ES2628579T3 - Sistema para producir radiación electromagnética - Google Patents

Sistema para producir radiación electromagnética Download PDF

Info

Publication number
ES2628579T3
ES2628579T3 ES15197269.2T ES15197269T ES2628579T3 ES 2628579 T3 ES2628579 T3 ES 2628579T3 ES 15197269 T ES15197269 T ES 15197269T ES 2628579 T3 ES2628579 T3 ES 2628579T3
Authority
ES
Spain
Prior art keywords
drift tube
smith
cylindrical
purcell
grid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES15197269.2T
Other languages
English (en)
Inventor
Curtis A. Birnbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Fusion Systems LLC
Original Assignee
Advanced Fusion Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39169672&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2628579(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Advanced Fusion Systems LLC filed Critical Advanced Fusion Systems LLC
Application granted granted Critical
Publication of ES2628579T3 publication Critical patent/ES2628579T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/03Thermonuclear fusion reactors with inertial plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/23Optical systems, e.g. for irradiating targets, for heating plasma or for plasma diagnostics
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/008Fusion by pressure waves
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

Un sistema para producir radiación electromagnética con una mejora a partir de un tubo de deriva que contiene una estructura Smith-Purcell cilíndrica, que comprende: a) un oscilador lineal aislado magnéticamente que tiene una cavidad (98) resonante cilíndrica que contiene un cañón de electrones de ondas móviles y un ánodo (64) de cooperación, y que contiene además un tubo (122) de deriva colocado entre el cañón de electrones de ondas móviles y el ánodo (64) de cooperación; b) el tubo (122) de deriva que está formado de un elemento conductor cilíndrico hueco que está colocado dentro de dicha cavidad (98) resonante y que está aislado eléctricamente del cañón de electrones de ondas móviles, en donde un eje cilíndrico del tubo (122) de deriva es coaxial con un eje principal de la cavidad cilíndrica resonante en una región entre dicho cañón de electrones y dicho ánodo (64); c) el tubo (122) de deriva que tiene una superficie interna y un par de extremos; el elemento conductor cilíndrico hueco que está mejorado conteniendo una superficie (123) de rejilla Smith-Purcell cilíndrica formada sobre la superficie interna del tubo (122) de deriva; dicha superficie (123) de rejilla que comprende una superficie de rejilla de reflexión que tiene una serie de crestas separadas por surcos respectivos; dicha superficie de rejilla de reflexión que se extiende durante al menos una mayoría de la longitud del tubo (122) de deriva; d) el tubo (122) de deriva que está adaptado de modo que un haz de electrones, del cañón de electrones, pasa a través del espacio interno del tubo de deriva e interactúa con la superficie (123) de rejilla Smith-Purcell interna, para producir radiación de RF por el Efecto Smith-Purcell; y e) el tubo (122) de deriva que está adaptado además de modo que la separación, el ángulo de la cara y la forma de la superficie (123) de rejilla Smith-Purcell, y una energía del haz de electrones son determinantes de la frecuencia de la radiación de RF.

