CA2514658A1 - Well servicing rig and manifold assembly - Google Patents

Well servicing rig and manifold assembly Download PDF

Info

Publication number
CA2514658A1
CA2514658A1 CA002514658A CA2514658A CA2514658A1 CA 2514658 A1 CA2514658 A1 CA 2514658A1 CA 002514658 A CA002514658 A CA 002514658A CA 2514658 A CA2514658 A CA 2514658A CA 2514658 A1 CA2514658 A1 CA 2514658A1
Authority
CA
Canada
Prior art keywords
fluid
line
coiled tubing
manifold assembly
rig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002514658A
Other languages
French (fr)
Inventor
Mark Andreychuk
Marty Stromquist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frac Source Inc
Original Assignee
Frac Source Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frac Source Inc filed Critical Frac Source Inc
Priority to CA002514658A priority Critical patent/CA2514658A1/en
Priority to US11/462,008 priority patent/US20070029090A1/en
Publication of CA2514658A1 publication Critical patent/CA2514658A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterized by means for land transport with their own drive, e.g. skid mounting or wheel mounting

Abstract

A well servicing rig for communicating with a fluid source and an effluent reservoir (such as a flow back tank) has an apparatus for holding and dispensing coiled tubing. A manifold assembly is advantageously located on the rig for routing the pressurized fluid (such as nitrogen gas mixed with proppant) from the fluid source between the coiled tubing apparatus, the well and the effluent reservoir. The manifold assembly controls the flow of the fluid to perform fracturing operations, for reverse fluid circulation, for a common coiled tubing operation, for pressure testing, and the like. The assembly includes remotely controlled valves and pressure transducers for controlling the fluid flow, and chokes for diffusing fluid energy prior to entering the effluent reservoir. The rig, fluid source, effluent reservoir and a fluid pumper provide a novel method of servicing an underground formation (such as a coal bed) for natural gas.

Description

Agent File No. 282.3 TITLE: WELL SERVICING RIG AND MANIFOLD ASSEMBLY
s FIELD OF THE INVENTION
The present invention relates generally to well servicing units, and in particular relates to a novel coiled tubing rig having a novel manifold assembly for routing and controlling fluid flow between a fluid source and an underground formation, such as a coal bed.
to BACKGROUND OF THE INVENTION
A large assortment of various rigs and vehicles are currently required to service (namely to drill, fracture and the like) both conventional and coal bed methane wells for hydrocarbon production, such as natural gas. A term of art for 15 "natural gas from coal" is "NGC". Conventional fracturing ("fracing") and stimulation of NGC formations currently requires about 13 or more vehicles/rigs for such an operation, including at least one trailer to transport numerous components of a conventional piping array to the NGC wellsite. The assembly and subsequent disassembly and transport of so many units to another wellsite 2o upon completion of an operation is time consuming and highly labour intensive, and hence costly.
One particularly costly and time-consuming component of such set-up for a fracing operation is the erection of the piping array (also often referred to as a "manifold assembly"). Its formation results in an elaborate piping maze which 2s snakes along the ground to operatively connect several pumpers (typically 3) and bulkers (typically 2) to a coiled tubing rig. The large work area footprint created by such set-up is undesireable and potentially dangerous should a worker trip on such piping.
What is therefore desired is a novel rig and manifold assembly which overcomes the problems and disadvantages of existing well site set-ups.
s Preferably, the need for repeated assembly and disassembly of an elaborate piping arrangement at a well site external to the various vehicles/rigs should be significantly reduced or eliminated by locating the novel manifold assembly on the novel coiled tubing rig. Further, the number of vehicles/rigs needed for a fracing operation should also be significantly reduced, preferably to as few as so one high-rate pumper, one bulker and one coiled tubing unit, as well as an effluent reservoir such as a flow back tank. Hence, the set-up at a well site afforded by the novel rig and manifold assembly should be quicker, require less hardware and labour, and make a smaller footprint on site than conventional methods.
SUMMARY OF THE PRESENT INVENTION
According to the present invention, there is provided in one aspect a servicing rig for a well adapted to communicate with a fluid source and an efFluent reservoir, said rig comprising:
2o a base;
a coiled tubing apparatus on said base for holding and dispensing coiled tubing;
a manifold assembly on said base for routing pressurized fluid from said fluid source between said coiled tubing apparatus, said well and said effluent reservoir.
2s The manifold assembly includes means for controlling the flow of said fluid through said assembly to selectively form at least one of a first fluid route to perform fracturing operations, a second fluid route for reverse fluid circulation, a -z-third fluid route for common coiled tubing operations, and a fourth fluid route for pressure testing.
In another aspect the invention provides a manifold assembly for routing s a fluid from a fluid source between a wellbore annulus, an effluent reservoir and a tubing apparatus on a well servicing unit, said assembly comprising:
an inlet for receiving said fluid;
a first line in fluid communication with said inlet and tubing apparatus;
a second line in fluid communication with said first line and said annulus;
1o a third line in fluid communication with said first line and said effluent reservoir;
a fourth line in fluid communication between said second and third lines;
wherein said first, second, third and fourth lines are adapted for location on said well servicing unit.
In yet another aspect the invention provides a method of servicing an underground formation comprising:
providing a fluid storage means;
providing a fluid pumping means capable of drawing fluid from said fluid 2o storage means and supplying a sufficient fluid stream under sufficient pressure for servicing said underground formation;
providing a coiled tubing unit for receiving and introducing said fluid stream into said underground formation, said unit having a manifold assembly for routing and controlling said fluid stream between said unit and said underground 2s formation; and, providing an effluent reservoir for receiving fluid from said manifold assembly.

