | Halliburton Energy Services, Inc. | Distributed in-field powered pumping configuration |
MX2023004821A (es) * | 2020-10-30 | 2023-05-08 | Performance Pulsation Control Inc | Insertos de desgaste para amortiguadores reactivos de mantenimiento de pozo. |
US11732561B1 (en) | 2020-12-02 | 2023-08-22 | Mtu America Inc. | Mobile hybrid power platform |
US11557940B2 (en) | 2021-02-08 | 2023-01-17 | Halliburton Energy Services, Inc. | Oilfield equipment configurable to receive power modules to utilize primary and secondary energy sources |
US11251650B1 (en) | 2021-02-09 | 2022-02-15 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Electrical system for mobile power generation device and mobile power generation device |
US11817703B2 (en) | 2021-02-09 | 2023-11-14 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Electrical system for mobile power generation device and mobile power generation device |
CN113134309B (zh) * | 2021-04-16 | 2022-07-19 | 吉林正业生物制品股份有限公司 | 一种便于操作的溶液双容器倍比稀释装置及方法 |
CN113315111B (zh) | 2021-04-26 | 2023-01-24 | 烟台杰瑞石油装备技术有限公司 | 一种供电方法及供电系统 |
US11639654B2 (en) | 2021-05-24 | 2023-05-02 | Bj Energy Solutions, Llc | Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods |
US11591888B2 (en) | 2021-06-18 | 2023-02-28 | Bj Energy Solutions, Llc | Hydraulic fracturing blender system |
CN113431757B (zh) * | 2021-06-25 | 2022-02-22 | 江苏可奈力机械制造有限公司 | 高效高速微小型液压泵 |
USD1000320S1 (en) * | 2021-08-06 | 2023-10-03 | Siemens Energy Global GmbH & Co. KG | Trailer for mobile turbomachinery electric power generation |
CN215870792U (zh) | 2021-10-12 | 2022-02-18 | 烟台杰瑞石油装备技术有限公司 | 用于井场电驱设备的供电系统 |
CA3179258A1 (en) | 2021-10-14 | 2023-04-14 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | A fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout |
US11725582B1 (en) | 2022-04-28 | 2023-08-15 | Typhon Technology Solutions (U.S.), Llc | Mobile electric power generation system |
US11913317B2 (en) | 2022-05-05 | 2024-02-27 | Colton Willis | Proppants processing system and method |
US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
CN116025322B (zh) * | 2022-12-23 | 2024-05-24 | 新疆敦华绿碳技术股份有限公司 | 一种多级二氧化碳前置压裂系统及方法 |
Family Cites Families (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1753050A (en) | 1929-04-06 | 1930-04-01 | Robert H S Hughes | Stoker attachment |
US1907721A (en) | 1930-03-04 | 1933-05-09 | Wallace & Tiernan Company Inc | Feeding device for solid substances |
US3025099A (en) | 1953-02-12 | 1962-03-13 | Golde Gmbh H T | Sliding roof arrangements for motor vehicles |
US3113620A (en) | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3113621A (en) | 1960-04-18 | 1963-12-10 | Union Oil Co | Subterranean well treatments using a vibrational field |
US3147144A (en) | 1962-05-01 | 1964-09-01 | Rohm & Haas | Apparatus for dusting tacky filaments with powder |
GB976279A (en) | 1962-09-26 | 1964-11-25 | Socony Mobil Oil Co Inc | Gas-powered drilling rig |
US3187958A (en) | 1963-10-14 | 1965-06-08 | Louis D Srybnik | Anti-bridging device for ice cube vending machines |
US3525404A (en) | 1968-02-23 | 1970-08-25 | Hughes Tool Co | Rotary drilling rig with direct power drive and simplified controls |
US3533605A (en) | 1968-06-07 | 1970-10-13 | Irl Daffin Associates | Vibrating hopper arrangement |
US3722595A (en) | 1971-01-25 | 1973-03-27 | Exxon Production Research Co | Hydraulic fracturing method |