Description

5
10
15
20
25
30
35
40
45
50
DESCRIPCION
Sistema para producir radiacion electromagnetica Referencia cruzada a solicitudes relacionadas
Esta solicitud es una solicitud divisional de la Solicitud de Patente de EE.UU. N° 11/754.928, presentada el 29 de mayo de 2007, para Metodo y Sistema para Reacciones de Fusion Controladas, ahora la Patente de EE.UU. N° 9.036.765 emitida el 19 de mayo de 2015, reivindicando la prioridad a la Solicitud de Patente Provisional de EE.UU. N° 60/809.453 titulada “Method & Apparatus for Controlled Fusion Reactions” presentada el 30 de mayo de 2006.
Campo de la invencion
La presente invencion se refiere a un sistema para producir radiacion electromagnetica que incorpora un tubo de deriva modificado para permitir la salida de frecuencias mas altas desde una fuente de RF de alta potencia que incorpora un tubo de deriva.
Antecedentes de la invencion
Los Osciladores Lineales Aislados Magneticamente (MILO) de la tecnica anterior son fuentes de RF de alta potencia, que tienen salidas tfpicas entre 300 MHz y 3,5 GHz. Para diversas aplicaciones, sena deseable proporcionar una fuente de RF de alta potencia que pueda lograr frecuencias incluso mas altas. Un generador de RF de tubo de deriva se describe en el documento Ca 2 392 852 A1.
Compendio de la invencion
La presente invencion se refiere a un sistema para producir radiacion electromagnetica que incorpora un tubo de deriva que incluye un elemento conductor cilmdrico hueco que tiene una superficie de rejilla formada en su superficie interna, con los extremos del elemento conductor cilmdrico que estan redondeados para minimizar la acumulacion de tension electrica.
La interaccion entre un haz de electrones relativista de una fuente de electrones que pasan a traves del espacio interno del elemento hueco y la rejilla interna produce radiacion RF por el Efecto Smith-Purcell. La separacion, el angulo de la cara y la forma de la rejilla, y la energfa del haz de electrones, son determinantes de la frecuencia de la radiacion RF.
El tubo de deriva precedente, que tiene una rejilla en la superficie interna del tubo de deriva cilmdrico, se puede usar ventajosamente para aumentar la salida de frecuencia de tales dispositivos como un Oscilador Lineal Aislado Magneticamente (MILO) mas alla del intervalo antes mencionado de 300 MHz a 3,5 MHz mencionado para un MILO.
Descripcion de los dibujos
La FIG. 1 es una vista en seccion a lo largo de la longitud de una unidad SXE-MILO combinada.
La FIG. 2 es una vista parcialmente en seccion a lo largo de la longitud del cabezal de RF MILO de la FIG. 1.
La FIG. 3A es una vista en seccion a lo largo de la longitud de un Tubo de Deriva usado en el cabezal de RF MILO
de la FIG. 1, y la FIG. 3B es una vista ampliada de la region del cfrculo de la FIG. 3A titulada “FIG. 3B”.
Descripcion detallada de la invencion
Una lista de numeros de referencia de los dibujos, sus piezas asociadas y materiales preferidos para las piezas se puede encontrar cerca del final de esta descripcion de las realizaciones preferidas.
Unidades de energfa RF
La FIG. 1 muestra una seccion transversal de un Emisor de Rayos X Estimulado (SXE) combinado con un Oscilador Lineal Aislado Magneticamente (MILO) en un extremo de salida (mostrado a la derecha) del SXE. Los Emisores de Rayos X Estimulados fueron descritos primero por el inventor de esta invencion actual en la Patente de EE.UU. N° 4.723.263. El MILO es otra fuente de RF de alta potencia, bien conocida, similar al Vircator. La diferencia significativa es que puede producir frecuencias mucho mas altas que el Vircator. Estructuralmente, la diferencia mayor es la incorporacion de un tubo 122 