A crew truck should be provided fior supplying fuel to said pumper and coiled tubing unit.
A high-pressure injection proppant system may be provided for introducing proppant upstream of said coiled tubing unit and downstream of said s pumper.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein:
so Figure 1 is an elevational side view of a mobile coiled tubing unit with a manifold assembly mounted thereon accoring to a preferred embodiment of the present invention;
Figure 2 is a plan view of fig. 1;
Figure 3a is a rear view of the rig of fig. 1 showing the elevated mast in an is operational position with an movable coiled tubing injector at three selected positions along the mast, but omitting other rig features for a better view of the mast;
Figure 3b is a view similar to fig. 3a but showing the mast reclined in a travel position;
2o Figure 3c is a front view of the rig of fig. 3a showinga control cab for an operator;
Figure 4 is a plan view of the manifold assembly of fig. 1 in isolation;
Figure 5 is an elevational side view of fig. 4;
Figure 6 is a schematic of the manifold assembly and portions of the zs coiled tubing unit of the preferred embodiment;
_q_ Figure 7 illustrates the vehicles for fracturing an underground formation with nitrogen gas and optionally sand according to the method of the present invention; and, Figure 8 is a table showing the remote valve configurations for various s manifold assembly operations.
LIST
OF REFERENCE
NUMBERS
IN DRAWINGS