US3773438A (en) * | 1971-04-29 | 1973-11-20 | Kelsey Hayes Co | Well stimulation apparatus and method |
DE2211512A1 (de) | 1972-03-10 | 1973-10-18 | Barth Harald | Elastische klauenkupplung mit zwei im wesentlichen gleich ausgebildeten kupplungsscheiben |
US3791682A (en) | 1972-08-23 | 1974-02-12 | Stewart & Stevenson Serv Inc | Turbine driven electrical generator |
US3901313A (en) | 1973-08-13 | 1975-08-26 | Thaddeus M Doniguian | Oil well treatment |
US4060988A (en) | 1975-04-21 | 1977-12-06 | Texaco Inc. | Process for heating a fluid in a geothermal formation |
US4100822A (en) | 1976-04-19 | 1978-07-18 | Allan Rosman | Drive system for a moving mechanism |
US4159180A (en) | 1978-02-21 | 1979-06-26 | Halliburton Company | Ground fed blender |
US4272224A (en) | 1978-08-25 | 1981-06-09 | Roper Industries, Inc. (Ohio) | Splined shaft driving arrangement |
US4311395A (en) | 1979-06-25 | 1982-01-19 | Halliburton Company | Pivoting skid blender trailer |
EP0053117A4 (en) | 1980-04-28 | 1984-06-19 | Jorge O Arribau | MIXING DEVICE. |
US4460276A (en) | 1982-08-16 | 1984-07-17 | Geo Condor, Inc. | Open inlet blender |
US4471619A (en) | 1982-08-23 | 1984-09-18 | Uop Inc. | Fractionation process with power generation by depressurizing the overhead vapor stream |
US4526633A (en) * | 1982-11-08 | 1985-07-02 | Ireco Incorporated | Formulating and delivery system for emulsion blasting |
US4538221A (en) | 1983-04-06 | 1985-08-27 | Halliburton Company | Apparatus and method for mixing a plurality of substances |
US4538222A (en) | 1983-04-06 | 1985-08-27 | Halliburton Company | Apparatus and method for mixing a plurality of substances |
US4557325A (en) | 1984-02-23 | 1985-12-10 | Mcjunkin Corporation | Remote control fracture valve |
US4850750A (en) | 1985-07-19 | 1989-07-25 | Halliburton Company | Integrated blending control system |
US4694907A (en) | 1986-02-21 | 1987-09-22 | Carbotek, Inc. | Thermally-enhanced oil recovery method and apparatus |
US4779186A (en) | 1986-12-24 | 1988-10-18 | Halliburton Company | Automatic density control system for blending operation |
US4916631A (en) | 1986-12-24 | 1990-04-10 | Halliburton Company | Process control system using remote computer and local site control computers for mixing a proppant with a fluid |
US4840292A (en) | 1988-03-24 | 1989-06-20 | Harvey Robert D | Method and apparatus for dispensing oil well proppant additive |
US4854714A (en) * | 1988-05-27 | 1989-08-08 | Halliburton Company | Blender vehicle apparatus |
US5281023A (en) | 1989-08-02 | 1994-01-25 | Stewart & Stevenson Services, Inc. | Method and apparatus for automatically controlling a well fracturing operation |
US5248005A (en) | 1991-02-13 | 1993-09-28 | Nabors Industries, Inc. | Self-propelled drilling module |
US5184456A (en) | 1991-04-08 | 1993-02-09 | Avco Corporation | Gas turbine motor drive |
CA2073806C (en) | 1991-07-24 | 2003-09-23 | S. Bruce Mcconnell | Delayed borate crosslinking fracturing fluid |
US5334898A (en) | 1991-09-30 | 1994-08-02 | Dymytro Skybyk | Polyphase brushless DC and AC synchronous machines |
US5512811A (en) | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
US5445223A (en) | 1994-03-15 | 1995-08-29 | Dowell, A Division Of Schlumberger Technology Corporation | Delayed borate crosslinked fracturing fluid having increased temperature range |
