ES2662959B1 - Composite reinforcement material and obtaining procedure - Google Patents

Composite reinforcement material and obtaining procedure Download PDF

Info

Publication number
ES2662959B1
ES2662959B1 ES201790004A ES201790004A ES2662959B1 ES 2662959 B1 ES2662959 B1 ES 2662959B1 ES 201790004 A ES201790004 A ES 201790004A ES 201790004 A ES201790004 A ES 201790004A ES 2662959 B1 ES2662959 B1 ES 2662959B1
Authority
ES
Spain
Prior art keywords
graphene
graphite
proportion
sample
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES201790004A
Other languages
Spanish (es)
Other versions
ES2662959R1 (en
ES2662959A2 (en
Inventor
Shoji Hasegawa
Nagisa Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graphene Platform Corp
Original Assignee
Graphene Platform Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52823288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2662959(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Graphene Platform Corp filed Critical Graphene Platform Corp
Priority claimed from PCT/JP2015/058331 external-priority patent/WO2015198657A1/en
Publication of ES2662959A2 publication Critical patent/ES2662959A2/en
Publication of ES2662959R1 publication Critical patent/ES2662959R1/en
Application granted granted Critical
Publication of ES2662959B1 publication Critical patent/ES2662959B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/401Fatty vegetable or animal oils used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Secondary Cells (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Ceramic Products (AREA)

Abstract

Material de reforzamiento compuesto y método de producción de un material de reforzamiento compuesto, de excelente resistencia mecánica. El método de producción de un material de reforzamiento compuesto comprende una etapa de amasado de al menos un material de carbono a base de grafito y un material de reforzamiento en un material base. El material de carbono basado en grafito comprende una capa de grafito romboédrico (3R) y una capa de grafito hexagonal (2H), en la que la tasa entre la capa de grafito romboédrico (3R) y la capa de grafito hexagonal (2H) es del 31% o más.Composite reinforcement material and production method of a composite reinforcement material, of excellent mechanical strength. The method of producing a composite reinforcing material comprises a kneading step of at least one graphite-based carbon material and a reinforcing material in a base material. The graphite-based carbon material comprises a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), in which the rate between the rhombohedral graphite layer (3R) and the hexagonal graphite layer (2H) is of 31% or more.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

Lista de Citas Bibliografia de PatentesList of Appointments Patent Bibliography

BGP 1: JP-A-2010-254822 ([0032]-[0038])BGP 1: JP-A-2010-254822 ([0032] - [0038])

BGP 2: JP-A-2014-201676 ([0048]-[0064])BGP 2: JP-A-2014-201676 ([0048] - [0064])

BGP 3: JP-A-2014-210916 ([0043])BGP 3: JP-A-2014-210916 ([0043])

BGP 4: WO 2014/064432 (Lineas 4-9 en la pagina 19)BGP 4: WO 2014/064432 (Lines 4-9 on page 19)

BGP 5: JP-A-2013-079348 ([0083])BGP 5: JP-A-2013-079348 ([0083])

BGP 6: JP-A-2009-114435 ([0044])BGP 6: JP-A-2009-114435 ([0044])

Bibliografia no PatenteNon-Patent Bibliography

BDP 1: Structural Change of Graphite with Griding; autores: Michio INAGAKI, Hisae MUGISHIMA y Kenji HOSOKAWA; 1 de febrero, 1973 (Recibido)BDP 1: Structural Change of Graphite with Griding; authors: Michio INAGAKI, Hisae MUGISHIMA and Kenji HOSOKAWA; February 1, 1973 (Received)

BDP 2: Changes of Probabilities P1, PABA, PABC with Heat Treatment of Carbons; autores: Tokiti NODA, Masaaki IWATSUKI y Michio INAGAKI; 16 de septiembre, 1966 (Recibido)BDP 2: Changes of Probabilities P1, PABA, PABC with Heat Treatment of Carbons; authors: Tokiti NODA, Masaaki IWATSUKI and Michio INAGAKI; September 16, 1966 (Received)

BDP 3: Spectroscopic and X-ray diffraction studies on fluid deposited rhombohedral graphite from the Eastern Ghats Mobile Belt, India; G.Parthasarathy, Current Science, Vol.90, N.° 7, 10 de abril de 2006BDP 3: Spectroscopic and X-ray diffraction studies on fluid deposited rhombohedral graphite from the Eastern Ghats Mobile Belt, India; G.Parthasarathy, Current Science, Vol. 90, No. 7, April 10, 2006

BDP 4: Classification of solid carbon materials and their structural characteristics; Nagoya Institute of Technology; Shinji KAWASAKIBDP 4: Classification of solid carbon materials and their structural characteristics; Nagoya Institute of Technology; Shinji KAWASAKI

Descripcion de la invencion Problema tecnicoDescription of the invention Technical problem

Sin embargo, los metodos desvelados en las Bibliografias de Patente 1, 2 y 3 usan grafito en copos disponible en el mercado, que dificilmente se dispersa solo amasando debido a la naturaleza agregante del grafito en copos, de forma que no se obtiene suficientemente el efecto deseado. Sin embargo, incluso cuando el material de grafito (20 % o mas de los copos de una unica capa, el 40 % o mas de los copos de capas dobles o triples y menos del 40 % de los copos de 10 capas o mas) obtenido por el metodo desvelado en la Bibliografia de Patente 4 se mezclo en un disolvente, la cantidad de grafeno dispersada en el disolvente fue pequena, y solamente se pudo obtener una dispersion de grafeno diluido. Adicionalmente, aunque se considera que un sobrenadante se recoge y se concentra, requiere un tiempo prolongado que los tratamientos repitan las etapas de recoger y concentrar el sobrenadante, lo cual supone un problema de laHowever, the methods disclosed in Patent Bibliographies 1, 2 and 3 use graphite in commercially available flakes, which is hardly dispersed only by kneading due to the aggregating nature of graphite in flakes, so that the effect is not sufficiently obtained wanted. However, even when the graphite material (20% or more of the flakes of a single layer, 40% or more of the flakes of double or triple layers and less than 40% of the flakes of 10 layers or more) obtained by the method disclosed in Patent Bibliography 4 it was mixed in a solvent, the amount of graphene dispersed in the solvent was small, and only a dispersion of diluted graphene could be obtained. Additionally, although it is considered that a supernatant is collected and concentrated, it takes a long time for the treatments to repeat the stages of collecting and concentrating the supernatant, which is a problem of

55

1010

15fifteen

20twenty

2525

3030

3535

eficiencia inferior de production de una dispersion de grafeno. Como se desvela en la Bibliografia de Patente 4, incluso sometiendo al grafito natural a un tratamiento de ultrasonidos durante un largo tiempo, solamente se exfolian partes debiles de la superficie; otras partes grandes no contribuyen a la exfoliation y se considera como un problema que la cantidad de grafeno exfoliado sea pequena.lower production efficiency of a graphene dispersion. As disclosed in Patent Bibliography 4, even subjecting natural graphite to ultrasound treatment for a long time, only weak parts of the surface are exfoliated; other large parts do not contribute to exfoliation and it is considered as a problem that the amount of graphene exfoliated is small.

Ademas, para aumentar la resistencia mecanica, se anade generalmente un material de reforzamiento a un material de base tal como un polimero; sin embargo, dependiendo de la cantidad de adicion de un material de reforzamiento, las propiedades originales (aspecto exterior) de un polimero pueden verse afectadas (Bibliografia de Patente 5).Also, to increase the mechanical strength, a reinforcing material is generally added to a base material such as a polymer; however, depending on the amount of addition of a reinforcing material, the original properties (exterior appearance) of a polymer may be affected (Patent Bibliography 5).

En las Bibliografias de Patente 2 y 3 mencionadas anteriormente, las propiedades fisicas que contribuyen a la rigidez (dureza), tales como el modulo elastico y la resistencia al impacto, se mejoran anadiendo un material de reforzamiento. Se obtuvieron resultados similares en el Ejemplo 5 de la presente memoria descriptiva (invention sin desvelar antes de realizar la presente solicitud).In Patent Bibliographies 2 and 3 mentioned above, the physical properties that contribute to stiffness (hardness), such as the elastic modulus and impact resistance, are improved by adding a reinforcing material. Similar results were obtained in Example 5 of the present specification (invention not disclosed before making the present application).

Ademas, con el fin de mejorar la fuerza de la traction (resistencia a la traction), se ha anadido un material de reforzamiento (por ejemplo, Bibliografia de Patente 1). En general, para aumentar la resistencia a la traccion, un material de reforzamiento (una carga) es idoneamente un material tipo hilo que incluye fibras de carbono, fibras de vidrio, fibras de celulosa o similares. Se ha propuesto ademas que el limite elastico de traccion se aumente usando un compatibilizador con el fin de prevenir que un material tipo hilo salga del material de base (Bibliografia de Patente 6). Sin embargo, se ha descubierto que la resistencia mecanica y similares, que incluyen la resistencia a la traccion, etc., no mejoran suficientemente tan solo anadiendo un material tipo hilo. Se considera que la razon es que el material de base es demasiado blando para que un material de tipo hilo salga junto con el material de base.In addition, in order to improve the strength of the traction (tensile strength), a reinforcing material has been added (eg, Patent Bibliography 1). In general, to increase tensile strength, a reinforcing material (a load) is suitably a wire type material that includes carbon fibers, glass fibers, cellulose fibers or the like. It has also been proposed that the elastic limit of traction be increased using a compatibilizer in order to prevent a wire type material from leaving the base material (Patent Bibliography 6). However, it has been found that mechanical strength and the like, which include tensile strength, etc., do not improve sufficiently just by adding a wire type material. The reason is considered to be that the base material is too soft for a thread type material to come out together with the base material.

Como se ha mencionado anteriormente, el problema es que la cantidad de grafeno que se exfolia es normalmente pequena procesando el grafito natural sin ningun tratamiento. Sin embargo, como resultado de estudios mas recientes, llevando a cabo tratamientos predeterminados al grafito que sirve como fuente de material, se obtiene un material de carbono a base de grafito (un precursor de grafeno), del que el grafeno se exfolia facilmente, siendo el grafeno capaz de dispersarse a una alta concentration o en un alto grado. Una parte o todo el precursor de grafeno se exfolia por ondas de ultrasonidos, agitando y amasando para producir un material mixto que es “grafito de tipo grafeno”, que contiene desde precursor de grafeno hasta grafeno. El tamano, grosor, etc.As mentioned above, the problem is that the amount of graphene that is exfoliated is normally small by processing natural graphite without any treatment. However, as a result of more recent studies, carrying out predetermined treatments of graphite that serves as a source of material, a graphite-based carbon material (a precursor of graphene) is obtained, from which graphene is easily exfoliated, being Graphene capable of dispersing at a high concentration or to a high degree. Part or all of the graphene precursor is exfoliated by ultrasonic waves, stirring and kneading to produce a mixed material that is "graphene-like graphite," which contains graphene precursor to graphene. The size, thickness, etc.

55

1010

15fifteen

20twenty

2525

3030

del grafito de tipo grafeno no esta limitado, ya que son variables que dependen de la cantidad de adicion, del tiempo de proceso, etc. del precursor de grafeno. Sin embargo, se prefiere que el grafito de tipo grafeno este mas en copos. Esto es, en otras palabras, el material de carbono a base de grafito (el precursor de grafeno) es grafito capaz de exfoliarse facilmente y dispersarse como un grafito de tipo grafeno por procesos o dispositivos de agitation y amasado conocidos.Graphene type graphite is not limited, since they are variables that depend on the amount of addition, the process time, etc. of the graphene precursor. However, it is preferred that the graphite of the graphene type is more in flakes. That is, in other words, the graphite-based carbon material (the graphene precursor) is graphite capable of easily exfoliating and dispersing as a graphite of graphene type by known agitation and kneading processes or devices.

Se ha descubierto que dispersando una pequena cantidad del grafito de tipo grafeno junto con un material de reforzamiento en un material de base, podria mejorarse la resistencia mecanica, tal como un modulo de flexion, resistencia a compresion, resistencia a traction y modulo de Young. Ademas, se descubrio que el material de reforzamiento compuesto podria producirse sin cambiar sustancialmente el metodo de production convencional.It has been discovered that by dispersing a small amount of graphene-type graphite together with a reinforcing material in a base material, mechanical strength could be improved, such as a flexural modulus, compressive strength, tensile strength and Young's modulus. In addition, it was discovered that the composite reinforcing material could be produced without substantially changing the conventional production method.

La invention se ha completado centrandose en tales problemas y un objeto de la invention es proporcionar un material de reforzamiento compuesto y un metodo de obtencion de dicho material de reforzamiento excelente en resistencia mecanica.The invention has been completed focusing on such problems and an object of the invention is to provide a composite reinforcement material and a method of obtaining said reinforcing material excellent in mechanical strength.

Otro objeto de la invencion es proporcionar un material de reforzamiento compuesto capaz de mostrar las caracteristicas deseadas incluso aunque la cantidad de grafito de tipo grafeno dispersado/anadido en un material de base sea pequena.Another object of the invention is to provide a composite reinforcing material capable of displaying the desired characteristics even if the amount of graphene-type graphite dispersed / added in a base material is small.

Otro objeto mas de la invencion es proporcionar un material de reforzamiento compuesto excelente en resistencia mecanica usando un proceso de produccion convencional.A further object of the invention is to provide an excellent composite reinforcement material in mechanical strength using a conventional production process.

Solution al problemaSolution to the problem

Para resolver los problemas descritos anteriormente, la presente invencion es un procedimiento de obtencion de un material de reforzamiento compuesto, que comprende dispersar al menos un material de carbono basado en grafito y un material de reforzamiento en un material de base, exfoliando asi una parte o el todo de dicho material de carbono basado en grafito,To solve the problems described above, the present invention is a method of obtaining a composite reinforcing material, which comprises dispersing at least one carbon material based on graphite and a reinforcing material on a base material, thus exfoliating a part or the whole of said graphite-based carbon material,

teniendo el material de carbono a base de grafito una capa de grafito romboedrico (3R) y una capa de grafito hexagonal (2H), en donde la Proportion (3R) de la capa de grafito romboedrico (3R) y la capa de grafito hexagonal (2H), basandose en un metodo de difraccion de rayos X que se define por la siguiente Ecuacion 1, es del 31 % o mas:the graphite-based carbon material having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), where the Proportion (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer ( 2H), based on an X-ray diffraction method that is defined by the following Equation 1, is 31% or more:

Proporcion (3R) = P3/(P3+P4)*100 •••• (Ecuacion 1)Proportion (3R) = P3 / (P3 + P4) * 100 •••• (Equation 1)

en la quein which

55

1010

15fifteen

20twenty

2525

3030

3535

P3 es la intensidad de pico de un plano (101) de la capa de grafito romboedrico (3R) basada en el metodo de difraccion de rayos X, yP3 is the peak intensity of a plane (101) of the rhombohedral graphite layer (3R) based on the X-ray diffraction method, and

P4 es la intensidad de pico de un plano (101) de la capa de grafito hexagonal (2H) basada en el metodo de difraccion de rayos X.P4 is the peak intensity of a plane (101) of the hexagonal graphite layer (2H) based on the X-ray diffraction method.

En otra realization, la invention es el material de reforzamiento compuesto que se obtiene al dispersar al menos un material de carbono basado en grafito y un material de reforzamiento en un material de base, exfoliando asi una parte o el todo de dicho material de carbono basado en grafito, de acuerdo con el metodo anterior.In another embodiment, the invention is the composite reinforcing material that is obtained by dispersing at least one carbon material based on graphite and a reinforcing material on a base material, thus exfoliating a part or all of said carbon based material. in graphite, according to the previous method.

Es decir, el material de reforzamiento compuesto de la presente invencion comprende grafito de tipo grafeno exfoliado de un material de carbono a base de grafito, y un material de reforzamiento, dispersados en un material de base,That is, the composite reinforcing material of the present invention comprises graphene-type graphite exfoliated from a graphite-based carbon material, and a reinforcing material, dispersed in a base material,

caracterizado el material de carbono a base de grafito por tener una capa de grafito romboedrico (3R) y una capa de grafito hexagonal (2H), en el que la Proportion de la capa de grafito romboedrico (3R) y la capa de grafito hexagonal (2H), basandose en un metodo de difraccion de rayos X que se define por la siguiente Ecuacion 1, es el 31 % o mas:characterized by the graphite-based carbon material by having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), in which the Proportion of the rhombohedral graphite layer (3R) and the hexagonal graphite layer ( 2H), based on an X-ray diffraction method that is defined by the following Equation 1, is 31% or more:

Proporcion (3R) = P3/(P3+P4)*100 •••• (Ecuacion 1) en la queProportion (3R) = P3 / (P3 + P4) * 100 •••• (Equation 1) in which

P3 es la intensidad de pico de un plano (101) de la capa de grafito romboedrico (3R) sobre la base del metodo de difraccion de rayos X yP3 is the peak intensity of a plane (101) of the rhombohedral graphite layer (3R) based on the X-ray diffraction method and

P4 es la intensidad de pico de un plano (101) de la capa de grafito hexagonal (2H) sobre la base del metodo de difraccion de rayos X.P4 is the peak intensity of a plane (101) of the hexagonal graphite layer (2H) based on the X-ray diffraction method.

De acuerdo con la invencion, el material compuesto es excelente en resistencia mecanica. Esto es debido a que se especula que el efecto de aumentar el modulo elastico de un material de base en si mismo y el efecto de prevenir que el material de reforzamiento salga se exhibieron sinergicamente dispersando grafito de tipo grafeno en un material de base. Entre los parametros que miden la resistencia mecanica tal como el modulo de flexion, la resistencia a compresion, la resistencia a la traction y el modulo de Young, el material compuesto es excelente en la resistencia a la traccion, como un ejemplo.According to the invention, the composite material is excellent in mechanical strength. This is because it is speculated that the effect of increasing the elastic modulus of a base material itself and the effect of preventing the reinforcing material from coming out were synergistically exhibited by dispersing graphene-type graphite in a base material. Among the parameters that measure mechanical strength such as the flexural modulus, compressive strength, tensile strength and Young's modulus, the composite material is excellent in tensile strength, as an example.

El material de reforzamiento se caracteriza por ser una microparticula en forma de tipo hilo, linear o de tipo copos.The reinforcing material is characterized by being a microparticle in the form of wire, linear or flake type.

De acuerdo con la invencion, la microparticula se rodea por el grafito de tipo grafeno. De esta manera puede ejercerse suficientemente una funcion de reforzamiento de la microparticula.According to the invention, the microparticle is surrounded by graphite of graphene type. In this way a strengthening function of the microparticle can be sufficiently exercised.

La microparticula se caracteriza por tener una relation de aspecto de 5:1 o mas.The microparticle is characterized by having an aspect ratio of 5: 1 or more.

55

1010

15fifteen

20twenty

2525

3030

De acuerdo con la invention, puede ejercerse ademas suficientemente una funcion de reforzamiento de la microparticula.In accordance with the invention, a strengthening function of the microparticle can also be sufficiently exercised.

La relation en peso de la suma del material de carbono a base de grafito y del grafito a base de grafeno con respecto al material de reforzamiento se caracteriza por ser 1/100 o mas y menos de 10.The weight ratio of the sum of the graphite-based carbon material and the graphene-based graphite with respect to the reinforcing material is characterized by being 1/100 or more and less than 10.

De acuerdo con la invencion, puede ejercerse eficazmente una funcion de reforzamiento del material de reforzamiento.According to the invention, a reinforcing function of the reinforcing material can be effectively exercised.

El material de base se caracteriza por ser un polimero.The base material is characterized by being a polymer.

De acuerdo con la invencion, puede obtenerse un material de reforzamiento compuesto excelente en resistencia mecanica.According to the invention, an excellent composite reinforcement material in mechanical strength can be obtained.

El material de base se caracteriza por ser un material inorganico.The base material is characterized by being an inorganic material.

De acuerdo con la invencion, puede obtenerse un material de reforzamiento compuesto excelente en resistencia mecanica.According to the invention, an excellent composite reinforcement material in mechanical strength can be obtained.

El material de moldeo se caracteriza por comprender el material de reforzamiento compuesto.The molding material is characterized by comprising the composite reinforcing material.

De acuerdo con la invencion, puede obtenerse un material de moldeo usado para impresion 3D y similares, excelente en resistencia mecanica.According to the invention, a molding material used for 3D printing and the like, excellent in mechanical strength, can be obtained.

Breve description de las figurasBrief description of the figures

{Fig. 1} La Figura 1 muestra la estructura cristalina del grafito, donde (a) se refiere a la estructura cristalina de los cristales hexagonales y (b) se refiere a la estructura cristalina de los cristales romboedricos.{Fig. 1} Figure 1 shows the crystalline structure of graphite, where (a) refers to the crystalline structure of hexagonal crystals and (b) refers to the crystalline structure of rhombohedral crystals.

{Fig. 2} La Figura 2 muestra el perfil de difraccion de rayos X del grafito natural general.{Fig. 2} Figure 2 shows the X-ray diffraction profile of general natural graphite.

{Fig. 3} La Figura 3 ilustra el aparato A de production que usa el molino de chorros y plasma del Ejemplo 1.{Fig. 3} Figure 3 illustrates the production apparatus A using the jet and plasma mill of Example 1.

{Fig. 4} La Figura 4 ilustra el aparato B de produccion que usa el molino de bolas y el magnetron del Ejemplo 1, donde (a) es un diagrama que ilustra el estado de pulverization y (b) es un diagrama que ilustra el estado donde se recogen materiales de carbono a base de grafito (precursores).{Fig. 4} Figure 4 illustrates the production apparatus B using the ball mill and magnetron of Example 1, where (a) is a diagram illustrating the state of pulverization and (b) is a diagram illustrating the state where They collect graphite-based carbon materials (precursors).

{Fig. 5} La Figura 5 muestra el perfil de difraccion de rayos X del material de carbono a base de grafito de la Muestra 5 producido por el aparato B de produccion de acuerdo con el Ejemplo 1.{Fig. 5} Figure 5 shows the X-ray diffraction profile of the graphite-based carbon material of Sample 5 produced by the production apparatus B according to Example 1.

55

1010

15fifteen

20twenty

2525

3030

3535

{Fig. 6} La Figura 6 muestra el perfil de difraccion de rayos X del material de carbono a base de grafito de la Muestra 6 producido por el aparato A de production de acuerdo con el Ejemplo 1.{Fig. 6} Figure 6 shows the X-ray diffraction profile of the graphite-based carbon material of Sample 6 produced by the production apparatus A according to Example 1.

{Fig. 7} La Figura 7 muestra el perfil de difraccion de rayos X del material de carbono a base de grafito de la Muestra 1 que indica un ejemplo comparativo.{Fig. 7} Figure 7 shows the X-ray diffraction profile of the graphite-based carbon material of Sample 1 indicating a comparative example.

{Fig. 8} La Figura 8 muestra el aparato productor de dispersion que obtiene una dispersion usando un material de carbono a base de grafito como precursor.{Fig. 8} Figure 8 shows the dispersion producing apparatus that obtains a dispersion using a graphite-based carbon material as a precursor.

{Fig. 9} La Figura 9 muestra los estados de dispersion de las dispersiones producidas usando los materiales de carbono a base de grafito de la Muestra 1 que indica un ejemplo comparativo, y de la Muestra 5 que se produjo utilizando el aparato B de produccion del Ejemplo 1.{Fig. 9} Figure 9 shows the dispersion states of the dispersions produced using the graphite-based carbon materials of Sample 1 indicating a comparative example, and of Sample 5 that was produced using the production apparatus B of Example 1 .

{Fig. 10} La Figura 10 es una imagen de MET de un material de carbono a base de grafito (grafeno) disperso en una dispersion.{Fig. 10} Figure 10 is a MET image of a carbon material based on graphite (graphene) dispersed in a dispersion.

{Fig. 11} La Figura 11 muestra los estados de distribuciondel material de carbono a base de grafito disperso en una dispersion que se produjo usando el material de carbono a base de grafito (precursor) de la Muestra 5, donde (a) es un diagrama que muestra la distribution de tamanos promedio, mientras que (b) es un diagrama que muestra la distribution del numero de capas.{Fig. 11} Figure 11 shows the distribution states of the graphite-based carbon material dispersed in a dispersion that was produced using the graphite-based carbon material (precursor) of Sample 5, where (a) is a diagram showing The average size distribution, while (b) is a diagram showing the distribution of the number of layers.

