ES2349610B1 - Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma. - Google Patents

Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma. Download PDF

Info

Publication number
ES2349610B1
ES2349610B1 ES200900639A ES200900639A ES2349610B1 ES 2349610 B1 ES2349610 B1 ES 2349610B1 ES 200900639 A ES200900639 A ES 200900639A ES 200900639 A ES200900639 A ES 200900639A ES 2349610 B1 ES2349610 B1 ES 2349610B1
Authority
ES
Spain
Prior art keywords
semiconductor
layer
epitaxial
compound
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200900639A
Other languages
English (en)
Other versions
ES2349610A1 (es
Inventor
Chien-Feng Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Speed Ltd
COMPOUND SOLAR Tech Co Ltd
Original Assignee
Pacific Speed Ltd
COMPOUND SOLAR Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Speed Ltd, COMPOUND SOLAR Tech Co Ltd filed Critical Pacific Speed Ltd
Priority to ES200900639A priority Critical patent/ES2349610B1/es
Publication of ES2349610A1 publication Critical patent/ES2349610A1/es
Application granted granted Critical
Publication of ES2349610B1 publication Critical patent/ES2349610B1/es
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Oblea epitaxial de semiconductor compuesto y método de fabricación de la misma.
Oblea epitaxial de semiconductor compuesto y su método de fabricación, en el que una primera capa intermedia de silicio (52) se deposita en un sustrato de metal (51), una segunda capa intermedia de semiconductor compuesto (53) se deposita en la primera capa intermedia de silicio, una tercera capa intermedia de semiconductor compuesto (54) se deposita en la segunda capa intermedia de semiconductor compuesto, la primera capa epitaxial de semiconductor compuesto (55) se cristaliza en la tercera capa intermedia de semiconductor compuesto y se aplica un primer tratamiento térmico, la segunda capa epitaxial de semiconductor compuesto (56) se cristaliza en la primera capa epitaxial de semiconductor compuesto y, finalmente, se aplica un segundo tratamiento térmico para obtener una oblea de semiconductor compuesto (50) de buena calidad.