WO1997008459A1 (en) | 1995-08-30 | 1997-03-06 | Baker Hughes Incorporated | An improved electrical submersible pump and methods for enhanced utilization of electrical submersible pumps in the completion and production of wellbores |
US5582250A (en) | 1995-11-09 | 1996-12-10 | Dowell, A Division Of Schlumberger Technology Corporation | Overbalanced perforating and fracturing process using low-density, neutrally buoyant proppant |
US7747507B2 (en) * | 1996-05-23 | 2010-06-29 | Ticketmaster L.L.C. | Computer controlled auction system |
US5964295A (en) | 1996-10-09 | 1999-10-12 | Schlumberger Technology Corporation, Dowell Division | Methods and compositions for testing subterranean formations |
US6007227A (en) | 1997-03-12 | 1999-12-28 | Bj Services Company | Blender control system |
US5899272A (en) | 1997-05-21 | 1999-05-04 | Foremost Industries Inc. | Fracture treatment system for wells |
US6265786B1 (en) | 1998-01-05 | 2001-07-24 | Capstone Turbine Corporation | Turbogenerator power control system |
US6325142B1 (en) | 1998-01-05 | 2001-12-04 | Capstone Turbine Corporation | Turbogenerator power control system |
US6193402B1 (en) | 1998-03-06 | 2001-02-27 | Kristian E. Grimland | Multiple tub mobile blender |
US5975206A (en) | 1998-03-31 | 1999-11-02 | Bj Services Company | Acid gels for fracturing subterranean formations |
US6024170A (en) | 1998-06-03 | 2000-02-15 | Halliburton Energy Services, Inc. | Methods of treating subterranean formation using borate cross-linking compositions |
CA2279320A1 (en) | 1998-10-27 | 2000-04-27 | Capstone Turbine Corporation | Turbogenerator power control system |
US6142878A (en) | 1998-11-23 | 2000-11-07 | Barin; Jose Florian B. | Flexible coupling with elastomeric belt |
US6161386A (en) | 1998-12-23 | 2000-12-19 | Membrane Technology And Research, Inc. | Power generation method including membrane separation |
DE19932078A1 (de) | 1999-07-12 | 2001-02-01 | Kamat Pumpen Gmbh & Co Kg | Vorrichtung zum Pumpen großer Fördermengen einer Flüssigkeit |
US6120175A (en) * | 1999-07-14 | 2000-09-19 | The Porter Company/Mechanical Contractors | Apparatus and method for controlled chemical blending |
US6298652B1 (en) | 1999-12-13 | 2001-10-09 | Exxon Mobil Chemical Patents Inc. | Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines |
US7615893B2 (en) | 2000-05-11 | 2009-11-10 | Cameron International Corporation | Electric control and supply system |
US6398521B1 (en) | 2001-01-30 | 2002-06-04 | Sta-Rite Industries, Inc. | Adapter for motor and fluid pump |
US6765304B2 (en) * | 2001-09-26 | 2004-07-20 | General Electric Co. | Mobile power generation unit |
WO2003072328A1 (en) * | 2002-02-22 | 2003-09-04 | Flotek Indutries, Inc. | Mobile blending apparatus |
US20030178195A1 (en) | 2002-03-20 | 2003-09-25 | Agee Mark A. | Method and system for recovery and conversion of subsurface gas hydrates |
US20040008571A1 (en) | 2002-07-11 | 2004-01-15 | Coody Richard L. | Apparatus and method for accelerating hydration of particulate polymer |
US6820689B2 (en) * | 2002-07-18 | 2004-11-23 | Production Resources, Inc. | Method and apparatus for generating pollution free electrical energy from hydrocarbons |
US20080017369A1 (en) * | 2002-07-18 | 2008-01-24 | Sarada Steven A | Method and apparatus for generating pollution free electrical energy from hydrocarbons |