{Fig. 12} La Figura 12 muestra el estado de distribucion de un material de carbono a base de grafito dispersado en la dispersion que se produjo usando el material de carbono a base de grafito de la Muestra 1 que indica el ejemplo comparativo, donde (a) es un diagrama que muestra la distribucion de tamanos promedio, y (b) es un diagrama que muestra la distribucion del numero de capas.{Fig. 12} Figure 12 shows the state of distribution of a graphite-based carbon material dispersed in the dispersion that was produced using the graphite-based carbon material of Sample 1 indicating the comparative example, where (a) is a diagram that shows the average size distribution, and (b) is a diagram that shows the distribution of the number of layers.

{Fig. 13} La Figura 13 muestra las distribuciones del numero de capas de los materiales de carbono a base de grafito cada uno dispersado en dispersiones que se produjeron usando las Muestras 1 a 7 como precursores.{Fig. 13} Figure 13 shows the distributions of the number of layers of the graphite-based carbon materials each dispersed in dispersions that were produced using Samples 1 to 7 as precursors.

{Fig. 14} La Figura 14 muestra las proporciones del grafeno que tiene 10 capas o menos un contenido de cristales romboedricos dispersos en una dispersion.{Fig. 14} Figure 14 shows the proportions of graphene having 10 or less layers of rhombohedral crystals dispersed in a dispersion.

{Fig. 15} La Figura 15 muestra el estado de distribucion de grafito cuando se varian las condiciones para producir una dispersion usando el material de carbono a base de grafito (precursor) de la Muestra 5 de acuerdo con el Ejemplo 2, donde (a) es un diagrama que muestra la distribucion en un caso donde se combinaron un tratamiento de ultrasonidos y un tratamiento con microondas, mientras que (b) es un diagrama que muestra la distribucion del numero de capas en un caso donde se llevo a cabo un tratamiento solo con ultrasonidos.{Fig. 15} Figure 15 shows the state of graphite distribution when the conditions for producing a dispersion using the graphite-based carbon material (precursor) of Sample 5 according to Example 2 are varied, where (a) is a diagram showing the distribution in a case where an ultrasonic treatment and a microwave treatment were combined, while (b) is a diagram showing the distribution of the number of layers in a case where an ultrasound treatment was only carried out .

55

1010

15fifteen

20twenty

2525

3030

{Fig. 16} La Figura 16 muestra el valor de resistencia cuando se disperso el material de carbono a base de grafito del Ejemplo 3 en una tinta conductora.{Fig. 16} Figure 16 shows the resistance value when the graphite-based carbon material of Example 3 was dispersed in a conductive ink.

{Fig. 17} La Figura 17 muestra la resistencia a la traction cuando se amaso el material de carbono a base de grafito del Ejemplo 4 con una resina.{Fig. 17} Figure 17 shows the tensile strength when the graphite-based carbon material of Example 4 was kneaded with a resin.

{Fig. 18} La Figura 18 muestra el modulo elastico cuando se amaso el material de carbono a base de grafito del Ejemplo 5 con una resina.{Fig. 18} Figure 18 shows the elastic modulus when the graphite-based carbon material of Example 5 was kneaded with a resin.

{Fig. 19} La Figura 19 muestra estados de distribution del material de carbono a base de grafito en una dispersion, dispersado en N-metilpirrolidona (NMP), para proporcionar una description suplementaria del estado de dispersion del Ejemplo 5, donde (a) es el estado de distribucion de la muestra 12 y (b) es el estado de distribucion de la muestra 2.{Fig. 19} Figure 19 shows distribution states of the graphite-based carbon material in a dispersion, dispersed in N-methylpyrrolidone (NMP), to provide a supplementary description of the dispersion state of Example 5, where (a) is the state of distribution of sample 12 and (b) is the state of distribution of sample 2.

{Fig. 20} La Figura 20 muestra la resistencia a la traccion y el modulo de flexion de la pieza de ensayo del Ejemplo 6.{Fig. 20} Figure 20 shows the tensile strength and flexural modulus of the test piece of Example 6.

{Fig. 21} La Figura 21 es una imagen fotografiada de MEB (vista en planta) de un precursor de grafeno.{Fig. 21} Figure 21 is a photographed image of SEM (plan view) of a graphene precursor.

{Fig. 22} La Figura 22 es una imagen fotografiada de MEB (vista en perfil) de un precursor de grafeno.{Fig. 22} Figure 22 is a photographed image of SEM (profile view) of a graphene precursor.

{Fig. 23} La Figura 23 es una imagen fotografiada de MEB (vista en section transversal) de una resina en la que se disperso grafito de tipo grafeno.{Fig. 23} Figure 23 is a photographed image of SEM (cross-sectional view) of a resin in which graphene-type graphite is dispersed.

{Fig. 24} La Figura 24 es una imagen lateral fotografiada de MEB (vista en perfil) del grafito de tipo grafeno en la Figura 23.{Fig. 24} Figure 24 is a side image photographed of SEM (profile view) of graphene-type graphite in Figure 23.

{Fig. 25} La Figura 25 muestra la resistencia a la traccion y el modulo de flexion de la pieza de ensayo del Ejemplo 7.{Fig. 25} Figure 25 shows the tensile strength and flexural modulus of the test piece of Example 7.

{Fig. 26} La Figura 26 muestra la resistencia a la traccion y el modulo de flexion de la pieza de ensayo del Ejemplo 8 en el que se cambio una forma de un material de reforzamiento.{Fig. 26} Figure 26 shows the tensile strength and flexural modulus of the test piece of Example 8 in which a shape of a reinforcing material was changed.

{Fig. 27} La Figura 27 es una vista esquematica que ilustra la forma del material de reforzamiento del Ejemplo 8, donde (a) es la forma de fibras de vidrio y fibras de carbono, (b) es la forma de talco y (c) es la forma de silice.{Fig. 27} Figure 27 is a schematic view illustrating the form of the reinforcing material of Example 8, where (a) is the form of glass fibers and carbon fibers, (b) is the form of talc and (c) is the shape of silica

{Fig. 28} La Figura 28 muestra la resistencia a la traccion y el modulo de flexion de la pieza de ensayo del Ejemplo 9 en la que se cambio la relation de mezcla de precursor de grafeno a material de reforzamiento.{Fig. 28} Figure 28 shows the tensile strength and flexural modulus of the test piece of Example 9 in which the ratio of graphene precursor mixture to reinforcement material was changed.

Descripcion de las realizacionesDescription of the realizations

55

1010

15fifteen

20twenty

2525

3030

La invention se centra en la estructura cristalina de grafito y, en primer lugar, se explicaran cuestiones relacionadas con dicha estructura cristalina. Es sabido que el grafito natural se clasifica en tres tipos de estructuras cristalinas, a saber, cristales hexagonales, cristales romboedricos y cristales desordenados, dependiendo de la manera en que se superponen las capas. Como se muestra en la Figura 1, los cristales hexagonales tienen una estructura cristalina en la que las capas se disponen en el orden de ABABAB-, mientras que los cristales romboedricos tienen una estructura cristalina en la que las capas se disponen en el orden de ABCABCABC-.The invention focuses on the crystalline structure of graphite and, first of all, issues related to said crystalline structure will be explained. It is known that natural graphite is classified into three types of crystalline structures, namely hexagonal crystals, rhombohedral crystals and disordered crystals, depending on the way in which the layers overlap. As shown in Figure 1, the hexagonal crystals have a crystalline structure in which the layers are arranged in the order of ABABAB-, while the rhombohedral crystals have a crystalline structure in which the layers are arranged in the order of ABCABCABC -.

En el grafito natural, casi no hay cristales romboedricos en la etapa en que se excava. Sin embargo, aproximadamente un 14 % de cristales romboedricos existen en general en los materiales naturales de carbono a base de grafito debido que se llevan a cabo pulverization o similares en la etapa de purification. Ademas, se sabe que la proportion de cristales romboedricos converge en aproximadamente un 30 % incluso cuando durante la purification se lleva a cabo una pulverization durante un tiempo prolongado (Bibliografia no Patente 1 y 2).In natural graphite, there are almost no rhombohedral crystals at the stage in which it is excavated. However, approximately 14% of rhombohedral crystals generally exist in natural graphite-based carbon materials because they are carried out pulverization or the like in the purification stage. In addition, it is known that the proportion of rhombohedral crystals converges by approximately 30% even when spraying is carried out for a prolonged period of time (Non-Patent Bibliography 1 and 2).

Ademas, se ha descrito un metodo en el que el grafito se expande por calentamiento, en vez de hacerlo con fuerzas fisicas tales como la pulverization, rompiendo de esa manera en copos al grafito. Sin embargo, incluso cuando el grafito se trata con una temperatura de aproximadamente 1300 °C (1600 K), la proportion de cristales romboedricos es de aproximadamente el 25 % (Bibliografia no Patente 3). Adicionalmente, la proportion es de hasta aproximadamente el 30 % incluso cuando se aplica al mismo una temperatura extremadamente alta, de 3000 °C (Bibliografia no Patente 2).In addition, a method has been described in which graphite is expanded by heating, rather than with physical forces such as pulverization, thereby breaking into flakes of graphite. However, even when graphite is treated at a temperature of approximately 1300 ° C (1600 K), the proportion of rhombohedral crystals is approximately 25% (Non-Patent Bibliography 3). Additionally, the proportion is up to approximately 30% even when an extremely high temperature of 3000 ° C is applied (Non-Patent Bibliography 2).

Por lo tanto, aunque es posible aumentar la proportion de cristales romboedricos tratando grafito natural con fuerzas fisicas o calor, el limite superior es de aproximadamente el 30 %.Therefore, although it is possible to increase the proportion of rhombohedral crystals by treating natural graphite with physical forces or heat, the upper limit is approximately 30%.

Los cristales hexagonales (2H), que existen en el grafito natural en un alto nivel, son muy estables, y la fuerza intercapa de van der Waals entre sus capas de grafeno se muestra en la Ecuacion 3 (Bibliografia de Patente 2). Al aplicar una energia que supera esta fuerza, el grafeno se exfolia. La energia requerida para la exfoliation es inversamente proporcional al cubo del espesor. Por lo tanto, en un estado grueso donde se superponen numerosas capas, el grafeno se exfolia por una debil fuerza fisica, como ondas de ultrasonidos muy debiles. Sin embargo, en el caso donde el grafeno se exfolia a partir de un grafito algo delgado, se requiere una energia muy grande. En otras palabras, incluso siHexagonal crystals (2H), which exist in natural graphite at a high level, are very stable, and the interlayer force of van der Waals between its graphene layers is shown in Equation 3 (Patent Bibliography 2). By applying an energy that exceeds this force, graphene exfoliates. The energy required for exfoliation is inversely proportional to the thickness cube. Therefore, in a thick state where numerous layers overlap, graphene is exfoliated by a weak physical force, such as very weak ultrasound waves. However, in the case where graphene is exfoliated from a somewhat thin graphite, a very large energy is required. In other words, even if

55

1010

15fifteen

20twenty

2525

3030

3535

el grafito se trata durante un tiempo prolongado, solamente se exfolian partes debiles de la superficie, y las partes grandes se quedan sin exfoliar.Graphite is treated for a long time, only weak parts of the surface are exfoliated, and large parts remain without exfoliating.

Fvdw = H-A/ (6rc-t3) •••• Ecuacion 3Fvdw = H-A / (6rc-t3) •••• Equation 3

Fvdw: fuerza de van der Waals H: Constante de Hamaker A: Area superficial del grafito o el grafeno t: Espesor del grafito o el grafenoFvdw: force of van der Waals H: Hamaker constant A: Surface area of graphite or graphene t: Thickness of graphite or graphene

Los presentes inventores tuvieron exito en conseguir aumentar la proportion de cristales romboedricos (3R) hasta un 30 % o mas llevando a cabo tratamientos predeterminados al grafito natural, como se muestra mas adelante. Este porcentaje solo habia llegado al 30 % por tratamientos de pulverization o calentamiento a una temperatura extremadamente alta. Los siguientes descubrimientos se obtuvieron como resultados de experimentos y estudios. Esto es, cuando el contenido de cristales romboedricos (3R) en un material de carbono a base de grafito es mayor, particularmente cuando el contenido es del 31 % o mas, hay una tendencia a que el grafeno se exfolie facilmente mediante el uso de dicho material de carbono a base de grafito como precursor, obteniendo facilmente de esa manera una dispersion de grafeno altamente concentrada y dispersa. Debido a esta razon, se considera que cuando se aplica una fuerza de cizalla o similar a los cristales romboedricos (3R) ocurre una deformation entre las capas, es decir que la deformacion en toda la estructura del grafito se vuelve grande, y el grafeno se exfolia facilmente independientemente de las fuerzas de van der Waals. En consecuencia, en la invention, un material de carbono a base de grafito a partir del cual se exfolia el grafeno facilmente llevando a cabo tratamientos predeterminados sobre el grafito natural, y que hace posible dispersar el grafeno en una alta concentration o en un alto grado, se denomina un precursor de grafeno. A continuation en el presente documento y en el mismo orden en los ejemplos, se describiran un metodo para producir un precursor de grafeno con tratamientos predeterminados, una estructura cristalina del precursor de grafeno y una dispersion de grafeno que usa el precursor de grafeno.The present inventors succeeded in increasing the proportion of rhombohedral crystals (3R) up to 30% or more by carrying out predetermined treatments of natural graphite, as shown below. This percentage had only reached 30% by spraying or heating treatments at an extremely high temperature. The following discoveries were obtained as results of experiments and studies. That is, when the content of rhombohedral crystals (3R) in a graphite-based carbon material is higher, particularly when the content is 31% or more, there is a tendency for graphene to be easily exfoliated by using said Graphite-based carbon material as a precursor, thereby easily obtaining a highly concentrated and dispersed graphene dispersion. Due to this reason, it is considered that when a shear force or similar is applied to the rhombohedral crystals (3R) a deformation occurs between the layers, that is to say that the deformation in the entire structure of the graphite becomes large, and the graphene becomes Exfoliates easily regardless of van der Waals forces. Consequently, in the invention, a graphite-based carbon material from which graphene is easily exfoliated by carrying out predetermined treatments on natural graphite, and which makes it possible to disperse graphene in a high concentration or in a high degree , is called a graphene precursor. Next in the present document and in the same order in the examples, a method for producing a graphene precursor with predetermined treatments, a crystalline structure of the graphene precursor and a graphene dispersion using the graphene precursor will be described.

En este punto, en la memoria descriptiva, un grafeno se refiere a un grafeno del tipo copos o del tipo laminas, que es un cristal de un tamano medio de 100 nm o mas, pero que no es un cristal fino de un tamano medio de varios nanometros a decenas de nanometros, y que tiene 10 capas o menos.At this point, in the specification, a graphene refers to a graphene of the flake type or of the lamina type, which is a crystal of an average size of 100 nm or more, but which is not a fine crystal of an average size of several nanometers to tens of nanometers, and it has 10 layers or less.

Adicionalmente, como el grafeno es un cristal con un tamano medio de 100 nm o mas, cuando el grafito artificial y el negro de humo, que son materiales de carbonoAdditionally, as graphene is a crystal with an average size of 100 nm or more, when artificial graphite and carbon black, which are carbon materials

55

1010

15fifteen

20twenty

2525

3030

3535

amorfos (microcristalinos) diferentes del grafito natural, se tratan de manera pareja, no puede obtenerse grafeno (Bibliografia no Patente 4).amorphous (microcrystalline) different from natural graphite, are treated evenly, graphene cannot be obtained (Non-Patent Bibliography 4).

Ademas, en la memoria descriptiva, un compuesto de grafeno significa un material compuesto que se produce usando el material de carbono a base de grafito util como un precursor de grafeno de acuerdo con la invencion, es decir un material de carbono a base de grafito que tiene una Proportion (3R) del 31 % o mas (por ejemplo Muestras 2-7 del Ejemplo 1, muestras 2, 21, ••• del Ejemplo 5, descritos mas adelante).Further, in the specification, a graphene compound means a composite material that is produced using the graphite-based carbon material useful as a graphene precursor according to the invention, that is, a graphite-based carbon material that it has a Proportion (3R) of 31% or more (for example, Samples 2-7 of Example 1, samples 2, 21, ••• of Example 5, described below).

En lo sucesivo en el presente documento se describiran ejemplos para llevar a cabo el material de reforzamiento compuesto y el material de moldeo de acuerdo con la presente invencion.Hereinafter, examples for carrying out the composite reinforcing material and the molding material in accordance with the present invention will be described.

Ejemplo 1Example 1

<En cuanto a la production de un material de carbono a base de grafito util como un precursor de grafeno><Regarding the production of a graphite-based carbon material useful as a graphene precursor>

Se explicara un metodo para obtener un material de carbono a base de grafito util como un precursor de grafeno mediante un aparato A de produccion que usa el molino de chorros y plasma mostrado en la Figura 3. Como ejemplo, el aparato A de produccion se refiere a un caso en que se aplica plasma para un primer tratamiento basado en la fuerza de ondas de radio, y en el que se usa el molino de chorros para un segundo tratamiento basado en fuerzas fisicas.A method for obtaining a graphite-based carbon material useful as a graphene precursor will be explained by a production apparatus A using the jet and plasma mill shown in Figure 3. As an example, the production apparatus A refers to a case in which plasma is applied for a first treatment based on the force of radio waves, and in which the jet mill is used for a second treatment based on physical forces.

En la Figura 3, el simbolo 1 se refiere a una particula de 5 mm o menos de un material de grafito natural (grafito en copos ACB-50 fabricado por Nippon Graphite Industries, Ltd.); el simbolo 2 se refiere a una tolva que almacena el material 1 de grafito natural; el simbolo 3 se refiere a una boquilla Venturi que descarga el material de grafito natural 1 desde la tolva 2; el simbolo 4 se refiere a un molino de chorros que inyecta chorros del aire que se ha bombeado desde un compresor 5, dividiendose en ocho lugares, para permitir de esa manera que el material de grafito natural colisione contra el interior de una camara por un chorro soplado; y el simbolo 7 se refiere a un generador de plasma que pulveriza un gas 9, tal como oxigeno, argon, nitrogeno o hidrogeno, a traves de una boquilla 8 desde un tanque 6 y que aplica un voltaje a una bobina 11, enrollada alrededor de la periferia exterior de la boquilla 8, desde un suministro de energia de alto voltaje 10, generando de esa manera plasma en el interior de la camara del molino de chorros 4, y se proporciona el generador de plasma en cada uno de los cuatro lugares en el interior de la camara. El simbolo 13 se refiere a una tuberia que conecta entre si al molino de chorros 4 y un recolector de polvo 14; el simbolo 14 se refiere a un recolector de polvo; el simboloIn Figure 3, the symbol 1 refers to a particle of 5 mm or less of a natural graphite material (graphite in ACB-50 flakes manufactured by Nippon Graphite Industries, Ltd.); symbol 2 refers to a hopper that stores the natural graphite material 1; symbol 3 refers to a Venturi nozzle that discharges the natural graphite material 1 from the hopper 2; symbol 4 refers to a jet mill that injects jets of the air that has been pumped from a compressor 5, dividing into eight places, to thereby allow the natural graphite material to collide against the inside of a chamber by a jet blown; and the symbol 7 refers to a plasma generator that pulverizes a gas 9, such as oxygen, argon, nitrogen or hydrogen, through a nozzle 8 from a tank 6 and that applies a voltage to a coil 11, wound around the outer periphery of the nozzle 8, from a high voltage power supply 10, thereby generating plasma inside the chamber of the jet mill 4, and the plasma generator is provided in each of the four locations in The inside of the camera. Symbol 13 refers to a pipe that connects the jet mill 4 and a dust collector 14; symbol 14 refers to a dust collector; the symbol

55

1010

15fifteen

20twenty

2525

3030

15 se refiere a un recipiente de recoleccion; el simbolo 16 se refiere a un material de carbono a base de grafito (precursor de grafeno); y el simbolo 17 se refiere a un soplador.15 refers to a collection vessel; symbol 16 refers to a graphite-based carbon material (graphene precursor); and symbol 17 refers to a blower.

A continuation, se explicara el metodo de production. Las condiciones para el molino de chorros y el plasma son como sigue.Next, the production method will be explained. The conditions for the jet mill and plasma are as follows.

Las condiciones para el molino de chorros son como sigue.The conditions for the jet mill are as follows.

Presion: 0,5 MPaPressure: 0.5 MPa

Volumen de aire: 2,8 m3/minAir volume: 2.8 m3 / min

Diametro interior de la boquilla: 12 mmInner diameter of the nozzle: 12 mm

Caudal: aproximadamente 410 m/sFlow rate: approximately 410 m / s

Las condiciones para el plasma son como sigue.The conditions for plasma are as follows.

Potencia: 15 W Voltaje: 8 kVPower: 15 W Voltage: 8 kV

Especie de gas: Ar (pureza del 99,999 % en volumen)Gas species: Ar (purity of 99.999% by volume)

Caudal del gas: 5 l/minGas flow: 5 l / min

Se considera que los materiales de grafito natural 1, que se han cargado dentro de la camara del molino de chorros 4 desde la boquilla Venturi 3, se aceleran a la velocidad del sonido o mas en el interior de la camara, y se pulverizan por el impacto entre los materiales de grafito natural 1 o por el impacto de los mismos contra la pared, y que, simultaneamente, el plasma 12 descarga una corriente electrica o excita los materiales de grafito natural 1, actua directamente sobre los atomos (electrones) y aumenta las deformaciones de los cristales, promoviendo de esa manera la pulverization. Cuando los materiales de grafito natural 1 se convierten en finas particulas de un cierto diametro de particula (de aproximadamente 1 a 10 pm), su masa se reduce, la fuerza centrifuga se debilita y, en consecuencia, los materiales de grafito natural 1 se bombean fuera de la tuberia 13 que esta conectada al centro de la camara.It is considered that the natural graphite materials 1, which have been loaded into the chamber of the jet mill 4 from the Venturi nozzle 3, accelerate to the speed of sound or more inside the chamber, and are sprayed by the impact between natural graphite materials 1 or their impact against the wall, and that, simultaneously, plasma 12 discharges an electric current or excites natural graphite materials 1, acts directly on atoms (electrons) and increases the deformations of the crystals, thereby promoting pulverization. When the natural graphite materials 1 become fine particles of a certain particle diameter (approximately 1 to 10 pm), their mass is reduced, the centrifugal force weakens and, consequently, the natural graphite materials 1 are pumped outside the pipe 13 which is connected to the center of the chamber.

Un gas que incluye materiales de carbono a base de grafito (precursores de grafeno), que se ha hecho fluir desde la tuberia 13 hacia un recipiente cilindrico de la camara del recolector de polvo 14, forma un flujo en espiral, y deja caer los materiales de carbono a base de grafito 16, que colisionan con la pared interna del recipiente, a un recipiente de recoleccion 15 por debajo, mientras se genera una corriente de aire ascendente en el centro de la camara debido a una parte ahusada del recipiente en la parte inferior de la camara, y el gas se emite desde el soplador 17 (denominado efecto ciclon). De acuerdo con el aparato A de produccion en este ejemplo, se usan aproximadamente 800 g de un precursor de grafeno a partir de 1 kg de las materias primas, es decir losA gas that includes graphite-based carbon materials (graphene precursors), which has been flowed from the pipeline 13 into a cylindrical vessel of the dust collector chamber 14, forms a spiral flow, and drops the materials made of graphite-based carbon 16, which collides with the inner wall of the container, to a collection vessel 15 below, while an upward air flow is generated in the center of the chamber due to a tapered part of the container in the part bottom of the chamber, and the gas is emitted from blower 17 (called the cyclone effect). According to the production apparatus A in this example, approximately 800 g of a graphene precursor from 1 kg of the raw materials is used, i.e.

55

1010

15fifteen

20twenty

2525

3030

3535

materiales de grafito natural 1. Se obtuvo el material de carbono a base de grafito (precursores de grafeno) 16 (eficiencia de recuperacion: aproximadamente un 80 %).natural graphite materials 1. The graphite-based carbon material (graphene precursors) 16 (recovery efficiency: approximately 80%) was obtained.

A continuation, basandose en el aparato B de production que usa el molino de bolas y las microondas mostrado en la Figura 4, se describira un metodo para obtener un material de carbono a base de grafito que es util como precursor de grafeno. El aparato B se refiere, como un ejemplo, a un caso donde se aplican microondas como primer tratamiento basado en fuerzas de ondas de radio y donde se usa un molino de bolas para el segundo tratamiento basado en fuerzas fisicas.Next, based on the production apparatus B using the ball mill and microwaves shown in Figure 4, a method for obtaining a graphite-based carbon material that is useful as a graphene precursor will be described. The apparatus B refers, as an example, to a case where microwaves are applied as the first treatment based on radio wave forces and where a ball mill is used for the second treatment based on physical forces.