de deriva de la FIG. 3A y el uso de un Canon de Electrones de Onda Movil (TWEG) en lugar del catodo 90 plano y la cuadncula 92 del Vircatron. Hay una cavidad 98 resonante y sus dimensiones conjuntamente con las dimensiones del tubo 122 de deriva (FIG. 3A) determinan el intervalo de salida. Los dispositivos MILO convencionales tienen salidas entre 300 MHz y 3,5 GHz. El inventor de la presente invencion ha verificado experimentalmente que colocando una superficie de rejilla sobre la cara interna del tubo 122 de deriva (FIG. 3A), como se muestra en la FIG. 3B, es posible generar RF a frecuencias mucho mas altas que las disponibles a partir de un tubo 122 de deriva de taladro liso. La fuente de esta RF es debida al efecto Smith-Purcell que describe la interaccion de un haz de electrones relativista con una superficie 123 de rejilla. Son posibles salidas en el intervalo
de THz. La superficie de rejilla se puede formar mediante muchos metodos. La separacion, angulo de la cara y la geometna de la rejilla todos son determinantes en la frecuencia lograda (FIG. 3B). Se ha determinado que la realizacion preferida de la rejilla del tubo de deriva es una rosca interna como se muestra en las FIGS. 3A y 3B. Alternando los parametros de la rosca, se cambia la frecuencia de salida. Los extremos del Tubo 125 de Deriva 5 estan redondeados para minimizar la formacion de perturbaciones de campo electrico indeseables dentro de la Cavidad 98 Resonante.
El equilibrio de la unidad SXE-MILO es el mismo que el del SXE-Vircator. De hecho, los cabezales de RF -Vircator y MILO- se pueden intercambiar. Como en el caso del SXE-Vircator, el TWEG del MILO tiene un centro hueco a traves del cual pasan los rayos X. La salida de electrones del TWEG se comprime por el tubo 122 de deriva y oscila en la 10 cavidad 98 resonante.
Numeros de referencia de los dibujos
La siguiente lista de numeros de referencia de los dibujos tiene tres columnas. La primera columna incluye los numeros de referencia de los dibujos; la segunda columna especifica las piezas asociadas con los numeros de referencia; y la tercera columna menciona un material preferido (si es aplicable) para las piezas.
LISTA DE NUMEROS DE REFERENCIA
MATERIAL PREFERIDO
64
Anodo Metal refractario; Hi-Z
66
Cuadncula Metal refractario
68
Catodo Grafito (Realizacion preferida)
70
Condensador coaxial Capas de dielectrico/metal
72
Paso de catodo Ceramica y metal
74
Paso de cuadncula Ceramica y metal
78
Blindaje contra radiacion Plomo
94
Malla de anodo Metal refractario
96
Ventana de salida Ceramica de baja Z transparente a la RF
98
Cavidad circular resonante Acero inoxidable o cobre
100
Pestana de montaje Acero inoxidable
102
Paso de catodo Ceramica y metal
106
Paso de cuadncula Ceramica y metal
110
Bomba Getter n/a
112
Paso de bomba Getter Ceramica y metal
114
Catodo de MILO Grafito
116
Soporte de catodo de MILO Metal refractario
118
Cuadncula de MILO Metal refractario
120
Soporte de cuadncula de MILO Metal refractario
122
Tubo de deriva Metal refractario
123
Superficie de rejilla Metal refractario
124
Soporte de tubo de deriva Ceramica
125
Extremo redondeado de tubo de deriva Metal refractario
126
Aislante de anodo interno Ceramica
142
Terminal de salida de cuadncula Metal refractario
Lo precedente describe un tubo de deriva donde la inclusion de una superficie de rejilla en la superficie interna del tubo genera frecuencias mas altas de radiacion de RF.
Aunque la invencion se ha descrito con respecto a realizaciones espedficas a modo de ilustracion, a los expertos en la tecnica se les ocurriran muchas modificaciones y cambios. La invencion se define en cualquier caso por las 5 reivindicaciones adjuntas.