US7221061B2 (en) | 2002-12-02 | 2007-05-22 | Caterpillar Inc | Power generation system having an external process module |
US6953279B2 (en) | 2003-01-21 | 2005-10-11 | Red Devil Equipment Company | Paint mixer with damping frame |
GB0314550D0 (en) * | 2003-06-21 | 2003-07-30 | Weatherford Lamb | Electric submersible pumps |
RU2324813C2 (ru) | 2003-07-25 | 2008-05-20 | Институт проблем механики Российской Академии наук | Способ и устройство для определения формы трещин в горных породах |
US7608935B2 (en) | 2003-10-22 | 2009-10-27 | Scherzer Paul L | Method and system for generating electricity utilizing naturally occurring gas |
JP4068546B2 (ja) | 2003-10-30 | 2008-03-26 | 株式会社日立製作所 | ガスタービン発電設備及びその運用方法 |
US7245030B2 (en) * | 2003-12-11 | 2007-07-17 | Siemens Power Generation, Inc. | Integrated generator and transformer and associated methods |
WO2005086863A2 (en) | 2004-03-09 | 2005-09-22 | Vulcan Advanced Mobile Power Systems | Mobile power system emissions control |
DE102004013053B4 (de) | 2004-03-10 | 2006-07-27 | Voith Turbo H + L Hydraulic Gmbh & Co. Kg | Pumpenaggregat |
US20050248334A1 (en) | 2004-05-07 | 2005-11-10 | Dagenais Pete C | System and method for monitoring erosion |
CN1965569A (zh) * | 2004-06-09 | 2007-05-16 | 皇家飞利浦电子股份有限公司 | 电子电路 |
US20060006038A1 (en) | 2004-07-09 | 2006-01-12 | Beverlin Timothy E | Extendible musical instrument cable |
US7128142B2 (en) * | 2004-08-24 | 2006-10-31 | Halliburton Energy Services, Inc. | Apparatus and methods for improved fluid displacement in subterranean formations |
GB2418063A (en) | 2004-09-08 | 2006-03-15 | Cambridge Semiconductor Ltd | SOI power device |
US20060065400A1 (en) * | 2004-09-30 | 2006-03-30 | Smith David R | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
US7563076B2 (en) | 2004-10-27 | 2009-07-21 | Halliburton Energy Services, Inc. | Variable rate pumping system |
JP4509742B2 (ja) | 2004-11-04 | 2010-07-21 | 株式会社日立製作所 | ガスタービン発電設備 |
CA2507073A1 (en) | 2005-05-11 | 2006-11-11 | Frac Source Inc. | Transportable nitrogen pumping unit |
US7690202B2 (en) | 2005-05-16 | 2010-04-06 | General Electric Company | Mobile gas turbine engine and generator assembly |
US20060278394A1 (en) | 2005-06-09 | 2006-12-14 | Ronnie Stover | System and method for perforating and fracturing in a well |
CN101248250A (zh) * | 2005-07-16 | 2008-08-20 | P.E.T.国际公司 | 一台动力单元设备上的组合的氮发生系统和井维护流体系统 |
CA2514658A1 (en) | 2005-08-03 | 2007-02-03 | Frac Source Inc. | Well servicing rig and manifold assembly |
US20070125544A1 (en) * | 2005-12-01 | 2007-06-07 | Halliburton Energy Services, Inc. | Method and apparatus for providing pressure for well treatment operations |
US7841394B2 (en) | 2005-12-01 | 2010-11-30 | Halliburton Energy Services Inc. | Method and apparatus for centralized well treatment |
US7836949B2 (en) * | 2005-12-01 | 2010-11-23 | Halliburton Energy Services, Inc. | Method and apparatus for controlling the manufacture of well treatment fluid |
US7677316B2 (en) | 2005-12-30 | 2010-03-16 | Baker Hughes Incorporated | Localized fracturing system and method |
US20070201305A1 (en) * | 2006-02-27 | 2007-08-30 | Halliburton Energy Services, Inc. | Method and apparatus for centralized proppant storage and metering |
CA2538936A1 (en) | 2006-03-03 | 2007-09-03 | Dwight N. Loree | Lpg mix frac |