En la Figura 4 (a) y (b), el simbolo 20 se refiere al molino de bolas; el simbolo 21 se refiere a un generador de microondas (magnetron); el simbolo 22 se refiere a una guia de ondas; el simbolo 23 se refiere a una entrada de microondas; el simbolo 24 se refiere a un medio; el simbolo 25 se refiere a particulas de 5 mm o menos de un material de grafito natural (grafito en copos ACB-50 fabricado por Nippon Graphite Industries, Ltd.); el simbolo 26 se refiere a un recipiente de recoleccion; el simbolo 27 se refiere a un filtro; y el simbolo 28 se refiere a un material de carbono a base de grafito (precursores de grafeno).In Figure 4 (a) and (b), symbol 20 refers to the ball mill; symbol 21 refers to a microwave generator (magnetron); symbol 22 refers to a waveguide; symbol 23 refers to a microwave input; symbol 24 refers to a medium; symbol 25 refers to particles of 5 mm or less of a natural graphite material (graphite in ACB-50 flakes manufactured by Nippon Graphite Industries, Ltd.); symbol 26 refers to a collection vessel; symbol 27 refers to a filter; and symbol 28 refers to a graphite-based carbon material (graphene precursors).

A continuacion, se explicara el metodo de produccion. Las condiciones para el molino de bolas y el generador de microondas son como sigue.Next, the production method will be explained. The conditions for the ball mill and the microwave generator are as follows.

Las condiciones para el molino de bolas son como sigue.The conditions for the ball mill are as follows.

Velocidad de rotation: 30 rpm Tamano del medio: ^5 mm Especie del medio: bolas de circonia Tiempo de pulverization: 3 horasRotation speed: 30 rpm Medium size: ^ 5 mm Medium species: zirconia balls Spraying time: 3 hours

Las condiciones para el generador de microondas (magnetron) son como sigue.The conditions for the microwave generator (magnetron) are as follows.

Potencia: 300 WPower: 300 W

Frecuencia: 2,45 GHzFrequency: 2.45 GHz

Metodo de irradiation: IntermitenteIrradiation Method: Intermittent

Se carga 1 kg de materias primas de carbono de grafito natural 25 y 800 g del medio 24 dentro de la camara del molino de bolas 20, la camara se cierra, y la mezcla se trata con una velocidad de rotacion de 30 rpm durante 3 horas. Durante el primer tratamiento, se irradia la camara con microondas de manera intermitente (durante 20 segundos cada 10 minutos). Se considera que la irradiacion con microondas actua directamente sobre los atomos (electrones) de las materias primas, aumentando de esta manera las deformaciones de los cristales. Despues del tratamiento, se retiran los medios 24 mediante el filtro 27 y, de esta manera, puede recolectarse un polvo de1 kg of natural graphite carbon raw materials 25 and 800 g of medium 24 are loaded into the ball mill chamber 20, the chamber is closed, and the mixture is treated with a rotation speed of 30 rpm for 3 hours . During the first treatment, the camera is irradiated with microwave intermittently (for 20 seconds every 10 minutes). Microwave irradiation is considered to act directly on the atoms (electrons) of the raw materials, thereby increasing the deformations of the crystals. After the treatment, the means 24 are removed by the filter 27 and, in this way, a powder of

55

1010

15fifteen

20twenty

2525

3030

3535

aproximadamente 10 pm de materiales (precursores) de carbono a base de grafito 28 en el recipiente de recoleccion 26.approximately 10 pm of graphite-based carbon materials (precursors) 28 in collection vessel 26.

<En cuanto al perfil de difraccion de rayos X de los materiales de carbono a base de grafito (precursores de grafeno)><Regarding the X-ray diffraction profile of graphite-based carbon materials (graphene precursors)>

Con referencia a las Figuras 5 a 7, se describiran los perfiles de difraccion de rayos X y las estructuras cristalinas con respecto a los materiales naturales a base de grafito (Muestras 6 y 5) producidas mediante los aparatos A y B de production, y el polvo de aproximadamente 10 pm de materiales naturales a base de grafito (Muestra 1: ejemplo comparativo) que se obtuvieron usando solo el molino de bolas del aparato B de produccion.With reference to Figures 5 to 7, X-ray diffraction profiles and crystalline structures will be described with respect to natural graphite-based materials (Samples 6 and 5) produced by production apparatus A and B, and the powder of approximately 10 pm of natural graphite-based materials (Sample 1: comparative example) that were obtained using only the ball mill of the production apparatus B.

Las condiciones de medicion para el aparato de difraccion de rayos X son comoThe measurement conditions for the X-ray diffraction apparatus are as

sigue.follow.

Fuente : rayos Ka de CuSource: Ka de Cu rays

Velocidad de barrido : 20° / minScanning Speed: 20 ° / min

Voltaje en el tubo : 40 kVTube voltage: 40 kV

Corriente en el tubo : 30 mATube current: 30 mA

De acuerdo con el metodo de difraccion de rayos X (difractometro de rayos X multiproposito con montaje horizontal de la muestra modelo Ultima IV fabricado por Rigaku Corporation), cada muestra presenta las intensidades de pico P1, P2, P3 y P4 en los planos (100), (002) y (101) de los cristales hexagonales 2H y en el plano (101) de los cristales romboedricos 3R. En lo sucesivo, se explicaran dichas intensidades de pico.According to the X-ray diffraction method (multi-purpose X-ray diffractometer with horizontal mounting of the Ultima IV model sample manufactured by Rigaku Corporation), each sample presents the peak intensities P1, P2, P3 and P4 in the planes (100 ), (002) and (101) of the 2H hexagonal crystals and in the plane (101) of the 3R rhombohedral crystals. Hereinafter, said peak intensities will be explained.

En este documento, las mediciones del perfil de difraccion de rayos X han utilizado los denominados valores estandarizados en el pais y el extranjero en los ultimos anos. Este difractometro de rayos X multiproposito con montaje horizontal de la muestra modelo Ultima IV fabricado por Rigaku Corporation es un aparato que puede medir el perfil de difraccion de rayos X de acuerdo con JIS R 7651:2007 “Measurement of lattice parameters and crystallite sizes of carbon materials”. Ademas, la Proportion (3R) es la relation entre la intensidad de la difraccion que se obtiene con la Proporcion (3R) = P3 / (P3 + P4) x 100; incluso si se cambia el valor de la intensidad de la difraccion, no cambia el valor de la Proporcion (3R). Esto significa que la relacion de la intensidad de la difraccion esta estandarizada y su valor no depende de los dispositivos de medicion, lo cual se utiliza comunmente para evitar llevar a cabo la identification de la sustancia de valor absoluto.In this document, X-ray diffraction profile measurements have used the so-called standardized values in the country and abroad in recent years. This multi-purpose X-ray diffractometer with horizontal mounting of the Ultima IV model sample manufactured by Rigaku Corporation is a device that can measure the X-ray diffraction profile according to JIS R 7651: 2007 “Measurement of lattice parameters and crystallite sizes of carbon materials ”. In addition, Proportion (3R) is the ratio between the intensity of the diffraction obtained with the Ratio (3R) = P3 / (P3 + P4) x 100; even if the diffraction intensity value is changed, the value of the Ratio (3R) does not change. This means that the ratio of the intensity of the diffraction is standardized and its value does not depend on the measuring devices, which is commonly used to avoid carrying out the identification of the substance of absolute value.

Como se muestra en la Figura 5 y la Tabla 1, la Muestra 5 producida por el aparato B de produccion, que aplica un tratamiento con un molino de bolas y un tratamiento conAs shown in Figure 5 and Table 1, Sample 5 produced by the production apparatus B, which applies a treatment with a ball mill and a treatment with

microondas, tuvo altas proporciones de las intensidades de pico P3 y P1, y una Proportion (3R) definida por la Ecuacion 1 que muestra una proportion de P3 para una suma de P3 y P4 del 46 %. Adicionalmente, la relation entre las intensidades P1/P2 fue 0,012. Proportion (3R) = P3/(P3+P4)*100 •••• Ecuacion 1 5 en la quemicrowave, had high proportions of peak intensities P3 and P1, and a Proportion (3R) defined by Equation 1 showing a proportion of P3 for a sum of P3 and P4 of 46%. Additionally, the ratio between the P1 / P2 intensities was 0.012. Proportion (3R) = P3 / (P3 + P4) * 100 •••• Equation 1 5 in which

P1 es la intensidad de pico de un plano (100) de la capa de grafito hexagonal (2H) sobre la base del metodo de difraccion de rayos X,P1 is the peak intensity of a plane (100) of the hexagonal graphite layer (2H) based on the X-ray diffraction method,

P2 es la intensidad de pico de un plano (002) de la capa de grafito hexagonal (2H) sobre la base del metodo de difraccion de rayos X,P2 is the peak intensity of a plane (002) of the hexagonal graphite layer (2H) based on the X-ray diffraction method,

10 P3 es la intensidad de pico de un plano (101) de la capa de grafito romboedrico10 P3 is the peak intensity of a plane (101) of the rhombohedral graphite layer

(3R) sobre la base del metodo de difraccion de rayos X y(3R) based on the X-ray diffraction method and

P4 es la intensidad de pico de un plano (101) de la capa de grafito hexagonal (2H) sobre la base del metodo de difraccion de rayos X.P4 is the peak intensity of a plane (101) of the hexagonal graphite layer (2H) based on the X-ray diffraction method.

{Tabla 1}{Table 1}

Intensidades de pico [recuentos-gradol (29[°D  Peak Intensities [gradol counts (29 [° D

Cristales hexagonales 2H (100) [P1]  Hexagonal crystals 2H (100) [P1]
162 (42,33)  162 (42.33)

Cristales hexagonales 2H (002) [P2]  Hexagonal crystals 2H (002) [P2]
13157 (26,50)  13157 (26.50)

Cristales romboedricos 3R (101) [P3]  3R rhombohedral crystals (101) [P3]
396 (43,34)  396 (43.34)

Cristales hexagonales 2H (101) [P4]  Hexagonal crystals 2H (101) [P4]
466 (44,57)  466 (44.57)

15fifteen

De la misma manera, como se muestra en la Figura 6 y la tabla 2, la Muestra 6 producida por el aparato A de production, que aplica un tratamiento basado en el molino de chorros y un tratamiento basado en plasma, tuvo grandes proporciones de intensidades de pico P3 y P1, y la Proportion (3R) fue del 51 %. Ademas, la relation de intensidad 20 P1/P2 fue 0,014.In the same way, as shown in Figure 6 and Table 2, Sample 6 produced by the production apparatus A, which applies a treatment based on the jet mill and a plasma based treatment, had large proportions of intensities. P3 and P1 peak, and Proportion (3R) was 51%. In addition, the intensity ratio 20 P1 / P2 was 0.014.

{Tabla 2}{Table 2}

Intensidades de pico [recuentos •grado] (29[°D  Peak Intensities [counts • grade] (29 [° D

Cristales hexagonales 2H (100) [P1]  Hexagonal crystals 2H (100) [P1]
66 (42,43)  66 (42.43)

Cristales hexagonales 2H (002) [P2]  Hexagonal crystals 2H (002) [P2]
4675 (26,49)  4675 (26.49)

Cristales romboedricos 3R (101) [P3]  3R rhombohedral crystals (101) [P3]
170 (43,37)  170 (43.37)

Cristales hexagonales 2H (101) [P4]  Hexagonal crystals 2H (101) [P4]
162 (44,63)  162 (44.63)

Adicionalmente, como se muestra en la Figura 7 y la tabla 3, la Muestra 1 que indica un ejemplo comparativo solo con el molino de bolas tuvo una pequena proportionAdditionally, as shown in Figure 7 and Table 3, Sample 1 indicating a comparative example only with the ball mill had a small proportion

55

1010

15fifteen

20twenty

de intensidad de pico P3 en comparacion con las Muestras 5 y 6, y la Proportion (3R) fue del 23 %. Ademas, la relation de intensidades P1/P2 fue 0,008.P3 peak intensity compared to Samples 5 and 6, and Proportion (3R) was 23%. In addition, the ratio of P1 / P2 intensities was 0.008.

{Tabla 3}{Table 3}

Intensidades de pico [recuentos •grado] (20[°])  Peak Intensities [counts • grade] (20 [°])

Cristales hexagonales 2H (100) [P1]  Hexagonal crystals 2H (100) [P1]
120 (42,4)  120 (42.4)

Cristales hexagonales 2H (002) [P2]  Hexagonal crystals 2H (002) [P2]
15000 (26,5)  15000 (26.5)

Cristales romboedricos 3R (101) [P3]  3R rhombohedral crystals (101) [P3]
50 (43,3)  50 (43.3)

Cristales hexagonales 2H (101) [P4]  Hexagonal crystals 2H (101) [P4]
160 (44,5)  160 (44.5)

Por lo tanto, la Muestra 5 producida por el aparato B de production del Ejemplo 1, y la Muestra 6 producida por el aparato A de produccion del Ejemplo 1 tuvieron Proporciones (3R) del 46 % y el 51 %, respectivamente, y se demostro que sus Proporciones (3R) fueron del 40 % o mas, o el 50 % o mas, en comparacion con el grafito natural mostrado en la Figura 2 y la Muestra 1, que indican un ejemplo comparativo.Therefore, Sample 5 produced by the production apparatus B of Example 1, and Sample 6 produced by the production apparatus A of Example 1 had Proportions (3R) of 46% and 51%, respectively, and it was demonstrated that their Proportions (3R) were 40% or more, or 50% or more, compared to the natural graphite shown in Figure 2 and Sample 1, which indicate a comparative example.

A continuation, se produjeron dispersiones de grafeno usando los precursores de grafeno anteriormente producidos, y se evaluo su facilidad en exfoliation de grafeno. <En cuanto a las dispersiones de grafeno>Subsequently, graphene dispersions were produced using the graphene precursors previously produced, and their ease in graphene exfoliation was evaluated. <As for graphene dispersions>

Se explicara un metodo para producir una dispersion de grafeno con referencia a la Figura 8. La Figura 8 muestra, como ejemplo, un caso donde se combinan un tratamiento de ultrasonidos y un tratamiento con microondas en un liquido cuando se produce una dispersion de grafeno.A method for producing a graphene dispersion will be explained with reference to Figure 8. Figure 8 shows, as an example, a case where an ultrasonic treatment and a microwave treatment are combined in a liquid when a graphene dispersion occurs.

(1) se cargan 0,2 g de un material de carbono a base de grafito util como precursor de grafeno y 200 ml de N-metilpirrolidona (NMP) que sirve como medio de dispersion en un vaso de precipitados 40.(1) 0.2 g of a graphite-based carbon material useful as a precursor to graphene and 200 ml of N-methylpyrrolidone (NMP) are loaded as a dispersion medium in a beaker 40.

(2) El vaso de precipitados 40 se pone dentro de una camara 42 de un generador de microondas 43, y se inserta un vibrador 44A de ultrasonidos de una bocina de ultrasonidos 44 dentro del medio de dispersion 41 desde la direction superior.(2) The beaker 40 is placed inside a chamber 42 of a microwave generator 43, and an ultrasonic vibrator 44A of an ultrasonic horn 44 is inserted into the dispersion means 41 from the upper direction.

(3) Se activa la bocina 44 de ultrasonidos, y a la misma se aplican ondas de ultrasonidos de 20 kHz (100 W) de manera continua durante 3 horas.(3) The ultrasonic horn 44 is activated, and 20 kHz (100 W) ultrasound waves are applied to it continuously for 3 hours.

(4) A la vez que se acciona la anterior bocina de ultrasonidos 44, se activa el generador de microondas 43 para aplicar al mismo microondas de 2,45 GHz (300 W) de manera intermitente (irradiation durante 10 segundos cada 5 minutos).(4) While the previous ultrasonic horn 44 is activated, the microwave generator 43 is activated to apply to the same 2.45 GHz (300 W) microwave intermittently (irradiation for 10 seconds every 5 minutes).

La Figura 9 se refiere al aspecto de las dispersiones de grafeno producidas de la manera descrita anteriormente cuando han pasado 24 horas.Figure 9 refers to the appearance of graphene dispersions produced in the manner described above when 24 hours have passed.

55

1010

15fifteen

20twenty

2525

3030

Aunque se deposito una portion de la dispersion de grafeno 30 usando la Muestra 5 producida por el aparato B de production, se observo un producto que muestra por completo un color negro. Por esto, se considera que una gran portion de los materiales de carbono a base de grafito que se utilizan como precursores de grafeno se dispersan en un estado donde el grafeno se exfolia de ellos.Although a portion of the graphene dispersion 30 was deposited using Sample 5 produced by the production apparatus B, a product that completely shows a black color was observed. Therefore, a large portion of the graphite-based carbon materials that are used as graphene precursors are considered to be dispersed in a state where graphene is exfoliated from them.

En la dispersion 31 usando la Muestra 1 que indica un ejemplo comparativo, se deposito la mayor parte de los materiales de carbono a base de grafito, y se confirmo que una portion de los mismos floto como un sobrenadante. A partir de los hechos, se considera que el grafeno se exfolio de una pequena portion de los mismos y que floto como el sobrenadante.In dispersion 31 using Sample 1 indicating a comparative example, most of the graphite-based carbon materials were deposited, and it was confirmed that a portion thereof floated as a supernatant. From the facts, graphene is considered to be exported from a small portion thereof and that it floated as the supernatant.

Ademas, la dispersion de grafeno producida de la manera anteriormente descrita se diluyo a una concentration observable, se aplico como recubrimiento sobre un portamuestras (rejilla para MET), y la rejilla se seco. De esa manera, se observo el tamano y el numero de capas de grafeno en la imagen capturada de microscopio electronico de transmision (MET), como se muestra en la Figura 10. Ademas, la rejilla recubierta con el sobrenadante diluido se uso para la Muestra 1. Por ejemplo, en el caso de la Figura 10, el tamano corresponde a una longitud maxima L de un copo 33, que media 600 nm, en base a la Figura 10 (a). En lo que se refiere al numero de capas, en la Figura 10 (b) se observo la cara final del copo 33, y se contaron las capas de grafeno superpuestas, para calcular de esa manera el numero de capas como de 6 capas (una portion indicada por el simbolo 34). De esta manera, se midieron el tamano y el numero de capas con respecto a cada copo (“N” indica el numero de copos) y se obtuvieron los numeros de capas de grafeno y los tamanos que se muestran en las Figuras 11 y 12.In addition, the graphene dispersion produced in the manner described above was diluted to an observable concentration, applied as a coating on a sample holder (MET grid), and the grid dried. In that way, the size and number of graphene layers were observed in the image captured by transmission electron microscope (MET), as shown in Figure 10. In addition, the grid coated with the diluted supernatant was used for the Sample 1. For example, in the case of Figure 10, the size corresponds to a maximum length L of a snowflake 33, which averages 600 nm, based on Figure 10 (a). Regarding the number of layers, in Figure 10 (b) the final face of the flake 33 was observed, and the graphene layers superimposed were counted, to calculate in this way the number of layers as 6 layers (one portion indicated by symbol 34). In this way, the size and number of layers with respect to each flake were measured ("N" indicates the number of flakes) and the numbers of graphene layers and the sizes shown in Figures 11 and 12 were obtained.

Con referencia a la Figura 11 (a), la distribution de tamanos de particula (distribution de tamanos) de copos delgados incluidos en la dispersion de grafeno de la Muestra 5 (Proportion (R3) del 46 %) producida mediante el aparato B de production del Ejemplo 1 tenia un pico en 0,5 pm. Ademas, en la Figura 11 (b), en lo que respecta al numero de capas, se observo una distribution que tenia un pico en 3 capas y en la cual el grafeno con 10 capas o menos era el 68 %.With reference to Figure 11 (a), the distribution of particle sizes (distribution of sizes) of thin flakes included in the graphene dispersion of Sample 5 (Proportion (R3) of 46%) produced by the production apparatus B from Example 1 it had a peak at 0.5 pm. In addition, in Figure 11 (b), regarding the number of layers, a distribution was observed that had a peak in 3 layers and in which graphene with 10 layers or less was 68%.

Con referencia a la Figura 12, la distribution de tamanos de particula (distribution de tamanos) de copos delgados incluidos en la dispersion de la Muestra 1 (Proportion (R3) del 23 %) del ejemplo comparativo tenia un pico a 0,9 pm. Ademas, en lo que se refiere al numero de capas, se observo una distribution en la cual el grafeno con 30 capas o mas ocupaba la mayor portion y en la que el grafeno con 10 capas o menos era el 10 %.With reference to Figure 12, the distribution of particle sizes (distribution of sizes) of thin flakes included in the dispersion of Sample 1 (Proportion (R3) of 23%) of the comparative example had a peak at 0.9 pm. In addition, as regards the number of layers, a distribution was observed in which graphene with 30 layers or more occupied the largest portion and in which graphene with 10 layers or less was 10%.

55

1010

15fifteen

20twenty

2525

3030

A partir de estos resultados, se revelo que cuando el producto de la Muestra 5 producida mediante el aparato B se uso como precursor de grafeno, puede obtenerse una dispersion de grafeno altamente concentrada que contiene mucho grafeno de 10 capas o menos y de una excelente dispersabilidad.From these results, it was revealed that when the product of Sample 5 produced by the apparatus B was used as a graphene precursor, a highly concentrated graphene dispersion containing a lot of graphene of 10 layers or less and of excellent dispersibility can be obtained .

A continuation, con referencia a la figura 13, se describira una relation entre la Proportion (3R) del precursor de grafeno y el numero de capas en la dispersion de grafeno. Las Muestras 1, 5 y 6 de la Figura 13 son aquellas que se describieron anteriormente. Las Muestras 2, 3 y 4 se produjeron mediante el aparato B de production que llevo a cabo un tratamiento basado en un molino de bolas y un tratamiento con microondas, y fueron dispersiones de grafeno que se produjeron usando precursores que se habian obtenido haciendo el tiempo de irradiation con microondas mas corto que para la Muestra 5. Ademas, la Muestra 7 se produjo utilizando el aparato A de produccion que llevo a cabo un tratamiento basado en un molino de chorros y un tratamiento con plasma, y fue una dispersion de grafeno que se produjo utilizando un precursor que se habia obtenido aplicando plasma de una mayor potencia que para la Muestra 6.Next, with reference to Figure 13, a relationship between the Proportion (3R) of the graphene precursor and the number of layers in the graphene dispersion will be described. Samples 1, 5 and 6 of Figure 13 are those described above. Samples 2, 3 and 4 were produced by the production apparatus B which carried out a treatment based on a ball mill and a microwave treatment, and were graphene dispersions that were produced using precursors that had been obtained over time. of irradiation with microwave shorter than for Sample 5. In addition, Sample 7 was produced using the production apparatus A which carried out a treatment based on a jet mill and a plasma treatment, and was a graphene dispersion that It was produced using a precursor that had been obtained by applying plasma of a higher potency than for Sample 6.