Description

Oblea epitaxial de semiconductor compuesto y método de fabricación de la misma.
Objeto de la invención
La presente invención hace referencia a un semiconductor compuesto y su método de fabricación y más concretamente a una oblea epitaxial de semiconductor compuesto de crecimiento sobre un sustrato de metal y su método de fabricación.
Antecedentes de la invención
Como las industrias optoelectrónicas y de comunicación avanzan rápidamente, los semiconductores compuestos del Grupo III-V como el GaAs representan un sustrato principal para la fabricación de componentes optoelectrónicos y de comunicación por la ventaja de que tienen banda prohibida directa y alta movilidad de portadores y, además, proporcionan un material con diferentes bandas prohibidas obtenidas por la reacción química de diferentes compuestos del Grupo III-V.
Los componentes optoelectrónicos y de comunicación hechos de semiconductores compuestos del Grupo III-V utilizan principalmente compuestos como arseniuro de galio (GaAs), fosfato de galio (GaP) y fosfato de indio (InP) como sustratos para el crecimiento epitaxial cuando los parámetros de red son compatibles. En la actualidad, el sustrato semiconductor compuesto del grupo III-V es preferiblemente un sustrato de GaAs o germanio con un diámetro inferior a cuatro pulgadas o un sustrato de silicio monocristalino (Si).
Sin embargo, se encuentran problemas técnicos debido a parámetros de red diferentes y a distintos coeficientes de expansión térmica entre la capa intermedia y el semiconductor compuesto del Grupo III-V. Por ejemplo, una capa intermedia de silicio y un material de GaAs tienen un 4,1% de diferencia de parámetro de red a 25ºC. Además, la diferencia de coeficientes de expansión térmica entre la capa intermedia de silicio y el material de GaAs a 25ºC equivale aproximadamente al 62%. Por lo tanto, la oblea epitaxial de semiconductor compuesto del Grupo III-V en la capa intermedia forma a menudo una dislocación de propagación en la capa epitaxial de semiconductor compuesto debido a parámetros de red diferentes y a los distintos coeficientes de expansión térmica, y da lugar a la baja de calidad de los cristales.
Por ello, los factores más importantes para conseguir la calidad de la oblea epitaxial son el método de fabricación, la estructura de la oblea epitaxial y el ciclo térmico del proceso de recocido.
Descripción de la invención
Por todo lo anterior, la presente invención pretende proporcionar una oblea epitaxial de semiconductor compuesto de alta calidad y mostrar su método de fabricación, en el que se emplea un sustrato de metal mejorado y se adoptan procedimientos también mejorados para la estructura de la oblea epitaxial y el ciclo térmico del proceso de recocido, con el objetivo de mejorar la calidad de los cristales, simplificar el proceso y reducir el coste.
Para alcanzar el objetivo indicado, la presente invención presenta un método de fabricación de una oblea epitaxial de semiconductor compuesto, que comprende los siguientes pasos: depositar una fina película de silicio en un sustrato de metal para formar una primera capa intermedia de silicio, depositar una fina película de semiconductor compuesto en la primera capa intermedia de silicio para formar una segunda capa intermedia de semiconductor compuesto, depositar una fina película de semiconductor compuesto en la segunda capa intermedia de semiconductor compuesto para formar una tercera capa intermedia de semiconductor compuesto, cristalizar una fina película de semiconductor compuesto en la tercera capa intermedia de semiconductor compuesto para formar así una primera capa epitaxial de semiconductor compuesto, aplicar un primer tratamiento térmico, cristalizar una fina película de semiconductor compuesto en la primera capa epitaxial de semiconductor compuesto para formar una segunda capa epitaxial de semiconductor compuesto, y aplicar un segundo tratamiento térmico para completar la fabricación de la oblea epitaxial de semiconductor compuesto.