1-8 first to eigth remote valves coiled tubing rig Zo 12 trailer 14 mast injector 15a injector arch 17 control cab is 18 coiled tubing reel coiled tubing 22 connection manifold assembly 32 inet to assembly 30 20 34a-34d first to fourth fluid lines 36 extension of line 34a 38 first t-joint ("tee") end of line 34b 42 second tee 2s 44 end of line 34c 46 third tee 48 fourth tee -s-50a-50c first to third chokes 52a-52c first to third non-remote valves 58a-58b pressure transducers 60 nitrogen pumper unit 62 "super queen" fluid storage unit 64 "crew" truck 66 HIPS (high-pressure injection proppant system) unit 68 flow back tank DESCRIPTION OF PREFERRED EMBODIMENTS
Reference is first made to figures 1 to 3c which show a servicing unit for an underground formation which in the preferred embodiment is in the form of a coiled tubing unit, or rig, generally indicated by the reference numeral 10.
The s present rig can service various types of hydrocarbon bearing formations, including coal formations (or beds). It is suited for typical coiled tubing functions, such as conventional stimulation operations relating to coiled tubing, as well as for fracturing ("fracing") operations of coal beds to enhance production of coal bed methane.
io Some of the basic components of the rig are a base, a mast pivotally mounted relative to the base, and servicing equipment for a well, or wellbore, leading to the underground formation. "Servicing" is defined herein as typical functions related to coiled tubing, including stimulation and fracing operations .
The base is a mobile carrier in the form of a wheeled trailer 12 adapted to be is pulled by a motorized vehicle (not shown), or alternately the carrier itself may be self-propelled. The mast 14 at the rear of the carrier has a coiled tubing injector 15 mounted slidably thereto, and an injector arch 15a is operatively engaged with the injector to guide coiled tubing thereinto. In the fig. 1, 2 and 3b views, the mast is reclined in a travel position and the arch sits on the trailer, and in the 2o fig.3a view the mast is elevated in an operating mode. Figure 3c shows other features at the front of the rig, such as a control cab 17 defining a treatment control centre. The above-mentioned equipment further includes a coiled tubing reel 18 mounted toward the front of the carrier 12 for holding and dispensing coiled tubing 20 in a known manner.
2s An important aspect of the invention is a manifold assembly 30 and its location, namely on the carrier. The manifold assembly routes and controls the the flow of fluid between an "external" fluid source, the well, andan effluent _7_ reservoir. It is possible to have the present manifold assembly configured (such as on a skid base) for placement onto and removal from the carrier when desired, but this is not preferred to avoid damaging components and for other reasons. Rather, in the preferred embodiment, the manifold assembly is s mounted to the carrier in a fixed location near the reel and intermediate the reel and mast.
Referring now as well to figs. 4 to 7, the manifold assembly 30 has an inlet 32 to operably connect to the fluid source for fluid communication therewith.
The fluid may be any gas or liquid or combination thereof, and may include solids io such as proppants (e.g. sand or the like). In the preferred embodiment the fluid is nitrogen gas pumped under a high volume and pressure from a fluid source defined by a pumping means, namely a nitrogen pumping unit known as a "nitrogen pumper" 60, and a fluid storage means, namely a bulker 62, from which the pumper draws the fluid. Applicants have designed a novel high rate nitrogen is pumper 60 (as described in co-pending Canadian patent application no.
2,507,073 filed May 11, 2005) for providing high capacity, high-pressure vaporized nitogen which is beyond the capability of conventional pumper units.
Hence, one such nitogen pumper 60 should be sufficient to deliver the needed volume of nitogen gas to the inlet 32 for the rig 10 to perform its desired zo downhole operations. While it is possible for the manifold assembly to be configured to function with multiple inlets for communication with multiple conventional pumpers, this would dilute the many advantages of the present invention, and so is not preferred.
The inlet 32 is located at one end of a first fluid line 34a (in the form of a zs conduit or piping), such as a 3 inch (about 75 mm) treating line, which in effect provides fluid communication between the inlet 32 and the coiled tubing 20 via a connection 22 at the hub of the coiled tubing reel 18. An extension 36 of the first _$_ line 34a communicates between the connection 22 and the tubing 20. A valve 33, such as a high-pressure 3 inch (about 75 mm) check valve, at the inlet 32 prevents reverse fluid flow from the manifold assembly toward the fluid source.
A second fluid line 34b, such as a 2 inch (about 50 mm) treating line, s serves to communicate with the first line 34a and the annulus of the wellbore.
One end of the second line 34b is connected to the first line 34a via a first T-joint, or "tee" connection 38, downstream of the inlet 32, and the other end 40 is adapted to be connected to a line leading to the annulus. The "annulus" is defined herein as the portion of the wellbore forming a passage between the io larger diameter production casing and the smaller diameter coiled (or production) tubing extending therethrough. Such passage allows for the flow of fluids through the wellbore, typically opposite to that of the tubing. It is noted that when describing the invention, all terms not defined herein have their common art-recognized meaning.
is A third fluid line 34c, such as a 2 inch (about 50 mm) treating line, serves to communicate with the first line 34a and an effluent storage means in the form of a flow back tank 68 or the like. The flow back tank is preferably skid mounted for ease of transport between well sites. Other forms of effluent storage means include tanker trucks and pits. One end of the third line 34c is connected to the 2o first line 34a via a second tee connection 42 intermediate the first tee 38 and the reel connection 22, and the other end 44 is adapted to be coupled to a line leading to the tank 68.
A fourth fluid line 34d should be provided for fluid communication between the second and third lines 34b, 34c for fracturing, pressure reduction and 2s pressure testing purposes. One end of the fourth line 34d is connected to the second line 34b via a third tee connection 46 intermediate points 38, 40, and the other end of the fourth line is connected to the third line 34c via a fourth tee connection 48 intermediate intermediate points 42, 44.
The third line 34c includes at least one choke means for diffusing, or reducing, the energy of fluid passing through the line toward the flow back tank s 68. In the preferred embodiment the choke means takes the form of three chokes 50a, 50b and 50c arranged in parallel and located intermediate the fourth tee 48 and the flow back tank, upstream of the third line end 44. The chokes are of different sizes to accommodate different fluid volumes. In this embodiment the smallest choke 50a is a 0.5 inch (about 12.5 mm) diameter choke, choke 50b 1o is of intermediate size at 1.5 inches (about 38 mm) for handling a greater fluid flow than choke 50a, and choke 50c (located between chokes 50a and 50b in this configuration) is the largest in size at 1.75 inches (about 44 mm) for handling the largest fliud flows through the line 34c. It is preferred to have only one choke open at a time, but two or more may be open simultaneously if required to is accommodate certain fluid volumes, or if a larger choke is being serviced or malfunctions.
The manifold assembly 30 has an arrangement of valves on the various lines. Some of the valves are "non remote valves", meaning they are opened and closed manually as required for bleeding excess line pressure. Non remote 2o valves 52a, 52b, 52c are located on the first second and third lines as shown.
Other valves on the assembly are "remote" valves, namely they are controlled remotely by a control means such as PLC (programmable logic controller) systems and/or by an operator. The remote valves are arranged as follows:
a first remote "tubing" valve 1 is located along the first line 34a intermediate the 2s first and second tees 38, 42 of the second and third lines 34b, 34c;