Segun la Figura 13, en lo que respecta a las Muestras 2 y 3 con Proporciones (3R) del 31 % y el 38 % respectivamente, las distribuciones del numero de capas tienen picos en aproximadamente 13 capas; esto es, las formas de las distribuciones son cercanas a las de una distribution normal (dispersiones usando las Muestras 2 y 3). En lo que respecta a las Muestras 4 a 7 que muestran Proporciones (3R) del 40 % o mas, las distribuciones del numero de capas tienen picos en varias veces el numero de capas (grafeno delgado); esto es, las formas de las distribuciones son las de una denominada distribucion lognormal. Por otro lado, en lo que respecta a la Muestra 1 que tiene una Proporcion (3R) del 23 %, la distribucion de la misma tiene un pico en 30 capas o mas (la dispersion usando la Muestra 1). Esto es, se entiende lo siguiente: existe una tendencia a que, en los casos donde la Proporcion (3R) alcanza un 31 % o mas, las formas de las distribuciones del numero de capas difieran de las que tienen en los casos donde la Proporcion (3R) es menor del 31 %; y ademas, en los casos donde la Proporcion (3R) alcanza un 40 % o mas, las formas de la distribuciones del numero de capas difieren claramente de aquellas de los casos donde la Proporcion (3R) es menor del 40 %. Ademas, puede entenderse que, en lo que respecta a las proporciones de grafeno de 10 capas o menos, la Proporcion (3R) de la dispersion que usa la Muestra 3 es del 38 %, mientras que la Proporcion (3R) de la dispersion que usa la Muestra 4 es del 62 %, y que, cuando la Proporcion (3R) alcanza un 40 % o mas, aumenta rapidamente la proporcion del grafeno de 10 capas o menos.According to Figure 13, with respect to Samples 2 and 3 with Proportions (3R) of 31% and 38% respectively, the distributions of the number of layers have peaks in approximately 13 layers; that is, the forms of the distributions are close to those of a normal distribution (dispersions using Samples 2 and 3). With respect to Samples 4 to 7 showing Proportions (3R) of 40% or more, the distributions of the number of layers have peaks in several times the number of layers (thin graphene); that is, the forms of the distributions are those of a so-called lognormal distribution. On the other hand, with respect to Sample 1 which has a Proportion (3R) of 23%, its distribution has a peak in 30 layers or more (the dispersion using Sample 1). That is, the following is understood: there is a tendency that, in cases where the Proportion (3R) reaches 31% or more, the shapes of the number of layers distributions differ from those in cases where the Proportion (3R) is less than 31%; and also, in the cases where the Proportion (3R) reaches 40% or more, the shapes of the number of layers distributions clearly differ from those of the cases where the Proportion (3R) is less than 40%. In addition, it can be understood that, as regards graphene ratios of 10 layers or less, the Proportion (3R) of the dispersion used in Sample 3 is 38%, while the Proportion (3R) of the dispersion that Use Sample 4 is 62%, and when the Proportion (3R) reaches 40% or more, the graphene ratio of 10 layers or less rapidly increases.

55

1010

15fifteen

20twenty

2525

3030

A partir de estos hechos, puede considerarse que el grafeno de 10 capas o menos se exfolia facilmente en los casos donde la Proportion (3R) es del 31 % o mas, y que, a medida que la Proporcion (3R) aumenta hasta un 40 %, 50 % y 60 %, el grafeno de 10 capas o menos se exfolia mas facilmente. Ademas, enfocandose en la relation de intensidad P1/P2, las Muestras 2 a 7 muestran valores dentro de un intervalo comparativamente estrecho de 0,012 a 0,016, y todos ellos son preferibles porque los mismos exceden 0,01, donde se considera que el grafeno se exfolia facilmente ya que las estructuras cristalinas se deformaran.From these facts, graphene of 10 layers or less can easily be exfoliated in cases where Proportion (3R) is 31% or more, and that, as the Proportion (3R) increases up to 40 %, 50% and 60%, graphene of 10 layers or less exfoliates more easily. In addition, focusing on the P1 / P2 intensity ratio, Samples 2 to 7 show values within a comparatively narrow range of 0.012 to 0.016, and all of them are preferable because they exceed 0.01, where graphene is considered to be Exfoliates easily as crystalline structures deform.

Ademas, los resultados que se obtienen al comparar las Proporciones (3R) y las proporciones de grafeno de 10 capas o menos incluidas en los mismos se muestran en la Figura 14. Con referencia a la figura 14, se revelo que cuando la Proporcion (3R) alcanzo un 25 % o mas, alrededor del 31 %, el grafeno de 10 capas o menos comenzo a aumentar (mostrando una pendiente siempre creciente). Ademas, se revelo que, en aproximadamente el 40 %, el grafeno de 10 capas o menos aumentaba rapidamente (en lo que se refiere a las proporciones de grafeno de 10 capas o menos, mientras la Proporcion (3R) de la dispersion en la que se uso la Muestra 3 fue del 38 %, la Proporcion (3R) de la dispersion en la que se uso la Muestra 4 fue del 62 %, y la proporcion del grafeno de 10 capas o menos aumento rapidamente en un 24 % cuando la Proporcion (3R) aumento en un 4 %), y que el porcentaje de grafeno de 10 capas o menos frente al total de grafeno fue del 50 % o mas. Ademas, los puntos de cuadrados negros en la Figura 14 corresponden cada uno a muestras diferentes, y alli se incluyen las Muestras 1 a 7 descritas anteriormente y otras muestras.In addition, the results obtained by comparing the Proportions (3R) and graphene proportions of 10 layers or less included therein are shown in Figure 14. With reference to Figure 14, it was revealed that when the Proportion (3R ) reached 25% or more, around 31%, graphene of 10 layers or less began to increase (showing an ever increasing slope). In addition, it was revealed that, at approximately 40%, graphene of 10 layers or less increased rapidly (in terms of graphene ratios of 10 layers or less, while the Proportion (3R) of the dispersion in which Sample 3 was used was 38%, the Proportion (3R) of the dispersion in which Sample 4 was used was 62%, and the graphene ratio of 10 layers or less increased rapidly by 24% when the Proportion (3R) increase by 4%), and that the percentage of graphene of 10 layers or less compared to the total graphene was 50% or more. In addition, the black square dots in Figure 14 each correspond to different samples, and Samples 1 to 7 described above and other samples are included there.

A partir de estos hechos, cuando se usa una muestra que presenta una Proporcion (3R) del 31 % o mas como un precursor de grafeno para producir una dispersion de grafeno, la proporcion de grafeno distribuido de 10 capas o menos comienza a aumentar; ademas, cuando se usa una muestra que presenta una Proporcion (3R) del 40 % o mas como un precursor de grafeno para producir una dispersion de grafeno, se produce un 50 % o mas de grafeno de 10 capas o menos. En otras palabras, puede obtenerse una dispersion de grafeno en la cual el grafeno esta altamente concentrado y altamente disperso. Adicionalmente, como los materiales de carbono a base de grafito (precursores) incluidos en la dispersion que se describio anteriormente casi no se depositan, puede obtenerse facilmente una dispersion concentrada de grafeno. De acuerdo con este metodo, puede producirse incluso una dispersion de grafeno cuya concentration de grafeno excede el 10 % sin concentrarla. Particularmente, la Proporcion (3R) es preferiblemente del 40 %From these facts, when a sample using a Proportion (3R) of 31% or more is used as a graphene precursor to produce a graphene dispersion, the distributed graphene ratio of 10 layers or less begins to increase; In addition, when a sample using a Proportion (3R) of 40% or more is used as a graphene precursor to produce a graphene dispersion, 50% or more graphene of 10 layers or less is produced. In other words, a graphene dispersion can be obtained in which graphene is highly concentrated and highly dispersed. Additionally, as the graphite-based carbon materials (precursors) included in the dispersion described above are hardly deposited, a concentrated graphene dispersion can be easily obtained. According to this method, even a graphene dispersion can be produced whose graphene concentration exceeds 10% without concentrating it. Particularly, the Ratio (3R) is preferably 40%

55

1010

15fifteen

20twenty

2525

3030

o mas desde un punto de vista de que la proportion de grafeno disperso de 10 capas o menos se aumenta bruscamente hasta un 50 % o mas.or more from a point of view that the proportion of graphene dispersed of 10 layers or less is sharply increased to 50% or more.

La anterior description aclara lo siguiente: cuando la Proportion (3R) es del 31 % o mas, preferiblemente el 40 % o mas, y ademas preferiblemente del 50 % o mas, en muchos casos la separation en grafeno de 10 capas o menos y materiales delgados de carbono a base de grafito de aproximadamente 10 capas ocurre en una mayor proportion; y en el caso donde estos materiales de carbono a base de grafito se usan como precursores de grafeno, puede obtenerse una dispersion altamente concentrada de grafeno que tiene una excelente dispersabilidad del grafeno. Incluso adicionalmente, el Ejemplo 5 que se describira mas adelante aclara que, en el caso donde la Proportion (3R) es del 31 % o mas, los materiales de carbono a base de grafito son utiles como precursores de grafeno.The above description clarifies the following: when the Proportion (3R) is 31% or more, preferably 40% or more, and also preferably 50% or more, in many cases graphene separation of 10 layers or less and materials Thin carbon-based graphite of approximately 10 layers occurs in a larger proportion; and in the case where these graphite-based carbon materials are used as graphene precursors, a highly concentrated graphene dispersion can be obtained which has excellent graphene dispersibility. Even further, Example 5, which will be described below, clarifies that, in the case where Proportion (3R) is 31% or more, graphite-based carbon materials are useful as graphene precursors.

Ademas, se considera que un limite superior para la Proportion (3R)no define particularmente dicho limite superior. Sin embargo, es preferible que se defina el limite superior de tal manera que la relation de intensidad P1/P2 satisfaga simultaneamente 0,01 o mas, porque los precursores de grafeno se exfolian facilmente cuando se produce una dispersion o similar. Ademas, en los casos de metodos de production que usan aparatos A y B de production, el limite superior es de aproximadamente el 70 %, desde un punto de vista de que el grafeno se produzca facilmente. Ademas, es mas preferible un metodo que combine un tratamiento basado en el molino de chorros del aparato A de production y un tratamiento con plasma, porque se puede obtener facilmente un precursor de grafeno que tenga una mayor Proportion (3R). Adicionalmente, la Proportion (3R) siempre que alcance el 31 % o mas, combinando el tratamiento basado en fuerzas fisicas y el tratamiento basado en fuerzas de ondas de radio.Furthermore, it is considered that an upper limit for Proportion (3R) does not particularly define said upper limit. However, it is preferable that the upper limit be defined in such a way that the intensity ratio P1 / P2 simultaneously satisfies 0.01 or more, because graphene precursors are easily exfoliated when a dispersion or the like occurs. In addition, in the case of production methods using production A and B devices, the upper limit is approximately 70%, from the point of view that graphene is easily produced. In addition, a method that combines a treatment based on the jet mill of the production apparatus A and a plasma treatment is more preferable, because a graphene precursor having a higher Proportion (3R) can be easily obtained. Additionally, Proportion (3R) provided it reaches 31% or more, combining treatment based on physical forces and treatment based on radio wave forces.

Ejemplo 2Example 2

En el Ejemplo 1 se explica un caso en que se combinaron el tratamiento de ultrasonidos y el tratamiento con microondas para obtener una dispersion de grafeno. En el Ejemplo 2, se llevo a cabo solo un tratamiento de ultrasonidos mientras que no se llevo a cabo un tratamiento con microondas, y las otras condiciones fueron las mismas que las del Ejemplo 1.Example 1 explains a case in which the ultrasonic treatment and the microwave treatment were combined to obtain a graphene dispersion. In Example 2, only one ultrasonic treatment was carried out while no microwave treatment was carried out, and the other conditions were the same as in Example 1.

La Figura 15 (b) muestra la distribution de un numero de capas con respecto a la dispersion de grafeno que se obtuvo llevando a cabo un tratamiento de ultrasonidos usando el precursor de grafeno de la Muestra 5 (Proportion (3R) = 46 %) que se produjo mediante el aparato B de production. Ademas, la Figura 15 (a) es la misma que laFigure 15 (b) shows the distribution of a number of layers with respect to the graphene dispersion that was obtained by carrying out an ultrasound treatment using the graphene precursor of Sample 5 (Proportion (3R) = 46%) which was produced by production apparatus B. In addition, Figure 15 (a) is the same as the

55

1010

15fifteen

20twenty

2525

3030

3535

distribution mostrada en la Figura 11 (b) de la Muestra 5 producida mediante el aparato B de production del Ejemplo 1.distribution shown in Figure 11 (b) of Sample 5 produced by the production apparatus B of Example 1.

Como resultado, aunque la tendencia de la distribution del numero de capas era casi similar, la proportion de grafeno de 10 capas o menos fue del 64 %, reducida ligeramente en comparacion con el 68 % del Ejemplo 1. A partir de este hecho, se revelo que era mas eficaz llevar a cabo simultaneamente los dos tratamientos basados en una fuerza fisica y una fuerza impuesta por las ondas de radio para producir una dispersion de grafeno.As a result, although the trend of the distribution of the number of layers was almost similar, the proportion of graphene of 10 layers or less was 64%, slightly reduced compared to 68% in Example 1. From this fact, It revealed that it was more effective to carry out both treatments simultaneously based on a physical force and a force imposed by radio waves to produce a graphene dispersion.

Ejemplo 3Example 3

En el Ejemplo 3, se describira un ejemplo usado para una tinta conductora.In Example 3, an example used for a conductive ink will be described.

Se usaron la Muestra 1 (Proportion (3R) = 23 %), Muestra 3 (Proportion (3R) = 38 %), Muestra 5 (Proportion (3R) = 46 %) y Muestra 6 (Proportion (3R) = 51 %) del Ejemplo 1 como precursores de grafeno en una solution mezclada de agua y un alcohol de numero de carbonos de 3 o menos, que sirvio como agente para conferir conductividad, en concentraciones adaptadas para tintas conductoras, produciendo de esta manera: TINTA1, TINTA3, TINTA5 y TINTA6, y se compararon sus valores de resistencia. En base a los resultados, a medida que las Proporciones (3R) se incrementaron, los valores de la resistencia fueron menores.Sample 1 (Proportion (3R) = 23%), Sample 3 (Proportion (3R) = 38%), Sample 5 (Proportion (3R) = 46%) and Sample 6 (Proportion (3R) = 51%) were used of Example 1 as graphene precursors in a mixed solution of water and a carbon number alcohol of 3 or less, which served as an agent to confer conductivity, in concentrations adapted for conductive inks, thus producing: INK1, INK3, INK5 and TINTA6, and their resistance values were compared. Based on the results, as the Proportions (3R) increased, the resistance values were lower.

Ejemplo 4Example 4

En el Ejemplo 4, se explicara un ejemplo en que se amaso un precursor de grafeno con una resina.In Example 4, an example in which a graphene precursor was kneaded with a resin will be explained.

Cuando se produjo una hoja de resina, en la cual se disperso grafeno, la resistencia a la traction fue muy superior aunque se anadieran fibras de vidrio a la misma. Por lo tanto, se estudio un factor para esto y, en consecuencia, se pudo descubrir que el agregado simultaneo de un compatibilizante con las fibras de vidrio contribuia a la formation de grafeno a partir del precursor. Por lo tanto, se estudiaron los productos obtenidos mezclando en una resina agentes dispersantes y un compatibilizante.When a resin sheet was produced, in which graphene was dispersed, the tensile strength was much higher even if glass fibers were added thereto. Therefore, a factor for this was studied and, consequently, it was found that the simultaneous addition of a compatibilizer with glass fibers contributed to the formation of graphene from the precursor. Therefore, the products obtained by mixing dispersing agents and a compatibilizer were studied in a resin.

Se anadio un 1 % en peso de la Muestra 5 (Proportion (3R) = 46 %) del Ejemplo 1 como precursor directamente a LLDPE (polietileno), y la mezcla se amaso mientras se aplicaba cizalla (una fuerza de cizalla) a la misma con una amasadora, una amasadora de dos ejes (extrusora) o similares.1% by weight of Sample 5 (Proportion (3R) = 46%) of Example 1 was added as a precursor directly to LLDPE (polyethylene), and the mixture was kneaded while shearing (a shear force) was applied thereto with a kneader, a two-axis kneader (extruder) or the like.

Es de conocimiento publico que, cuando un material de carbono a base de grafito se convierte en grafeno, estando altamente disperso en una resina, se aumenta laIt is public knowledge that, when a graphite-based carbon material is converted to graphene, being highly dispersed in a resin, the

55

1010

15fifteen

20twenty

2525

3030

3535

resistencia a la traccion. Por lo tanto, al medir la resistencia a la traccion de la resina, pueden estimarse relativamente los grados de exfoliacion para dar grafeno y de dispersion. La resistencia a la traccion se midio con una maquina de ensayos de banco de proposito general exacta (AUTOGRAPH AGS-J) fabricada por Shimadzu Corporation en condiciones de velocidad de ensayo de 500 mm/min.tensile strength. Therefore, by measuring the tensile strength of the resin, the degrees of exfoliation for graphene and dispersion can be estimated relatively. Tensile strength was measured with an exact general purpose bench test machine (AUTOGRAPH AGS-J) manufactured by Shimadzu Corporation under test speed conditions of 500 mm / min.

Ademas, para comparar el grado de exfoliacion para dar grafeno y la dispersabilidad en funcion de la presencia o ausencia de aditivos, se llevaron a cabo las siguientes comparaciones de tres tipos; (a), (b) y (c).In addition, to compare the degree of exfoliation to give graphene and dispersibility depending on the presence or absence of additives, the following comparisons of three types were carried out; (a), (b) and (c).

(a) Sin aditivos(a) Without additives

(b) un agente dispersante general (estearato de cinc)(b) a general dispersing agent (zinc stearate)

(c) un compatibilizante (un polimero modificado por injerto)(c) a compatibilizer (a graft modified polymer)

Los resultados se explicaran haciendo referencia a la Figura 17 que muestra los resultados de la medicion. Ademas, en la Figura 17, los circulos se refieren a materiales de resina que usan la Muestra 1 del ejemplo comparativo, y los cuadrados se refieren a los materiales de resina que usan la Muestra 5 del Ejemplo 1.The results will be explained with reference to Figure 17 which shows the measurement results. In addition, in Figure 17, the circles refer to resin materials using Sample 1 of the comparative example, and the squares refer to resin materials using Sample 5 of Example 1.

En el caso (a) donde no se anadio aditivo, la diferencia entre las resistencias a la traccion fue pequena.In case (a) where no additive was added, the difference between tensile strengths was small.

En el caso (b) donde se anadio agente dispersante, se descubrio que en el precursor de grafeno de la Muestra 5 la formation de grafeno fue estimulada en cierta medida.In case (b) where dispersing agent was added, it was found that in the graphene precursor of Sample 5 the formation of graphene was stimulated to some extent.

En el caso (c) donde se anadio el compatibilizante, se descubrio que se promovio significativamente la formacion de grafeno en el precursor de grafeno de la Muestra 5. Esto es porque se considera que, ademas de los efectos de dispersion del grafeno, el compatibilizante aglutina a los cuerpos unidos a la capa de grafeno y la resina, y actua sobre ellos de manera tal que los cuerpos unidos a la capa de grafeno son arrancados de la misma, cuando se aplica cizalla en dicho estado.In case (c) where the compatibilizer was added, it was found that graphene formation was significantly promoted in the graphene precursor of Sample 5. This is because it is considered that, in addition to the dispersion effects of graphene, the compatibilizer It binds the bodies attached to the graphene layer and the resin, and acts on them so that the bodies attached to the graphene layer are torn from it, when shearing is applied in that state.

El estearato de cinc se ha explicado anteriormente como ejemplo de agente dispersante. Sin embargo, pueden seleccionarse aquellos que sean apropiados para los compuestos. Como ejemplos de agente dispersante pueden mencionarse los tensioactivos anionicos (anion), tensioactivos cationicos (cation), tensioactivos zwitterionicos y tensioactivos no ionicos. En particular, para el grafeno son preferibles los tensioactivos anionicos y tensioactivos no ionicos. Los mas preferibles son los tensioactivos no ionicos. Ya que los tensioactivos no ionicos son tensioactivos que no se disocian en iones y que muestran propiedades hidrofilas debido a enlaces de hidrogeno con el agua, como se observa en los grupos oxietileno, grupos hidroxilo, cadenas de carbohidratos tales como glucosido, y similares, presentan la ventaja de que se les puede utilizar en disolventes noZinc stearate has been explained above as an example of dispersing agent. However, those that are appropriate for the compounds can be selected. As examples of dispersing agent there may be mentioned anionic surfactants (anion), cationic surfactants (cation), zwitterionic surfactants and non-ionic surfactants. In particular, anionic surfactants and nonionic surfactants are preferable for graphene. Most preferable are nonionic surfactants. Since non-ionic surfactants are surfactants that do not dissociate into ions and show hydrophilic properties due to hydrogen bonds with water, as observed in oxyethylene groups, hydroxyl groups, carbohydrate chains such as glucoside, and the like, they have the advantage that they can be used in solvents not

55

1010

15fifteen

20twenty

2525

3030

polares aunque no posean el fuerte caracter hidrofilo de los tensioactivos ionicos. Ademas, esto es debido a que, al variar las longitudes de cadena de sus grupos hidrofilos, sus propiedades pueden cambiarse libremente de propiedades lipofilas a propiedades hidrofilas. Como tensioactivos anionicos, son preferibles las sales de acidos X (ejemplos de acido X acido colico y acido desoxicolico), por ejemplo, SDC: desoxicolato de sodio, y esteres fosfato. Ademas, como tensioactivos no ionicos son preferibles los esteres de acido graso de glicerol, esteres de acido graso de sorbitan, etoxilatos de alcohol graso, polioxietileno alquil fenil eter, alquil glicosidos y similares.polar although they do not possess the strong hydrophilic character of ionic surfactants. Furthermore, this is because, by varying the chain lengths of their hydrophilic groups, their properties can be freely changed from lipophilic properties to hydrophilic properties. As anionic surfactants, salts of acid X (examples of acid X colic acid and deoxycholic acid) are preferred, for example, SDC: sodium deoxycholate, and phosphate esters. Also, as non-ionic surfactants, glycerol fatty acid esters, sorbitan fatty acid esters, fatty alcohol ethoxylates, polyoxyethylene alkyl phenyl ether, alkyl glycosides and the like are preferable.

Ejemplo 5Example 5

Para verificar adicionalmente que los productos que se obtienen cuando la proportion (3R) es del 31 % o mayor son beneficiosos como precursores de grafeno, como se describe anteriormente en el Ejemplo 1, en el Ejemplo 5 se explicara adicionalmente un ejemplo en el cual se amaso un precursor de grafeno con una resina. Lo que sigue explica los modulos elasticos de los articulos moldeados en resina en los cuales se utilizaron como precursores los materiales de carbono a base de grafito que contenian las Muestras 1 a 7 del Ejemplo 1, que tenian las Proporciones (3R) representadas en la Figura 14.To further verify that the products obtained when the proportion (3R) is 31% or greater are beneficial as graphene precursors, as described above in Example 1, an example in which Knead a graphene precursor with a resin. The following explains the elastic modules of the resin molded articles in which the graphite-based carbon materials containing Samples 1 to 7 of Example 1, which had the Proportions (3R) represented in Figure, were used as precursors 14.

(1) Usando el material de carbono a base de grafito descrito anteriormente como precursor, se mezclaron 5 % en peso de LLDPE (polietileno: 20201J producido por Prime Polymer Co., Ltd.) y 1 % en peso de un dispersante (tensioactivo no ionico) en agua de intercambio ionico, y el dispositivo descrito anteriormente ilustrado en la Figura 8 se acciono en las mismas condiciones, con lo cual se obtuvieron dispersiones de grafeno que contenian un 5 % en peso de grafeno y materiales de carbono a base de grafito.(1) Using the graphite-based carbon material described above as a precursor, 5% by weight of LLDPE (polyethylene: 20201J produced by Prime Polymer Co., Ltd.) and 1% by weight of a dispersant (surfactant not ionic) in ionic exchange water, and the device described above illustrated in Figure 8 was operated under the same conditions, whereby graphene dispersions containing 5% by weight of graphene and graphite-based carbon materials were obtained .

(2) se amasaron inmediatamente 0,6 kg de la dispersion de grafeno que se obtuvo en (1) dentro de una resina de 5,4 kg usando una amasadora (tipo presion WDS7-30 producida por Moriyama Co., Ltd.), con lo cual se produjeron granulos. Las condiciones del amasado se describiran a continuation. Notese que la relation de mezcla entre la resina y la dispersion se selecciono de manera tal que la cantidad del grafeno y de los materiales de carbono a base de grafito que se mezclaron fuese finalmente del 0,5 % en peso.(2) 0.6 kg of the graphene dispersion that was obtained in (1) within a 5.4 kg resin was immediately kneaded using a kneader (pressure type WDS7-30 produced by Moriyama Co., Ltd.), whereby granules were produced. Kneading conditions will be described below. Note that the mixing ratio between the resin and the dispersion was selected such that the amount of graphene and the graphite-based carbon materials that were mixed was finally 0.5% by weight.

(3) Los granulos producidos en (2) formaron una pieza de ensayo de acuerdo con JIS K7161 1A (longitud: 165 mm, ancho: 20 mm, espesor: 4 mm) mediante una maquina de moldeo por inyeccion.(3) The granules produced in (2) formed a test piece in accordance with JIS K7161 1A (length: 165 mm, width: 20 mm, thickness: 4 mm) by means of an injection molding machine.