Claims (3)

  1. 5
    10
    15
    20
    25
    REIVINDICACIONES
    1. Un sistema para producir radiacion electromagnetica con una mejora a partir de un tubo de deriva que contiene una estructura Smith-Purcell cilmdrica, que comprende:
    a) un oscilador lineal aislado magneticamente que tiene una cavidad (98) resonante cilmdrica que contiene un canon de electrones de ondas moviles y un anodo (64) de cooperacion, y que contiene ademas un tubo (122) de deriva colocado entre el canon de electrones de ondas moviles y el anodo (64) de cooperacion;
    b) el tubo (122) de deriva que esta formado de un elemento conductor cilmdrico hueco que esta colocado dentro de dicha cavidad (98) resonante y que esta aislado electricamente del canon de electrones de ondas moviles, en donde un eje cilmdrico del tubo (122) de deriva es coaxial con un eje principal de la cavidad cilmdrica resonante en una region entre dicho canon de electrones y dicho anodo (64);
    c) el tubo (122) de deriva que tiene una superficie interna y un par de extremos; el elemento conductor cilmdrico hueco que esta mejorado conteniendo una superficie (123) de rejilla Smith-Purcell cilmdrica formada sobre la superficie interna del tubo (122) de deriva; dicha superficie (123) de rejilla que comprende una superficie de rejilla de reflexion que tiene una serie de crestas separadas por surcos respectivos; dicha superficie de rejilla de reflexion que se extiende durante al menos una mayona de la longitud del tubo (122) de deriva;
    d) el tubo (122) de deriva que esta adaptado de modo que un haz de electrones, del canon de electrones, pasa a traves del espacio interno del tubo de deriva e interactua con la superficie (123) de rejilla Smith-Purcell interna, para producir radiacion de RF por el Efecto Smith-Purcell; y
    e) el tubo (122) de deriva que esta adaptado ademas de modo que la separacion, el angulo de la cara y la forma de la superficie (123) de rejilla Smith-Purcell, y una energfa del haz de electrones son determinantes de la frecuencia de la radiacion de RF.
  2. 2. El sistema de la reivindicacion 1, en donde la superficie de rejilla Smith-Purcell comprende una rosca interna que se extiende durante al menos una mayona de la longitud del tubo de deriva.
  3. 3. El sistema de la reivindicacion 1 o 2, en donde cada cresta de la superficie de rejilla de reflexion tiene una seccion transversal, tomada a lo largo de un plano que pasa a traves de dicho eje cilmdrico del tubo de deriva, que comprende un triangulo que tiene un lado paralelo a dicho eje cilmdrico.
ES15197269.2T 2006-05-30 2007-05-30 Sistema para producir radiación electromagnética Active ES2628579T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80945306P 2006-05-30 2006-05-30
US809453P 2006-05-30
US754928 2007-05-29
US11/754,928 US9036765B2 (en) 2006-05-30 2007-05-29 Method and system for inertial confinement fusion reactions