a second remote "reel" valve 2 should be located intermediate the second tee and the coiled tubing 20, and in the present embodiment is placed along the extension 36;
a third remote "choke manifold" valve 3 is located along the third line 34c s intermediate the second and fourth tees 42, 48;
a fourth remote "annulus" valve 4 is located along the second line 34b intermediate the first and third tees 38, 46;
a fifth remote "crossover" valve 5 is located along the fourth line 34d; and, sixth to eigth remote "choke" valves 6 to 8 are located at chokes 50a-50c, 1o respectively, to control fluid flow through the respective choke.
The remotely controlled valves should have proximity switches in the valve heads to provide a feedback loop to a control panel, thus notifying an operator when a valve is in a fully open or fully closed position. The control panel should preferably illuminate a valve in red when it is fully closed and in green when fully is open, and illuminate in yellow when the valve is in transition between those two positions. The panel should preferably be touch sensitive to allow an operator to touch an illuminated valve to readily switch between open and closed positions.
A number of pressure transducers are located along the assembly 30 to monitor the fluid pressure at that location, such as for disagnostic purposes, as zo during a pressure test. In this embodiment a first "annulus" pressure transducer 58a is located between the third tee 46 and the end 40 of the second line 34b, and a second pressure transducer 58b is located between the second tee 42 and the reel 18. All of the pressure transducers should be linked with the control means for the assembly 30.
as The operation and advatages of the present invention may now be better understood. Once the coiled tubing rig 10 arrives at a well site and is located over the wellbore for insertion of the coiled tubing, the rig is readily prepared for operation by connecting the inlet 32 to applicant's nitrogen pumper, and the ends 40, 44 are connected to the annulus and flow back tank, respectively. An important advantage over existing practice is that no time is wasted in setting up a complex web of piping remote from the rig to form a manifold assembly s between several prior art nitrogen pumpers and a coiled tubing rig. Rather, the compact manifold assembly of the present invention is advantageously located on the rig 10 for convenient hook-up and immediate operation.
Once the above connections are made, the remote valves may be set (i.e.
opened or closed) to prepare the manifold assembly for one of several desired operations. The remote valve settings for some of the most common operations are set out in fig.8 When the rig is to perform a fracing operation, the following remote valves are opened to form a first fluid route through the manifold assembly: tubing valve 1, reel valve 2, crossover valve 5, and at least one of the choke valves 6-8. The remaining remote valves, namely 3 and 4, are closed.
is Hence, fluid flowing into the inlet 32 through the check valve 33 is directed through the first line 34a into the coil tubing 20 and down the wellbore into the formation to be fraced. Fluid returning from the formation up the annulus enters the second line 34b at 40, runs through the fourth line 34d into the third line 34c, and is diffused, or "calmed", through one or more of the open chokes 50a-50c 2o before being directed into the flow back tank. The fluid is preferrably nitrogen gas, and may be mixed with a proppant, such as sand, for certain formations.
When such a novel and advantageous mixture of gas and proppant is desired, then the applicants' high-pressure injection proppant system (aka "HIPS", the subject of co-pending Canadian patent application 2,508,953) is located 2s upstream of the inlet 32.
When a reverse circulation of fluid through the well is desired for flushing or other purposes, all of the remote valves are opened, except for the tubing and crossover valves 1, 5 which are closed, and one or more of the choke valves 50a-50c are opened to form a second fluid route. Hence, "clean" fluid from the inlet 32 is directed from the first line 34a and through the second line 34b down the annulus. The "dirty" return fluid is forced up the wellbore through the coiled s tubing 20, into the first line 34a and then the third line 34c, through one or more of the open chokes 50a-50c, and then toward the flow back tank.
When a "common" coiled tubing operation is desired where the annulus is tied to the coiled tubing to equalize fluid pressures, then the following remote valves are opened to form a third fluid route: tubing valve 1, reel valve 2 and io annulus valve 4. All other remote valves are closed. Hence, fluid may move through the coiled tubing 20, the wellbore, the annulus and back to the coiled tubing via the open second line 34b and first line 34a.
When a pressure test ("Ptest") of the manifold assembly is desired, then all of the remote valves are opened to form a fourth fluid route, except for the is reel valve 2 and optionally the choke valves 56a-56c.
The manifold assembly also facilitates various desired pressure reductions in the system. For pressure reduction in the annulus, the annulus and choke manifold valves 3 and 4 are closed, the crossover valve 5 is opened, and at least one of the choke valves 6, 7 and 8 are opened, thus allowing fluid to 2o flow from the annulus to the flow back tank. For pressure reduction in the coiled tubing, the tubing, annulus and crossover valves 1, 4, 5 are closed, the choke manifold valve 3 is opened, and at least one of the choke valves 6, 7 and 8 are opened, thus allowing fluid to flow from the coiled tubing to the flow back tank.
For system-wide pressure reduction, all of the remote valves should be opened.
2s The manifold assembly may also facilitate straight fluid flow from the inlet 32 to the flow back tank for flushing purposes by closing the reel, annulus and crossover valves 2, 4, 5, and opening the other remote valves 1, 3, 6, 7 and 8.