55

1010

15fifteen

20twenty

2525

3030

3535

(4) El modulo elastico (MPa) de la pieza de ensayo que se produjo en (3) se midio en condiciones de una velocidad de ensayo de 500 mm/min de acuerdo con JIS K7161 usando una maquina de pruebas universal de precision de tipo banco producida por Shimadzu Corporation (AUTOGRAPH AGS-J).(4) The elastic modulus (MPa) of the test piece that was produced in (3) was measured under conditions of a test speed of 500 mm / min according to JIS K7161 using a universal precision type testing machine Bank produced by Shimadzu Corporation (AUTOGRAPH AGS-J).

Las condiciones del amasado fueron como sigue.Kneading conditions were as follows.

Temperatura del amasado: 135 °CKneading temperature: 135 ° C

Velocidad de rotacion del rotor: 30 rpmRotation speed of the rotor: 30 rpm

Tiempo de amasado: 15 minutosKneading time: 15 minutes

Presurizacion en horno: aplicando 0,3 MPa durante 10 minutos despues del inicio, y despresurizando a presion atmosferica despues de transcurridos los 10 minutos.Oven pressurization: applying 0.3 MPa for 10 minutes after the start, and depressurizing at atmospheric pressure after 10 minutes.

En este punto, la dispersion de la dispersion de grafeno anteriormente descrita dentro de una resina se considera como sigue. Como el punto de fusion de la resina generalmente es de 100 °C o mayor, el agua se evapora en la atmosfera, pero en una amasadora de tipo presion el interior del horno se puede presurizar. En el interior del horno, el punto de ebullicion del agua se eleva de tal manera que la dispersion se mantiene en forma liquida, por lo que puede obtenerse una emulsion de la dispersion y la resina. Despues de aplicar presion durante un tiempo predeterminado, el interior se despresuriza gradualmente, lo que provoca que el punto de ebullicion del agua disminuya, permitiendo de esa manera que el agua se evapore. En este punto, el grafeno confinado en el agua se deja en la resina. Esto provoca que el grafeno y los materiales de carbono a base de grafito se dispersen en la resina con una alta concentration.At this point, the dispersion of the graphene dispersion described above within a resin is considered as follows. Since the melting point of the resin is generally 100 ° C or higher, the water evaporates in the atmosphere, but in a pressure-type mixer the interior of the oven can be pressurized. Inside the furnace, the boiling point of the water rises such that the dispersion is maintained in liquid form, whereby an emulsion of the dispersion and the resin can be obtained. After applying pressure for a predetermined time, the interior gradually depressurizes, which causes the boiling point of the water to decrease, thereby allowing the water to evaporate. At this point, graphene confined in water is left in the resin. This causes graphene and graphite-based carbon materials to disperse in the resin with a high concentration.

Ademas, ya que el grafeno y los materiales de carbono a base de grafito tienden a precipitar en la dispersion de grafeno a medida que transcurre el tiempo, preferiblemente la dispersion de grafeno se amasa dentro de la resina inmediatamente despues de obtener la dispersion de grafeno.Furthermore, since graphene and graphite-based carbon materials tend to precipitate in the graphene dispersion as time goes by, preferably the graphene dispersion is kneaded into the resin immediately after obtaining the graphene dispersion.

Notese que lo siguiente puede usarse como un medio para obtener la emulsion de la dispersion y la resina, diferente de la amasadora de presion: un propulsor de productos quimicos; una mezcladora vorticial; una homomezcladora; una homogeneizadora de alta presion; una maquina de hidrocizalla; una mezcladora de chorro de flujo; un molino de chorros hidraulico; y un generador de ultrasonidos.Note that the following can be used as a means to obtain the emulsion of the dispersion and the resin, different from the pressure kneader: a chemical propellant; a vortex mixer; a homomixer; a high pressure homogenizer; a hydro-shearing machine; a flow jet mixer; a hydraulic jet mill; and an ultrasonic generator.

Ademas, los siguientes pueden usarse como disolvente para la dispersion, diferentes de agua: 2-propanol (IPA); acetona; tolueno; N-metilpirrolidona (NMP); y N,N-dimetil formamida (DMF).In addition, the following may be used as a solvent for dispersion, other than water: 2-propanol (IPA); acetone; Toluene; N-methylpyrrolidone (NMP); and N, N-dimethyl formamide (DMF).

La tabla 4 ilustra la relation entre las Proporciones (3R) de aproximadamente un 30 % y los modulos elasticos de los articulos moldeados en resina. Notese que la MuestraTable 4 illustrates the relationship between Proportions (3R) of approximately 30% and the elastic moduli of resin molded articles. Note that the Sample

00 de la tabla 4 es una muestra de blanco en la que no se amaso ningun precursor, las Muestras 11 y 12 tienen Proporciones (3R) entre la de la Muestra 1 y la de la Muestra 2, y la Muestra 21 tiene una Proportion (3R) entre la de la Muestra 2 y la de la Muestra 3.00 of Table 4 is a blank sample in which no precursor was kneaded, Samples 11 and 12 have Proportions (3R) between that of Sample 1 and that of Sample 2, and Sample 21 has a Proportion ( 3R) between that of Sample 2 and that of Sample 3.

{Tabla 4}{Table 4}

N.° de la Muestra  Sample No.
00 1 11 12 2 21 3 4  00 1 11 12 2 21 3 4

P3/(P3+P4)  P3 / (P3 + P4)
_ 23 % 25 % 28 % 31% 35 % 38 % 42 %  _ 23% 25% 28% 31% 35% 38% 42%

Modulo elastico (MPa) (Promedio de 5 veces)  Elastic module (MPa) (5 times average)
175 197 196 199 231 249 263 272  175 197 196 199 231 249 263 272

Diferencia del blanco  White difference
- 12,4 % 12,0 % 13,9 % 31,7 % 42,1 % 50,0 % 55,6 %  - 12.4% 12.0% 13.9% 31.7% 42.1% 50.0% 55.6%

Menos de 10 capas al dispersarse en NMP (Referencia)  Less than 10 layers when dispersed in NMP (Reference)
- 10 % 12 % 25 % 25 % 30 % 38 % 62 %  - 10% 12% 25% 25% 30% 38% 62%

55

La Figura 18 y la tabla 4 prueban que la diferencia del modulo elastico con respecto al de la Muestra 00 (blanco) (relation de aumento del modulo elastico) es aproximadamente uniforme y alrededor del 10 % hasta que la Proporcion (3R) alcanza un 31 %; despues de que la Proporcion (3R) alcanza un 31 %, la diferencia aumenta 10 bruscamente hasta el 32 %; mientras que la Proporcion (3R) aumenta del 31 % al 42 %, la diferencia aumenta de manera monotona al 50 %; y despues de que la Proporcion (3R) alcanza el 42 %, la diferencia aumenta ligeramente y converge a aproximadamente un 60 %. De esta manera, cuando la Proporcion (3R) es del 31 % o mayor, puede obtenerse un articulo moldeado en resina que tiene un excelente modulo elastico. Ademas, ya que 15 la cantidad de grafeno y materiales de carbono a base de grafito contenidos en un articulo moldeado en resina es del 0,5 % en peso, que es poco, la influencia sobre las propiedades que la resina posee originalmente es pequena.Figure 18 and Table 4 prove that the difference of the elastic module with respect to that of Sample 00 (white) (ratio of increase of the elastic module) is approximately uniform and around 10% until the Proportion (3R) reaches 31 %; after the Proportion (3R) reaches 31%, the difference increases sharply to 32%; while the Proportion (3R) increases from 31% to 42%, the difference increases monotonously to 50%; and after the Proportion (3R) reaches 42%, the difference increases slightly and converges to approximately 60%. In this way, when the Proportion (3R) is 31% or greater, a resin molded article having an excellent elastic modulus can be obtained. In addition, since the amount of graphene and graphite-based carbon materials contained in a resin molded article is 0.5% by weight, which is little, the influence on the properties that the resin originally possesses is small.

Se considera que esta tendencia se atribuye a un acentuado aumento en un material delgado de carbono a base de grafito que contiene grafeno que tiene 10 o menos capas en 20 contacto con la resina despues de que la Proporcion (3R) alcance el 31 %. En este punto, en el Ejemplo 5, es imposible determinar el numero de capas del grafeno por una observation con MET debido a las influencias del dispersante que se utiliza para obtener la dispersion en agua. Por lo tanto, solo como referencia, se considera que la razon delThis trend is considered to be attributed to a sharp increase in a thin graphite-based carbon material containing graphene that has 10 or less layers in contact with the resin after the Proportion (3R) reaches 31%. At this point, in Example 5, it is impossible to determine the number of graphene layers by an observation with MET due to the influences of the dispersant that is used to obtain the dispersion in water. Therefore, only as a reference, the reason for the

55

1010

15fifteen

20twenty

2525

3030

brusco aumento que se describio anteriormente se basa en la distribution de los numeros de capas del material de carbono a base de grafito que se ilustra en la tabla 4 al dispersarse en NMP. Se compararon la Muestra 12 y la Muestra 2 entre si, y se descubrio que ambas proporciones de grafeno (el numero de capas es de 10 o menos) fueron del 25 %. Por otro lado, como se ilustra en la Figura 19, en lo que respecta a la Muestra 2, la proportion entre los materiales delgados con menos de 15 capas fue mayor en comparacion con la Muestra 12; en otras palabras, el material de carbono a base de grafito disperso como un precursor tenia una mayor area superficial, lo que significa que el area del mismo en contacto con la resina se aumento bruscamente.The sharp increase described above is based on the distribution of the numbers of layers of the graphite-based carbon material illustrated in Table 4 when dispersed in NMP. Sample 12 and Sample 2 were compared to each other, and it was found that both graphene ratios (the number of layers is 10 or less) were 25%. On the other hand, as illustrated in Figure 19, with respect to Sample 2, the proportion among thin materials with less than 15 layers was higher compared to Sample 12; in other words, the dispersed graphite-based carbon material as a precursor had a greater surface area, which means that the area of the same in contact with the resin increased sharply.

De esta manera, el Ejemplo 5 indica claramente que cuando la Proportion (3R) es del 31 % o mayor, un material de carbono a base de grafito usado como precursor de grafeno tiende a separarse en grafeno que tiene 10 o menos capas y un material delgado de carbono a base de grafito.Thus, Example 5 clearly indicates that when Proportion (3R) is 31% or greater, a graphite-based carbon material used as a graphene precursor tends to separate into graphene that has 10 or less layers and a material. thin carbon based graphite.

Ejemplo 6Example 6

En el Ejemplo 5 donde se disperso solo grafito de tipo grafeno, se aumento un modulo elastico, sin embargo, no se observo un aumento significativo de una resistencia a la traction.In Example 5 where only graphene-type graphite was dispersed, an elastic modulus was increased, however, a significant increase in tensile strength was not observed.

Por ello se realizaron experimentos anadiendo el precursor de grafeno producido por los metodos anteriores y una fibra de vidrio a una resina.Therefore experiments were carried out by adding the graphene precursor produced by the above methods and a glass fiber to a resin.

<Diversas condiciones><Various conditions>

Resina: PP (polipropileno) J707G fabricada por Prime Polymer Co., Ltd.,Resin: PP (polypropylene) J707G manufactured by Prime Polymer Co., Ltd.,

Compatibilizador: KAYABRID (006PP fabricado por Kayaku Akzo Corp. PP modificado con anhidrido maleico)Compatibilizer: KAYABRID (006PP manufactured by Kayaku Akzo Corp. PP modified with maleic anhydride)

Fibra de vidrio (GF): ECS03-631K fabricado por Central Glass Fiber Co., Ltd. (diametro de 13 pm, longitud de 3 mm),Fiberglass (GF): ECS03-631K manufactured by Central Glass Fiber Co., Ltd. (13 pm diameter, 3 mm length),

Material de carbono a base de grafito: precursor de grafeno (obtenido por el metodo anterior),Graphite-based carbon material: graphene precursor (obtained by the previous method),

Mezclador: Mezclador de tambor (fabricado por SEIWA GIKEN Co., Ltd.), <Condicion de mezcla 1: velocidad de rotation 25 rpm x 1 min>,Mixer: Drum mixer (manufactured by SEIWA GIKEN Co., Ltd.), <Mixing condition 1: rotation speed 25 rpm x 1 min>,

Amasador: extrusor de dos ejes (HYPERKTX 30 fabricado por Kobe Steel, Ltd.), <Condicion de amasado 1: Temperatura del cilindro de 180 °C, velocidad de rotation del rotor de 100 rpm, velocidad de descarga de 8 kg/h>Kneader: two-axis extruder (HYPERKTX 30 manufactured by Kobe Steel, Ltd.), <Kneading condition 1: 180 ° C cylinder temperature, 100 rpm rotor rotation speed, 8 kg / h discharge speed>

Pieza de ensayo: JIS K7139 (170 mm x 20 mm x t4 mm),Test piece: JIS K7139 (170 mm x 20 mm x t4 mm),

Dispositivo de medicion: maquina de ensayo de proposito general de banco exacta AUTOGRAPH AGS-J fabricada por Shimadzu Corp.Measuring device: AUTOGRAPH AGS-J exact bank general purpose test machine manufactured by Shimadzu Corp.

<Procedimientos experimentales><Experimental procedures>

Etapa 1. Un 40 % en peso de una fibra de vidrio (GF), un 4 % en peso de un 5 compatibilizador y un 56 % en peso de una resina se pre-mezclan en un mezclador de tambor en la condition de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condicion de amasado 1 para obtener un lote maestro 1.Stage 1. 40% by weight of a fiberglass (GF), 4% by weight of a compatibilizer and 56% by weight of a resin are pre-mixed in a drum mixer in the mixing condition 1 , and then kneaded with a two-axis extruder in kneading condition 1 to obtain a master batch 1.

Etapa 2. Un 12 % en peso de un precursor de grafeno que tiene una proportion (3R) diferente como se muestra en la Tabla 5 y un 88 % en peso de una resina se pre- 10 mezclan con un mezclador de tambor en la condicion de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condicion de amasado 1 para obtener un lote maestro 2.Step 2. 12% by weight of a graphene precursor having a different proportion (3R) as shown in Table 5 and 88% by weight of a resin are pre-mixed with a drum mixer under the condition mixing 1, and then knead with a two-axis extruder in kneading condition 1 to obtain a master batch 2.

Etapa 3. Un 25 % en peso del lote maestro 1, un 25 % en peso del lote maestro 2 y un 50 % en peso de una resina se pre-mezclan con un mezclador de tambor en la condicion de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condicion 15 de amasado 1.Step 3. 25% by weight of master batch 1, 25% by weight of master batch 2 and 50% by weight of a resin are pre-mixed with a drum mixer under mixing condition 1, and then Knead with a two-axis extruder in kneading condition 15.

Etapa 4. Una mezcla amasada obtenida en la Etapa 3 se formo para dar una pieza de ensayo con una maquina de moldeo por inyeccion y se observaron los cambios en la resistencia mecanica de la misma a una velocidad de ensayo de 500 mm/min de acuerdo con JIS K7139.Stage 4. A kneaded mixture obtained in Stage 3 was formed to give a test piece with an injection molding machine and the changes in its mechanical strength were observed at a test speed of 500 mm / min according with JIS K7139.

20 Para confirmar un efecto del grafito de tipo grafeno se realizaron experimentos20 To confirm an effect of graphene-type graphite experiments were performed

con una proporcion (3R) del 23 % (Muestra 1), 31 % (Muestra 2), 35 % (Muestra 21) y 42 % (Muestra 4) con una relation de mezcla mostrada en la Tabla 5.with a ratio (3R) of 23% (Sample 1), 31% (Sample 2), 35% (Sample 21) and 42% (Sample 4) with a mixing ratio shown in Table 5.

Tabla 5Table 5

toto

VOVO

Relacion de mezcla (% en peso) Resistencia a traccion (MPa) Modulo de flexion (GPa)  Mixing ratio (% by weight) Tensile strength (MPa) Flexural modulus (GPa)

PP  PP
Compatibilizador GF Precursor de grafeno  GF Graphene Precursor Compatibilizer

proporcion (3R) =23 % (Muestra 1)  proportion (3R) = 23% (Sample 1)
proporcion (3R) =31 % (Muestra 2) proporcion (3R) =35 % (Muestra 21) proporcion (3R) =42 % (Muestra 4)  Proportion (3R) = 31% (Sample 2) Proportion (3R) = 35% (Sample 21) Proportion (3R) = 42% (Sample 4)

Ejemplo 6-1  Example 6-1
86 1 10 3 _ _ 73 3,9  86 1 10 3 _ _ 73 3.9

Ejemplo 6-2  Example 6-2
86 1 10 _ 3 _ _ 99 5,6  86 1 10 _ 3 _ _ 99 5.6

Ejemplo 6-3  Example 6-3
86 1 10 _ _ 3 _ 108 6,2  86 1 10 _ _ 3 _ 108 6.2

Ejemplo 6-4  Example 6-4
86 1 10 _ _ _ 3 116 6,5  86 1 10 _ _ _ 3 116 6.5

Ejemplo Comparative 6-1  Comparative Example 6-1
100 - - - - - - 25 1,2  100 - - - - - - 25 1.2

Ejemplo Comparative 6-2  Comparative Example 6-2
89 1 10 - - - - 70 3,8  89 1 10 - - - - 70 3.8

Ejemplo Comparative 6-3  Comparative Example 6-3
96 1 - - 3 - - 27 2,5  96 1 - - 3 - - 27 2.5

ES 2 662 959 A2ES 2 662 959 A2

55

1010

15fifteen

20twenty

2525

3030

3535

Segun la Tabla 5 y la Figura 20, se observo que la resistencia a la traction en los Ejemplos 6-2, 6-3 y 6-4 fue mayor que en el Ejemplo 6-1 y los Ejemplos Comparativos 6-1, 6-2 y 6-3. En particular, cuando la proportion (3R) del precursor de grafeno alcanzaba el 31 % o mas, se observo una tendencia notable en una resistencia a la traccion, que aumento un 30 % o mas en comparacion con los casos en que la proporcion (3R) era del 0 % (Ejemplo comparativo 6-2) y la proporcion (3R) era del 23 % (Ejemplo 6-1).According to Table 5 and Figure 20, it was observed that the tensile strength in Examples 6-2, 6-3 and 6-4 was greater than in Example 6-1 and Comparative Examples 6-1, 6- 2 and 6-3. In particular, when the proportion (3R) of the graphene precursor reached 31% or more, a notable trend in tensile strength was observed, which increased by 30% or more compared to the cases in which the proportion (3R ) was 0% (Comparative Example 6-2) and the proportion (3R) was 23% (Example 6-1).

En realidad, los casos del Ejemplo 6-2 no denotan una Proporcion (3R) =0%. Como no se anadio el precursor del grafeno, el dato del 0% no deberia mostrarse en el mismo grafico; sin embargo, se muestran por conveniencia. De aqui en adelante, el 0% tiene ese mismo significado.Actually, the cases in Example 6-2 do not denote a Proportion (3R) = 0%. As the graphene precursor was not added, the 0% data should not be shown in the same graph; However, they are shown for convenience. From here on, 0% has the same meaning.

Notese que los datos de los ejemplos Comparativos 6-1 y 6-3, en los que GF no se incluye, no se representan en la Figura 20.Note that the data in Comparative Examples 6-1 and 6-3, in which GF is not included, is not shown in Figure 20.

Ademas, de forma similar en el caso de la resistencia a la traccion, se observo que el modulo de flexion en los Ejemplos 6-2, 6-3 y 6-4 fue mayor que en el Ejemplo 6-1 y los Ejemplos Comparativos 6-1, 6-2 y 6-3. En particular, cuando la proporcion (3R) del precursor de grafeno alcanzaba el 31 % o mas, se observo una tendencia notable en el modulo de flexion, que aumento un 40 % o mas en comparacion con los casos en que la proporcion (3R) era del 0 % (Ejemplo comparativo 6-2) y la proporcion (3R) era del 23 % (Ejemplo 6-1).Furthermore, similarly in the case of tensile strength, it was observed that the flexural modulus in Examples 6-2, 6-3 and 6-4 was greater than in Example 6-1 and Comparative Examples 6 -1, 6-2 and 6-3. In particular, when the proportion (3R) of the graphene precursor reached 31% or more, a notable trend in the flexural modulus was observed, which increased by 40% or more compared to the cases in which the proportion (3R) it was 0% (Comparative Example 6-2) and the proportion (3R) was 23% (Example 6-1).

Cuando los precursores de grafeno que tienen una proporcion (3R) del 31 % o mas (Ejemplos 6-2, 6-3 y 6-4) se usan junto con GF, la resistencia a la traccion y el modulo de flexion aumentan. Esto es porque se especula que el grafito de tipo grafeno que tiene un grosor de 0,3 a varias decenas de nm y un tamano de varios nm a 1 pm se disperso en PP, aumentando de esta manera un modulo elastico del PP en si mismo, y al mismo tiempo, el grafito de tipo grafeno se puso en contacto con GF, que estaba estrechamente unida al PP en virtud de un compatibilizador saliendo de esta manera dificilmente del PP, se lleva a cabo una denominada action de cuna en la GF. Como resultado, se aumentaron tanto la resistencia a la traccion como el modulo de flexion mediante un efecto sinergico de aumentar un modulo elastico del PP en si mismo y llevando a cabo una accion de cuna. Esta situation puede expresarse mediante la siguiente parabola: despues de hincar una estaca con pinchos en la tierra, puede salir facilmente de una tierra embarrada, pero puede salir dificilmente de una tierra bien pisada. Como otro factor que provoca esto, se especula que la adicion del compatibilizador promueve la exfoliation del grafito de tipo grafeno, etc. del material de carbono a base de grafito, provocando de esta manera que el grafito de tipo grafeno en copos este presente en una cantidad mayor.When graphene precursors having a ratio (3R) of 31% or more (Examples 6-2, 6-3 and 6-4) are used together with GF, tensile strength and flexural modulus increase. This is because it is speculated that graphene-type graphite having a thickness of 0.3 to several tens of nm and a size of several nm to 1 pm is dispersed in PP, thereby increasing an elastic modulus of the PP itself , and at the same time, graphite of graphene type was contacted with GF, which was closely linked to the PP by virtue of a compatibilizer leaving this way hardly from the PP, a so-called cradle action is carried out in the GF. As a result, both tensile strength and flexural modulus were increased by a synergistic effect of increasing an elastic modulus of the PP itself and performing a cradle action. This situation can be expressed by the following parable: after driving a stake with spikes on the ground, it can easily leave a muddy ground, but it can hardly leave a well trodden earth. As another factor that causes this, it is speculated that the addition of the compatibilizer promotes the exfoliation of graphene-type graphite, etc. of the graphite-based carbon material, thereby causing graphene-like graphite in flakes to be present in a larger amount.

55

1010

15fifteen

20twenty

2525

3030

3535

Cuando la proportion (3R) es menos del 31 %, (Ejemplo 6-1), se considera que la cantidad del grafito de tipo grafeno que se dispersa es demasiado pequena, de tal manera que no se ejerce suficientemente un efecto de anadir un precursor de grafeno.When the proportion (3R) is less than 31%, (Example 6-1), the amount of graphene-type graphite that is dispersed is considered to be too small, so that an effect of adding a precursor is not sufficiently exerted of graphene

Cuando la proportion (3R) es el 35 % o mas (Ejemplos 6-3 y 6-4), el modulo de flexion y la resistencia a la traction son excelentes en comparacion con los casos en que la proportion (3R) es igual o menor que esa. Se considera que la razon es que la cantidad de grafito de tipo grafeno que provoca un aumento de un modulo elastico del PP aumenta en comparacion con el caso en que la proportion (3R) es del 31 % (Ejemplo 6-2).When the proportion (3R) is 35% or more (Examples 6-3 and 6-4), the flexural modulus and tensile strength are excellent compared to cases where the proportion (3R) is equal or less than that. The reason is considered to be that the amount of graphene-type graphite that causes an increase in an elastic modulus of the PP increases compared to the case in which the proportion (3R) is 31% (Example 6-2).

Como referencia, se da una explication en las imagenes fotografiadas de los precursores de grafeno tomadas mediante un microscopio electronico de barrido (MEB). Los precursores de grafeno obtenidos en el ejemplo 1 son un laminado de grafito en copos que tiene una longitud de 7 pm y un grosor de 0,1 pm, como se muestra por ejemplo en las Figuras 21 y 22.For reference, an explanation is given in the photographed images of graphene precursors taken by means of a scanning electron microscope (SEM). The graphene precursors obtained in example 1 are a flake graphite laminate having a length of 7 pm and a thickness of 0.1 pm, as shown for example in Figures 21 and 22.