Publications (1)

Publication Number Publication Date
ES2628579T3 true ES2628579T3 (es) 2017-08-03

Family

ID=39169672

Family Applications (2)

Application Number Title Priority Date Filing Date
ES15197269.2T Active ES2628579T3 (es) 2006-05-30 2007-05-30 Sistema para producir radiación electromagnética
ES07853488.0T Active ES2637019T3 (es) 2006-05-30 2007-05-30 Procedimiento y sistema para reacciones de fusión por confinamiento inercial

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES07853488.0T Active ES2637019T3 (es) 2006-05-30 2007-05-30 Procedimiento y sistema para reacciones de fusión por confinamiento inercial

Country Status (12)

Country Link
US (4) US9036765B2 (es)
EP (3) EP2033197B1 (es)
JP (2) JP2009539117A (es)
KR (6) KR20150054004A (es)
AU (1) AU2007294621B2 (es)
CA (4) CA2915301C (es)
ES (2) ES2628579T3 (es)
IL (3) IL195593A (es)
NZ (4) NZ596167A (es)
PL (2) PL3007522T3 (es)
RU (1) RU2008150241A (es)
WO (1) WO2008033587A2 (es)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065714A1 (en) * 2006-11-30 2009-03-12 Keady John P Eletrofluid collisional accelerator and fusion reactor
HUE030327T2 (en) * 2008-05-16 2017-05-29 Advanced Fusion Systems Llc Lightning X-ray (FLASH X-RAY)
AU2013202331C1 (en) * 2008-08-28 2014-11-20 Advanced Fusion Systems Llc Method for injecting electrons into a fusion-fuel derived plasma
JP5580825B2 (ja) * 2008-08-28 2014-08-27 アドバンスド フュージョン システムズ リミテッド ライアビリティー カンパニー 慣性閉じ込め核融合燃料由来のプラズマに予め定められたエネルギ及び量の電子群を注入するための方法
EP2394496B1 (en) 2009-02-04 2014-04-02 General Fusion, Inc. Systems and methods for compressing plasma
CN102483959B (zh) 2009-07-29 2014-09-24 全面熔合有限公司 循环抛射体的等离子体压缩系统和方法
AU2011216259B2 (en) * 2010-02-12 2014-04-24 Advanced Fusion Systems Llc Method and system for detecting materials
EP2572359B1 (en) * 2010-05-17 2017-12-13 Innoven Energy Partners Icf targets and chambers
WO2012064668A1 (en) 2010-11-08 2012-05-18 Lawrence Livermore National Security, Llc Indirect drive targets for fusion power
CN102486941B (zh) * 2010-12-06 2014-03-26 中国科学院西安光学精密机械研究所 模拟靶定位装置
EP2668652A2 (en) * 2011-01-28 2013-12-04 Lawrence Livermore National Security, LLC Final beam transport system
EP2700288A4 (en) * 2011-04-20 2014-12-24 Logos Technologies Inc FLEXIBLE ATTACK LASER FOR GENERATING INERTIA FUSION ENERGY
US20130120559A1 (en) * 2011-10-27 2013-05-16 Lawrence Livermore National Security, Llc Method and system for inspecting surfaces of miniature components
US8928168B2 (en) * 2012-09-19 2015-01-06 Kyli Irene LETANG Fluid-driven power generating apparatus
JP6010438B2 (ja) 2012-11-27 2016-10-19 浜松ホトニクス株式会社 量子ビーム生成装置、量子ビーム生成方法、及び、レーザ核融合装置
US20150340104A1 (en) * 2012-12-31 2015-11-26 Jay R. Yablon System, Apparatus, Method and Energy Product-by-Process for Resonantly-Catalyzing Nuclear Fusion Energy Release, and the Underlying Scientific Foundation
WO2014160128A1 (en) * 2013-03-14 2014-10-02 Lawrence Livermore National Security, Llc Friction heat management injection support rings for ife hohlraums
US20160064104A1 (en) * 2014-09-02 2016-03-03 Proton Scientific, Inc. Relativistic Vacuum Diode for Shock Compression of a Substance
JP6343229B2 (ja) * 2014-11-18 2018-06-13 浜松ホトニクス株式会社 レーザ増幅装置、レーザ装置及びレーザ核融合炉
EP3268619B1 (en) * 2015-03-11 2020-05-06 General Fusion, Inc. Modular compression chamber
CN105118764B (zh) * 2015-07-18 2017-09-19 中国人民解放军国防科学技术大学 一种圆片阵列阴极
US10221856B2 (en) * 2015-08-18 2019-03-05 Bj Services, Llc Pump system and method of starting pump
WO2018026949A2 (en) * 2016-08-02 2018-02-08 Lawrence Livermore National Security, Llc Asymmetric capsule for inertial confinement fusion
US10366859B2 (en) * 2016-08-24 2019-07-30 Varian Medical Systems, Inc. Electromagnetic interference containment for accelerator systems
US10377511B2 (en) * 2016-10-17 2019-08-13 Jerome Drexler Interplanetary spacecraft using fusion-powered constant-acceleration thrust
US10784001B2 (en) 2018-01-17 2020-09-22 Lockheed Martin Corporation Passive magnetic shielding of structures immersed in plasma using superconductors
US11930582B2 (en) * 2018-05-01 2024-03-12 Sunbeam Technologies, Llc Method and apparatus for torsional magnetic reconnection
US10940931B2 (en) 2018-11-13 2021-03-09 Jerome Drexler Micro-fusion-powered unmanned craft
CN110418490B (zh) * 2019-06-18 2021-08-03 上海克林技术开发有限公司 一种腔体组件
US11437152B1 (en) 2019-06-27 2022-09-06 Consolidated Nuclear Security, LLC Diode assembly and method of forming a diode assembly for pulsed fusion events
WO2021072152A1 (en) * 2019-10-11 2021-04-15 Massachusetts Institute Of Technology Synchronous excitation of multiple shock waves for fusion
CN112562995B (zh) * 2020-12-10 2021-11-05 中国人民解放军国防科技大学 一种具有波纹型绕组结构的高功率脉冲变压器
US20220254521A1 (en) * 2021-02-08 2022-08-11 Qwyit,LLC Encryption protected plasma compression fusion device
WO2023178004A1 (en) * 2022-03-14 2023-09-21 The Trustees Of Princeton University Planar coil stellarator