Para alcanzar el objetivo indicado, la presente invención presenta una oblea epitaxial de semiconductor compuesto que consta de un sustrato de metal, una primera capa intermedia de silicio dispuesta en el sustrato de metal, una segunda capa intermedia de semiconductor compuesto dispuesta en la primera capa intermedia de silicio, una tercera capa intermedia de semiconductor compuesto dispuesta en la segunda capa intermedia de semiconductor compuesto y sometida a un primer tratamiento térmico, una primera capa epitaxial de semiconductor compuesto dispuesta en la tercera capa intermedia de semiconductor compuesto y una segunda capa epitaxial de semiconductor compuesto dispuesta en la primera capa epitaxial de semiconductor compuesto y sometida al segundo tratamiento térmico.
La segunda y la tercera capa intermedia de semiconductor compuesto, y la primera y la segunda capa epitaxial de semiconductor compuesto se hacen de un material semiconductor compuesto binario del Grupo III-V como el GaAs, AlAs, GaP, InAs y InP, o un material ternario o cuaternario consistente en el material binario.
El proceso de deposición es de tipo químico metal-orgánico por vapor y el proceso epitaxial es de haz molecular. El proceso de deposición de la primera capa intermedia de silicio se lleva a cabo a una temperatura aproximada de 580-600ºC, y el grosor de la deposición equivale aproximadamente a 15 \ring{A}-25 \ring{A}. El proceso de deposición de la segunda capa intermedia de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 380-400ºC y el grosor de la deposición equivale aproximadamente a 10 \mum-20 \mum. El proceso de deposición de la tercera capa intermedia de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 400-450ºC, y el grosor de la deposición es aproximadamente de 50 \ring{A}-200 \ring{A}. El proceso epitaxial de la primera capa epitaxial de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 650ºC y el grosor epitaxial equivale aproximadamente a 1,5 \mum-2 \mum. Por último, el proceso epitaxial de la segunda capa epitaxial de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 710ºC y el grosor epitaxial aproximado es de 1,5 \mum -2 \mum.
Tanto el primer como el segundo tratamiento térmico son procesos de recocido consistentes en ciclos térmicos de temperatura alta/baja y tales ciclos se repiten de 4 a 8 veces.
En la presente invención, se usa un sustrato de metal de semiconductor compuesto del Grupo III-V para conseguir ventajas como el tamaño flexible del sustrato, el bajo coste, la alta disipación del calor, la alta flexibilidad y movilidad de portadores, por lo que la invención puede aplicarse extensivamente a las áreas de construcción de cortinas, coches eléctricos y productos de 3C, y se presenta con un coste mucho inferior al sustrato de semiconductor compuesto del Grupo III-V, usándose un sustrato de silicio para conseguir la alta disipación del calor y el bajo coste de producción para componentes tales como los diodos de emisión de luz, los fotodiodos, las células solares, los diodos láser o los transistores de alta potencia, etc.
En el proceso de tratamiento térmico de la invención, la primera capa intermedia de silicio y la segunda y tercera capa intermedia de semiconductor compuesto trabajan conjuntamente para reducir la probabilidad de que se produzcan dislocaciones de propagación, para obtener así una oblea epitaxial de semiconductor compuesto de mejor calidad.
Descripción de los dibujos
Para ilustrar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria 2 hojas de planos en las cuales con carácter no limitativo se ha representado lo siguiente:
La Figura 1 es una vista transversal de la oblea epitaxial de semiconductor compuesto de acuerdo con la realización preferente de la presente invención.
La Figura 2 es una vista esquemática de la temperatura de calentamiento alta/baja de un ciclo térmico de recocido de acuerdo con la realización preferente de la presente invención.
La Figura 3 muestra una curva de balanceo metamórfica a rayos x de una oblea epitaxial de semiconductor compuesto de acuerdo con la realización preferente de la presente invención.
La Figura 4 es una vista transversal de una oblea epitaxial de celda solar de acuerdo con otra realización preferente de la invención.
Descripción de la realización preferente