Ademas, el grafito de tipo grafeno dispersado en una resina puede observarse mediante un microscopio electronico de barrido (MEB) y similares despues de formarse en una pieza de ensayo y cortarse mediante una sierra de precision de alta velocidad (TechCut5 fabricada por Allied High Tech Products, Inc.) y similares. Por ejemplo, la Figura 23 muestra una section transversal de una resina en la que se dispersan un nanotubo de carbono y un grafito de tipo grafeno, donde el nanotubo de carbono se representa por una parte lineal y el grafito de tipo grafeno se representa por una parte con punto en blanco. El grafito de tipo grafeno es un laminado de grafito en copos que tiene un grosor de 3,97 nm, como se muestra por ejemplo en la Figura 24.In addition, graphene-type graphite dispersed in a resin can be observed by a scanning electron microscope (MEB) and the like after being formed in a test piece and cut by a high-speed precision saw (TechCut5 manufactured by Allied High Tech Products , Inc.) and the like. For example, Figure 23 shows a cross section of a resin in which a carbon nanotube and a graphite of graphene type are dispersed, where the carbon nanotube is represented by a linear part and graphite of graphene type is represented by a blank dotted part Graphene type graphite is a flake graphite laminate that is 3.97 nm thick, as shown for example in Figure 24.

Ejemplo 7Example 7

Se realizaron experimentos para obtener un articulo moldeado en resina usando el precursor de grafeno producido en los metodos anteriores.Experiments were performed to obtain a resin molded article using the graphene precursor produced in the above methods.

<Diversas condiciones><Various conditions>

Resina: PA66 (nailon 66) 1300S fabricada por Asahi Kasei Corp.,Resin: PA66 (nylon 66) 1300S manufactured by Asahi Kasei Corp.,

Compatibilizador: KAYABRID (006PP fabricado por Kayaku Akzo Corp. PP modificado con anhidrido maleico)Compatibilizer: KAYABRID (006PP manufactured by Kayaku Akzo Corp. PP modified with maleic anhydride)

Fibra de vidrio (GF): ECS03-631K (diametro de 13 pm, longitud de 3 mm) fabricado por Central Glass Fiber Co., Ltd.,Fiberglass (GF): ECS03-631K (13 pm diameter, 3 mm length) manufactured by Central Glass Fiber Co., Ltd.,

Material de carbono a base de grafito: precursor de grafeno (obtenido por los metodos anteriores),Graphite-based carbon material: graphene precursor (obtained by the above methods),

Mezclador: Mezclador de tambor (fabricado por SEIWA GIKEN Co., Ltd.),Mixer: Drum mixer (manufactured by SEIWA GIKEN Co., Ltd.),

55

1010

15fifteen

20twenty

2525

<Condicion de mezclado 1: velocidad de rotation 25 rpm x 1 min>,<Mixing condition 1: rotation speed 25 rpm x 1 min>,

Amasador: extrusor de dos ejes (HYPERKTX 30 fabricado por Kobe Steel, Ltd.), <Condicion de amasado 2: Temperatura del cilindro de 280 °C, velocidad de rotation del rotor de 200 rpm, velocidad de descarga de 12 kg/h>,Kneader: two-axis extruder (HYPERKTX 30 manufactured by Kobe Steel, Ltd.), <Kneading condition 2: 280 ° C cylinder temperature, 200 rpm rotor rotation speed, 12 kg / h discharge speed> ,

Pieza de ensayo: JIS K7139 (170 mm x 20 mm x t4 mm),Test piece: JIS K7139 (170 mm x 20 mm x t4 mm),

Dispositivo de medicion: maquina de ensayo de proposito general de banco exacta AUTOGRAPH AGS-J fabricada por Shimadzu Corp.Measuring device: AUTOGRAPH AGS-J exact bank general purpose test machine manufactured by Shimadzu Corp.

<Procedimientos experimentales><Experimental procedures>

Etapa 1. Un 40 % en peso de una fibra de vidrio (GF), un 4 % en peso de un compatibilizador y un 56 % en peso de una resina se pre-mezclan en un mezclador de tambor en la condition de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condition de amasado 2 para obtener un lote maestro 1.Stage 1. 40% by weight of a fiberglass (GF), 4% by weight of a compatibilizer and 56% by weight of a resin are pre-mixed in a drum mixer in mixing condition 1, and then they are kneaded with a two-axis extruder in kneading condition 2 to obtain a master batch 1.

Etapa 2. Un 12 % en peso de un precursor de grafeno que tiene una proportion (3R) diferente como se muestra en la Tabla 6 y un 88 % en peso de una resina se pre- mezclan con un mezclador de tambor en la condition de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condition de amasado 2 para obtener un lote maestro 2.Step 2. 12% by weight of a graphene precursor having a different proportion (3R) as shown in Table 6 and 88% by weight of a resin are pre-mixed with a drum mixer in the condition of mixed 1, and then kneaded with a two-axis extruder in kneading condition 2 to obtain a master batch 2.

Etapa 3. Un 37,5 % en peso del lote maestro 1, un 25 % en peso del lote maestro 2 y un 37,5 % en peso de una resina se pre-mezclan con un mezclador de tambor en la condition de mezclado 1, y despues se amasan con un extrusor de dos ejes en la condition de amasado 2.Step 3. 37.5% by weight of master batch 1, 25% by weight of master batch 2 and 37.5% by weight of a resin are pre-mixed with a drum mixer in mixing condition 1 , and then kneaded with a two-axis extruder in kneading condition 2.

Etapa 4. La mezcla amasada obtenida en la Etapa 3 se formo para dar una pieza de ensayo con una maquina de moldeo por inyeccion y se observaron los cambios en la resistencia mecanica de la misma a una velocidad de ensayo de 500 mm/min de acuerdo con JIS K7139.Stage 4. The kneaded mixture obtained in Stage 3 was formed to give a test piece with an injection molding machine and the changes in the mechanical resistance thereof were observed at a test speed of 500 mm / min according to with JIS K7139.

Para confirmar un efecto del grafito de tipo grafeno se realizaron experimentos con una proportion (3R) del 23 % (Muestra 1), 31 % (Muestra 2), 35 % (Muestra 21) y 42 % (Muestra 4) con una relation de mezcla mostrada en la Tabla 6.To confirm an effect of graphene-type graphite, experiments were performed with a proportion (3R) of 23% (Sample 1), 31% (Sample 2), 35% (Sample 21) and 42% (Sample 4) with a ratio of mixture shown in Table 6.

{Tabla 6}{Table 6}

U>U>

U>U>

Relacion de mezcla (% en peso) Resistencia a traccion (MPa) Modulo de flexion (GPa)  Mixing ratio (% by weight) Tensile strength (MPa) Flexural modulus (GPa)

PA66  PA66
Compati- bilizador GF Precursor de grafeno  GF Graphene Precursor Compatizer

proporcion (3R) =23 % (Muestra 1)  proportion (3R) = 23% (Sample 1)
proporcion (3R) =31 % (Muestra 2) proporcion (3R) =35 % (Muestra 21) proporcion (3R) =42 % (Muestra 4)  Proportion (3R) = 31% (Sample 2) Proportion (3R) = 35% (Sample 21) Proportion (3R) = 42% (Sample 4)

Ejemplo 7-1  Example 7-1
80,5 1,5 15 3 _ _ 111 4,9  80.5 1.5 15 3 _ _ 111 4.9

Ejemplo 7-2  Example 7-2
80,5 1,5 15 _ 3 _ _ 138 6,2  80.5 1.5 15 _ 3 _ _ 138 6.2

Ejemplo 7-3  Example 7-3
80,5 1,5 15 _ _ 3 _ 143 6,6  80.5 1.5 15 _ _ 3 _ 143 6.6

Ejemplo 7-4  Example 7-4
80,5 1,5 15 _ _ _ 3 146 6,8  80.5 1.5 15 ___ 3 146 6.8

Ejemplo Comparativo 7-1  Comparative Example 7-1
100 - - - - - - 57 2,7  100 - - - - - - 57 2.7

Ejemplo Comparativo 7-2  Comparative Example 7-2
83,5 1,5 15 - - - - 107 4,8  83.5 1.5 15 - - - - 107 4.8

Ejemplo Comparativo 7-3  Comparative Example 7-3
95,5 1,5 - - 3 - - 90 3,3  95.5 1.5 - - 3 - - 90 3.3

ES 2 662 959 A2ES 2 662 959 A2

55

1010

15fifteen

20twenty

2525

3030

3535

Segun la Tabla 6 y la Figura 25, se observo que la resistencia a la traction en los Ejemplos 7-2, 7-3 y 7-4 fue mayor que en el Ejemplo 7-1 y los Ejemplos Comparativos 7-1, 7-2 y 7-3. En particular, cuando la proportion (3R) del precursor de grafeno alcanzaba el 31 % o mas, se observo una tendencia notable en la resistencia a la traccion, que aumento un 20 % o mas en comparacion con los casos en que la proporcion (3R) era del 0 % (Ejemplo comparativo 7-2) y la proporcion (3R) era del 23 % (Ejemplo 7-1). Notese que los datos de los ejemplos Comparativos 7-1 y 7-3, en los que no se incluye GF, no se representan en la Figura 25.According to Table 6 and Figure 25, it was observed that the tensile strength in Examples 7-2, 7-3 and 7-4 was greater than in Example 7-1 and Comparative Examples 7-1, 7- 2 and 7-3. In particular, when the proportion (3R) of the graphene precursor reached 31% or more, a notable trend in tensile strength was observed, which increased by 20% or more compared to the cases in which the proportion (3R ) was 0% (Comparative Example 7-2) and the proportion (3R) was 23% (Example 7-1). Note that the data in Comparative examples 7-1 and 7-3, in which GF is not included, is not shown in Figure 25.

Ademas, de forma similar en el caso de la resistencia a la traccion, se observo que el modulo de flexion en los Ejemplos 7-2, 7-3 y 7-4 fue mayor que en el Ejemplo 7-1 y los Ejemplos Comparativos 7-1, 7-2 y 7-3. En particular, cuando la proporcion (3R) del precursor de grafeno alcanzaba el 31 % o mas, se observo una tendencia notable en un modulo de flexion, que aumento un 20 % o mas en comparacion con los casos en que la proporcion (3R) era del 0 % (Ejemplo comparativo 7-2) y la proporcion (3R) era del 23 % (Ejemplo 7-1).Also, similarly in the case of tensile strength, it was observed that the flexural modulus in Examples 7-2, 7-3 and 7-4 was greater than in Example 7-1 and Comparative Examples 7 -1, 7-2 and 7-3. In particular, when the proportion (3R) of the graphene precursor reached 31% or more, a notable trend in a flexural modulus was observed, which increased by 20% or more compared to the cases in which the proportion (3R) it was 0% (Comparative Example 7-2) and the proportion (3R) was 23% (Example 7-1).

Se considera que la resistencia a la traccion y el modulo de flexion se mejoran por la misma razon que se explica en el Ejemplo 6.The tensile strength and flexural modulus are considered to be improved for the same reason as explained in Example 6.

Segun los Ejemplos 6 y 7, se observo que la resistencia a la traccion y el modulo de flexion mejoraron independientemente de que una resina sirviera como material de base. Se da una explication en un caso donde se anade un precursor de grafeno junto con GF. Cuando los precursores de grafeno tenian la Proporcion (3R) del 23 % (Ejemplos 61 y 7-1), se observo que una resistencia a la traccion y un modulo de flexion mejoraron ligeramente con independencia de que una resina sirviera como un material de base en comparacion con casos donde no se anadio un precursor de grafeno (Ejemplos Comparativos 6-2 y 7-2), mientras que cuando los precursores de grafeno usados tenian la Proporcion (3R) del 31 % o mas, se observo que la resistencia a la traccion y el modulo de flexion se mejoraron de forma acentuada (un 10 % o mas).According to Examples 6 and 7, it was observed that tensile strength and flexural modulus improved regardless of whether a resin served as the base material. An explanation is given in a case where a graphene precursor is added together with GF. When graphene precursors had the Proportion (3R) of 23% (Examples 61 and 7-1), it was observed that a tensile strength and a flexural modulus improved slightly regardless of whether a resin served as a base material in comparison with cases where a graphene precursor was not added (Comparative Examples 6-2 and 7-2), while when the graphene precursors used had the Proportion (3R) of 31% or more, it was observed that resistance to traction and flexural modulus were greatly enhanced (10% or more).

Ejemplo 8Example 8

Los experimentos se realizaron anadiendo el precursor de grafeno producido en los metodos anteriores y un material de reforzamiento a una resina.The experiments were performed by adding the graphene precursor produced in the above methods and a resin reinforcing material.

En el Ejemplo 8 se usaron una fibra de vidrio (GF), una fibra de carbono (CF), talco y silice como un material de reforzamiento para confirmar un efecto provocado por una forma de un material de reforzamiento. Excepto por el material de reforzamiento, las condiciones experimentales y similares son las mismas que en el Ejemplo 6.In Example 8, a glass fiber (GF), a carbon fiber (CF), talc and silica were used as a reinforcing material to confirm an effect caused by a form of a reinforcing material. Except for the reinforcement material, the experimental and similar conditions are the same as in Example 6.

Como se muestra en la Figura 27, GF y CF, que funcionan como un material de reforzamiento, tienen un diametro de varias decenas de qm y una longitud de varios cientos de qm en una forma tipo hilo o lineal. El talco tiene una longitud representativa de varios qm a varias decenas y un grosor de varios cientos de nm en una forma tipo copo, 5 mientras que la silice tiene un diametro de varios nm a varias decenas en una formaAs shown in Figure 27, GF and CF, which function as a reinforcing material, have a diameter of several tens of qm and a length of several hundreds of qm in a wire or linear type. The talc has a representative length of several qm to several tens and a thickness of several hundred nm in a flake-like form, 5 while the silica has a diameter of several nm to several tens in a form

particulada.particulate

{Tabla 7}{Table 7}

Relacion de mezcla (% en peso) Resistencia a traccion (MPa) Modulo de flexion (GPa)  Mixing ratio (% by weight) Tensile strength (MPa) Flexural modulus (GPa)

PP  PP
Compatibilizador GF CF Talco Silice Precursor de grafeno proporcion (3R) =31 % (Muestra 2)  Compatibilizer GF CF Talco Silice Graphene precursor proportion (3R) = 31% (Sample 2)

Ejemplo 6-2  Example 6-2
86 1 10 3 99 5,6  86 1 10 3 99 5.6

Ejemplo 8-1  Example 8-1
86 1 10 3 168 6,7  86 1 10 3 168 6.7

Ejemplo 8-2  Example 8-2
86 1 10 3 45 4,0  86 1 10 3 45 4.0

Ejemplo 8-3  Example 8-3
86 1 10 3 33 3,8  86 1 10 3 33 3.8

Ejemplo Comparativo 6-2  Comparative Example 6-2
89 1 10 - - - - 70 3,8  89 1 10 - - - - 70 3.8

Ejemplo Comparativo 8-1  Comparative Example 8-1
89 1 - 10 - - - 130 5,2  89 1 - 10 - - - 130 5.2

Ejemplo Comparativo 8-2  Comparative Example 8-2
89 1 - - 10 - - 35 3,5  89 1 - - 10 - - 35 3.5

Ejemplo Comparativo 8-3  Comparative Example 8-3
89 1 - - - 10 - 32 1,9  89 1 - - - 10 - 32 1.9

Ejemplo Comparativo 6-1  Comparative Example 6-1
100 - - - - - 25 1,2  100 - - - - - 25 1.2

Como se muestra en la Tabla 7 y la Figura 26, la resistencia a la traccion y el 10 modulo de flexion se mejoran en todos los casos donde se anade un material de reforzamiento en comparacion con el Ejemplo Comparativo 6-1 donde no se anade un material de reforzamiento. Se hizo una comparacion entre los casos donde se anadieron un material de reforzamiento y un precursor de grafeno (Ejemplos 6-2, 8-1, 8-2 y 8-3) y casos donde se anadio solo un material de reforzamiento (Ejemplos Comparativos 6-2, 8-As shown in Table 7 and Figure 26, the tensile strength and flexural modulus are improved in all cases where a reinforcing material is added compared to Comparative Example 6-1 where no one is added. reinforcement material. A comparison was made between cases where a reinforcement material and a graphene precursor were added (Examples 6-2, 8-1, 8-2 and 8-3) and cases where only a reinforcement material was added (Comparative Examples 6-2, 8-

55

1010

15fifteen

20twenty

2525

3030

3535

1, 8-2 y 8-3). Cuando se anadio GF como un material de reforzamiento junto con un precursor de grafeno, tanto la resistencia a la traction como el modulo de flexion mejoraron 1,4 veces y 1,4 veces, respectivamente (una tasa de cambio observada en el Ejemplo 6-2 con respecto al ejemplo comparativo 6-2). De forma similar, la resistencia a la traccion y el modulo de flexion mejoraron 1,3 veces y 1,3 veces respectivamente en el caso de CF, 1,3 veces y 1,1 veces respectivamente en el caso del talco, y 1,0 y 2,0 veces respectivamente en el caso de silice. A partir de esto se descubrio que el uso de un material de reforzamiento en una forma tipo hilo, lineal o tipo copos junto con un precursor de grafeno mejoro la resistencia a la traccion y el modulo de flexion un 10 % o mas, siendo por ello preferible. Se especula que un material de nano-reforzamiento en una forma tipo hilo, lineal o tipo copo, al tener un area superficial amplia por unidad de masa debido a su forma, es altamente eficaz mejorando la resistencia a la traccion, asi como capaz de aumentar un modulo de flexion, por lo tanto tiene alta compatibilidad con el material de tipo grafeno. Tambien se revelo que, como material de reforzamiento en una forma tipo hilo, lineal o tipo copos, el que tiene una relation de aspecto de 5:1 o mas es particularmente preferible. En contraste, un material de reforzamiento que tiene una relacion de aspecto de 5:1 o menos, tal como silice, dio como resultado el aumento solamente del modulo de flexion. Notese que puede obtenerse la relacion de aspecto de un material que tiene una forma tipo copos calculando la relacion de un grosor medio a una longitud de la parte mas larga. La relacion de aspecto mencionada en el presente documento puede calcularse usando el valor medio de un diametro o un grosor y el valor promedio de una longitud, descritos en un catalogo y similares de un material de reforzamiento. Especialmente, cuando no estan disponibles un catalogo y similares, un material se observa por un microscopio electronico tal como MEB en un numero arbitrario para obtener valores medios de longitud y grosor del mismo, a partir de los que se calcula una relacion de aspecto.1, 8-2 and 8-3). When GF was added as a reinforcing material together with a graphene precursor, both tensile strength and flexural modulus improved 1.4 times and 1.4 times, respectively (a rate of change observed in Example 6- 2 with respect to comparative example 6-2). Similarly, tensile strength and flexural modulus improved 1.3 times and 1.3 times respectively in the case of CF, 1.3 times and 1.1 times respectively in the case of talc, and 1, 0 and 2.0 times respectively in the case of silica. From this it was discovered that the use of a reinforcement material in a wire, linear or flake type form together with a graphene precursor improved tensile strength and flexural modulus by 10% or more, thereby being preferable. It is speculated that a nano-reinforcing material in a wire, linear or flake type form, having a large surface area per unit mass due to its shape, is highly effective in improving tensile strength, as well as being able to increase a flexion module, therefore it has high compatibility with graphene type material. It was also revealed that, as a reinforcing material in a wire, linear or flake type form, the one having an aspect ratio of 5: 1 or more is particularly preferable. In contrast, a reinforcing material that has an aspect ratio of 5: 1 or less, such as silica, resulted in an increase in the flexural modulus only. Note that the aspect ratio of a material having a flake-like shape can be obtained by calculating the ratio of an average thickness to a length of the longest part. The aspect ratio mentioned herein can be calculated using the average value of a diameter or a thickness and the average value of a length, described in a catalog and the like of a reinforcing material. Especially, when a catalog and the like are not available, a material is observed by an electron microscope such as SEM in an arbitrary number to obtain average values of length and thickness thereof, from which an aspect ratio is calculated.

Ejemplo 9Example 9

A continuation, se realizaron experimentos para obtener un articulo moldeado en resina usando el precursor de grafeno producido en los metodos anteriores.Next, experiments were performed to obtain a resin molded article using the graphene precursor produced in the above methods.

Los experimentos se realizaron con una relacion de mezcla del precursor de grafeno que tenia la proportion (3R) del 31 % a un material de reforzamiento en las condiciones mostradas en la Tabla 8. Las condiciones experimentales y similares son las mismas que en el Ejemplo 6.The experiments were performed with a mixture ratio of the graphene precursor having the proportion (3R) of 31% to a reinforcing material under the conditions shown in Table 8. The experimental conditions and the like are the same as in Example 6 .

{Tabla 8}{Table 8}

Relacion de mezcla (% en peso) Resistencia a traccion (MPa) Modulo de flexion (GPa)  Mixing ratio (% by weight) Tensile strength (MPa) Flexural modulus (GPa)

PP  PP
Compati- bilizador GF Precursor de grafeno  GF Graphene Precursor Compatizer

Proportion (3R) =31 % (Muestra 2)  Proportion (3R) = 31% (Sample 2)

Ejemplo 9-1  Example 9-1
88 1 10 1 87 4,7  88 1 10 1 87 4.7

Ejemplo 6-2  Example 6-2
86 1 10 3 99 5,6  86 1 10 3 99 5.6

Ejemplo 9-2  Example 9-2
84 1 10 5 107 6,3  84 1 10 5 107 6.3

Ejemplo 9-3  Example 9-3
81 1 10 8 116 6,9  81 1 10 8 116 6.9

Ejemplo 9-4  Example 9-4
79 1 10 10 120 7,1  79 1 10 10 120 7.1

Ejemplo 9-5  Example 9-5
74 1 10 15 121 7,2  74 1 10 15 121 7.2

Ejemplo 9-6  Example 9-6
88,5 1 10 0,5 80 4,5  88.5 1 10 0.5 80 4.5

Ejemplo 9-7  Example 9-7
88,7 1 10 0,3 79 4,2  88.7 1 10 0.3 79 4.2

Ejemplo 9-8  Example 9-8
88,9 1 10 0,1 73 4,0  88.9 1 10 0.1 73 4.0

Ejemplo Comparativo 6-1  Comparative Example 6-1
100 - - - 25 1,2  100 - - - 25 1.2

Ejemplo Comparativo 6-2  Comparative Example 6-2
89 1 10 - 70 3,8  89 1 10 - 70 3.8

Como se muestra en la Tabla 8 y la Figura 28, cuando la relation de mezcla del precursor de grafeno al material de reforzamiento se hizo mayor de 1 (Ejemplo 9-4), se 5 observo que la resistencia a la traction y el modulo de flexion se mantuvieron casi en los mismos valores y sus caracteristicas se saturaron. Ademas, cuando la relacion de mezcla del precursor de grafeno es 10 o mas, se hace significativo un impacto en las propiedades de un material de base. Por otro lado, cuando la relacion de mezcla fue 1/100 (Ejemplo 9-8), se observo que la resistencia a la traccion y el modulo de flexion aumentaron un 4 % 10 o mas y un 10 % o mas, respectivamente, en comparacion con el Ejemplo comparativo 62 donde no se anadio un precursor de grafeno. Ademas, se observo que la resistencia a la traccion aumento de forma brusca cuando la relacion de mezcla fue 1/10 (Ejemplo 6-2) oAs shown in Table 8 and Figure 28, when the mixing ratio of the graphene precursor to the reinforcing material became greater than 1 (Example 9-4), it was observed that the tensile strength and modulus of Flexion remained almost at the same values and its characteristics became saturated. Furthermore, when the mixing ratio of the graphene precursor is 10 or more, an impact on the properties of a base material becomes significant. On the other hand, when the mixing ratio was 1/100 (Example 9-8), it was observed that tensile strength and flexural modulus increased 4% 10 or more and 10% or more, respectively, in comparison with Comparative Example 62 where a graphene precursor was not added. In addition, it was observed that tensile strength increased sharply when the mixing ratio was 1/10 (Example 6-2) or

55

1010

15fifteen

20twenty

2525

3030

3535

mas, mientras que el modulo de flexion aumento de forma brusca cuando la relacion de mezcla fue 1/3 (Ejemplo 9-1) o mas.more, while the flexion module increased sharply when the mixing ratio was 1/3 (Example 9-1) or more.