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US437296A (en) * 1890-09-30 William f
US3356287A (en) * 1965-07-28 1967-12-05 Granville Phillips Company Method and apparatus for ion pumping and pressure measurement
US3407991A (en) * 1966-07-05 1968-10-29 Granville Phillips Company Apparatus for ion pumping and pressure measurement
US3489645A (en) * 1967-03-10 1970-01-13 Cornell Aeronautical Labor Inc Method of creating a controlled nuclear fusion reaction
GB1207698A (en) 1969-10-27 1970-10-07 Arthur Paul Pedrick Generator of electricity from waves of gaseous plasma, preferably produced by lazer beam initiated nuclear fusion reactions
US3663360A (en) * 1970-08-13 1972-05-16 Atomic Energy Commission Conversion of high temperature plasma energy into electrical energy
US4058486A (en) * 1972-12-29 1977-11-15 Battelle Memorial Institute Producing X-rays
US3816771A (en) * 1973-02-09 1974-06-11 Atomic Energy Commission Plasma energy to electrical energy converter
PL93676B1 (es) 1973-07-25 1977-06-30
US5015432A (en) 1973-10-24 1991-05-14 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US5041760A (en) 1973-10-24 1991-08-20 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US4010396A (en) 1973-11-26 1977-03-01 Kreidl Chemico Physical K.G. Direct acting plasma accelerator
US3892970A (en) 1974-06-11 1975-07-01 Us Energy Relativistic electron beam device
US4057462A (en) * 1975-02-26 1977-11-08 The United States Of America As Represented By The United States Energy Research And Development Administration Radio frequency sustained ion energy
US5174945A (en) 1976-12-30 1992-12-29 Fdx Patents Holding Company, N.V. Controlled thermonuclear fusion power apparatus and method
US5049350A (en) 1976-12-30 1991-09-17 Fdx Patent Holding Company, N.V. Controlled thermonuclear fusion power apparatus and method
US4836972A (en) 1976-12-30 1989-06-06 Fdx Patents Holding Company, N.V. Controlled thermonuclear fusion device and method
US4363775A (en) 1976-12-30 1982-12-14 International Nuclear Energy Systems Co. Controlled nuclear fusion apparatus
US4229708A (en) * 1977-04-08 1980-10-21 Avco Everett Research Laboratory, Inc. X-ray laser
JPS53143894A (en) 1977-05-21 1978-12-14 Makoto Imamura Fusion reactor
US4367193A (en) 1977-10-13 1983-01-04 International Nuclear Energy Systems Co. Modular fusion apparatus using disposable core
US5019321A (en) 1977-10-13 1991-05-28 Fdx Patents Holding Company, N.V. Modular fusion power apparatus using disposable core
US4859399A (en) 1977-10-13 1989-08-22 Fdx Patents Holding Company, N.V. Modular fusion power apparatus using disposable core
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4244782A (en) 1977-10-25 1981-01-13 Environmental Research Institute Of Michigan Nuclear fusion system
US4205278A (en) * 1978-01-11 1980-05-27 The United States Of America As Represented By The United States Department Of Energy Multiple excitation regenerative amplifier inertial confinement system
US4280048A (en) * 1978-01-30 1981-07-21 Wyoming Mineral Corporation Neutron activation probe
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4370295A (en) 1978-03-21 1983-01-25 Fdx Associates, L.P. Fusion-fission power generating device having fissile-fertile material within the region of the toroidal field coils generating means
US4370296A (en) 1978-03-21 1983-01-25 Fdx Associates, L.P. Toroidal fusion reactor having ohmic heating coil substantially adjacent toroidal fusion region
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4397810A (en) 1979-03-16 1983-08-09 Energy Profiles, Inc. Compressed beam directed particle nuclear energy generator
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
US4548782A (en) 1980-03-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Tokamak plasma heating with intense, pulsed ion beams
SU953967A1 (ru) 1980-07-09 1984-07-23 Московский Ордена Трудового Красного Знамени Инженерно-Физический Институт Ускор юща структура
US4392111A (en) 1980-10-09 1983-07-05 Maxwell Laboratories, Inc. Method and apparatus for accelerating charged particles
US4434130A (en) 1980-11-03 1984-02-28 Energy Profiles, Inc. Electron space charge channeling for focusing ion beams
US4661783A (en) 1981-03-18 1987-04-28 The United States Of America As Represented By The Secretary Of The Navy Free electron and cyclotron resonance distributed feedback lasers and masers
US4560528A (en) 1982-04-12 1985-12-24 Ga Technologies Inc. Method and apparatus for producing average magnetic well in a reversed field pinch
JPS5912544A (ja) 1982-07-12 1984-01-23 Hitachi Ltd パルス電源装置
US4618470A (en) 1982-12-01 1986-10-21 Austin N. Stanton Magnetic confinement nuclear energy generator
US4601871A (en) 1983-05-17 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Steady state compact toroidal plasma production
US4597933A (en) * 1983-06-01 1986-07-01 The United States Of America As Represented By The Secretary Of The Navy Radiative opacity and emissivity measuring device
US4517472A (en) * 1983-07-06 1985-05-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage power supply
US4735762A (en) * 1983-09-29 1988-04-05 The United States Of America As Represented By The United States Department Of Energy Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression
US4596967A (en) * 1983-12-29 1986-06-24 The United States Of America As Represented By The United States Department Of Energy High power microwave generator
US4592056A (en) * 1984-01-10 1986-05-27 The United States Of America As Represented By The Secretary Of The Navy Resonant photon pumping mechanisms for a plasma x-ray laser