Con referencia a la Figura 1 para la vista transversal de la oblea epitaxial de semiconductor compuesto (50), de acuerdo a la realización preferente de la presente invención, se adopta un proceso de deposición química metal-orgánica por vapor y un proceso epitaxial de haz molecular durante el proceso de crecimiento del cristal. La fina capa del semiconductor compuesto se hace de arseniuro de galio (GaAs). En primer lugar, se lleva a cabo un proceso de deposición en un sustrato de metal (51) en el sistema de crecimiento de cristal, y se usa silano (SiH4) como gas de reacción, la temperatura de deposición equivale aproximadamente a 580-600ºC y se deposita una fina película de silicio, que puede ser silicio amorfo, con un grosor aproximado de 15 \ring{A}-25 \ring{A} en el sustrato de metal (51) para formar una primera capa intermedia de silicio (52). Después, la primera capa intermedia de silicio (52) sufre un proceso de deposición por medio de gases de reacción como Ga (CH_{3})_{3} y AsH_{3}, y se deposita una fina película de semiconductor compuesto a una temperatura aproximada de 380-400ºC para formar una segunda capa intermedia de semiconductor compuesto (53) con un grosor aproximado de 10 \mum a 20 \mum. Después, se lleva a cabo un proceso de deposición para la segunda capa intermedia de semiconductor compuesto (53) a una temperatura aproximada de 400-450ºC, usando Ga(CH_{3})_{3} y AsH_{3} como gases de reacción para depositar una fina película de semiconductor compuesto y formar la tercera capa intermedia de semiconductor compuesto (54) con un grosor aproximado de 50 \ring{A}-200 \ring{A}. A continuación, se realiza un proceso epitaxial a la tercera capa intermedia de semiconductor compuesto (54) a una temperatura aproximada de 650ºC, utilizando Ga(CH_{3})_{3} y AsH_{3} como gases de reacción para cristalizar una fina película de semiconductor compuesto y formar una primera capa epitaxial de semiconductor compuesto 55 con un grosor aproximado de 1,5 \mum-2 \mum. Finalmente, se lleva a cabo el primer ciclo térmico de recocido en el sistema de crecimiento de cristal original.
Con referencia a la Figura 2 para la vista esquemática de la temperatura de calentamiento alta/baja de un ciclo térmico de recocido, de acuerdo con la realización preferente de la invención, se reduce la temperatura del sistema a 200ºC y se mantiene durante aproximadamente 7 minutos, después, la temperatura del sistema se aumenta a 800ºC y se mantiene durante aproximadamente 5 minutos. Entonces, se disminuye la temperatura de nuevo a 200ºC y se mantiene durante aproximadamente 5 minutos, tras lo cual se aumenta a 800ºC y se mantiene durante otros 5 minutos. El mismo ciclo térmico de recocido de temperatura alta/baja se repite de 4 a 8 veces para reducir la probabilidad de que se produzca dislocación de propagación entre la capa intermedia y la primera capa epitaxial de semiconductor compuesto (55) debido a los parámetros de red o al coeficiente de expansión térmico.
Después de que se complete el primer ciclo térmico de recocido, la temperatura del sistema de crecimiento del cristal se reduce a aproximadamente 710ºC y se lleva a cabo el proceso epitaxial. En este proceso epitaxial, se usan Ga(CH_{3})_{3} y AsH_{3} como gases de reacción para cristalizar una fina película de semiconductor compuesto en la primera capa epitaxial de semiconductor compuesto (55) y formar una segunda capa epitaxial de semiconductor compuesto (56) con un grosor aproximado de 1,5 \mum a 2 \mum. Entonces, como muestra la Figura 2, se lleva a cabo un segundo ciclo térmico de recocido en el sistema de crecimiento del cristal. La temperatura del sistema se disminuye a 200ºC y se mantiene durante aproximadamente 7 minutos, después, se aumenta la temperatura a 800ºC y se mantiene durante aproximadamente 5 minutos. A continuación, la temperatura del sistema se disminuye de nuevo a 200ºC, se mantiene durante aproximadamente 7 minutos y se vuelve a aumentar la temperatura del sistema a 800ºC, manteniéndose a esta temperatura durante aproximadamente otros 5 minutos. El mismo ciclo térmico de recocido de temperatura alta/baja se repite de 4 a 8 veces para reducir la probabilidad de que se produzca una dislocación de propagación en la segunda capa epitaxial de semiconductor compuesto (56) y para eliminar toda la fuerza de tensión entre el sustrato de metal (51) y la segunda capa epitaxial de semiconductor compuesto (56).
En la realización preferente anterior, la fina película de semiconductor compuesto se hace de arseniuro de galio (GaAs). Sin embargo, también se puede utilizar un material de semiconductor compuesto binario del Grupo III-V como arseniuro de aluminio (AlAs), fosfato de galio (GaP), arseniuro de indio (InAs) y fosfato de indio (InP), o un material ternario o cuaternario consistente en el binario.