US7683499B2 (en) | 2006-04-27 | 2010-03-23 | S & W Holding, Inc. | Natural gas turbine generator |
US7562708B2 (en) | 2006-05-10 | 2009-07-21 | Raytheon Company | Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids |
US7828057B2 (en) | 2006-05-30 | 2010-11-09 | Geoscience Service | Microwave process for intrinsic permeability enhancement and hydrocarbon extraction from subsurface deposits |
US7845413B2 (en) | 2006-06-02 | 2010-12-07 | Schlumberger Technology Corporation | Method of pumping an oilfield fluid and split stream oilfield pumping systems |
US20080044298A1 (en) * | 2006-08-15 | 2008-02-21 | Laski Stephen J | High pressure pump, frame and housing assembly |
US20080217024A1 (en) | 2006-08-24 | 2008-09-11 | Western Well Tool, Inc. | Downhole tool with closed loop power systems |
CA2663823C (en) | 2006-10-13 | 2014-09-30 | Exxonmobil Upstream Research Company | Enhanced shale oil production by in situ heating using hydraulically fractured producing wells |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
US7908230B2 (en) | 2007-02-16 | 2011-03-15 | Schlumberger Technology Corporation | System, method, and apparatus for fracture design optimization |
US20080203734A1 (en) | 2007-02-22 | 2008-08-28 | Mark Francis Grimes | Wellbore rig generator engine power control |
US7958716B2 (en) | 2007-03-30 | 2011-06-14 | Ziegenfuss Mark R | Gas production well secondary purpose turbine electric power generator system |
WO2009023042A1 (en) | 2007-04-19 | 2009-02-19 | Wise Well Intervention Services, Inc. | Well servicing modular combination unit |
US20080264625A1 (en) | 2007-04-26 | 2008-10-30 | Brian Ochoa | Linear electric motor for an oilfield pump |
US20080267785A1 (en) | 2007-04-27 | 2008-10-30 | Gregory Paul Cervenka | Drill rig apparatuses with directly driven shaft & drilling fluid pump systems |
US20080264649A1 (en) | 2007-04-29 | 2008-10-30 | Crawford James D | Modular well servicing combination unit |
US20100089589A1 (en) | 2007-04-29 | 2010-04-15 | Crawford James B | Modular well servicing unit |
US8261834B2 (en) | 2007-04-30 | 2012-09-11 | Schlumberger Technology Corporation | Well treatment using electric submersible pumping system |
US20100000221A1 (en) | 2007-04-30 | 2010-01-07 | Pfefferle William C | Method for producing fuel and power from a methane hydrate bed using a gas turbine engine |
US20090010141A1 (en) * | 2007-07-06 | 2009-01-08 | Konica Minolta Opto, Inc. | Optical pickup apparatus and objective lens |
US8506267B2 (en) * | 2007-09-10 | 2013-08-13 | Schlumberger Technology Corporation | Pump assembly |
US20090084558A1 (en) * | 2007-09-28 | 2009-04-02 | Robert Lewis Bloom | Electrically powered well servicing rigs |
US7832257B2 (en) | 2007-10-05 | 2010-11-16 | Halliburton Energy Services Inc. | Determining fluid rheological properties |
US7931082B2 (en) | 2007-10-16 | 2011-04-26 | Halliburton Energy Services Inc., | Method and system for centralized well treatment |
US7717193B2 (en) | 2007-10-23 | 2010-05-18 | Nabors Canada | AC powered service rig |
US8146665B2 (en) | 2007-11-13 | 2012-04-03 | Halliburton Energy Services Inc. | Apparatus and method for maintaining boost pressure to high-pressure pumps during wellbore servicing operations |
US7963325B2 (en) | 2007-12-05 | 2011-06-21 | Schlumberger Technology Corporation | Method and system for fracturing subsurface formations during the drilling thereof |