US4650631A (en) 1984-05-14 1987-03-17 The University Of Iowa Research Foundation Injection, containment and heating device for fusion plasmas
US4639348A (en) 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4950962A (en) 1985-05-20 1990-08-21 Quantum Diagnostics, Ltd. High voltage switch tube
US4670894A (en) * 1985-05-20 1987-06-02 Quantum Diagnostics Ltd. X-ray source employing cold cathode gas discharge tube with collimated beam
US4723263A (en) * 1985-05-20 1988-02-02 Quantum Diagnostics, Ltd. X-ray source
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
US4751429A (en) 1986-05-15 1988-06-14 The United States Of America As Represented By The United States Department Of Energy High power microwave generator
US4894199A (en) 1986-06-11 1990-01-16 Norman Rostoker Beam fusion device and method
US5152995A (en) * 1986-12-18 1992-10-06 Syntex (U.S.A.) Inc. Stable antibiotic ester feed compositions
US4825646A (en) 1987-04-23 1989-05-02 Hughes Aircraft Company Spacecraft with modulated thrust electrostatic ion thruster and associated method
US4731786A (en) 1987-05-05 1988-03-15 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses
US4801848A (en) 1987-05-11 1989-01-31 Quantum Diagnostics Ltd. Tunable broadband source in millimeter wavelength range of spectrum
US4835787A (en) * 1987-07-31 1989-05-30 The United States Of America As Represented By The United States Department Of Energy Fusion pumped light source
DK556887D0 (da) 1987-10-23 1987-10-23 Risoe Forskningscenter Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille
US4961195A (en) * 1988-08-03 1990-10-02 The University Of Rochester Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof
ATE137880T1 (de) 1990-01-22 1996-05-15 Steudtner Werner K Dipl Ing Kernfusionsreaktor
US5160695A (en) 1990-02-08 1992-11-03 Qed, Inc. Method and apparatus for creating and controlling nuclear fusion reactions
US5235248A (en) 1990-06-08 1993-08-10 The United States Of America As Represented By The United States Department Of Energy Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields
US5202932A (en) * 1990-06-08 1993-04-13 Catawa Pty. Ltd. X-ray generating apparatus and associated method
US5152955A (en) 1990-08-09 1992-10-06 Russell Joseph A Storage ring fusion energy generator
US5103452A (en) * 1991-01-29 1992-04-07 The United States Of America As Represented By The United States Department Of Energy X-ray laser system, x-ray laser and method
US5404364A (en) * 1993-12-29 1995-04-04 Kepros; John G. Optically pumped X-ray laser and applications thereof
WO1997012372A1 (en) 1995-09-25 1997-04-03 Koloc Paul M A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
US5682415A (en) 1995-10-13 1997-10-28 O'hara; David B. Collimator for x-ray spectroscopy
GB2315363B (en) * 1996-06-04 2001-01-17 Aea Technology Plc Microwave pulse generators
CN1237264A (zh) 1996-11-01 1999-12-01 乔治·H·米利 作为可调谐x射线源的球形惯性静电约束设备
US5923716A (en) 1996-11-07 1999-07-13 Meacham; G. B. Kirby Plasma extrusion dynamo and methods related thereto
JP4102457B2 (ja) 1997-05-09 2008-06-18 株式会社小松製作所 狭帯域化レーザ装置
US6628740B2 (en) 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6894446B2 (en) 1997-10-17 2005-05-17 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6189484B1 (en) * 1999-03-05 2001-02-20 Applied Materials Inc. Plasma reactor having a helicon wave high density plasma source
CA2392852A1 (en) * 1998-04-03 1999-10-03 Litton Systems, Inc. Low impedance grid-anode interaction region for an inductive output amplifier
CN1272232A (zh) * 1998-05-20 2000-11-01 东芝株式会社 脉冲气体激光发生装置
US6259763B1 (en) * 1999-05-21 2001-07-10 The United States Of America As Represented By The United States Department Of Energy X-ray imaging crystal spectrometer for extended X-ray sources
US6229876B1 (en) 1999-07-29 2001-05-08 Kevex X-Ray, Inc. X-ray tube
US6496563B1 (en) * 1999-09-27 2002-12-17 Christopher M Bacon X-ray tube driver
WO2001039197A2 (en) 1999-11-24 2001-05-31 Impulse Devices, Inc. Cavitation nuclear reactor
US6680480B2 (en) 2000-11-22 2004-01-20 Neil C. Schoen Laser accelerator produced colliding ion beams fusion device
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US10079075B2 (en) * 2001-03-09 2018-09-18 Emilio Panarella Nuclear fusion system that captures and uses waste heat to increase system efficiency
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6804327B2 (en) 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
FR2830371B1 (fr) * 2001-09-28 2005-08-26 Thales Sa Generateur d'ondes hyperfrequences a cathode virtuelle
US20040095705A1 (en) * 2001-11-28 2004-05-20 Mills Randell L. Plasma-to-electric power conversion
US6917162B2 (en) 2002-02-13 2005-07-12 Genvac Aerospace Corporation Traveling wave tube
US6718012B2 (en) * 2002-05-30 2004-04-06 Moshe Ein-Gal Electromagnetic wave energy emitter
WO2004017685A1 (en) 2002-08-14 2004-02-26 Ltd Company 'proton-21' Method and device for compressing a substance by impact and plasma cathode thereto
US20050084054A1 (en) 2003-09-18 2005-04-21 Franz Dennis L. Coulomb force neutralized fusion reactor
US20060062258A1 (en) * 2004-07-02 2006-03-23 Vanderbilt University Smith-Purcell free electron laser and method of operating same
US7482607B2 (en) 2006-02-28 2009-01-27 Lawrenceville Plasma Physics, Inc. Method and apparatus for producing x-rays, ion beams and nuclear fusion energy
RU2006128695A (ru) 2006-08-07 2008-02-20 Андрей Николаевич Дмитриев (RU) Термоядерный реактор