El método de fabricación de la oblea epitaxial de semiconductor compuesto, de acuerdo con la realización preferente de la presente invención, comprende los siguientes pasos: depositar una fina película de silicio en un sustrato de metal (51) para formar una primera capa intermedia de silicio (52), depositar una fina película de semiconductor compuesto en la primera capa intermedia de silicio para formar una segunda capa intermedia de semiconductor compuesto (53), depositar una fina película de semiconductor compuesto en la segunda capa intermedia de semiconductor compuesto (53) para formar una tercera capa intermedia de semiconductor compuesto (54), cristalizar una fina película de semiconductor compuesto en la tercera capa intermedia de semiconductor compuesto (54) para formar una primera capa epitaxial de semiconductor compuesto (55), aplicar el primer tratamiento térmico, cristalizar una fina película de semiconductor compuesto en la primera capa epitaxial de semiconductor compuesto (55) para formar una segunda capa epitaxial de semiconductor compuesto (56) , aplicar un segundo tratamiento térmico para obtener una oblea epitaxial de semiconductor compuesto de buena calidad (50). En el proceso de crecimiento del cristal previamente mencionado, el proceso de deposición es de tipo químico metal-orgánico por vapor y el proceso epitaxial es de haz molecular.
La oblea epitaxial de semiconductor compuesto (50) fabricada de acuerdo con el método anterior consta de un sustrato de metal (51), una primera capa intermedia de silicio (52) dispuesta en el sustrato de metal (51), una segunda capa intermedia de semiconductor compuesto (53) dispuesta en la primera capa intermedia de silicio (52), una tercera capa intermedia de semiconductor compuesto (54), dispuesta en la segunda capa intermedia de semiconductor compuesto (53), una primera capa epitaxial de semiconductor compuesto (55) dispuesta en la tercera capa intermedia de semiconductor compuesto (54), y una segunda capa epitaxial de semiconductor compuesto (56) dispuesta en la primera capa epitaxial de semiconductor compuesto (55). La primera capa intermedia de silicio (52) y la segunda capa intermedia de semiconductor compuesto (53) se usan para combinar la dislocación de propagación en una capa intermedia con el objetivo de disminuir la densidad de las dislocaciones de propagación, y la tercera capa intermedia de semiconductor compuesto (54) se usa para eliminar cualquier dislocación de propagación restante en la capa intermedia. La primera capa epitaxial de semiconductor compuesto (54) se usa para proporcionar una estructura de cristal única requerida para la segunda capa epitaxial de semiconductor compuesto (55).
Con referencia a la Figura 3, para una curva de balanceo metamórfica a rayos x de una oblea epitaxial de semiconductor compuesto (50), de acuerdo con la realización preferente de la presente invención, la capa epitaxial de semiconductor compuesto GaAs tiene un valor de anchura completa a media altura (FWHM) de (55) arcsec. El valor de FWHM de una curva de balanceo puede determinar la estructura de mosaico de la orientación de la oblea epitaxial, es decir, cuanto mayor es el valor de FWHM, la orientación interior de la oblea epitaxial es más irregular, y cuanto menor es el valor de FWHM, más regular es la orientación interior de la misma. La oblea epitaxial de semiconductor compuesto crecida en el sustrato de metal de la presente invención tiene un valor de FWHM de 55 arcsec. Por lo tanto, por el valor de FWHM podemos saber que la orientación interior de la oblea epitaxial de la presente invención es muy regular y tiene, definitivamente, mejor calidad.
Con referencia a la Figura 4 para una vista transversal de una oblea epitaxial de celda solar (60), de acuerdo con otra realización preferente de la invención, la oblea epitaxial de celda solar (60) se fabrica cristalizando la parte posterior de una capa epitaxial (61) en la oblea epitaxial de semiconductor compuesto (50), y cristalizando después una capa base (62), una capa emisora (63), una capa ventana (64) y una capa de contacto (65) secuencialmente para formar una estructura de celda solar.
Aunque la invención se ha descrito por medio de realizaciones especificas, se podrían realizar numerosas modificaciones y variaciones siempre que no se encuentren fuera del alcance y el espíritu de la invención descrita en las reivindicaciones.