Once the rig 10 is finished at a well, the manifold assembly 30 is readily disconnected at points 32, 40 and 44, and the rig and manifold are ready for transport to the next job. The labourious, time consuming and needlessly complex disconnection of prior art manifold piping networks along the ground s between a traditional coiled tubing rig and several pumpers is avoided by the present rig and manifold assembly.
Yet another significant advantage of the present invention is that it contributes to a dramatic reduction in the number of vehicles required to service a wellsite. To illustrate, conventional fracing of a coal bed currently requires 1o about 13 or more vehicles for such an operation, including a manifold trailer to transport the numerous components of a conventional manifold assembly to the site. The set up for the fracing operation would include the erection of the elaborate manifold assembly and its connection to several pumpers and bulkers, and then to a coiled tubing unit. The process is needlessly time consuming and is costly, and consumes vast space around the well site. In contrast, the applicants' novel method of servicing an underground formation, and in particular fracing a coal bed, requires as few as three vehicles, namely: the coiled tubing rig 10 of the present invention, which includes the novel manifold assembly 30;
one of applicants' novel nitrogen pumpers 60 mentioned earlier, upstream of the zo rig 10 and capable of delivering a sufficient stream of pressurized fluid for the formation being worked; and, the fluid storage means upstream of the pumper 60 in the form of one "super queen" tanker/bulker 62 for supplying the desired fluid. These vehicles are shown in fig. 7. In the preferred embodiment the pumper 60 should be capable of delivering sufficiently pressurized nitrogen gas zs at about 1800 standard cubic meters per minute (scm/min.), and the bulker should have a nitrogen gas capacity of about 70,000 scm. An effluent reservoir must also be provided downstream of the coiled tubing rig. If such reservoir is in the form of the discussed flow back tank 68, then another vehicle is required to deliver such tank to the well site. A crew truck 64 should also be provided as a source of fuel where the vehicles must operate for extended periods. If proppant is to be mixed into the nitrogen gas stream for the coiled tibing rig 10, then s applicants' earlier mentioned HIPS vehicle 66 should be brought to the site and located upstream of the rig 30, but downstream of the nitrogen pumper.
Applicants' set up on site is therefore much quicker, requires much less hardware, and takes less space than conventional methods. Disassembly and transport to another site is likewise desireably quick and nimble.
1o The above description is intended in an illustrative rather than a restrictive sense, and variations to the specific configurations described may be apparent to skilled persons in adapting the present invention to other specific applications.
Such variations are intended to form part of the present invention insofar as they are within the spirit and scope of the claims below.