Basandose en esto, el limite inferior de la relacion de mezcla es 1/100 o mas, preferiblemente 1/10 o mas, y el limite superior de la misma es 10 o menos, preferiblemente 1 o menos.Based on this, the lower limit of the mixing ratio is 1/100 or more, preferably 1/10 or more, and the upper limit thereof is 10 or less, preferably 1 or less.

Notese que los datos del Ejemplo comparativo 6-1 donde GF no se incluye no se representan en la Figura 28.Note that the data in Comparative Example 6-1 where GF is not included is not represented in Figure 28.

En el Ejemplo 6-9, el precursor de grafeno se produce por un primer tratamiento basado en fuerzas de ondas de radio y/o un segundo tratamiento basado en fuerza fisica como se ha descrito anteriormente, de esta manera no es necesario realizar un tratamiento de oxidacion/reduccion. Ademas, ya que no es necesario un tratamiento de reduction para producir una pieza de ensayo, no se requiere alta temperatura, como resultado la production de una pieza de ensayo se realiza facilmente.In Example 6-9, the graphene precursor is produced by a first treatment based on radio wave forces and / or a second treatment based on physical force as described above, so it is not necessary to perform a treatment of oxidation / reduction. In addition, since a reduction treatment is not necessary to produce a test piece, high temperature is not required, as a result the production of a test piece is easily performed.

Lo anterior explico las realizaciones de la presente invention usando figuras, sin embargo, ha de entenderse que las constituciones especificas no estan restringidas del todo a estas realizaciones, y tambien se incluyen cambios y adiciones en la presente invencion sin apartarse de la esencia de la presente invencion.The foregoing explained the embodiments of the present invention using figures, however, it should be understood that the specific constitutions are not entirely restricted to these embodiments, and changes and additions are also included in the present invention without departing from the essence of the present invention.

Los ejemplos de un material de base para dispersar un material de reforzamiento y un material de carbono a base de grafito incluyen los siguientes. Notese que una relacion de mezcla de un material de base puede ser menor que la de un material de reforzamiento o un material de carbono a base de grafito. Ademas, un material de base puede anihilarse por combustion, oxidation, vaporization, evaporation y similares cuando esta en uso. Por ejemplo, cuando un material de base como un agente de revestimiento y similares es un disolvente volatil, el material de base se carboniza por combustion, como en el caso de un compuesto C/C.Examples of a base material for dispersing a reinforcing material and a graphite-based carbon material include the following. Note that a mixing ratio of a base material may be less than that of a reinforcing material or a graphite-based carbon material. In addition, a base material can be annihilated by combustion, oxidation, vaporization, evaporation and the like when in use. For example, when a base material such as a coating agent and the like is a volatile solvent, the base material is charred by combustion, as in the case of a C / C compound.

Los ejemplos de una resina incluyen resinas termoplasticas tales como polietileno (PE), polipropileno (PP), poliestireno (PS), cloruro de polivinilo (PVC), resinas ABS (ABS), acido polilactico (PLA), resinas acrilicas (PMMA), poliamida/nailon (PA), poliacetal (POM), policarbonato (PC), polietilen tereftalato (PET), poliolefina ciclica (COP), sulfuro de polifenileno (PPS), politetrafluoroetileno (PTFE), polisulfona (PSF), poliamida-imida (PAI), poliimida termoplastica (PI), polieter eter cetona (PEEK), polimeros cristalinos (LCP) y similares. Ademas, entre las resinas sinteticas como resinas termofraguables o resinas de curado por ultravioleta se incluyen las resinas epoxi (EP), resinas fenolicas (PF), resinas de melamina (MF), poliuretanos (PUR) y resinas de poliester insaturado (UP) y similares; como polimeros conductores se incluyen PEDOT,Examples of a resin include thermoplastic resins such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), ABS resins (ABS), polylactic acid (PLA), acrylic resins (PMMA), polyamide / nylon (PA), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), cyclic polyolefin (COP), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyamide-imide ( PAI), thermoplastic polyimide (PI), polyether ether ketone (PEEK), crystalline polymers (LCP) and the like. In addition, synthetic resins such as thermosetting resins or UV curing resins include epoxy resins (EP), phenolic resins (PF), melamine resins (MF), polyurethanes (PUR) and unsaturated polyester resins (UP) and Similar; as conductive polymers include PEDOT,

55

1010

15fifteen

20twenty

2525

3030

politiofeno, poliacetileno, polianilina, polipirrol y similares; como fibras se incluyen nailon fibroso, poliesteres, acrilico, vinalon, poliolefina, poliuretano, rayon y similares; como elastomeros se incluyen cauchos de isopreno (IR), cauchos de butadieno (BR), cauchos de estireno/butadieno (SBR), cauchos de cloropreno (CR), cauchos de nitrilo (NBR), cauchos de poliisobutileno/cauchos de butilo (IIR), cauchos de etileno propileno (EPM/EPDM), polietileno clorosulfonado (CSM), cauchos acrilicos (ACM), cauchos de epiclorhidrina (CO/ECO), y similares; como elastomeros a base de resinas termofraguable se incluyen algunos cauchos de uretano (U), cauchos de silicona (Q), cauchos que contienen fluor (FKM) y similares; y, como elastomeros termoplasticos, se incluyen elastomeros basados en estireno, olefina, cloruro de polivinilo, uretano y amida.polythiophene, polyacetylene, polyaniline, polypyrrole and the like; Fibers include fibrous nylon, polyester, acrylic, vinalon, polyolefin, polyurethane, rayon and the like; Elastomers include isoprene rubbers (IR), butadiene rubbers (BR), styrene / butadiene rubbers (SBR), chloroprene rubbers (CR), nitrile rubbers (NBR), polyisobutylene rubbers / butyl rubbers (IIR ), ethylene propylene rubbers (EPM / EPDM), chlorosulfonated polyethylene (CSM), acrylic rubbers (ACM), epichlorohydrin rubbers (CO / ECO), and the like; as elastomers based on thermosetting resins, some urethane rubbers (U), silicone rubbers (Q), fluorine containing rubbers (FKM) and the like are included; and, as thermoplastic elastomers, elastomers based on styrene, olefin, polyvinyl chloride, urethane and amide are included.

Los ejemplos de un material inorganico incluyen hormigon, ceramicas, yeso, polvos metalicos y similares.Examples of an inorganic material include concrete, ceramics, plaster, metal powders and the like.

Los ejemplos de un material de reforzamiento incluyen los siguientes.Examples of a reinforcing material include the following.

Como un material metalico se incluyen nanoparticulas de plata, nanoparticulas de cobre, nanohilos de plata, nanohilos de cobre, plata en copos, cobre en copos, polvos de hierro, oxido de cinc, metal fibroso (boro, tungsteno, alumina y carburo de silicio) y similares.As a metallic material are included silver nanoparticles, copper nanoparticles, silver nanowires, copper nanowires, flaked silver, flaked copper, iron powders, zinc oxide, fibrous metal (boron, tungsten, alumina and silicon carbide ) and the like.

Como materiales de carbono se incluyen negro de humo, fibras de carbono, CNT, grafito, carbon activado y similares.Carbon materials include carbon black, carbon fibers, CNT, graphite, activated carbon and the like.

Como un material no metalico excepto por el carbono se incluyen fibras de vidrio, nanocelulosas, nanoarcilla (mineral de arcilla tal como montmorillonita), fibras de aramida, fibras de polietileno y similares.As a non-metallic material except for carbon, glass fibers, nanocelluloses, nano-clay (clay ore such as montmorillonite), aramid fibers, polyethylene fibers and the like are included.

Ademas, como un ejemplo de grafito natural para producir un material de carbono a base de grafito util como precursor de grafeno se han descrito anteriormente particulas de 5 mm o menos de un material de grafito natural (grafito en copos ACB-50 fabricado por Nippon Graphite Industries, Ltd.). Sin embargo, en lo que se refiere al grafito natural, los productos preferibles son grafito en copos que estan pulverizados hasta 5 mm o menos, y que tienen una Proporcion (3R) de menos del 25 % y una relation de intensidad P1/P2 menor de 0,01, desde la perspectiva de que son facilmente obtenibles. Correspondiendo al desarrollo reciente de la tecnologia, puede sintetizarse artificialmente grafito tipo grafito natural (en el que los cristales se apilan en capas), de esta manera las materias primas para el grafeno y el grafito tipo grafeno no se limitan a grafito natural (mineral). Se usa preferiblemente grafito artificial que tiene un alto grado de pureza con el fin de controlar un contenido metalico. Ademas, siempre que la Proporcion (3R) sea el 31 % oIn addition, as an example of natural graphite to produce a graphite-based carbon material useful as a precursor to graphene, particles of 5 mm or less of a natural graphite material have been described above (graphite in ACB-50 flakes manufactured by Nippon Graphite Industries, Ltd.). However, in terms of natural graphite, the preferable products are graphite in flakes that are sprayed up to 5 mm or less, and that have a Proportion (3R) of less than 25% and a lower P1 / P2 intensity ratio 0.01, from the perspective that they are easily obtainable. Corresponding to the recent development of the technology, natural graphite type graphite (in which the crystals are stacked in layers) can be synthesized artificially, in this way the raw materials for graphene and graphene type graphite are not limited to natural graphite (mineral) . Artificial graphite having a high degree of purity is preferably used in order to control a metal content. In addition, provided that the Proportion (3R) is 31% or

55

1010

15fifteen

20twenty

2525

3030

3535

mas, puede usarse grafito artificial, que no se produce por el tratamiento basado en fuerzas fisicas o el tratamiento basado en fuerzas de ondas de radio descritos anteriormente.In addition, artificial graphite can be used, which is not produced by the physical force based treatment or the radio wave force based treatment described above.

Notese que un material de carbono a base de grafito util como un precursor de grafeno se denomina generalmente grafeno, un precursor de grafeno, una nanoplaqueta de grafeno (GNP), grafeno de pocas capas (FLG), nanografeno y similares, sin embargo, no se limita particularmente a los mismos.Note that a graphite-based carbon material useful as a graphene precursor is generally called graphene, a graphene precursor, a graphene nanoplate (GNP), low-layer graphene (FLG), nanograph and the like, however, no It is particularly limited to them.

Aplicabilidad industrialIndustrial applicability

La presente invention abarca un material de reforzamiento compuesto que tiene resistencia, y no esta limitado un campo de aplicacion del mismo. Por ejemplo, los siguientes campos se incluyen en la presente invencion.The present invention encompasses a composite reinforcement material that has strength, and a field of application thereof is not limited. For example, the following fields are included in the present invention.

(1) Ejemplos en los que un material de base es un material organico (resinas y plasticos)(1) Examples in which a base material is an organic material (resins and plastics)

(1-1) Medio de transporte para transportes(1-1) Means of transport for transport

Aviones, automoviles (coches de pasajeros, camiones, autobuses, etc.), barcos, carcasas para juguetes, etc., miembros de estructuras tales como partes (para miembros de estructuras, resinas compuestas, resinas modificadas, resinas reforzadas con fibras y similares)Airplanes, cars (passenger cars, trucks, buses, etc.), boats, toy housings, etc., members of structures such as parts (for members of structures, composite resins, modified resins, fiber reinforced resins and the like)

(1-2) Articulos de fines generales(1-2) General Purpose Items

Muebles, electrodomesticos, articulos domesticos, carcasas para juguetes, etc., miembros de estructuras tales como partes.Furniture, appliances, household items, toy housings, etc., members of structures such as parts.

(1-3) Impresoras 3D(1-3) 3D printers

Diversas clases de materiales de moldeo, tales como filamentos de resina y resinas de curado por UV, usados en el modelado por deposition fundida (FDM), estereolitografia (SLA), lamination de fijacion de polvo, sinterizado con laser selectivo (SLS) y modelado multi inyeccion (MJM, modelado de inyeccion de tinta).Various kinds of molding materials, such as resin filaments and UV curing resins, used in molten deposition modeling (FDM), stereolithography (SLA), powder fixing lamination, selective laser sintering (SLS) and modeling multi injection (MJM, inkjet modeling).

(1-4) Agentes de recubrimiento(1-4) Coating Agents

Un material de reforzamiento compuesto, junto con una resina, se dispersa en un disolvente organico y se usa para recubrir una superficie de objetos pulverizando o pintando, etc. Un agente de recubrimiento de este tipo mejora la resistencia de los objetos y tambien tiene efectos de repelencia del agua, resistencia a la corrosion, resistencia a rayos ultravioleta, etc. Los ejemplos de aplicacion incluyen uso para recubrimiento externo e interno de construcciones (pilares de puentes, edificios, paredes, carreteras, etc.), automoviles, aviones, etc., y para articulos moldeados en resina, tales como cascos y protectores.A composite reinforcing material, together with a resin, is dispersed in an organic solvent and used to coat a surface of objects by spraying or painting, etc. Such a coating agent improves the strength of the objects and also has effects of water repellency, corrosion resistance, resistance to ultraviolet rays, etc. Examples of application include use for external and internal coating of constructions (bridge pillars, buildings, walls, roads, etc.), automobiles, airplanes, etc., and for resin molded articles, such as helmets and protectors.

(2) Ejemplos en los que un material de base es un material inorganico Miembros de estructuras reforzadas por fibras, tales como cemento (hormigon,(2) Examples in which a base material is an inorganic material Members of fiber reinforced structures, such as cement (concrete,

mortero), paneles de fibroyeso, ceramicas y compuestos C/C (materiales compuestos de carbono reforzados con fibra de carbono). Productos fabricados dispersando grafito de 5 tipo grafeno y un material de reforzamiento en estos materiales inorganicos como un material de base.mortar), fibroyeso panels, ceramics and C / C compounds (carbon composite materials reinforced with carbon fiber). Products manufactured by dispersing graphite of 5 graphene type and a reinforcing material in these inorganic materials as a base material.

(3) Materiales metalicos como un material de base(3) Metal materials as a base material

Miembros de estructuras, tales como aluminio, acero inoxidable, titanio, laton, bronce, acero blando, aleacion de niquel y carburo de tungsteno (para miembros de 10 estructuras, metal reforzado con fibras y similares). Productos que estan fabricados dispersando grafito de tipo grafeno y un material de reforzamiento en estos materiales metalicos como un material de base.Members of structures, such as aluminum, stainless steel, titanium, brass, bronze, soft steel, nickel alloy and tungsten carbide (for members of 10 structures, fiber reinforced metal and the like). Products that are manufactured by dispersing graphene-type graphite and a reinforcing material in these metallic materials as a base material.

55

1010

15fifteen

20twenty

2525

3030

REIVINDICACIONES

1. - Un material de reforzamiento compuesto, caracterizado por que comprende al menos un material de carbono a base de grafito y un material de reforzamiento dispersados en un material de base,1. - A composite reinforcement material, characterized in that it comprises at least one graphite-based carbon material and a reinforcing material dispersed in a base material,

teniendo el material de carbono a base de grafito una capa de grafito romboedrico (3R) y una capa de grafito hexagonal (2H), en donde la Proportion (3R) de la capa de grafito romboedrico (3R) y la capa de grafito hexagonal (2H), basandose en un metodo de difraccion de rayos X que se define por la siguiente Ecuacion 1, es del 31 % o mas:the graphite-based carbon material having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), where the Proportion (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer ( 2H), based on an X-ray diffraction method that is defined by the following Equation 1, is 31% or more:

Proporcion (3R) = P3/(P3+P4)*100 •••• (Ecuacion 1)Proportion (3R) = P3 / (P3 + P4) * 100 •••• (Equation 1)

en la quein which

P3 es la intensidad de pico de un plano (101) de la capa de grafito romboedrico (3R) basada en el metodo de difraccion de rayos X, yP3 is the peak intensity of a plane (101) of the rhombohedral graphite layer (3R) based on the X-ray diffraction method, and

P4 es la intensidad de pico de un plano (101) de la capa de grafito hexagonal (2H) basada en el metodo de difraccion de rayos X.P4 is the peak intensity of a plane (101) of the hexagonal graphite layer (2H) based on the X-ray diffraction method.

2. - El material de reforzamiento compuesto de acuerdo con la reivindicacion 1, caracterizado por que el material de reforzamiento es una microparticula que tiene una forma de hilo, lineal o de tipo copos.2. - The composite reinforcement material according to claim 1, characterized in that the reinforcement material is a microparticle having a wire, linear or flake-like shape.

3. - El material de reforzamiento compuesto de acuerdo con la reivindicacion 2, caracterizado por que la microparticula tiene una relation de aspecto de 5:1 o mas.3. - The composite reinforcement material according to claim 2, characterized in that the microparticle has an aspect ratio of 5: 1 or more.

4. - El material de reforzamiento compuesto de acuerdo con la reivindicacion 1 o 2, caracterizado por que la relacion de peso del material de carbono a base de grafito al material de reforzamiento es 1/100 o mas, y menos de 10.4. - The composite reinforcement material according to claim 1 or 2, characterized in that the weight ratio of the graphite-based carbon material to the reinforcement material is 1/100 or more, and less than 10.

5. - El material de reforzamiento compuesto de acuerdo con la reivindicacion 1, caracterizado por que el material de base es un polimero.5. - The composite reinforcement material according to claim 1, characterized in that the base material is a polymer.

6. - El material de reforzamiento compuesto de acuerdo con la reivindicacion 1, caracterizado por que el material de base es un material inorganico.6. - The composite reinforcement material according to claim 1, characterized in that the base material is an inorganic material.

Claims (2)

1010 15fifteen 7. Un procedimiento de obtencion de un material de reforzamiento compuesto, caracterizado por que comprende dispersar al menos un material de carbono basado en grafito y un material de reforzamiento en un material de base, exfoliando asi una parte o el todo de dicho material de carbono basado en grafito,7. A method of obtaining a composite reinforcing material, characterized in that it comprises dispersing at least one carbon material based on graphite and a reinforcing material in a base material, thus exfoliating a part or all of said carbon material based on graphite, teniendo el material de carbono a base de grafito una capa de grafito romboedrico (3R) y una capa de grafito hexagonal (2H), en donde la Proporcion (3R) de la capa de grafito romboedrico (3R) y la capa de grafito hexagonal (2H), basandose en un metodo de difraccion de rayos X que se define por la siguiente Ecuacion 1, es del 31 % o mas: Proporcion (3R) = P3/(P3+P4)*100 •••• (Ecuacion 1) en la quethe graphite-based carbon material having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), where the Proportion (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer ( 2H), based on an X-ray diffraction method that is defined by the following Equation 1, is 31% or more: Proportion (3R) = P3 / (P3 + P4) * 100 •••• (Equation 1) in which P3 es la intensidad de pico de un plano (101) de la capa de grafito romboedrico (3R) basada en el metodo de difraccion de rayos X, yP3 is the peak intensity of a plane (101) of the rhombohedral graphite layer (3R) based on the X-ray diffraction method, and P4 es la intensidad de pico de un plano (101) de la capa de grafito hexagonal (2H) basada en el metodo de difraccion de rayos X.P4 is the peak intensity of a plane (101) of the hexagonal graphite layer (2H) based on the X-ray diffraction method. imagen1image 1
ES201790004A 2014-09-09 2015-03-19 Composite reinforcement material and obtaining procedure Expired - Fee Related ES2662959B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/073838 WO2016038692A1 (en) 2014-09-09 2014-09-09 Graphite-based carbon material which is used as graphene precursor, graphene dispersion and graphene composite including same, and method for producing same
WO14073838JP 2014-09-09
PCT/JP2015/055977 WO2016002254A1 (en) 2014-09-09 2015-02-27 Graphite-type carbon material used as graphene precursor and method for producing same
WO15055977JP 2015-02-27
PCT/JP2015/058331 WO2015198657A1 (en) 2014-09-09 2015-03-19 Composite reinforcement raw material and shaping material

Publications (3)

Publication Number Publication Date
ES2662959A2 ES2662959A2 (en) 2018-04-10
ES2662959R1 ES2662959R1 (en) 2018-05-29
ES2662959B1 true ES2662959B1 (en) 2018-12-05

Family

ID=52823288

Family Applications (5)

Application Number Title Priority Date Filing Date
ES201730746A Expired - Fee Related ES2617036B1 (en) 2014-09-09 2015-02-27 A GRAPHENE COMPOSITE MATERIAL AND METHOD TO PRODUCE IT
ES201690059A Expired - Fee Related ES2601130B1 (en) 2014-09-09 2015-02-27 CARBON BASED MATERIAL IN THE FORM OF GRAPHITE THAT IS USEFUL AS A GRAPHENE PRECURSOR AND METHOD TO PRODUCE IT
ES201790003A Expired - Fee Related ES2652487B1 (en) 2014-09-09 2015-03-13 Conductive composite material, power storage device, conductive dispersion, thermally conductive compound and method of manufacturing a composite conductive material
ES201790004A Expired - Fee Related ES2662959B1 (en) 2014-09-09 2015-03-19 Composite reinforcement material and obtaining procedure
ES201790005A Expired - Fee Related ES2662960B1 (en) 2014-09-09 2015-03-23 COMPOSITE LUBRICANT MATERIAL, ENGINE OIL, FAT AND LUBRICANT, AND METHOD OF OBTAINING

Family Applications Before (3)

Application Number Title Priority Date Filing Date
ES201730746A Expired - Fee Related ES2617036B1 (en) 2014-09-09 2015-02-27 A GRAPHENE COMPOSITE MATERIAL AND METHOD TO PRODUCE IT
ES201690059A Expired - Fee Related ES2601130B1 (en) 2014-09-09 2015-02-27 CARBON BASED MATERIAL IN THE FORM OF GRAPHITE THAT IS USEFUL AS A GRAPHENE PRECURSOR AND METHOD TO PRODUCE IT
ES201790003A Expired - Fee Related ES2652487B1 (en) 2014-09-09 2015-03-13 Conductive composite material, power storage device, conductive dispersion, thermally conductive compound and method of manufacturing a composite conductive material

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES201790005A Expired - Fee Related ES2662960B1 (en) 2014-09-09 2015-03-23 COMPOSITE LUBRICANT MATERIAL, ENGINE OIL, FAT AND LUBRICANT, AND METHOD OF OBTAINING

Country Status (27)