Claims (23)

1. Método de fabricación de oblea epitaxial de semiconductor compuesto, que consta de los siguientes pasos: depositar una fina película de silicio en un sustrato de metal para formar una primera capa intermedia de silicio; depositar una fina película de semiconductor compuesto en la primera capa intermedia de silicio para formar una segunda capa intermedia de semiconductor compuesto; depositar una fina película de semiconductor compuesto en la segunda capa intermedia de semiconductor compuesto para formar una tercera capa intermedia de semiconductor compuesto; cristalizar una fina película de semiconductor compuesto en la tercera capa intermedia de semiconductor compuesto para formar la primera capa epitaxial de semiconductor compuesto, aplicar el primer tratamiento térmico, cristalizar una fina película de semiconductor compuesto en la primera capa epitaxial de semiconductor compuesto para formar una segunda capa epitaxial de semiconductor compuesto, y aplicar un segundo tratamiento térmico para terminar la fabricación de la oblea epitaxial de semiconductor compuesto.
2. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que las finas películas de semiconductor compuesto están hechas de un material de semiconductor compuesto binario del Grupo III-V, seleccionado de la colección de arseniuro de galio (GaAs), arseniuro de aluminio (AlAs), fosfato de galio (GaP) arseniuro de indio (InAs) y fosfato de indio (InP) o de un material ternario o cuaternario consistente en el binario.
3. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso de deposición es de tipo químico metal-orgánico por vapor.
4. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso epitaxial es de haz molecular.
5. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso de deposición de la primera capa intermedia de silicio se lleva a cabo a una temperatura aproximada de 580-600ºC.
6. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que la primera capa intermedia de silicio tiene un grosor aproximado de 15 \ring{A}-25 \ring{A}.
7. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso de deposición de la segunda capa intermedia de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 380-400ºC.
8. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que la segunda capa intermedia de semiconductor compuesto tiene un grosor aproximado de 10 \mum-20 \mum.
9. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso de deposición de la tercera capa intermedia de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 380-400ºC.
10. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que la tercera capa intermedia de semiconductor compuesto tiene un grosor aproximado de 50 \ring{A}-200 \ring{A}.
11. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso epitaxial de la primera capa epitaxial de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 650ºC.
12. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el proceso epitaxial de la segunda capa epitaxial de semiconductor compuesto se lleva a cabo a una temperatura aproximada de 710ºC.
13. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que la primera capa epitaxial de semiconductor compuesto tiene un grosor aproximado de 1,5 \mum-2 \mum.
14. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que la segunda capa epitaxial de semiconductor compuesto tiene un grosor aproximado de 1,5 \mum-2 \mum.
15. Método de fabricación de oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 1, en el que el primer y el segundo tratamiento térmico son ciclos térmicos de recocido de alta/baja temperatura, que se repiten de 4 a 8 veces.
16. Oblea epitaxial de semiconductor compuesto, que consta de un sustrato de metal, una primera capa intermedia de silicio dispuesta en el sustrato de metal, una segunda capa intermedia de semiconductor compuesto dispuesta en la primera capa intermedia de silicio, una tercera capa intermedia de semiconductor compuesto dispuesta en la segunda capa intermedia de semiconductor compuesto y sometida a un primer tratamiento térmico, una primera capa epitaxial de semiconductor compuesto dispuesta en la tercera capa intermedia de semiconductor compuesto, y una segunda capa epitaxial de semiconductor compuesto dispuesta en la primera capa epitaxial de semiconductor compuesto y sometida a un segundo tratamiento térmico.
17. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que la segunda y tercera capa intermedia de semiconductor compuesto y la primera y segunda capa epitaxial de semiconductor compuesto están hechas de un material de semiconductor compuesto binario del Grupo III-V, seleccionado de la colección de arseniuro de galio (GaAs), arseniuro de aluminio (AlAs), fosfato de galio (GaP), arseniuro de indio (inAs) y fosfato de indio (InP) , o de un material ternario o cuaternario, consistente en el binario.
18. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que la primera capa intermedia de silicio tiene un grosor aproximado de 15 \ring{A}-25 \ring{A}.
19. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que la segunda capa intermedia de semiconductor compuesto tiene un grosor aproximado de 10 \mum-20 \mum.
20. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que la tercera capa intermedia de semiconductor compuesto tiene un grosor aproximado de 50 \ring{A}-200 \ring{A}.
21. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que la primera capa epitaxial de semiconductor compuesto tiene un grosor aproximado de 1,5 \mum-2 \mum.
22. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en el que la segunda capa epitaxial de semiconductor compuesto tiene un grosor aproximado de 1,5 \mum-2 \mum.
23. Oblea epitaxial de semiconductor compuesto, de acuerdo a la reivindicación 16, en la que el primer y el segundo tratamiento térmico son ciclos térmicos de recocido a temperatura alta/baja y se repiten de 4 a 8 veces.
ES200900639A 2009-03-06 2009-03-06 Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma. Expired - Fee Related ES2349610B1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200900639A ES2349610B1 (es) 2009-03-06 2009-03-06 Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200900639A ES2349610B1 (es) 2009-03-06 2009-03-06 Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma.

Publications (2)

Publication Number Publication Date
ES2349610A1 ES2349610A1 (es) 2011-01-07
ES2349610B1 true ES2349610B1 (es) 2011-07-21

Family

ID=43416709

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200900639A Expired - Fee Related ES2349610B1 (es) 2009-03-06 2009-03-06 Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma.

Country Status (1)

Country Link
ES (1) ES2349610B1 (es)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290774B1 (en) * 1999-05-07 2001-09-18 Cbl Technology, Inc. Sequential hydride vapor phase epitaxy
JP2001127326A (ja) * 1999-08-13 2001-05-11 Oki Electric Ind Co Ltd 半導体基板及びその製造方法、並びに、この半導体基板を用いた太陽電池及びその製造方法
US6569765B1 (en) * 1999-08-26 2003-05-27 Cbl Technologies, Inc Hybrid deposition system and methods
EP1521295B1 (de) * 2003-09-30 2016-11-02 OSRAM Opto Semiconductors GmbH Verfahren zum Herstellen einer epitaktischen Bauelementschichtenfolge und optoelektronischer Halbleiterchip

Also Published As

Publication number Publication date
ES2349610A1 (es) 2011-01-07

Similar Documents

Publication Publication Date Title
JP5231547B2 (ja) 基板上に結晶ゲルマニウム層を形成する方法
US20150079803A1 (en) Method of forming strain-relaxed buffer layers
JP2009167047A (ja) 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
JP2006509710A5 (es)
TW200941552A (en) Semiconductor substrate, method for manufacturing the same and electronic device
US8383494B2 (en) Method for forming buffer layer for GaN single crystal
US20150368832A1 (en) GaN SUBSTRATE, AND METHOD FOR MANUFACTURING GaN SUBSTRATE
CN110364582B (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
JP5212343B2 (ja) 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
ES2349610B1 (es) Oblea epitaxial de semiconductor compuesto y metodo de fabricacion de la misma.
US20100117057A1 (en) Nitride semiconductor led using a hybrid buffer layer and a fabrication method therefor
ES2252667T3 (es) Procedimiento de formacin de una capa de carburo de silicio o de nitruro de un elemento del grupo iii sobre un sustrato adaptado.
JP2014084263A (ja) Iii族窒化物膜の製造方法
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
CN101764054B (zh) 化合物半导体外延芯片及其制造方法
KR100455277B1 (ko) 변형된 선택 성장 공정을 이용한 GaN 단결정 성장 방법
US20060011129A1 (en) Method for fabricating a compound semiconductor epitaxial wafer
RU2733941C2 (ru) Способ изготовления полупроводниковой структуры
JP3107646U (ja) 化合物半導体エピタキシャルウエハ
KR101027506B1 (ko) 화합물 반도체 에피택셜 웨이퍼 및 이의 제조 방법
JP5032522B2 (ja) 化合物半導体エピタキシャルウェハおよびその製造方法
JPH04207020A (ja) 半導体製造装置と半導体製造方法
US9558938B2 (en) Method of manufacturing nitride semiconductor template
Hara et al. Hydrogenation of Polycrystalline Silicon Thin‐Film Transistors
JP7084573B2 (ja) 結晶積層体、半導体デバイスおよび半導体デバイスの製造方法

Legal Events

Date Code Title Description
PC2A Transfer of patent
FG2A Definitive protection

Ref document number: 2349610

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20110721

FD2A Announcement of lapse in spain

Effective date: 20210929