US8176982B2 (en) | 2008-02-06 | 2012-05-15 | Osum Oil Sands Corp. | Method of controlling a recovery and upgrading operation in a reservoir |
MX2010009531A (es) | 2008-02-29 | 2010-11-30 | Texas United Chemical Corp | Metodos, sistemas y composiciones para el entrelazamiento controlado de fluidos de servicio de pozos. |
US9206349B2 (en) | 2008-04-17 | 2015-12-08 | Dow Global Technologies Llc | Powder coated proppant and method of making the same |
US8096354B2 (en) | 2008-05-15 | 2012-01-17 | Schlumberger Technology Corporation | Sensing and monitoring of elongated structures |
US7819209B1 (en) | 2008-05-31 | 2010-10-26 | Complete Production Services | Guided transport unit |
CA2634861C (en) | 2008-06-11 | 2011-01-04 | Hitman Holdings Ltd. | Combined three-in-one fracturing system |
US20100038907A1 (en) | 2008-08-14 | 2010-02-18 | EncoGen LLC | Power Generation |
US20100051272A1 (en) | 2008-09-02 | 2010-03-04 | Gas-Frac Energy Services Inc. | Liquified petroleum gas fracturing methods |
US8794307B2 (en) | 2008-09-22 | 2014-08-05 | Schlumberger Technology Corporation | Wellsite surface equipment systems |
US8360152B2 (en) * | 2008-10-21 | 2013-01-29 | Encana Corporation | Process and process line for the preparation of hydraulic fracturing fluid |
WO2010053056A1 (ja) | 2008-11-05 | 2010-05-14 | 旭硝子株式会社 | 含フッ素弾性共重合体、その製造方法および架橋ゴム |
US8025099B2 (en) | 2008-12-01 | 2011-09-27 | Gasfrac Energy Services Inc. | Water transfer system |
US8596075B2 (en) | 2009-02-26 | 2013-12-03 | Palmer Labs, Llc | System and method for high efficiency power generation using a carbon dioxide circulating working fluid |
US8807960B2 (en) * | 2009-06-09 | 2014-08-19 | Halliburton Energy Services, Inc. | System and method for servicing a wellbore |
CA2670416C (en) * | 2009-06-29 | 2017-01-31 | Calfrac Well Services Ltd. | Split stream oilfield pumping system utilizing recycled, high reid vapour pressure fluid |
US20100329072A1 (en) * | 2009-06-30 | 2010-12-30 | Hagan Ed B | Methods and Systems for Integrated Material Processing |
US8469100B2 (en) | 2009-08-04 | 2013-06-25 | Engineering Fluid Solutions, Llc | Integrated fluid filtration and recirculation system and method |
US20110198089A1 (en) | 2009-08-31 | 2011-08-18 | Panga Mohan K R | Methods to reduce settling rate of solids in a treatment fluid |
US20110067882A1 (en) * | 2009-09-22 | 2011-03-24 | Baker Hughes Incorporated | System and Method for Monitoring and Controlling Wellbore Parameters |
US20110073599A1 (en) | 2009-09-29 | 2011-03-31 | Nieves Luis A | Dust control cover for a refuse bin |
WO2011103190A1 (en) | 2010-02-16 | 2011-08-25 | David Randolph Smith | Method and apparatus to release energy in a well |
US20110272158A1 (en) | 2010-05-07 | 2011-11-10 | Halliburton Energy Services, Inc. | High pressure manifold trailer and methods and systems employing the same |
US8869889B2 (en) * | 2010-09-21 | 2014-10-28 | Palmer Labs, Llc | Method of using carbon dioxide in recovery of formation deposits |
WO2012051309A2 (en) * | 2010-10-12 | 2012-04-19 | Qip Holdings, Llc | Method and apparatus for hydraulically fracturing wells |
US8474521B2 (en) | 2011-01-13 | 2013-07-02 | T-3 Property Holdings, Inc. | Modular skid system for manifolds |
US8813836B2 (en) * | 2011-01-13 | 2014-08-26 | T-3 Property Holdings, Inc. | Uni-bore dump line for fracturing manifold |