Also Published As

Publication number Publication date
CA2923259C (en) 2017-10-24
KR20150054004A (ko) 2015-05-19
WO2008033587B1 (en) 2008-08-07
JP2009539117A (ja) 2009-11-12
IL195593A0 (en) 2009-09-01
US20150255210A1 (en) 2015-09-10
WO2008033587A3 (en) 2008-06-26
CA2915298C (en) 2018-03-13
ES2637019T3 (es) 2017-10-10
CA2653707A1 (en) 2008-03-20
EP3007522B1 (en) 2017-03-22
EP3007522A1 (en) 2016-04-13
EP3007522B9 (en) 2017-05-03
WO2008033587A2 (en) 2008-03-20
NZ573514A (en) 2011-12-22
KR20090037865A (ko) 2009-04-16
JP2014066712A (ja) 2014-04-17
PL2033197T3 (pl) 2017-10-31
US9036765B2 (en) 2015-05-19
KR101564865B1 (ko) 2015-10-30
KR101527310B1 (ko) 2015-06-09
RU2008150241A (ru) 2010-07-10
US20130265130A1 (en) 2013-10-10
IL241799B (en) 2019-03-31
EP2033197B1 (en) 2017-05-17
CA2923259A1 (en) 2008-03-20
AU2007294621A1 (en) 2008-03-20
US20130266104A1 (en) 2013-10-10
US10181376B2 (en) 2019-01-15
IL241799A0 (en) 2015-11-30
KR20130138313A (ko) 2013-12-18
CA2915298A1 (en) 2008-03-20
AU2007294621B2 (en) 2014-01-16
CA2915301A1 (en) 2008-03-20
EP2033197A4 (en) 2009-08-26
KR102018014B1 (ko) 2019-09-03
EP3208808B1 (en) 2022-03-16
EP3208808A1 (en) 2017-08-23
NZ596166A (en) 2013-06-28
EP2033197A2 (en) 2009-03-11
IL195593A (en) 2015-11-30
KR20180059579A (ko) 2018-06-04
PL3007522T3 (pl) 2017-09-29
CA2915301C (en) 2016-09-13
KR102093534B1 (ko) 2020-03-26
NZ599154A (en) 2013-11-29
IL241800A (en) 2017-08-31
US9008131B2 (en) 2015-04-14
US20080063132A1 (en) 2008-03-13
NZ596167A (en) 2013-05-31
KR20160010503A (ko) 2016-01-27
IL241800A0 (en) 2015-11-30
KR20140114412A (ko) 2014-09-26

Similar Documents

Publication Publication Date Title
ES2628579T3 (es) Sistema para producir radiación electromagnética
US7830092B2 (en) Electrodeless lamps with externally-grounded probes and improved bulb assemblies
US2817045A (en) Electromagnetic wave generator
Yu et al. Influence of a nearby conductor on shape and length of a microwave plasma jet
US20190159329A1 (en) Adapter shaping electromagnetic field, which heats toroidal plasma discharge at microwave frequency
CN103137400B (zh) 电场发射型x射线产生装置
US8508132B1 (en) Metamaterial cathodes in multi-cavity magnetrons
JP2014529866A (ja) 自己共鳴小型x線源
AU2013201539C1 (en) System for producing electromagnetic radiation.
JP6591134B2 (ja) 電磁波発生器
KR20140066347A (ko) 가속관과 같은 주파수의 펄스 전자빔을 방출하는 전자총을 포함하는 선형가속기
JP2794534B2 (ja) アンジュレータおよび自由電子レーザー装置
Tsarev et al. A new dual-mode two-gap strip-line resonator for microwave devices with field-emission cathode
US2659030A (en) Magnetron
JPH03201703A (ja) プラズマ発生用マイクロ波アンテナ
RU2168234C2 (ru) Сверхвысокочастотный прибор на основе виртуального катода
SU758312A1 (ru) Импульсный газоразрядный источник света
JPH0337953A (ja) 放電管装置