Claims (20)

We claim:
1. A servicing rig for a well adapted to communicate with a fluid source and an effluent reservoir, said rig comprising:
a base;
a coiled tubing apparatus on said base for holding and dispensing coiled tubing;
and, a manifold assembly on said base for routing pressurized fluid from said fluid source between said coiled tubing apparatus, said well and said effluent reservoir.
2. The servicing rig of claim 1 wherein said manifold assembly includes means for controlling the flow of said fluid through said assembly to selectively form at least one of a first fluid route to perform fracturing operations, a second fluid route for reverse fluid circulation, a third fluid route for a common coiled tubing operation, and a fourth fluid route for pressure testing.
3. The servicing rig of claim 2 wherein said means for controlling comprises an arrangement of remotely controlled valves and pressure transducers.
4. The servicing rig of claim 2 wherein said first and second fluid routes include means of diffusing energy of said fluid prior to proceeding to said effluent reservoir.
5. The servicing rig of claim 1 wherein said coiled tubing apparatus comprises a rotatable reel mounted on said base for holding and dispensing coiled tubing and a pivotable mast operatively mounted to said base, said manifold assembly being located intermediate said reel and mast.
6. The servicing rig of claim 1 wherein said base comprises a mobile carrier.
7. A manifold assembly for routing a fluid from a fluid source between a wellbore annulus, an effluent reservoir and a tubing apparatus on a well servicing unit, said assembly comprising:
an inlet for receiving said fluid;
a first line in fluid communication with said inlet and tubing apparatus;
a second line in fluid communication with said first line and said annulus;
a third line in fluid communication with said first line and said effluent reservoir;
a fourth line in fluid communication between said second and third lines;
wherein said first, second, third and fourth lines are adapted for location on said well servicing unit.
8. The manifold assembly of claim 7 further comprising means for controlling the flow of said fluid through said assembly to selectively form at least one of a first fluid route to perform fracturing operations, a second fluid route for reverse fluid circulation, a third fluid route for a common coiled tubing operation, and a fourth fluid route for pressure testing.
9. The manifold assembly of claim 8 wherein said means for controlling includes a first remotely controlled valve located on said first line intermediate said second and third lines, a second remotely controlled valve on said first line downstream of said third line, a third remotely controlled valve located on said third line intermediate said first and fourth lines, a fourth remotely controlled valve located on said second line intermediate said first and fourth lines, and a fifth remotely controlled valve on said fourth line.
10. The manifold assembly of claim 7 wherein said third line includes choke means for diffusing fluid energy prior to entering said effluent reservoir.
11. The manifold assembly of claim 8 wherein said third line includes choke means for diffusing fluid energy prior to entering said effluent reservoir.
12. The manifold assembly of claim 9 wherein said third line includes at least one choke downstream of said fourth line for diffusing fluid energy prior to entering said effluent reservoir, and wherein said means for controlling further includes further remotely controlled valves for each choke.
13. A method of servicing an underground formation comprising:
providing a fluid storage means;
providing a fluid pumping means capable of drawing fluid from said fluid storage means and supplying a sufficient fluid stream under sufficient pressure for servicing said underground formation;
providing a coiled tubing unit for receiving and introducing said fluid stream into said underground formation, said unit having a manifold assembly for routing and controlling said fluid stream between said unit and said underground formation; and, providing an effluent reservoir for receiving fluid from said manifold assembly.
14. The method of claim 13 wherein said fluid comprises nitrogen gas.
15. The method of claim 14 further comprising introducing proppant into said nitrogen gas prior to being received by said coiled tubing unit.
16. The method of claim 15 wherein said proppant comprises sand.
17. The method of claim 15 comprising providing a high-pressure injection proppant system for introducing said proppant upstream of said coiled tubing unit and downstream of said pumper.
18. The method of claim 13 comprising providing a crew truck for supplying fuel to said pumper and coiled tubing unit.
19. The method of claim 13 wherein said coiled tubing unit includes a tubing apparatus and communicates withan effluent reservoir, and said manifold assembly comprises:
an inlet for receiving said fluid stream;
a first line in fluid communication with said inlet and said tubing apparatus;
a second line in fluid communication with said first line and said underground formation;
a third line in fluid communication with said first line and said effluent reservoir; and, a fourth line in fluid communication between said second and third lines.
20. The method of claim 13 wherein said manifold assembly includes means for controlling the flow of said fluid stream through said assembly to selectively form at least one of a first fluid route to perform fracturing operations, a second fluid route for reverse fluid circulation, a third fluid route for a common coiled tubing operation, and a fourth fluid route for pressure testing.
CA002514658A 2005-08-03 2005-08-03 Well servicing rig and manifold assembly Abandoned CA2514658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002514658A CA2514658A1 (en) 2005-08-03 2005-08-03 Well servicing rig and manifold assembly
US11/462,008 US20070029090A1 (en) 2005-08-03 2006-08-02 Well Servicing Rig and Manifold Assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002514658A CA2514658A1 (en) 2005-08-03 2005-08-03 Well servicing rig and manifold assembly