Country Link
US (7) US20170174521A1 (en)
EP (6) EP3868845A1 (en)
JP (1) JP5688669B1 (en)
KR (6) KR101600837B1 (en)
CN (4) CN105452159B (en)
AP (4) AP2016009657A0 (en)
AR (1) AR101795A1 (en)
AU (2) AU2015242994B1 (en)
BR (4) BR112017003673B1 (en)
CA (3) CA2916783C (en)
CL (4) CL2017000569A1 (en)
CO (4) CO2017000713A2 (en)
EA (5) EA034507B1 (en)
ES (5) ES2617036B1 (en)
GB (1) GB2528790B (en)
HK (4) HK1223082A1 (en)
IL (5) IL244120B (en)
MA (1) MA40129A1 (en)
MX (4) MX2016014793A (en)
MY (5) MY181036A (en)
PE (4) PE20170824A1 (en)
PH (5) PH12017500399B1 (en)
PL (5) PL420253A1 (en)
SG (4) SG10201508781XA (en)
TW (5) TWI558661B (en)
WO (4) WO2016038692A1 (en)
ZA (1) ZA201607142B (en)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2955969A1 (en) 2014-05-16 2015-11-19 Divergent Technologies, Inc. Modular formed nodes for vehicle chassis and their methods of use
CA2953815A1 (en) 2014-07-02 2016-01-07 Divergent Technologies, Inc. Systems and methods for fabricating joint members
US9552900B2 (en) 2014-09-09 2017-01-24 Graphene Platform Corporation Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite
WO2016038692A1 (en) 2014-09-09 2016-03-17 グラフェンプラットフォーム株式会社 Graphite-based carbon material which is used as graphene precursor, graphene dispersion and graphene composite including same, and method for producing same
US20180272565A1 (en) * 2015-12-03 2018-09-27 Nanotek Instruments, Inc. Chemical-free production of graphene-polymer pellets and graphene-polymer nanocomposite products
US9994741B2 (en) * 2015-12-13 2018-06-12 International Business Machines Corporation Enhanced adhesive materials and processes for 3D applications
KR102522012B1 (en) * 2015-12-23 2023-04-13 삼성전자주식회사 Conductive element and electronic devices comprising the same
US10685763B2 (en) 2016-01-19 2020-06-16 Xerox Corporation Conductive polymer composite
CN105836737B (en) * 2016-05-06 2018-11-09 上海利物盛企业集团有限公司 A method of it is combined with jet stream stripping using ultrasound stripping and prepares graphene
KR20190006593A (en) 2016-06-09 2019-01-18 디버전트 테크놀로지스, 인크. Systems and methods for arc and node design and fabrication
US10177375B2 (en) 2016-08-10 2019-01-08 Energizer Brands, Llc Alkaline battery cathode structures incorporating multiple carbon materials and orientations
CN106336931A (en) * 2016-08-19 2017-01-18 颜凤生 Process for preparing graphene plant compound engine oil
DK179577B1 (en) 2016-10-10 2019-02-20 Widex A/S Binaural hearing aid system and a method of operating a binaural hearing aid system
CN109863117B (en) * 2016-10-19 2023-04-18 创业发展联盟技术有限公司 Graphite/graphene composite material, heat collector, heat transfer body, heat radiator and heat radiation system
CN106564175B (en) * 2016-10-21 2018-11-30 成都新柯力化工科技有限公司 A kind of graphene conductive masterbatch and preparation method thereof
CN106542525B (en) * 2016-10-27 2018-09-11 董兰田 Continuous adhesive tape legal system takes stripping degumming and the packing method of graphene
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
CN110418816B (en) * 2017-03-16 2022-05-31 利腾股份有限公司 Carbon and elastomer integration
DE102017109759A1 (en) 2017-04-07 2018-10-11 Bernd Burchard Magnetic field sensitive device with a sub-device superconducting at room temperature
DE102017107597B4 (en) 2017-04-07 2019-05-02 Bernd Burchard Components with a room temperature superconducting device and method for their preparation
DE112018001893A5 (en) 2017-04-07 2020-01-02 Bernd Burchard Material for room temperature superconductivity and its application
WO2018195170A1 (en) * 2017-04-21 2018-10-25 The Regents Of The University Of California Methods and applications for conductive graphene inks
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
KR102176629B1 (en) 2017-04-28 2020-11-09 주식회사 엘지화학 Method for preparing a graphene
TWI650287B (en) * 2017-05-04 2019-02-11 中原大學 Heat dissipation slurry and heat dissipation structure manufacturing method
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
KR20200014721A (en) * 2017-06-05 2020-02-11 세키스이가가쿠 고교가부시키가이샤 Carbon material-containing dispersion liquid, slurry for electrode formation and manufacturing method of electrode for nonaqueous electrolyte secondary battery
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
WO2018235919A1 (en) * 2017-06-23 2018-12-27 積水化学工業株式会社 Heat dissipation sheet, method for producing heat dissipation sheet, and laminate
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
CN107603201B (en) * 2017-09-07 2021-02-26 金华造物新材料有限公司 3D printing photosensitive resin for precision casting of ornaments and dentistry
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
KR101864876B1 (en) * 2018-01-17 2018-06-11 (주)비올에너지 Engine oil additive for enhancing engine function and improving fuel efficiency
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
CN108630638A (en) * 2018-03-30 2018-10-09 北京绿能芯创电子科技有限公司 Power device heat dissipating method and power device
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
CN110408132B (en) * 2018-04-26 2021-12-21 成都创威新材料有限公司 Graphene/butyl rubber composite master batch and preparation method of composite material
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
IT201800005314A1 (en) * 2018-05-14 2019-11-14 PASTA WITH A HIGH CONCENTRATION OF AN EXFOLIATED STRATIFIED MATERIAL AND PROCEDURE FOR ITS PREPARATION
EP3795985B1 (en) 2018-05-14 2024-09-04 Rigaku Corporation Distinguishing method of graphene precursor, and distinguishing apparatus and distinguishing program thereof
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
CN108795547B (en) * 2018-07-26 2021-03-23 颜凤生 Plant compound engine oil containing graphene-inorganic nonmetallic fibers
JP7407711B2 (en) 2018-07-30 2024-01-04 株式会社Adeka Composite material manufacturing method
WO2020027023A1 (en) 2018-07-30 2020-02-06 株式会社Adeka Composite material
KR20210038872A (en) 2018-07-30 2021-04-08 가부시키가이샤 아데카 Composite material
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11565774B2 (en) 2018-10-03 2023-01-31 Adam Jon Noah Additive manufactured water resistant closed-cell lattice structure for marine hull cavities
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
KR20210087019A (en) 2018-10-26 2021-07-09 가부시키가이샤 아데카 composite material
WO2020086841A1 (en) 2018-10-26 2020-04-30 The University Of Tulsa Vacuum-free, hydrogen-free catalytic synthesis of graphene from solid hydrocarbons
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
JP7197089B2 (en) * 2018-12-03 2022-12-27 国立研究開発法人産業技術総合研究所 GRAPHITE-BASED POROUS CARBON MATERIAL FOR ELECTROCHEMICAL CAPACITOR ELECTRODE, METHOD FOR MANUFACTURING SAME, ELECTROCHEMICAL CAPACITOR ELECTRODE, AND ELECTROCHEMICAL CAPACITOR
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
KR102172470B1 (en) * 2019-01-29 2020-10-29 인제대학교 산학협력단 Functional photo-curable polymer for 3D printing
CN109553366B (en) * 2019-01-31 2020-09-22 深圳大学 Graphene modified cement-based composite material and preparation method thereof
WO2020158887A1 (en) * 2019-02-01 2020-08-06 日亜化学工業株式会社 Method for manufacturing electrode active material for non-aqueous secondary cell
CN109880666B (en) * 2019-03-13 2022-04-15 上海鸣起能源科技有限公司 Preparation method and refining method of ester synthetic oil
JP7451088B2 (en) * 2019-03-29 2024-03-18 大阪瓦斯株式会社 thermal conductive material
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
WO2021039912A1 (en) * 2019-08-27 2021-03-04 日立金属株式会社 Wc-based super-hard alloy powder, wc-based super-hard alloy member, and method for producing wc-based super-hard alloy member
CN110591797A (en) * 2019-09-10 2019-12-20 古浪县荣鑫农机有限公司 Agricultural machinery lubricating oil and preparation method thereof
CN110643410A (en) * 2019-10-19 2020-01-03 晋江市三豪汽车配件有限公司 Synthetic power engine oil and preparation method thereof
CN114829557A (en) * 2019-12-09 2022-07-29 Dic株式会社 Lubricant and lubricating composition
US11910495B2 (en) * 2019-12-13 2024-02-20 Goodrich Corporation Conductive ink with enhanced mechanical fatigue resistance
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
WO2021168394A1 (en) * 2020-02-20 2021-08-26 Xg Sciences, Inc. Graphene-based lubricant additives and lubricants
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
CN111302334B (en) * 2020-02-26 2022-04-29 辽宁科技大学 Preparation method of in-situ reduction graphene engine oil energy-saving improver
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
JP2021150301A (en) * 2020-03-16 2021-09-27 株式会社村田製作所 Multilayer ceramic capacitor
JP7266558B2 (en) 2020-06-30 2023-04-28 コーセル株式会社 switching power supply
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
CN112516685A (en) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 Visible light photocatalysis air purification glass fiber filter element and preparation method thereof
CN112573511A (en) * 2020-12-03 2021-03-30 铜仁学院 Simple preparation method of graphene
US12083596B2 (en) 2020-12-21 2024-09-10 Divergent Technologies, Inc. Thermal elements for disassembly of node-based adhesively bonded structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
US20220288850A1 (en) 2021-03-09 2022-09-15 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
EP4326536A1 (en) 2021-04-23 2024-02-28 Divergent Technologies, Inc. Removal of supports, and other materials from surface, and within hollow 3d printed parts
US20240198419A1 (en) * 2021-04-23 2024-06-20 Blue Current, Inc. Apparatus and methods for inorganic electrolyte synthesis
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
US11572521B1 (en) 2021-11-12 2023-02-07 Hamilton Sundstrand Corporation Corrosion resistant dry film lubricants

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL39629C (en) 1934-07-06 1936-12-15
CA2138753A1 (en) * 1993-12-22 1995-06-23 Serge Flandrois Carbon anode for a rechargeable lithium electrochemical generator, and manufacturing process thereof
US5700298A (en) 1996-03-15 1997-12-23 Valence Technology, Inc. Carbon anode for lithium ion electrochemical cell
JP2000348727A (en) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
AU2001245786A1 (en) * 2000-03-17 2001-10-03 Hyperion Catalysis International Inc. Carbon nanotubes in fuels and lubricants
JP4656710B2 (en) * 2000-09-29 2011-03-23 三洋電機株式会社 Non-aqueous electrolyte secondary battery
AU2002341540A1 (en) * 2002-05-30 2003-12-31 Ashland Inc. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
US7071258B1 (en) * 2002-10-21 2006-07-04 Nanotek Instruments, Inc. Nano-scaled graphene plates
KR101156012B1 (en) 2002-12-26 2012-06-18 쇼와 덴코 가부시키가이샤 Carbonaceous material for electrically conductive material and use thereof
US7157517B2 (en) * 2003-07-16 2007-01-02 Wayne State University Method of delaminating a graphite structure with a coating agent in a supercritical fluid
US7172745B1 (en) 2003-07-25 2007-02-06 Chien-Min Sung Synthesis of diamond particles in a metal matrix
JP4738039B2 (en) * 2005-03-28 2011-08-03 三洋電機株式会社 Method for producing graphite-based carbon material
JP3920310B1 (en) * 2006-03-10 2007-05-30 株式会社パワーシステム Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2007277500A (en) 2006-04-06 2007-10-25 Makoto Sakai Device for enhancing surface activity of lubricating oil
JP4957383B2 (en) 2007-05-29 2012-06-20 パナソニック株式会社 Hydrodynamic bearing device using lubricating oil, motor using the same, and compressor using lubricating oil
JP5137066B2 (en) 2007-09-10 2013-02-06 国立大学法人福井大学 Graphene sheet manufacturing method
JP5121663B2 (en) 2007-10-15 2013-01-16 化薬アクゾ株式会社 Maleic anhydride-modified polypropylene and resin composition containing the same
WO2009134492A2 (en) * 2008-02-05 2009-11-05 Aksay Ilhan A Functionalized graphene sheets having high carbon to oxygen ratios
KR101600108B1 (en) * 2008-02-28 2016-03-04 바스프 에스이 Graphite nanoplatelets and compositions
GB2464085A (en) * 2008-06-07 2010-04-07 Hexcel Composites Ltd Improved Conductivity of Resin Materials and Composite Materials
US20100055464A1 (en) 2008-07-08 2010-03-04 Chien-Min Sung Graphene and Hexagonal Boron Nitride Planes and Associated Methods
KR101047983B1 (en) * 2008-07-31 2011-07-13 한국과학기술연구원 AAA laminated graphite and its manufacturing method
EP2351706B1 (en) * 2008-08-28 2017-07-05 National University Corporation Nagoya University Method for producing graphene/sic composite material and graphene/sic composite material obtained by same
CN101381511A (en) * 2008-10-24 2009-03-11 南开大学 Mono-layer graphite and polymer compound material and preparation and application thereof
CN102272277A (en) * 2008-12-30 2011-12-07 3M创新有限公司 Lubricant composition and method of forming
KR20180021209A (en) * 2009-02-03 2018-02-28 이머리스 그래파이트 앤드 카본 스위춰랜드 리미티드 New graphite material
WO2010095716A1 (en) 2009-02-20 2010-08-26 三菱化学株式会社 Carbon material for lithium ion secondary batteries
JP2010254822A (en) 2009-04-24 2010-11-11 Ube Ind Ltd Thermoplastic resin composition and molding formed thereof
JP5457101B2 (en) * 2009-08-05 2014-04-02 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US8222190B2 (en) * 2009-08-19 2012-07-17 Nanotek Instruments, Inc. Nano graphene-modified lubricant
CN101752561B (en) 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 Graphite alkene iron lithium phosphate positive active material, preparing method thereof, and lithium ion twice battery based on the graphite alkene modified iron lithium phosphate positive active material
US20130196123A1 (en) * 2010-03-16 2013-08-01 Basf Se Method for marking polymer compositions containing graphite nanoplatelets
EP2553007A4 (en) * 2010-03-26 2014-11-19 Univ Hawaii Nanomaterial-reinforced resins and related materials
SG10201503599WA (en) 2010-06-25 2015-06-29 Univ Singapore Methods of forming graphene by graphite exfoliation
FR2965274A1 (en) * 2010-09-28 2012-03-30 Total Raffinage Marketing LUBRICANT COMPOSITION
KR101137673B1 (en) 2010-10-07 2012-04-20 이재환 Composition of nano composite
WO2012073861A1 (en) 2010-11-29 2012-06-07 積水化学工業株式会社 Carbonaceous material, process for producing carbonaceous material, process for producing flaked graphite, and flaked graphite
KR102228254B1 (en) * 2011-03-15 2021-03-17 피어리스 월드와이드, 엘엘씨 Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives
KR101223970B1 (en) 2011-04-21 2013-01-22 쇼와 덴코 가부시키가이샤 Graphite material, carbonaceous material for battery electrodes, and batteries
JP2012250883A (en) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd Method for producing surface-modified carbon material, resin composite material, and method for producing resin composite material
GB201109962D0 (en) 2011-06-14 2011-07-27 Univ Durham Process for producing graphene
US20130022530A1 (en) * 2011-07-19 2013-01-24 Robert Angelo Mercuri Production Of Exfoliated Graphite
FR2978021B1 (en) * 2011-07-22 2013-12-20 Dior Christian Parfums SYSTEM FOR PACKAGING AND APPLYING A PRODUCT, IN PARTICULAR A COSMETIC PRODUCT
JP2013077475A (en) 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive auxiliary agent for positive electrode material of lithium ion secondary battery
JP2013079348A (en) 2011-10-05 2013-05-02 Nissan Motor Co Ltd Resin composition
KR20200029625A (en) 2011-12-28 2020-03-18 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
EP2832798B1 (en) * 2012-03-27 2019-07-24 Sekisui Chemical Co., Ltd. Resin composite material
JP5805572B2 (en) 2012-03-28 2015-11-04 株式会社豊田中央研究所 Sliding member and manufacturing method thereof
WO2013146144A1 (en) 2012-03-30 2013-10-03 日本電気株式会社 Negative electrode material for secondary cell, and secondary cell
JP2013233790A (en) * 2012-04-11 2013-11-21 Sekisui Chem Co Ltd Method for manufacturing resin molded article, and resin molded article
US20140378599A1 (en) 2012-04-04 2014-12-25 Sekisui Chemical Co., Ltd. Process for manufacturing resin composite material, and resin composite material
US8486870B1 (en) 2012-07-02 2013-07-16 Ajay P. Malshe Textured surfaces to enhance nano-lubrication
US20140023864A1 (en) 2012-07-19 2014-01-23 Anirudha V. Sumant Superlubricating Graphene Films
EP2889937B1 (en) 2012-08-23 2018-10-03 Mitsubishi Chemical Corporation Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
US20150232664A1 (en) 2012-09-07 2015-08-20 Sabic Innovative Plastics Ip B.V. Thermally conductive blended polymer compositions with improved flame retardancy
JP6127426B2 (en) * 2012-09-26 2017-05-17 三菱化学株式会社 Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
GB201218952D0 (en) * 2012-10-22 2012-12-05 Cambridge Entpr Ltd Functional inks based on layered materials and printed layered materials
JPWO2014087992A1 (en) * 2012-12-04 2017-01-05 昭和電工株式会社 Graphene sheet composition
US10374223B2 (en) 2013-01-23 2019-08-06 Toray Industries, Inc. Positive electrode active material/graphene composite particles, positive electrode material for lithium ion cell, and method for manufacturing positive electrode active material/graphene composite particles
JP2014210916A (en) 2013-04-05 2014-11-13 積水化学工業株式会社 Resin composite material
JP2014201676A (en) 2013-04-05 2014-10-27 積水化学工業株式会社 Method for producing resin composite material
US8957003B2 (en) 2013-05-16 2015-02-17 Enerage Inc. Modified lubricant
CN103834235A (en) * 2014-02-20 2014-06-04 江苏格美高科技发展有限公司 Conductive graphene carbon slurry printing ink and preparation method thereof
WO2016038692A1 (en) 2014-09-09 2016-03-17 グラフェンプラットフォーム株式会社 Graphite-based carbon material which is used as graphene precursor, graphene dispersion and graphene composite including same, and method for producing same

Also Published As

Publication number Publication date
PH12017500399A1 (en) 2017-07-17
KR20160041051A (en) 2016-04-15
TW201601997A (en) 2016-01-16
PL420790A1 (en) 2017-07-03
MA40129A1 (en) 2017-09-29
BR112017004639A2 (en) 2018-05-08
WO2016002268A1 (en) 2016-01-07
US9862834B2 (en) 2018-01-09
WO2016038692A1 (en) 2016-03-17
IL248763A0 (en) 2017-01-31
ES2601130R1 (en) 2017-03-06
US20170174898A1 (en) 2017-06-22
EA201790338A1 (en) 2017-05-31
US9428393B2 (en) 2016-08-30
CL2017000570A1 (en) 2017-11-03
MX2017002917A (en) 2017-11-13
ES2601130B1 (en) 2017-09-25
PH12017500397A1 (en) 2017-07-17
PL3002322T3 (en) 2020-03-31
JP5688669B1 (en) 2015-03-25
TWI532238B (en) 2016-05-01
TWI544070B (en) 2016-08-01
MX2016014793A (en) 2017-03-10
GB2528790B (en) 2017-04-05
ES2662960A2 (en) 2018-04-10
JPWO2016038692A1 (en) 2017-04-27
US9752035B2 (en) 2017-09-05
ES2617036A8 (en) 2017-09-29
GB201513701D0 (en) 2015-09-16
CO2017003180A2 (en) 2017-06-20
TW201604131A (en) 2016-02-01
AP2017009815A0 (en) 2017-03-31
TW201604275A (en) 2016-02-01
EA201790450A1 (en) 2017-05-31
CO2017000713A2 (en) 2017-06-30
EA030013B1 (en) 2018-06-29
CA2916788A1 (en) 2015-12-30
KR101581363B1 (en) 2015-12-30
PL420789A1 (en) 2017-07-03
CL2017000569A1 (en) 2017-11-10
SG11201600970WA (en) 2016-03-30
ES2617036A2 (en) 2017-06-15
MY163241A (en) 2017-08-30
ES2652487R1 (en) 2018-02-08
EP3002317B1 (en) 2022-08-24
HK1223345A1 (en) 2017-07-28
AP2016009657A0 (en) 2016-12-31
EA030118B1 (en) 2018-06-29
ES2662960R1 (en) 2018-06-04
CN105517953A (en) 2016-04-20
ES2601130A2 (en) 2017-02-14
EP2993219A4 (en) 2016-04-06
ES2652487B1 (en) 2018-09-06
CN105517953B (en) 2017-07-04
WO2016002254A1 (en) 2016-01-07
KR101604683B1 (en) 2016-03-18
ES2662959R1 (en) 2018-05-29
EP2982646A1 (en) 2016-02-10
BR112017004525A2 (en) 2018-05-08
MX2017002914A (en) 2017-08-10
EP3002322B1 (en) 2019-08-07
IL244662B (en) 2019-05-30
KR101588689B1 (en) 2016-01-27
EA029994B1 (en) 2018-06-29
CN105518114A (en) 2016-04-20
IL244662A0 (en) 2016-04-21
SG10201508781XA (en) 2016-04-28
TWI558661B (en) 2016-11-21
US20170179490A1 (en) 2017-06-22
PE20170822A1 (en) 2017-07-04
EA201890408A1 (en) 2018-10-31
EP3002317A4 (en) 2016-04-06
AP2017009814A0 (en) 2017-03-31
US20170174521A1 (en) 2017-06-22
ZA201607142B (en) 2017-08-30
MX2017002915A (en) 2017-12-07
EA030012B1 (en) 2018-06-29
MY163254A (en) 2017-08-30
PL420253A1 (en) 2017-04-24
EP2982646B1 (en) 2021-12-01
CN105518072B (en) 2017-11-07
CO2017003186A2 (en) 2017-07-19
CA2916795A1 (en) 2016-01-07
CA2916795C (en) 2017-12-05
US9815987B2 (en) 2017-11-14
PH12017500396A1 (en) 2017-07-17
BR112017003673B1 (en) 2022-03-03
PH12017500399B1 (en) 2017-07-17
HK1223392A1 (en) 2017-07-28
CA2916783C (en) 2017-08-08
AR101795A1 (en) 2017-01-11
PE20170825A1 (en) 2017-07-04
US9862833B2 (en) 2018-01-09
PE20170823A1 (en) 2017-07-04
US10421863B2 (en) 2019-09-24
AU2015242995A1 (en) 2016-03-10
CL2017000568A1 (en) 2017-11-03
EP3002322A1 (en) 2016-04-06
AU2015242994B1 (en) 2016-01-28
ES2652487A2 (en) 2018-02-02
GB2528790A (en) 2016-02-03
CA2916783A1 (en) 2016-01-07
EP2982646A4 (en) 2016-04-06
US20160194474A1 (en) 2016-07-07
BR112017004527A2 (en) 2018-05-08
IL244120B (en) 2018-01-31
TWI558660B (en) 2016-11-21
HK1223082A1 (en) 2017-07-21
EP3007251B1 (en) 2022-09-14
EA034507B1 (en) 2020-02-14
CN105452159B (en) 2016-12-21
EP2993219A1 (en) 2016-03-09
IL244667A (en) 2017-02-28
ES2617036R1 (en) 2017-11-21
AU2015242993A1 (en) 2016-03-10
TW201612106A (en) 2016-04-01
ES2617036B1 (en) 2018-05-11
MY181036A (en) 2020-12-16
CN105518072A (en) 2016-04-20
CN105518114B (en) 2017-11-07
SG11201600969RA (en) 2016-03-30
IL244175A0 (en) 2016-04-21
KR101600837B1 (en) 2016-03-10
CL2017000567A1 (en) 2017-11-03
TW201607129A (en) 2016-02-16
ES2662960B1 (en) 2018-12-13
EP3007251A1 (en) 2016-04-13
US20180118950A1 (en) 2018-05-03
WO2016002261A1 (en) 2016-01-07
CA2916788C (en) 2016-11-08
TWI543933B (en) 2016-08-01
KR101901876B1 (en) 2018-09-28
KR101600834B1 (en) 2016-03-08
PH12017500398A1 (en) 2017-07-17
PL233494B1 (en) 2019-10-31
ES2662959A2 (en) 2018-04-10
EP3007251A4 (en) 2016-04-13
EP3002317A1 (en) 2016-04-06
BR112017004639B1 (en) 2021-02-02
PE20170824A1 (en) 2017-07-04
PH12017500397B1 (en) 2017-07-17
SG11201600972YA (en) 2016-03-30
IL248763B (en) 2018-12-31
EA201790171A1 (en) 2017-05-31
CO2017003189A2 (en) 2017-07-28
MY165125A (en) 2018-02-28
AU2015242993B2 (en) 2016-03-31
EA201790158A1 (en) 2017-05-31
US20170175023A1 (en) 2017-06-22
US20160101980A1 (en) 2016-04-14
MY163243A (en) 2017-08-30
CN105452159A (en) 2016-03-30
IL244667A0 (en) 2016-04-21
IL244120A0 (en) 2016-04-21
PH12018501050A1 (en) 2021-06-07
IL244175B (en) 2018-01-31
AP2017009816A0 (en) 2017-03-31
PL420791A1 (en) 2017-07-03
BR112017003673A2 (en) 2018-07-03
EP3868845A1 (en) 2021-08-25
HK1223390A1 (en) 2017-07-28

Similar Documents

Publication Publication Date Title
ES2662959B1 (en) Composite reinforcement material and obtaining procedure
TWI781297B (en) Composite materials systems containing carbon and resin
WO2015198657A1 (en) Composite reinforcement raw material and shaping material
Li et al. Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites
JP5777193B1 (en) Composite reinforced material and manufacturing method thereof
AU2015234343B2 (en) Graphene composite and method of producing the same
KR101936865B1 (en) Method for manufacturing nanopowder through grinding silicon carbide by chemical-physical hybrid method and the nanopowder
Ho Processing and Properties of Thermoplastic Composites Containing Graphene Nanoplatelets
OA18234A (en) Composite reinforcement raw material and shaping material.
GB2532370A (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
CA2894774A1 (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2662959

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20181205

FD2A Announcement of lapse in spain

Effective date: 20230727