CN103429846B (zh) | 2011-01-17 | 2016-02-10 | 米伦纽姆促进服务有限公司 | 用于地下地层的压裂系统和方法 |
US9366114B2 (en) | 2011-04-07 | 2016-06-14 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations |
US9140110B2 (en) | 2012-10-05 | 2015-09-22 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
WO2013025518A1 (en) | 2011-08-15 | 2013-02-21 | Wishart Randell | Enhanced efficiency counter-rotating motor driven pumping apparatus, system, and method of use |
AR087298A1 (es) | 2012-04-06 | 2014-03-12 | Evolution Well Services | Sistema movil, modular, alimentado electricamente para utilizar en la fractura de formaciones subterraneas |
WO2013170375A1 (en) | 2012-05-14 | 2013-11-21 | Gasfrac Energy Services | Inert gas supply equipment for oil and gas well operations |
US20130306322A1 (en) | 2012-05-21 | 2013-11-21 | General Electric Company | System and process for extracting oil and gas by hydraulic fracturing |
US8997904B2 (en) | 2012-07-05 | 2015-04-07 | General Electric Company | System and method for powering a hydraulic pump |
US20140027386A1 (en) | 2012-07-27 | 2014-01-30 | MBJ Water Partners | Fracture Water Treatment Method and System |
US9556721B2 (en) | 2012-12-07 | 2017-01-31 | Schlumberger Technology Corporation | Dual-pump formation fracturing |
US9945365B2 (en) * | 2014-04-16 | 2018-04-17 | Bj Services, Llc | Fixed frequency high-pressure high reliability pump drive |
CN109906305B (zh) | 2016-10-14 | 2021-05-25 | 迪傲公司 | 电动水力压裂系统 |
WO2019113153A1 (en) | 2017-12-05 | 2019-06-13 | U.S. Well Services, Inc. | High horsepower pumping configuration for an electric hydraulic fracturing system |
-
2012
- 2012-04-06 US US13/441,334 patent/US9366114B2/en active Active
- 2012-04-06 EP EP12767292.1A patent/EP2726705B1/en active Active
- 2012-04-06 EP EP18189400.7A patent/EP3444431B1/en active Active
- 2012-04-06 MX MX2018000774A patent/MX365889B/es unknown
- 2012-04-06 BR BR122020025357A patent/BR122020025357B8/pt active IP Right Grant
- 2012-04-06 EP EP21150745.4A patent/EP3839200A1/en active Pending
- 2012-04-06 BR BR122020025350A patent/BR122020025350B8/pt active IP Right Grant
- 2012-04-06 BR BR122020025339A patent/BR122020025339B8/pt active IP Right Grant
- 2012-04-06 PL PL18189394T patent/PL3444430T3/pl unknown
- 2012-04-06 MX MX2013011673A patent/MX362628B/es active IP Right Grant
- 2012-04-06 PL PL18194529.6T patent/PL3447239T3/pl unknown
- 2012-04-06 PL PL12767292T patent/PL2726705T3/pl unknown
- 2012-04-06 ES ES18189394T patent/ES2858330T3/es active Active
- 2012-04-06 BR BR122020025348A patent/BR122020025348B8/pt active IP Right Grant
- 2012-04-06 PL PL18188786.0T patent/PL3456915T3/pl unknown
- 2012-04-06 EP EP23190379.0A patent/EP4265883A3/en active Pending
- 2012-04-06 BR BR122020025374A patent/BR122020025374B8/pt active IP Right Grant
- 2012-04-06 BR BR122020025342A patent/BR122020025342B8/pt active IP Right Grant
- 2012-04-06 WO PCT/IB2012/000832 patent/WO2012137068A2/en active Application Filing
- 2012-04-06 EP EP24181773.3A patent/EP4407143A3/en active Pending
- 2012-04-06 EP EP18188786.0A patent/EP3456915B1/en active Active
- 2012-04-06 BR BR122020025337-1A patent/BR122020025337B1/pt active IP Right Grant
- 2012-04-06 MX MX2018000773A patent/MX365888B/es unknown
- 2012-04-06 PL PL18189402.3T patent/PL3444432T3/pl unknown
- 2012-04-06 BR BR122020025369-0A patent/BR122020025369B1/pt active IP Right Grant