Publications (1)

Publication Number Publication Date
CA2514658A1 true CA2514658A1 (en) 2007-02-03

Family

ID=37696169

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002514658A Abandoned CA2514658A1 (en) 2005-08-03 2005-08-03 Well servicing rig and manifold assembly

Country Status (2)

Country Link
US (1) US20070029090A1 (en)
CA (1) CA2514658A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130248182A1 (en) * 2012-03-21 2013-09-26 Schlumberger Technology Corporation Modular manifold of a wellsite fluid system and method of using same
US9103193B2 (en) 2011-04-07 2015-08-11 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2529921C (en) 2005-12-13 2012-06-05 Foremost Industries Inc. Coiled tubing injector system
US8870233B2 (en) 2007-07-03 2014-10-28 S.P.M. Flow Control, Inc. Swivel joint with uniform ball bearing requirements
US8727004B2 (en) * 2008-06-06 2014-05-20 Halliburton Energy Services, Inc. Methods of treating subterranean formations utilizing servicing fluids comprising liquefied petroleum gas and apparatus thereof
US20090301725A1 (en) * 2008-06-06 2009-12-10 Leonard Case Proppant Addition Method and System
EP2422120B1 (en) 2009-04-20 2016-05-25 S.P.M. Flow Control, Inc. Flowline flapper valve
WO2010141651A2 (en) 2009-06-03 2010-12-09 Weir Spm, Inc. Plug valve indicator
CA2693567C (en) 2010-02-16 2014-09-23 Environmental Refueling Systems Inc. Fuel delivery system and method
RU2629182C9 (en) * 2011-07-08 2017-11-29 ЭфЭмСи ТЕКНОЛОДЖИЗ, ИНК. Trailer with manifold and multiple articulated arm assemblies
MX340525B (en) * 2011-07-08 2016-07-12 Fmc Tech Inc Manifold trailer with multiple articulating arm assemblies.
WO2014028498A2 (en) 2012-08-16 2014-02-20 S.P.M. Flow Control, Inc. Plug valve having preloaded seal segments
US9273543B2 (en) 2012-08-17 2016-03-01 S.P.M. Flow Control, Inc. Automated relief valve control system and method
US9322243B2 (en) 2012-08-17 2016-04-26 S.P.M. Flow Control, Inc. Automated relief valve control system and method
US9212543B2 (en) 2013-02-01 2015-12-15 Maximum Erosion Mitigation Systems Ltd. Apparatus and methods for conducting well-related fluids
USD707332S1 (en) 2013-03-15 2014-06-17 S.P.M. Flow Control, Inc. Seal assembly
US9568138B2 (en) 2013-07-01 2017-02-14 S.P.M. Flow Control, Inc. Manifold assembly
CA2910095C (en) 2014-10-31 2023-03-14 Chevron U.S.A. Inc. Proppants comprising a space frame for hydraulic fracturing
CN107850243A (en) 2015-06-15 2018-03-27 S.P.M.流量控制股份有限公司 Full root radius screw thread wing nut with increase wall thickness
US10677365B2 (en) 2015-09-04 2020-06-09 S.P.M. Flow Control, Inc. Pressure relief valve assembly and methods
RU178513U1 (en) * 2017-03-13 2018-04-06 Антон Павлович Щербак TRAILER TYPE MANIFOLD BLOCK WITH LOW PRESSURE MANIFOLD FOLLOWED AS A FRAME, INTENDED FOR HYDRAULIC GROUND RIP
US10794461B2 (en) 2017-04-19 2020-10-06 American Axle & Manufacturing, Inc. Method for forming a welded assembly and related welded assembly
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10466719B2 (en) 2018-03-28 2019-11-05 Fhe Usa Llc Articulated fluid delivery system with remote-controlled spatial positioning
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
CN112127857B (en) * 2020-09-27 2021-10-12 中国地质大学(北京) Test device and test method for simulating liquid nitrogen injection freeze-drying for increasing coal bed gas yield
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009952A1 (en) * 2002-07-19 2004-01-29 Presssol Ltd. Reverse circulation clean out system for low pressure gas wells
CA2531444C (en) * 2004-12-23 2010-10-12 Trican Well Service Ltd. Method and system for fracturing subterranean formations with a proppant and dry gas

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648312B2 (en) 2011-04-07 2020-05-12 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11391133B2 (en) 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US11913315B2 (en) 2011-04-07 2024-02-27 Typhon Technology Solutions (U.S.), Llc Fracturing blender system and method using liquid petroleum gas
US9366114B2 (en) 2011-04-07 2016-06-14 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US11851998B2 (en) 2011-04-07 2023-12-26 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US11613979B2 (en) 2011-04-07 2023-03-28 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US10689961B2 (en) 2011-04-07 2020-06-23 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US10221668B2 (en) 2011-04-07 2019-03-05 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US10227855B2 (en) 2011-04-07 2019-03-12 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US10502042B2 (en) 2011-04-07 2019-12-10 Typhon Technology Solutions, Llc Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US9121257B2 (en) 2011-04-07 2015-09-01 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US9103193B2 (en) 2011-04-07 2015-08-11 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations
US10895138B2 (en) 2011-04-07 2021-01-19 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US10718195B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US10724353B2 (en) 2011-04-07 2020-07-28 Typhon Technology Solutions, Llc Dual pump VFD controlled system for electric fracturing operations
US10774630B2 (en) 2011-04-07 2020-09-15 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10837270B2 (en) 2011-04-07 2020-11-17 Typhon Technology Solutions, Llc VFD controlled motor mobile electrically powered system for use in fracturing underground formations for electric fracturing operations
US10851634B2 (en) 2011-04-07 2020-12-01 Typhon Technology Solutions, Llc Dual pump mobile electrically powered system for use in fracturing underground formations
US10876386B2 (en) 2011-04-07 2020-12-29 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US10718194B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10982521B2 (en) 2011-04-07 2021-04-20 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US11002125B2 (en) 2011-04-07 2021-05-11 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US11391136B2 (en) 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US11187069B2 (en) 2011-04-07 2021-11-30 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US20130248182A1 (en) * 2012-03-21 2013-09-26 Schlumberger Technology Corporation Modular manifold of a wellsite fluid system and method of using same
US10107085B2 (en) 2012-10-05 2018-10-23 Evolution Well Services Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US11118438B2 (en) 2012-10-05 2021-09-14 Typhon Technology Solutions, Llc Turbine driven electric fracturing system and method
US10107084B2 (en) 2012-10-05 2018-10-23 Evolution Well Services System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas
US9475020B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9475021B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas

Also Published As

Publication number Publication date
US20070029090A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US20070029090A1 (en) Well Servicing Rig and Manifold Assembly
US20200362666A1 (en) Connection between an oil and gas fracturing tree and a zipper module
US10808488B2 (en) Hydraulic fracturing system, apparatus, and method
US11713662B2 (en) Modular system and manifolds for introducing fluids into a well
US20210156241A1 (en) Packaging and deployment of a frac pump on a frac pad
US10392914B2 (en) Systems and methods for fracturing a multiple well pad
CA2824206C (en) Fracturing system and method for an underground formation using natural gas and an inert purging fluid
US7841394B2 (en) Method and apparatus for centralized well treatment
US9605525B2 (en) Line manifold for concurrent fracture operations
US11226642B2 (en) Zipper manifold arrangement for trailer deployment
AU2016348436B2 (en) Systems and methods for fracturing a multiple well pad
CA2508953A1 (en) High-pressure injection proppant system
US20100193057A1 (en) Discharge arm assembly for pumping units
US10890297B2 (en) Assembly, system and method for directed high-pressure fluid delivery
US8863827B2 (en) Jet pump for use with a multi-string tubing system and method of using the same for well clean out and testing
US11867043B1 (en) Remotely-controlled pressure bleed-off system
CA2549226A1 (en) High-pressure injection proppant system
CA3114025A1 (en) Assembly, system and method for directed high-pressure fluid delivery
AU2020239793A1 (en) Borehole dosing apparatus, arrangement and method
CA3094659A1 (en) Borehole dosing apparatus, arrangement and method
CA2962337A1 (en) Systems and methods for fracturing a multiple well pad

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 20080804