- 2012-04-06 EP EP18189396.7A patent/EP3453827A3/en active Pending
- 2012-04-06 BR BR112013025880-2A patent/BR112013025880B1/pt active IP Right Grant
- 2012-04-06 EP EP18189402.3A patent/EP3444432B1/en active Active
- 2012-04-06 EP EP23190376.6A patent/EP4276275A3/en active Pending
- 2012-04-06 ES ES12767292.1T patent/ES2692897T3/es active Active
- 2012-04-06 ES ES18189402T patent/ES2981520T3/es active Active
- 2012-04-06 MX MX2018000775A patent/MX366049B/es unknown
- 2012-04-06 HU HUE12767292A patent/HUE040293T2/hu unknown
- 2012-04-06 EP EP18194529.6A patent/EP3447239B1/en active Active
- 2012-04-06 BR BR122020025361-4A patent/BR122020025361B1/pt active IP Right Grant
- 2012-04-06 EP EP18189394.2A patent/EP3444430B1/en active Active
- 2012-04-06 EP EP24173465.6A patent/EP4400692A3/en active Pending
- 2012-04-10 CA CA3012331A patent/CA3012331C/en active Active
- 2012-04-10 CA CA2955706A patent/CA2955706C/en active Active
- 2012-04-10 CA CA2966672A patent/CA2966672C/en active Active
- 2012-04-10 CA CA2845347A patent/CA2845347C/en active Active
- 2012-04-10 CA CA3112566A patent/CA3112566A1/en active Pending
- 2012-04-10 CA CA2900387A patent/CA2900387C/en active Active
- 2012-04-10 CA CA2773843A patent/CA2773843C/en active Active
- 2012-04-10 CA CA3060766A patent/CA3060766C/en active Active
- 2012-04-10 CA CA2835904A patent/CA2835904C/en active Active
-
2013
- 2013-10-07 MX MX2019001247A patent/MX2019001247A/es unknown
-
2014
- 2014-11-14 US US14/542,000 patent/US9103193B2/en active Active
- 2014-11-14 US US14/541,993 patent/US9121257B2/en active Active
-
2016
- 2016-03-31 US US15/086,806 patent/US10227855B2/en active Active
- 2016-03-31 US US15/086,829 patent/US10221668B2/en active Active
- 2016-05-30 AR ARP160101575A patent/AR104823A2/es active IP Right Grant
- 2016-05-30 AR ARP160101576A patent/AR104824A2/es active IP Right Grant
- 2016-05-30 AR ARP160101577A patent/AR104825A2/es active IP Right Grant
- 2016-05-30 AR ARP160101578A patent/AR104826A2/es active IP Right Grant
- 2016-07-19 US US15/214,113 patent/US20160326855A1/en not_active Abandoned
-
2018
- 2018-02-22 AR ARP180100420A patent/AR111069A2/es active IP Right Grant
- 2018-02-22 AR ARP180100418A patent/AR111067A2/es active IP Right Grant
- 2018-02-22 AR ARP180100419A patent/AR111068A2/es active IP Right Grant
- 2018-02-22 AR ARP180100416A patent/AR111065A2/es active IP Right Grant
- 2018-02-22 AR ARP180100421A patent/AR111070A2/es active IP Right Grant
- 2018-02-22 AR ARP180100417A patent/AR111066A2/es active IP Right Grant
- 2018-04-13 US US15/953,396 patent/US10851634B2/en active Active
- 2018-08-23 US US16/110,794 patent/US10895138B2/en active Active
- 2018-08-23 US US16/110,802 patent/US10774630B2/en active Active
- 2018-08-23 US US16/110,841 patent/US10982521B2/en active Active
- 2018-08-23 US US16/110,822 patent/US10876386B2/en active Active
- 2018-08-23 US US16/110,861 patent/US10724353B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2692897T3 (es) | Sistema energizado eléctricamente, modular, móvil para uso en formaciones subterráneas de fracturación | |
US11187069B2 (en) | Multiple generator mobile electric powered fracturing system | |
US11708752B2 (en) | Multiple generator mobile electric powered fracturing system | |
CA3081010C (en) | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |