EP4376822A1 - Traitement de cancers avec des associations d'inhibiteur de parp et d'acylfulvènes - Google Patents
Traitement de cancers avec des associations d'inhibiteur de parp et d'acylfulvènesInfo
- Publication number
- EP4376822A1 EP4376822A1 EP22850545.9A EP22850545A EP4376822A1 EP 4376822 A1 EP4376822 A1 EP 4376822A1 EP 22850545 A EP22850545 A EP 22850545A EP 4376822 A1 EP4376822 A1 EP 4376822A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- illudin
- cancer
- analog
- parp inhibitor
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 99
- 239000012661 PARP inhibitor Substances 0.000 title claims abstract description 46
- 229940121906 Poly ADP ribose polymerase inhibitor Drugs 0.000 title claims abstract description 46
- 201000011510 cancer Diseases 0.000 claims abstract description 59
- 150000003839 salts Chemical class 0.000 claims abstract description 47
- 229930190064 illudin Natural products 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000011282 treatment Methods 0.000 claims description 70
- HLAKJNQXUARACO-UHFFFAOYSA-N acylfulvene Natural products CC1(O)C(=O)C2=CC(C)=CC2=C(C)C21CC2 HLAKJNQXUARACO-UHFFFAOYSA-N 0.000 claims description 38
- HLAKJNQXUARACO-ZDUSSCGKSA-N (5'r)-5'-hydroxy-2',5',7'-trimethylspiro[cyclopropane-1,6'-indene]-4'-one Chemical compound O=C([C@@]1(O)C)C2=CC(C)=CC2=C(C)C21CC2 HLAKJNQXUARACO-ZDUSSCGKSA-N 0.000 claims description 37
- 229960000572 olaparib Drugs 0.000 claims description 30
- 239000003814 drug Substances 0.000 claims description 23
- HWGQMRYQVZSGDQ-HZPDHXFCSA-N chembl3137320 Chemical compound CN1N=CN=C1[C@H]([C@H](N1)C=2C=CC(F)=CC=2)C2=NNC(=O)C3=C2C1=CC(F)=C3 HWGQMRYQVZSGDQ-HZPDHXFCSA-N 0.000 claims description 22
- 238000002560 therapeutic procedure Methods 0.000 claims description 18
- 229950004550 talazoparib Drugs 0.000 claims description 16
- NICJCIQSJJKZAH-AWEZNQCLSA-N irofulven Chemical compound O=C([C@@]1(O)C)C2=CC(C)=C(CO)C2=C(C)C21CC2 NICJCIQSJJKZAH-AWEZNQCLSA-N 0.000 claims description 15
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- PCHKPVIQAHNQLW-CQSZACIVSA-N niraparib Chemical compound N1=C2C(C(=O)N)=CC=CC2=CN1C(C=C1)=CC=C1[C@@H]1CCCNC1 PCHKPVIQAHNQLW-CQSZACIVSA-N 0.000 claims description 10
- HMABYWSNWIZPAG-UHFFFAOYSA-N rucaparib Chemical group C1=CC(CNC)=CC=C1C(N1)=C2CCNC(=O)C3=C2C1=CC(F)=C3 HMABYWSNWIZPAG-UHFFFAOYSA-N 0.000 claims description 9
- 229950004707 rucaparib Drugs 0.000 claims description 9
- 229940124597 therapeutic agent Drugs 0.000 claims description 9
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 7
- 239000013543 active substance Substances 0.000 claims description 7
- 229950005254 irofulven Drugs 0.000 claims description 7
- 229950011068 niraparib Drugs 0.000 claims description 7
- JNAHVYVRKWKWKQ-CYBMUJFWSA-N veliparib Chemical compound N=1C2=CC=CC(C(N)=O)=C2NC=1[C@@]1(C)CCCN1 JNAHVYVRKWKWKQ-CYBMUJFWSA-N 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims description 5
- MDOJTZQKHMAPBK-UHFFFAOYSA-N 4-iodo-3-nitrobenzamide Chemical compound NC(=O)C1=CC=C(I)C([N+]([O-])=O)=C1 MDOJTZQKHMAPBK-UHFFFAOYSA-N 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 4
- 206010060862 Prostate cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 4
- 238000001959 radiotherapy Methods 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 3
- 206010025323 Lymphomas Diseases 0.000 claims description 3
- 229930012538 Paclitaxel Natural products 0.000 claims description 3
- 201000005202 lung cancer Diseases 0.000 claims description 3
- 208000020816 lung neoplasm Diseases 0.000 claims description 3
- 229960001592 paclitaxel Drugs 0.000 claims description 3
- 210000002307 prostate Anatomy 0.000 claims description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 3
- 229950011257 veliparib Drugs 0.000 claims description 3
- 206010006187 Breast cancer Diseases 0.000 claims description 2
- 206010009944 Colon cancer Diseases 0.000 claims description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 2
- 238000002512 chemotherapy Methods 0.000 claims description 2
- 210000001072 colon Anatomy 0.000 claims description 2
- 229950002133 iniparib Drugs 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 2
- 201000002528 pancreatic cancer Diseases 0.000 claims description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 2
- 238000001356 surgical procedure Methods 0.000 claims description 2
- FAQDUNYVKQKNLD-UHFFFAOYSA-N olaparib Chemical compound FC1=CC=C(CC2=C3[CH]C=CC=C3C(=O)N=N2)C=C1C(=O)N(CC1)CCN1C(=O)C1CC1 FAQDUNYVKQKNLD-UHFFFAOYSA-N 0.000 claims 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 1
- 208000008839 Kidney Neoplasms Diseases 0.000 claims 1
- 206010038389 Renal cancer Diseases 0.000 claims 1
- 208000002495 Uterine Neoplasms Diseases 0.000 claims 1
- 210000003169 central nervous system Anatomy 0.000 claims 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims 1
- 229960004316 cisplatin Drugs 0.000 claims 1
- 210000003734 kidney Anatomy 0.000 claims 1
- 201000010982 kidney cancer Diseases 0.000 claims 1
- 208000032839 leukemia Diseases 0.000 claims 1
- 201000005252 lipomatous cancer Diseases 0.000 claims 1
- 201000007270 liver cancer Diseases 0.000 claims 1
- 201000001441 melanoma Diseases 0.000 claims 1
- 210000001672 ovary Anatomy 0.000 claims 1
- 201000002025 prostate sarcoma Diseases 0.000 claims 1
- 210000003491 skin Anatomy 0.000 claims 1
- 206010046766 uterine cancer Diseases 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 61
- 230000002829 reductive effect Effects 0.000 description 51
- 150000001875 compounds Chemical class 0.000 description 42
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 35
- FDLYAMZZIXQODN-UHFFFAOYSA-N olaparib Chemical compound FC1=CC=C(CC=2C3=CC=CC=C3C(=O)NN=2)C=C1C(=O)N(CC1)CCN1C(=O)C1CC1 FDLYAMZZIXQODN-UHFFFAOYSA-N 0.000 description 33
- 230000004083 survival effect Effects 0.000 description 29
- 230000000694 effects Effects 0.000 description 28
- 239000003795 chemical substances by application Substances 0.000 description 24
- 201000010099 disease Diseases 0.000 description 24
- -1 Merck & Co Inc) Chemical compound 0.000 description 21
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 21
- 230000030833 cell death Effects 0.000 description 17
- 238000002648 combination therapy Methods 0.000 description 17
- 208000024891 symptom Diseases 0.000 description 17
- 230000002195 synergetic effect Effects 0.000 description 17
- 229940079593 drug Drugs 0.000 description 13
- 230000002062 proliferating effect Effects 0.000 description 13
- 239000012453 solvate Substances 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 230000004663 cell proliferation Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 229940126030 LP-100 Drugs 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- VDBNYAPERZTOOF-UHFFFAOYSA-N isoquinolin-1(2H)-one Chemical compound C1=CC=C2C(=O)NC=CC2=C1 VDBNYAPERZTOOF-UHFFFAOYSA-N 0.000 description 7
- 230000003902 lesion Effects 0.000 description 7
- 230000004614 tumor growth Effects 0.000 description 7
- 238000011278 co-treatment Methods 0.000 description 6
- 230000001394 metastastic effect Effects 0.000 description 6
- 206010061289 metastatic neoplasm Diseases 0.000 description 6
- QMNUDYFKZYBWQX-UHFFFAOYSA-N 1H-quinazolin-4-one Chemical class C1=CC=C2C(=O)N=CNC2=C1 QMNUDYFKZYBWQX-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- YJDAOHJWLUNFLX-UHFFFAOYSA-N NU 1025 Chemical compound C1=CC=C2C(=O)NC(C)=NC2=C1O YJDAOHJWLUNFLX-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000005787 hematologic cancer Diseases 0.000 description 4
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 4
- 238000009097 single-agent therapy Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- CTLOSZHDGZLOQE-UHFFFAOYSA-N 14-methoxy-9-[(4-methylpiperazin-1-yl)methyl]-9,19-diazapentacyclo[10.7.0.02,6.07,11.013,18]nonadeca-1(12),2(6),7(11),13(18),14,16-hexaene-8,10-dione Chemical compound O=C1C2=C3C=4C(OC)=CC=CC=4NC3=C3CCCC3=C2C(=O)N1CN1CCN(C)CC1 CTLOSZHDGZLOQE-UHFFFAOYSA-N 0.000 description 3
- HYNBNUYQTQIHJK-UHFFFAOYSA-N 4-[[4-fluoro-3-(4-methoxypiperidine-1-carbonyl)phenyl]methyl]-2h-phthalazin-1-one Chemical compound C1CC(OC)CCN1C(=O)C1=CC(CC=2C3=CC=CC=C3C(=O)NN=2)=CC=C1F HYNBNUYQTQIHJK-UHFFFAOYSA-N 0.000 description 3
- 102000052609 BRCA2 Human genes 0.000 description 3
- 108700020462 BRCA2 Proteins 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 101150008921 Brca2 gene Proteins 0.000 description 3
- 230000005778 DNA damage Effects 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000008485 antagonism Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229940054066 benzamide antipsychotics Drugs 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- LFUJIPVWTMGYDG-UHFFFAOYSA-N isoquinoline-1,5-diol Chemical compound N1=CC=C2C(O)=CC=CC2=C1O LFUJIPVWTMGYDG-UHFFFAOYSA-N 0.000 description 3
- HAVFFEMDLROBGI-UHFFFAOYSA-N m8926c7ilx Chemical compound C1CC(O)CCN1CC1=CC=C(OC=2C3=C(C(NN=C33)=O)C=CC=2)C3=C1 HAVFFEMDLROBGI-UHFFFAOYSA-N 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- RZFVLEJOHSLEFR-UHFFFAOYSA-N phenanthridone Chemical class C1=CC=C2C(O)=NC3=CC=CC=C3C2=C1 RZFVLEJOHSLEFR-UHFFFAOYSA-N 0.000 description 3
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 3
- 230000033587 transcription-coupled nucleotide-excision repair Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 238000012447 xenograft mouse model Methods 0.000 description 3
- QVMDIQLUNODCTG-UHFFFAOYSA-N (3'R)-3'r,6't-Dihydroxy-2',2',4',6'c-tetramethyl-2',3'-dihydro-spiro[cyclopropan-1,5'-inden]-7'-on Natural products CC1=C2C(O)C(C)(C)C=C2C(=O)C(C)(O)C11CC1 QVMDIQLUNODCTG-UHFFFAOYSA-N 0.000 description 2
- PXBFMLJZNCDSMP-UHFFFAOYSA-N 2-Aminobenzamide Chemical class NC(=O)C1=CC=CC=C1N PXBFMLJZNCDSMP-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- ARYVAQSYRLZVQD-UHFFFAOYSA-N 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-1h-isoindole-4-carboxamide Chemical compound O=C1C=2C(C(=O)N)=CC(F)=CC=2CN1C(CC1)CCN1C1CCC(F)(F)CC1 ARYVAQSYRLZVQD-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- SSMIFVHARFVINF-UHFFFAOYSA-N 4-amino-1,8-naphthalimide Chemical compound O=C1NC(=O)C2=CC=CC3=C2C1=CC=C3N SSMIFVHARFVINF-UHFFFAOYSA-N 0.000 description 2
- LQJVOLSLAFIXSV-UHFFFAOYSA-N 4h-thieno[2,3-c]isoquinolin-5-one Chemical compound C12=CC=CC=C2C(=O)NC2=C1C=CS2 LQJVOLSLAFIXSV-UHFFFAOYSA-N 0.000 description 2
- HXTDAUGEZTYMGP-UHFFFAOYSA-N 6-nitrosochromen-2-one Chemical compound O1C(=O)C=CC2=CC(N=O)=CC=C21 HXTDAUGEZTYMGP-UHFFFAOYSA-N 0.000 description 2
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AKYKZQWKCBEJHI-UHFFFAOYSA-N Illudin S Natural products CC1=C2C(O)C(C)(CO)C=C2C(=O)C(O)C13CC3 AKYKZQWKCBEJHI-UHFFFAOYSA-N 0.000 description 2
- DDLLIYKVDWPHJI-RDBSUJKOSA-N Illudin S Chemical compound C12([C@@](C)(O)C(=O)C3=C[C@@](C)(CO)[C@H](O)C3=C2C)CC1 DDLLIYKVDWPHJI-RDBSUJKOSA-N 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- DDLLIYKVDWPHJI-UHFFFAOYSA-N Lampterol Natural products CC1=C2C(O)C(C)(CO)C=C2C(=O)C(C)(O)C11CC1 DDLLIYKVDWPHJI-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- 239000005104 Neeliglow 4-amino-1,8-naphthalimide Substances 0.000 description 2
- UYJZZVDLGDDTCL-UHFFFAOYSA-N PJ34 Chemical compound C1=CC=C2C3=CC(NC(=O)CN(C)C)=CC=C3NC(=O)C2=C1 UYJZZVDLGDDTCL-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 108010064218 Poly (ADP-Ribose) Polymerase-1 Proteins 0.000 description 2
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 description 2
- 208000006994 Precancerous Conditions Diseases 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 206010070308 Refractory cancer Diseases 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- KLGQSVMIPOVQAX-UHFFFAOYSA-N XAV939 Chemical compound N=1C=2CCSCC=2C(O)=NC=1C1=CC=C(C(F)(F)F)C=C1 KLGQSVMIPOVQAX-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 150000003936 benzamides Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 239000003560 cancer drug Substances 0.000 description 2
- SFZULDYEOVSIKM-UHFFFAOYSA-N chembl321317 Chemical compound C1=CC(C(=N)NO)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=N)NO)O1 SFZULDYEOVSIKM-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- JBXRLVPILRXPNH-UHFFFAOYSA-N indol-6-one Chemical compound O=C1C=CC2=CC=NC2=C1 JBXRLVPILRXPNH-UHFFFAOYSA-N 0.000 description 2
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical group OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- FFRYUAVNPBUEIC-UHFFFAOYSA-N quinoxalin-2-ol Chemical class C1=CC=CC2=NC(O)=CN=C21 FFRYUAVNPBUEIC-UHFFFAOYSA-N 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- FCCGJTKEKXUBFZ-UHFFFAOYSA-N rucaparib phosphate Chemical compound OP(O)(O)=O.C1=CC(CNC)=CC=C1C(N1)=C2CCNC(=O)C3=C2C1=CC(F)=C3 FCCGJTKEKXUBFZ-UHFFFAOYSA-N 0.000 description 2
- 208000011571 secondary malignant neoplasm Diseases 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 231100001274 therapeutic index Toxicity 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- DENYZIUJOTUUNY-MRXNPFEDSA-N (2R)-14-fluoro-2-methyl-6,9,10,19-tetrazapentacyclo[14.2.1.02,6.08,18.012,17]nonadeca-1(18),8,12(17),13,15-pentaen-11-one Chemical compound FC=1C=C2C=3C=4C(CN5[C@@](C4NC3C1)(CCC5)C)=NNC2=O DENYZIUJOTUUNY-MRXNPFEDSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- HZIDLPHYFPKXIE-UHFFFAOYSA-N 1,3-benzoxazole-4-carboxamide Chemical class NC(=O)C1=CC=CC2=C1N=CO2 HZIDLPHYFPKXIE-UHFFFAOYSA-N 0.000 description 1
- IPQCDHUZDPVNJZ-UHFFFAOYSA-N 1-aminocyclohexa-3,5-diene-1,2-dicarbohydrazide Chemical compound NNC(=O)C1C=CC=CC1(N)C(=O)NN IPQCDHUZDPVNJZ-UHFFFAOYSA-N 0.000 description 1
- AMMPLVWPWSYRDR-UHFFFAOYSA-N 1-methylbicyclo[2.2.2]oct-2-ene-4-carboxylic acid Chemical compound C1CC2(C(O)=O)CCC1(C)C=C2 AMMPLVWPWSYRDR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- ORSQLIPWNOIHJK-UHFFFAOYSA-N 1H-pyrrolo[2,3-g][1]benzazepin-2-one Chemical class C1=CC2=NC=CC=CC2=C2C1=CC(=O)N2 ORSQLIPWNOIHJK-UHFFFAOYSA-N 0.000 description 1
- JJDMKDXGNVJWCD-UHFFFAOYSA-N 1h-benzimidazole-4-carboxamide Chemical class NC(=O)C1=CC=CC2=C1N=CN2 JJDMKDXGNVJWCD-UHFFFAOYSA-N 0.000 description 1
- UAYGFGNTENWCEQ-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridine-2-carboxamide Chemical class C1=CN=C2NC(C(=O)N)=NC2=C1 UAYGFGNTENWCEQ-UHFFFAOYSA-N 0.000 description 1
- AAILEWXSEQLMNI-UHFFFAOYSA-N 1h-pyridazin-6-one Chemical class OC1=CC=CN=N1 AAILEWXSEQLMNI-UHFFFAOYSA-N 0.000 description 1
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical class C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 1
- QGJHNXPHHOCUAH-UHFFFAOYSA-N 2,3-dihydrobenzo[de]isoquinolin-1-one Chemical compound C1=CC(C(=O)NC2)=C3C2=CC=CC3=C1 QGJHNXPHHOCUAH-UHFFFAOYSA-N 0.000 description 1
- UKHJNJFJCGBKSF-UHFFFAOYSA-N 2,5-diazabicyclo[2.2.1]heptane Chemical compound C1NC2CNC1C2 UKHJNJFJCGBKSF-UHFFFAOYSA-N 0.000 description 1
- LBYPXCKNONYICH-UHFFFAOYSA-N 2-(3-methoxyphenyl)-1,3-benzoxazole Chemical compound COC1=CC=CC(C=2OC3=CC=CC=C3N=2)=C1 LBYPXCKNONYICH-UHFFFAOYSA-N 0.000 description 1
- XAMZPXRUPPCGFJ-UHFFFAOYSA-N 2-(3-methoxyphenyl)-1h-benzimidazole Chemical compound COC1=CC=CC(C=2NC3=CC=CC=C3N=2)=C1 XAMZPXRUPPCGFJ-UHFFFAOYSA-N 0.000 description 1
- AHIVQGOUBLVTCB-AWEZNQCLSA-N 2-[2-fluoro-4-[(2s)-pyrrolidin-2-yl]phenyl]-1h-benzimidazole-4-carboxamide Chemical compound N=1C=2C(C(=O)N)=CC=CC=2NC=1C(C(=C1)F)=CC=C1[C@@H]1CCCN1 AHIVQGOUBLVTCB-AWEZNQCLSA-N 0.000 description 1
- UXGJAOIJSROTTN-UHFFFAOYSA-N 2-[4-(4-chlorophenoxy)phenyl]-3h-benzimidazole-5-carboxamide Chemical compound N1C2=CC(C(=O)N)=CC=C2N=C1C(C=C1)=CC=C1OC1=CC=C(Cl)C=C1 UXGJAOIJSROTTN-UHFFFAOYSA-N 0.000 description 1
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 1
- FIISKTXZUZBTRC-UHFFFAOYSA-N 2-phenyl-1,3-benzoxazole Chemical compound C1=CC=CC=C1C1=NC2=CC=CC=C2O1 FIISKTXZUZBTRC-UHFFFAOYSA-N 0.000 description 1
- KLLLJCACIRKBDT-UHFFFAOYSA-N 2-phenyl-1H-indole Chemical class N1C2=CC=CC=C2C=C1C1=CC=CC=C1 KLLLJCACIRKBDT-UHFFFAOYSA-N 0.000 description 1
- DWYHDSLIWMUSOO-UHFFFAOYSA-N 2-phenyl-1h-benzimidazole Chemical compound C1=CC=CC=C1C1=NC2=CC=CC=C2N1 DWYHDSLIWMUSOO-UHFFFAOYSA-N 0.000 description 1
- NTNKZGHUNBWBBV-UHFFFAOYSA-N 3,4,4a,5-tetrahydro-2h-isoquinolin-1-one Chemical compound C1C=CC=C2C(=O)NCCC21 NTNKZGHUNBWBBV-UHFFFAOYSA-N 0.000 description 1
- RLLZPXDJYADIEU-UHFFFAOYSA-N 3,4-dihydro-5-methylisoquinolinone Chemical compound O=C1NCCC2=C1C=CC=C2C RLLZPXDJYADIEU-UHFFFAOYSA-N 0.000 description 1
- XLZYKTYMLBOINK-UHFFFAOYSA-N 3-(4-hydroxybenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)C=2C=CC(O)=CC=2)=C1 XLZYKTYMLBOINK-UHFFFAOYSA-N 0.000 description 1
- GSCPDZHWVNUUFI-UHFFFAOYSA-N 3-aminobenzamide Chemical class NC(=O)C1=CC=CC(N)=C1 GSCPDZHWVNUUFI-UHFFFAOYSA-N 0.000 description 1
- UMULKNIDVSBBLE-UHFFFAOYSA-N 3-aminobenzene-1,2-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(N)=C1C(=O)NN UMULKNIDVSBBLE-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- NGMMGKYJUWYIIG-UHFFFAOYSA-N 3-hydroxybenzamide Chemical class NC(=O)C1=CC=CC(O)=C1 NGMMGKYJUWYIIG-UHFFFAOYSA-N 0.000 description 1
- VKPLPDIMEREJJF-UHFFFAOYSA-N 3-methoxybenzamide Chemical class COC1=CC=CC(C(N)=O)=C1 VKPLPDIMEREJJF-UHFFFAOYSA-N 0.000 description 1
- KWAYEPXDGHYGRW-UHFFFAOYSA-N 3-nitrobenzamide Chemical compound NC(=O)C1=CC=CC([N+]([O-])=O)=C1 KWAYEPXDGHYGRW-UHFFFAOYSA-N 0.000 description 1
- OZUBORKYZRYLSQ-UHFFFAOYSA-N 3-nitrosobenzamide Chemical class NC(=O)C1=CC=CC(N=O)=C1 OZUBORKYZRYLSQ-UHFFFAOYSA-N 0.000 description 1
- QIKYZXDTTPVVAC-UHFFFAOYSA-N 4-Aminobenzamide Chemical class NC(=O)C1=CC=C(N)C=C1 QIKYZXDTTPVVAC-UHFFFAOYSA-N 0.000 description 1
- DMJHWHGTAHHHMU-UHFFFAOYSA-N 4-amino-3-chloro-n-[2-(diethylamino)ethyl]benzamide;hydrochloride Chemical class Cl.CCN(CC)CCNC(=O)C1=CC=C(N)C(Cl)=C1 DMJHWHGTAHHHMU-UHFFFAOYSA-N 0.000 description 1
- RJWBTWIBUIGANW-UHFFFAOYSA-N 4-chlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C=C1 RJWBTWIBUIGANW-UHFFFAOYSA-N 0.000 description 1
- SVASVGVAQIVSEZ-UHFFFAOYSA-N 5-amino-2H-isoquinolin-1-one Chemical compound C1=CNC(=O)C2=C1C(N)=CC=C2 SVASVGVAQIVSEZ-UHFFFAOYSA-N 0.000 description 1
- CMNQIVHHHBBVSC-UHFFFAOYSA-N 5-hydroxy-3,4-dihydro-2h-isoquinolin-1-one Chemical compound O=C1NCCC2=C1C=CC=C2O CMNQIVHHHBBVSC-UHFFFAOYSA-N 0.000 description 1
- BCCUXBGEPLKSEX-UHFFFAOYSA-N 5-methylpyridine-3-carboxamide Chemical compound CC1=CN=CC(C(N)=O)=C1 BCCUXBGEPLKSEX-UHFFFAOYSA-N 0.000 description 1
- WWRAFPGUBABZSD-UHFFFAOYSA-N 6-amino-5-iodochromen-2-one Chemical compound O1C(=O)C=CC2=C(I)C(N)=CC=C21 WWRAFPGUBABZSD-UHFFFAOYSA-N 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- RTAPDZBZLSXHQQ-UHFFFAOYSA-N 8-methyl-3,7-dihydropurine-2,6-dione Chemical class N1C(=O)NC(=O)C2=C1N=C(C)N2 RTAPDZBZLSXHQQ-UHFFFAOYSA-N 0.000 description 1
- JWIYKMOFSFOAAZ-UHFFFAOYSA-N 8-oxa-15,16-diazatetracyclo[7.7.1.02,7.013,17]heptadeca-1(16),2,4,6,9,11,13(17)-heptaen-14-one Chemical class C12=CC=CC=C2OC2=CC=CC3=C2C1=NNC3=O JWIYKMOFSFOAAZ-UHFFFAOYSA-N 0.000 description 1
- RJPZCIIPMLGXJE-UHFFFAOYSA-N 8-oxa-15-azatetracyclo[7.7.1.02,7.013,17]heptadeca-1(16),2,4,6,9,11,13(17)-heptaen-14-one Chemical compound C12=CC=CC=C2OC2=CC=CC3=C2C1=CNC3=O RJPZCIIPMLGXJE-UHFFFAOYSA-N 0.000 description 1
- VKNGIKPKHNYXMP-UHFFFAOYSA-N 8-oxa-15-azatetracyclo[7.7.1.02,7.013,17]heptadeca-1(17),2,4,6,9,11,13-heptaen-16-one Chemical compound C1=CC=C2OC3=CC=CC=C3C3=C2C1=CNC3=O VKNGIKPKHNYXMP-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 230000005971 DNA damage repair Effects 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- QXRSDHAAWVKZLJ-OXZHEXMSSA-N Epothilone B Natural products O=C1[C@H](C)[C@H](O)[C@@H](C)CCC[C@@]2(C)O[C@H]2C[C@@H](/C(=C\c2nc(C)sc2)/C)OC(=O)C[C@H](O)C1(C)C QXRSDHAAWVKZLJ-OXZHEXMSSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 101001113440 Homo sapiens Poly [ADP-ribose] polymerase 2 Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Chemical group OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- HRYILSDLIGTCOP-UHFFFAOYSA-N N-benzoylurea Chemical compound NC(=O)NC(=O)C1=CC=CC=C1 HRYILSDLIGTCOP-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- JEXRQLLTKKTFHG-UHFFFAOYSA-N N1NC(CC2C1=CC=CN2)=O Chemical compound N1NC(CC2C1=CC=CN2)=O JEXRQLLTKKTFHG-UHFFFAOYSA-N 0.000 description 1
- 241001247959 Omphalotus olearius Species 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- UJEWTUDSLQGTOA-UHFFFAOYSA-N Piretanide Chemical compound C=1C=CC=CC=1OC=1C(S(=O)(=O)N)=CC(C(O)=O)=CC=1N1CCCC1 UJEWTUDSLQGTOA-UHFFFAOYSA-N 0.000 description 1
- 102100023652 Poly [ADP-ribose] polymerase 2 Human genes 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 238000010478 Prins reaction Methods 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 229940123690 Raf kinase inhibitor Drugs 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 229940124653 Talzenna Drugs 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000005002 aryl methyl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 150000008375 benzopyrones Chemical class 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical class C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 230000004611 cancer cell death Effects 0.000 description 1
- 230000005880 cancer cell killing Effects 0.000 description 1
- 230000009702 cancer cell proliferation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- BWVHYDYUKQEFHG-UHFFFAOYSA-N cep-8983 Chemical compound COC1=CC=CC2=C1C1=C3C(=O)NC(=O)C3=C3CCCC3=C1N2 BWVHYDYUKQEFHG-UHFFFAOYSA-N 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 1
- HESCAJZNRMSMJG-HGYUPSKWSA-N epothilone A Natural products O=C1[C@H](C)[C@H](O)[C@H](C)CCC[C@H]2O[C@H]2C[C@@H](/C(=C\c2nc(C)sc2)/C)OC(=O)C[C@H](O)C1(C)C HESCAJZNRMSMJG-HGYUPSKWSA-N 0.000 description 1
- QXRSDHAAWVKZLJ-PVYNADRNSA-N epothilone B Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 QXRSDHAAWVKZLJ-PVYNADRNSA-N 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 229940100352 lynparza Drugs 0.000 description 1
- 231100000682 maximum tolerated dose Toxicity 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- BDXPYXUQAYIUFG-UHFFFAOYSA-N methyl 3,5-diiodo-4-(4-methoxyphenoxy)benzoate Chemical class IC1=CC(C(=O)OC)=CC(I)=C1OC1=CC=C(OC)C=C1 BDXPYXUQAYIUFG-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- ISGGVCWFTPTHIX-UHFFFAOYSA-N n'-(2-hydroxy-3-piperidin-1-ylpropoxy)pyridine-3-carboximidamide;dihydrochloride Chemical compound Cl.Cl.C1CCCCN1CC(O)CONC(=N)C1=CC=CN=C1 ISGGVCWFTPTHIX-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 150000005480 nicotinamides Chemical class 0.000 description 1
- 238000013546 non-drug therapy Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000008196 pharmacological composition Substances 0.000 description 1
- WWBGWPHHLRSTFI-UHFFFAOYSA-N phenalen-1-one Chemical compound C1=CC(C(=O)C=C2)=C3C2=CC=CC3=C1 WWBGWPHHLRSTFI-UHFFFAOYSA-N 0.000 description 1
- 150000005053 phenanthridines Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 108700021017 phosphatidylethanolamine binding protein Proteins 0.000 description 1
- 102000051624 phosphatidylethanolamine binding protein Human genes 0.000 description 1
- IJAPPYDYQCXOEF-UHFFFAOYSA-N phthalazin-1(2H)-one Chemical compound C1=CC=C2C(=O)NN=CC2=C1 IJAPPYDYQCXOEF-UHFFFAOYSA-N 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical class C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- IBBMAWULFFBRKK-UHFFFAOYSA-N picolinamide Chemical compound NC(=O)C1=CC=CC=N1 IBBMAWULFFBRKK-UHFFFAOYSA-N 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 150000004892 pyridazines Chemical class 0.000 description 1
- ISZIQZCZKOFSBT-UHFFFAOYSA-N pyrrolo[2,3-g][1]benzazepine Chemical class N1=CC=CC=C2C3=NC=CC3=CC=C21 ISZIQZCZKOFSBT-UHFFFAOYSA-N 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000008515 quinazolinediones Chemical class 0.000 description 1
- 150000003246 quinazolines Chemical class 0.000 description 1
- CGJMVNVWQHPASW-UHFFFAOYSA-N quinoxaline-2-carboxamide Chemical class C1=CC=CC2=NC(C(=O)N)=CN=C21 CGJMVNVWQHPASW-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- INBJJAFXHQQSRW-STOWLHSFSA-N rucaparib camsylate Chemical compound CC1(C)[C@@H]2CC[C@@]1(CS(O)(=O)=O)C(=O)C2.CNCc1ccc(cc1)-c1[nH]c2cc(F)cc3C(=O)NCCc1c23 INBJJAFXHQQSRW-STOWLHSFSA-N 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
- A61K31/122—Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/502—Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/243—Platinum; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
Definitions
- This application relates to cancer treatments and more specifically this application relates to cancer treatments using a combination therapy including a PARP inhibitor.
- Cancer is one of the most common causes of death in people.
- the development of therapeutic strategies for patients with advanced cancer has markedly improved overall survival.
- resistance to anticancer reagents is inevitable, and the prognosis of advanced cancer remains poor.
- cancer drug resistance including alterations to drug transporters, the suppression of apoptosis, mitochondrial alterations, the promotion of DNA damage repair, autophagy, epithelial- mesenchymal transition, and cancer stem cells (CSCs). Appropriate strategies that consider the mechanisms are necessary to cure cancer.
- Combination-therapy treatments for cancer have become more common, in part due to the perceived advantage of attacking the disease via multiple avenues. Although many effective combination-therapy treatments have been identified over the past few decades; in view of the continuing high number of deaths each year resulting from cancer, a continuing need exists to identify effective therapeutic regimens for use in anticancer treatment.
- This application discloses the discovery that treatment of a cancer in a subject with a combination of an illudin or illudin analog (e.g., acylfulvene) and a PARP inhibitor has synergistically greater effects (i.e., greater than the effects of each added together) than the effects provided by either acylfulvene or PARP inhibitor treatment, alone.
- the cytotoxicity delivered from treating a cancer with a combination of illudin or acylfulvene and a PARP inhibitor is unexpectedly greater compared to the cytotoxicity delivered when treating the cancer with illudin or acylfulvene or PARP inhibitor, alone (or greater than the cytotoxicity of both added together).
- One aspect of this application includes a combination therapy for treating cancers.
- the therapy includes administering a combination of active agents including an illudin or illudin analog (e.g., acylfulvene), and a PARP inhibitor.
- active agents including an illudin or illudin analog (e.g., acylfulvene), and a PARP inhibitor.
- compositions comprising an illudin or illudin analog (e.g., acylfulvene) and a PARP inhibitor or pharmaceutically acceptable salts thereof, mixed with pharmaceutically suitable carriers or excipient(s) at doses to treat or prevent cancer.
- the pharmaceutical compositions can also be administered in combination with other therapeutic agents or therapeutic modalities simultaneously, sequentially, or in alternation.
- Another aspect of this application includes therapeutically effective amounts of each illudin or acylfulvene, and a PARP inhibitor used in combination that will be lower when used in combination in comparison to monotherapy with each agent alone. Such lower therapeutically effective amounts could afford for lower toxicity of the therapeutic regimen.
- Another aspect of this application includes the therapy including an acylfulvene that is (+) - hydroxyureamethyl acylfulvene.
- Another aspect of this application includes the therapy including an acylfulvene that is Irofulven.
- Tumors such as, but not limited to, hyperplastic or neoplastic disease, such as a carcinoma, sarcoma, or mixed type cancer, including breast, colon, rectal, endometrial, gastric, prostate or brain, mesothelioma, ovarian, lung or pancreatic cancer can be targeted for therapy.
- hyperplastic or neoplastic disease such as a carcinoma, sarcoma, or mixed type cancer, including breast, colon, rectal, endometrial, gastric, prostate or brain, mesothelioma, ovarian, lung or pancreatic cancer can be targeted for therapy.
- FIG. 1 shows the effect of the combination of LP-184 with Olaparib on the survival of cells
- FIG. 2 shows the effect of the combination of LP-100 with either Olaparib or Rucaparib on shrinking tumors in prostate xenograft mouse models in vivo;
- FIG. 3A shows IC50 data in which an Olaparib single treatment was 1248. InM;
- FIG. 3B shows IC50 data in which an Olaparib single treatment was 108.2nM respectively;
- FIG. 3C shows IC50 data in which Olaparib and LP-184 co-treatment was 278.6nM Olaparib and 13.93nM LP-184;
- FIG. 3D shows the synergistic effect of LP-184 and Olaparib analyzed through in Isobole plot
- FIG. 4A shows IC50 data in which a Talazoparib single treatment was 13. InM;
- FIG. 4B shows IC50 data in which a Talazoparib single treatment was 87.4nM
- FIG. 4C shows IC50 data in which a Talazoparib and LP-184 co-treatment was 3.6nM Olaparib and 7.2nM LP-184;
- FIG. 4D shows the synergistic effect of LP-184 and Talazoparib analyzed through an Isobole plot.
- This application provides a combination therapy for treating solid cancers and blood cancers.
- the therapy includes administering a combination of active agents including an illudin or an illudin analog (e.g., acylfulvene) and a PARP inhibitor.
- the therapy includes administering a combination of other therapies.
- the combination therapy can be used to treat biochemical occurrence or recurrence of solid cancers (e.g., lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, rectum cancer, and bladder cancer), glioblastoma and atypical teratoid rhabdoid, and renal cell carcinoma).
- the therapy includes the combination therapy that can be used to treat biochemical occurrence and recurrence of blood cancers in which an acylfulvene (e.g., hydroxyureamethyl acylfulvene) or salt thereof and a PARP inhibitor administered in a therapeutically effective amount to the patient.
- the combination can provide a treatment for lymphoma, such as mantle cell lymphoma (MCL) and double-hit lymphoma (DHL).
- MCL mantle cell lymphoma
- DHL double-hit lymphoma
- MM multiple myeloma
- the overgrowth of plasma cells in the bone marrow can crowd out normal blood- forming cells.
- this application includes the use of an illudin or illudin analog (e.g., acylfulvene).
- Acylfulvene is a class of cytotoxic semi-synthetic derivatives of illudin, a natural product that can be extracted from the jack o'lantem mushroom (Omphalotus olearius).
- Acylfulvene derived from the sesquiterpene illudin S by treatment with acid (reverse Prins reaction), is far less reactive to thiols than illudin S.
- the acylfulvene is (-) - hydroxyureamethyl acylfulvene (termed LP- 184 by Lantern Pharma Inc.), which shifts light positively, is shown below:
- acylfulvene is (+)-hydroxyureamethyl acylfulvene (termed LP-284 by Lantern Pharma Inc.), which shifts light negatively, is shown below:
- (+) - hydroxyureamethyl acylfulvene and (-) - hydroxyureamethyl acylfulvene are enantiomers and are now known publicly.
- the acylfulvene is Irofulven.
- PARP inhibitor are a type of cancer drug.
- PARP stands for poly adenosine diphosphate-ribose polymerase (poly-ADP ribose polymerase (PARP) inhibitor), a type of enzyme that helps repair DNA damage in cells.
- PARP inhibitor work by preventing cancer cells from repairing damaged DNA, allowing them to die.
- PARP enzymes help repair DNA damage. Blocking them can keep cancer cells from repairing, and this allows them to die.
- compositions that include one or more PARP inhibitor and typically at least one additional substance, such as an excipient, a known therapeutic other than those of the present disclosure, and combinations thereof.
- a PARP inhibitor can be used in combination with other agents known to have beneficial, additive or synergistic activity with the PARP inhibitor.
- the PARP inhibitor is a PARP-1 inhibitor.
- the PARP inhibitor is an inhibitor of any enzyme of the PARP family, e g., PARP1 and/or PARP2.
- Suitable PARP inhibitors include, but are not limited to, olaparib (AZD-2281, 4-[(3-[(4-cyclopropylcarbonyl)piperazin-4- yl]carbonyl)-4-fluorophenyl]met- hyl(2H)-phthalazin-l-one), veliparib (ABT-888, CAS 912444-00-9, 2-((fi)-2-methylpyrrolidin-2-yl)-lW-benzimidazole-4-carboxamide), CEP- 8983 (ll-methoxy-4,5,6,7-tetrahydro-lH-cyclopenta[a]pyrrolo[3,4-c]car- apelole-l,3(2H)- dione) or a prodrug thereof (e.g.
- W02006046035 W02006008119, W006008118, W02006042638, US20060229289, US20060229351, W02005023800, W01991007404, W02000042025, W02004096779, U.S. Pat. No. 6,426,415, W02068407, U.S. Pat. No.
- the PARP inhibitor compound is selected from the group consisting of rucaparib (AG014699, PF-01367338), olaparib (AZD2281), veliparib (ABT888), iniparib (BSI 201), niraparib (MK 4827), talazoparib (BMN673), AZD 2461, CEP 9722, E7016, INO-1001, LT-673, MP-124, NMS-P118, XAV939, analogs, derivatives or a mixture thereof.
- the PARP inhibitor is selected from the group consisting of rucaparib (AG014699, PF-01367338), olaparib (AZD2281), veliparib (ABT888), iniparib (BSI 201), niraparib (MK 4827), talazoparib (BMN673), AZD 2461, analogs, derivatives or a mixture thereof.
- acylfulvene or hydroxyureamethyl acylfulvene or its salt may be administered either prior to, concomitantly with, or subsequent to the administration of a PARP inhibitor.
- One aspect of this application includes a method of treating cancer in a subject in need thereof.
- the method involves administering to the subject an effective amount of PARP inhibitor and an effective amount of an acylfulvene.
- PARP inhibitor may be administered prior to or concomitantly with an acylfulvene for optimal synergistic effects.
- Another embodiment includes a pharmaceutical composition having a therapeutically effective amount of an illudin or an illudin analog thereof, derivative, or a pharmaceutically acceptable salt thereof; and a therapeutically effective amount of a PARP inhibitor or an analog, derivative, or a pharmaceutically acceptable salt thereof.
- the illudin analog can be HydroxyUreaMethylAcylfulvene.
- kits for the treatment of cancer in a subject includes a therapeutically effective amount of an illudin or an illudin analog thereof, derivative, or a pharmaceutically acceptable salt thereof; and a therapeutically effective amount of a PARP inhibitor or an analog, derivative, or a pharmaceutically acceptable salt thereof:
- the second therapeutic is one or more chemotherapeutic agents selected from camptothecin derivatives, paclitaxel, docetaxel, epothilone B, 5-FU, gemcitabine, oxaliplatin, cisplatinum, carboplatin, melphalam, dacarbazine, temozolomide, doxorubicin, imatinib, erlotinib, bevacizumab, cetuximab and a Raf kinase inhibitor.
- camptothecin derivatives selected from camptothecin derivatives, paclitaxel, docetaxel, epothilone B, 5-FU, gemcitabine, oxaliplatin, cisplatinum, carboplatin, melphalam, dacarbazine, temozolomide, doxorubicin, imatinib, erlotinib, bevacizumab, cetuximab and a Raf kinase
- the second therapeutic is one or more chemotherapeutic agents selected from paclitaxel or cisplatinum.
- combination therapy can include or includes the administration of the therapeutic agents as described above in further combination with other biologically active ingredients and non-drug therapies (e.g., surgery or radiation treatment).
- combination therapy further comprises a non-drug treatment
- the non-drug treatment may be conducted at any suitable time so long as a beneficial effect from the co-action of the combination of the therapeutic agents and non-drug treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the non-drug treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.
- composition or combination therapy herein, or a pharmaceutically acceptable salt or solvate thereof may be administered in combination with radiation therapy.
- Radiation therapy can also be administered in combination with a composition of the present invention and another chemotherapeutic agent described herein as part of a multiple agent therapy.
- Combination therapy can be achieved by administering two or more agents, e.g., an acylfulvene, a PARP inhibitor and one or more other therapeutic agents, each of which is formulated and administered separately, or by administering two or more agents in a single formulation.
- agents e.g., an acylfulvene, a PARP inhibitor and one or more other therapeutic agents, each of which is formulated and administered separately, or by administering two or more agents in a single formulation.
- Other combinations are also encompassed by combination therapy.
- two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be.
- administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks.
- the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present within the patient's body at the same time, this need not be so.
- PARP inhibition indicates a decrease in the baseline activity of a biological activity or process, namely, the activity of PARP.
- PARP inhibition relies mainly on two different mechanisms: (i) catalytic inhibition that act mainly by inhibiting PARP enzyme activity and (ii) bound inhibition that block PARP enzyme activity and prevent its release from the damage site.
- “Inhibition of PARP” refers to a decrease in the activity of PARP as a direct or indirect response to the presence of at least one compound and/or at least one pharmaceutically acceptable salt disclosed herein, relative to the activity of PARP in the absence of the at least one compound and/or the at least one pharmaceutically acceptable salt thereof.
- the decrease in activity can be due to the direct interaction of the at least one compound, stereoisomers thereof, and pharmaceutically acceptable salts thereof disclosed herein with PARP, or due to the interaction of the at least one compound and/or at least one pharmaceutically acceptable salt disclosed herein, with one or more other factors that in turn affect PARP activity.
- the presence of at least one compound, stereoisomers thereof, and pharmaceutically acceptable salts thereof disclosed herein may decrease PARP activity by directly binding to the PARP, by causing (directly or indirectly) another factor to decrease PARP activity, or by (directly or indirectly) decreasing the amount of PARP present in the cell or organism.
- the methods of combination therapy may or should result in a synergistic effect, wherein the effect of a combination of compounds or other therapeutic agents is greater than the sum of the effects resulting from administration of any of the compounds or other therapeutic agents as single agents.
- a synergistic effect may also be an effect that cannot be achieved by administration of any of the compounds or other therapeutic agents as single agents.
- the synergistic effect may include, but is not limited to, an effect of treating cancer by reducing tumor size, inhibiting tumor growth, or increasing survival of the subject.
- the synergistic effect may also include reducing cancer cell viability, inducing cancer cell death, and inhibiting or delaying cancer cell growth.
- Therapeutically effective doses can vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the age and general health condition of the patient, excipient usage, the possibility of co usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for acylfulvene or hydroxyureamethyl acylfulvene or journal discussion the same.
- the term “effective amount” as used herein refers to the amount of an agent needed to alleviate at least one or more symptoms of the disease or disorder, and relates to a sufficient amount of pharmacological composition to provide the desired effect.
- the term “therapeutically effective amount” therefore refers to an amount of the agent that is sufficient to provide a particular effect when administered to atypical subject.
- An effective amount may be an amount sufficient to decrease the symptoms of a disease responsive to inhibition of PARP.
- efficacy in vivo can, for example, be measured by assessing the duration of survival, time to disease progression (TTP), the response rates (RR), duration of response, and/or quality of life.
- Effective amounts may vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and co-usage with other agents.
- An effective amount as used herein, in various contexts, would also include an amount sufficient to delay the development of a symptom of the disease, alter the course of a symptom disease (for example but not limited to, slowing the progression of a symptom of the disease), or reverse a symptom of the disease. Thus, it is not generally practicable to specify an exact “effective amount”. However, for any given case, an appropriate “effective amount” can be determined by one of ordinary skill in the art using only routine experimentation.
- the dosage ranges for the administration of an agent according to the methods described herein depend upon, for example, the form of the agent, its potency, and the extent to which symptoms, markers, or indicators of a condition described herein are desired to be reduced, for example, the percentage reduction desired for tumor growth.
- the dosage should not be so large as to cause adverse side effects.
- the dosage will vary with the age, condition, and sex of the patient and can be determined by one of skill in the art.
- the dosage can also be adjusted by the individual physician in the event of any complication.
- the term “therapeutically effective amount”, as used herein, refers to an amount of a pharmaceutical agent to treat, ameliorate, or prevent an identified disease or condition, or to exhibit a detectable therapeutic or inhibitory effect.
- the effect can be detected by any assay method known in the art.
- the precise effective amount for a subject will depend upon the subject's body weight, size, and health; the nature and extent of the condition; and the therapeutic or combination of therapeutics selected for administration.
- Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician.
- the disease or condition to be treated is cancer.
- the disease or condition to be treated is a cell proliferative disorder.
- an agent described herein in, e.g., the treatment of a condition described herein, or to induce a response as described herein can be determined by the skilled clinician.
- a treatment is considered “effective treatment,” as the term is used herein, if one or more of the signs or symptoms of a condition described herein are altered in a beneficial manner, other clinically accepted symptoms are improved, or even ameliorated, or a desired response is induced e.g., by at least 10% following treatment according to the methods described herein.
- Efficacy can be assessed, for example, by measuring a marker, indicator, symptom, and/or the incidence of a condition treated according to the methods described herein or any other measurable parameter appropriate, e.g. tumor size and/or growth rate. Efficacy can also be measured by a failure of an individual to worsen as assessed by hospitalization, or need for medical interventions (i.e., progression of the disease is halted). Methods of measuring these indicators are known to those of skill in the art and/or are described herein.
- Treatment includes any treatment of a disease in an individual or an animal (some non-limiting examples include a human or an animal) and includes: (1) inhibiting the disease, e.g., preventing a worsening of symptoms (e.g., pain or inflammation); or (2) relieving the severity of the disease, e.g., causing regression of symptoms.
- An effective amount for the treatment of a disease means that amount which, when administered to a subject in need thereof, is sufficient to result in effective treatment as that term is defined herein, for that disease.
- Efficacy of an agent can be determined by assessing physical indicators of a condition or desired response. It is well within the ability of one skilled in the art to monitor efficacy of administration and/or treatment by measuring any one of such parameters, or any combination of parameters.
- Efficacy can be assessed in animal models of a condition described herein, for example, treatment of blood cancers in a mouse model.
- efficacy of treatment is evidenced when a statistically significant change in a marker is observed, e.g. tumor size and/or growth rate.
- the therapeutically effective amount of hydroxyureamethyl-acylfulvene, acylfulvene, Irofulven or a pharmaceutically acceptable salt thereof is selected from the group consisting of 0.5 mg/day, 1 mg/day, 2.5 mg/day, 5 mg/day, 10 mg/day, 20 mg/day, 30 mg/day, 60 mg/day, 90 mg/day, 120 mg/day, 150 mg/day, 180 mg/day, 210 mg/day, 240 mg/day, 270 mg/day, 300 mg/day, 360 mg/day, 400 mg/day, 440 mg/day, 480 mg/day, 520 mg/day 580 mg/day, 600 mg/day, 620 mg/day, 640 mg/day, 680 mg/day, and 720 mg/day.
- the administered dosage of the PARP inhibitor is 1-120 mg (in terms of the parent compound), preferably, 1-80 mg (in terms of the parent compound), and the administration frequency is twice a day (BID);
- the administered dosage of the PARP inhibitor is 1-120-240 mg (in terms of the parent compound), preferably, 60-120 mg (in terms of the parent compound), and the administration frequency is once a day (QD).
- QD once a day
- treat is used and includes both therapeutic treatment and prophylactic treatment (reducing the likelihood of development). Both terms mean decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.
- a disease e.g., a disease or disorder delineated herein
- compositions can be included in a container, pack, or dispenser together with instructions for administration.
- composition of the present invention is capable of further forming salts.
- the composition of the present invention can form more than one salt per molecule, e.g., mono- , di-, tri-. All of these forms are also contemplated within the scope of the claimed invention.
- pharmaceutically acceptable salts refer to derivatives of the compounds of the present invention wherein the parent compound is modified by making acid or base salts thereof.
- pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines, alkali or organic salts of acidic residues such as carboxylic acids, and the like.
- the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 2-acetoxybenzoic, 2-hydroxyethane sulfonic, acetic, ascorbic, benzene sulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, 1,2-ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methane sulfonic, napsylic, nitric, oxalic, pamoic, pantothenic, phenylacetic, phosphoric,
- compositions include hexanoic acid, cyclopentane propionic acid, pyruvic acid, malonic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4- toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo-[2.2.2]-oct-2-ene-l- carboxylic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, muconic acid, and the like.
- the present invention also encompasses salts formed when an acidic proton in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
- a metal ion e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion
- an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
- the term “selectively” means tending to occur at a higher frequency in one population than in another population.
- the compared populations can be cell populations.
- an event occurs selectively in population A relative to population B if it occurs greater than two times more frequently in population A as compared to population B.
- An event occurs selectively if it occurs greater than five times more frequently in population A.
- An event occurs selectively if it occurs greater than ten times more frequently in population A; more preferably, greater than fifty times; even more preferably, greater than 100 times; and most preferably, greater than 1000 times more frequently in population A as compared to population B.
- cell death would be said to occur selectively in cancer cells if it occurred greater than twice as frequently in cancer cells as compared to normal cells.
- compositions, or pharmaceutically acceptable salts or solvates thereof are administered orally, nasally, transdermally, pulmonary, inhalationally, buccally, sublingually, intraperintoneally, subcutaneously, intramuscularly, intravenously, rectally, intrapleurally, intrathecally and parenterally.
- the compound is administered orally.
- One skilled in the art will recognize the advantages of certain routes of administration.
- the dosage regimen utilizing the compounds is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed.
- An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
- the compounds described herein, and the pharmaceutically acceptable salts thereof are used in pharmaceutical preparations in combination with a pharmaceutically acceptable carrier or diluent.
- suitable pharmaceutically acceptable carriers include inert solid fillers or diluents and sterile aqueous or organic solutions.
- the compounds will be present in such pharmaceutical compositions in amounts sufficient to provide the desired dosage amount in the range described herein.
- a “subject in need thereof’ is a subject having a precancerous condition.
- a subject in need thereof has cancer.
- a “subject” includes a mammal.
- the mammal can be e.g., any mammal, e.g., a human, primate, bird, mouse, rat, dog, cat, cow, horse, goat, camel, sheep or a pig.
- the mammal is a human.
- the subject of the present invention includes any human subject who has been diagnosed with, has symptoms of, or is at risk of developing a cancer or a precancerous condition.
- a subject in need thereof may have refractory or resistant cancer.
- “Refractory or resistant cancer” means cancer that does not respond to treatment. The cancer may be resistant at the beginning of treatment or it may become resistant during treatment.
- the subject in need thereof has cancer recurrence following remission on most recent therapy.
- the subject in need thereof received and failed all known effective therapies for cancer treatment.
- the subject in need thereof received at least one prior therapy. In certain embodiments the prior therapy is monotherapy. In certain embodiments the prior therapy is combination therapy.
- a subject in need thereof may have a secondary cancer as a result of a previous therapy.
- Secondary cancer means cancer that arises due to or as a result from previous carcinogenic therapies, such as chemotherapy.
- Cancer is a group of diseases that may cause almost any sign or symptom. The signs and symptoms will depend on where the cancer is, the size of the cancer, and how much it affects the nearby organs or structures. If a cancer spreads (metastasizes), then symptoms may appear in different parts of the body.
- Treating cancer can result in a reduction in size of a tumor.
- a reduction in size of a tumor may also be referred to as “tumor regression”.
- tumor size is reduced by 5% or greater relative to its size prior to treatment; more preferably, tumor size is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75% or greater.
- Size of a tumor may be measured by any reproducible means of measurement. The size of a tumor may be measured as a diameter of the tumor.
- Treating cancer results in a decrease in number and size of tumors.
- tumor number or size is reduced by 5% or greater relative to number prior to treatment; more preferably, tumor number or size is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75%.
- Number of tumors may be measured by any reproducible means of measurement.
- the number of tumors may be measured by counting tumors visible to the naked eye or at a specified magnification.
- the specified magnification is 2x, 3x, 4x, 5x, lOx, or 50x.
- Treating cancer can result in a decrease in number of metastatic lesions in other tissues or organs distant from the primary tumor site.
- the number of metastatic lesions is reduced by 5% or greater relative to number prior to treatment; more preferably, the number of metastatic lesions is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75%.
- the number of metastatic lesions may be measured by any reproducible means of measurement.
- the number of metastatic lesions may be measured by counting metastatic lesions visible to the naked eye or at a specified magnification.
- the specified magnification is 2x, 3x, 4x, 5x, lOx, or 5 Ox.
- Treating cancer can result in an increase in average survival time of a population of treated subjects in comparison to a population receiving carrier alone.
- the average survival time is increased by more than 30 days; more preferably, by more than 60 days; more preferably, by more than 90 days; and most preferably, by more than 120 days.
- An increase in average survival time of a population may be measured by any reproducible means.
- An increase in average survival time of a population may be measured, for example, by calculating for a population the average length of survival following initiation of treatment with an active compound.
- An increase in average survival time of a population may also be measured, for example, by calculating for a population the average length of survival following completion of a first round of treatment with an active compound.
- Treating cancer can result in an increase in average survival time of a population of treated subjects in comparison to a population of untreated subjects.
- the average survival time is increased by more than 30 days; more preferably, by more than 60 days; more preferably, by more than 90 days; and most preferably, by more than 120 days.
- An increase in average survival time of a population may be measured by any reproducible means.
- An increase in average survival time of a population may be measured, for example, by calculating for a population the average length of survival following initiation of treatment with an active compound.
- An increase in average survival time of a population may also be measured, for example, by calculating for a population the average length of survival following completion of a first round of treatment with an active compound.
- Treating cancer can result in increase in average survival time of a population of treated subjects in comparison to a population receiving monotherapy with a drug that is not a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof.
- the average survival time is increased by more than 30 days; more preferably, by more than 60 days; more preferably, by more than 90 days; and most preferably, by more than 120 days.
- An increase in average survival time of a population may be measured by any reproducible means.
- An increase in average survival time of a population may be measured, for example, by calculating for a population the average length of survival following initiation of treatment with an active compound.
- An increase in average survival time of a population may also be measured, for example, by calculating for a population the average length of survival following completion of a first round of treatment with an active compound.
- Treating cancer can result in a decrease in the mortality rate of a population of treated subjects in comparison to a population receiving carrier alone. Treating cancer can result in a decrease in the mortality rate of a population of treated subjects in comparison to an untreated population. Treating cancer can result in a decrease in the mortality rate of a population of treated subjects in comparison to a population receiving monotherapy with a drug that is not a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof.
- the mortality rate is decreased by more than 2%; more preferably, by more than 5%; more preferably, by more than 10%; and most preferably, by more than 25%.
- a decrease in the mortality rate of a population of treated subjects may be measured by any reproducible means.
- a decrease in the mortality rate of a population may be measured, for example, by calculating for a population the average number of disease- related deaths per unit time following initiation of treatment with an active compound.
- a decrease in the mortality rate of a population may also be measured, for example, by calculating for a population the average number of disease-related deaths per unit time following completion of a first round of treatment with an active compound.
- Treating cancer can result in a decrease in tumor growth rate.
- tumor growth rate is reduced by at least 5% relative to number prior to treatment; more preferably, tumor growth rate is reduced by at least 10%; more preferably, reduced by at least 20%; more preferably, reduced by at least 30%; more preferably, reduced by at least 40%; more preferably, reduced by at least 50%; even more preferably, reduced by at least 50%; and most preferably, reduced by at least 75%.
- Tumor growth rate may be measured by any reproducible means of measurement. Tumor growth rate can be measured according to a change in tumor diameter per unit time.
- Treating cancer can result in a decrease in tumor regrowth.
- tumor regrowth is less than 5%; more preferably, tumor regrowth is less than 10%; more preferably, less than 20%; more preferably, less than 30%; more preferably, less than 40%; more preferably, less than 50%; even more preferably, less than 50%; and most preferably, less than 75%.
- Tumor regrowth may be measured by any reproducible means of measurement. Tumor regrowth is measured, for example, by measuring an increase in the diameter of a tumor after a prior tumor shrinkage that followed treatment. A decrease in tumor regrowth is indicated by failure of tumors to reoccur after treatment has stopped.
- Treating or preventing a cell proliferative disorder can result in a reduction in the rate of cellular proliferation.
- the rate of cellular proliferation is reduced by at least 5%; more preferably, by at least 10%; more preferably, by at least 20%; more preferably, by at least 30%; more preferably, by at least 40%; more preferably, by at least 50%; even more preferably, by at least 50%; and most preferably, by at least 75%.
- the rate of cellular proliferation may be measured by any reproducible means of measurement.
- the rate of cellular proliferation is measured, for example, by measuring the number of dividing cells in a tissue sample per unit time.
- Treating or preventing a cell proliferative disorder can result in a reduction in the proportion of proliferating cells.
- the proportion of proliferating cells is reduced by at least 5%; more preferably, by at least 10%; more preferably, by at least 20%; more preferably, by at least 30%; more preferably, by at least 40%; more preferably, by at least 50%; even more preferably, by at least 50%; and most preferably, by at least 75%.
- the proportion of proliferating cells may be measured by any reproducible means of measurement.
- the proportion of proliferating cells is measured, for example, by quantifying the number of dividing cells relative to the number of nondividing cells in a tissue sample.
- the proportion of proliferating cells can be equivalent to the mitotic index.
- Treating or preventing a cell proliferative disorder can result in a decrease in size of an area or zone of cellular proliferation.
- size of an area or zone of cellular proliferation is reduced by at least 5% relative to its size prior to treatment; more preferably, reduced by at least 10%; more preferably, reduced by at least 20%; more preferably, reduced by at least 30%; more preferably, reduced by at least 40%; more preferably, reduced by at least 50%; even more preferably, reduced by at least 50%; and most preferably, reduced by at least 75%.
- Size of an area or zone of cellular proliferation may be measured by any reproducible means of measurement.
- the size of an area or zone of cellular proliferation may be measured as a diameter or width of an area or zone of cellular proliferation.
- Treating or preventing a cell proliferative disorder can result in a decrease in the number or proportion of cells having an abnormal appearance or morphology.
- the number of cells having an abnormal morphology is reduced by at least 5% relative to its size prior to treatment; more preferably, reduced by at least 10%; more preferably, reduced by at least 20%; more preferably, reduced by at least 30%; more preferably, reduced by at least 40%; more preferably, reduced by at least 50%; even more preferably, reduced by at least 50%; and most preferably, reduced by at least 75%.
- An abnormal cellular appearance or morphology may be measured by any reproducible means of measurement.
- An abnormal cellular morphology can be measured by microscopy, e.g., using an inverted tissue culture microscope.
- An abnormal cellular morphology can take the form of nuclear pleiomorphism.
- Administering a composition of the present invention to a cell or a subject in need thereof can result in modulation (i.e., stimulation or inhibition) of an activity of a protein methyltransferase of interest.
- Treating cancer or a cell proliferative disorder can result in cell death, and preferably, cell death results in a decrease of at least 10% in number of cells in a population. More preferably, cell death means a decrease of at least 20%; more preferably, a decrease of at least 30%; more preferably, a decrease of at least 40%; more preferably, a decrease of at least 50%; most preferably, a decrease of at least 75%.
- Number of cells in a population may be measured by any reproducible means. A number of cells in a population can be measured by fluorescence activated cell sorting (FACS), immunofluorescence microscopy and light microscopy. Methods of measuring cell death are as shown in Li et al., Proc. Natl. Acad. Sci. USA. 100(5): 2674-8, 2003. In an aspect, cell death occurs by apoptosis.
- an effective amount of a composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof is not significantly cytotoxic to normal cells.
- a therapeutically effective amount of a compound is not significantly cytotoxic to normal cells if administration of the compound in a therapeutically effective amount does not induce cell death in greater than 10% of normal cells.
- a therapeutically effective amount of a compound does not significantly affect the viability of normal cells if administration of the compound in a therapeutically effective amount does not induce cell death in greater than 10% of normal cells. In an aspect, cell death occurs by apoptosis.
- Contacting a cell with a composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof can induce, or activate cell death selectively in cancer cells.
- Administering to a subject in need thereof a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof can induce or activate cell death selectively in cancer cells.
- Contacting a cell with a composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof can induce cell death selectively in one or more cells affected by a cell proliferative disorder.
- administering to a subject in need thereof a composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof induces cell death selectively in one or more cells affected by a cell proliferative disorder.
- the present invention relates to a method of treating or preventing cancer by administering a composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof, to a subject in need thereof, where administration of the composition of the present invention, or a pharmaceutically acceptable salt or solvate thereof, results in one or more of the following: prevention of cancer cell proliferation by accumulation of cells in one or more phases of the cell cycle (e.g. Gl, Gl/S, G2/M), or induction of cell senescence, or promotion of tumor cell differentiation; promotion of cell death in cancer cells via cytotoxicity, necrosis or apoptosis, without a significant amount of cell death in normal cells, antitumor activity in animals with a therapeutic index of at least 2.
- therapeutic index is the maximum tolerated dose divided by the efficacious dose.
- kit means a combination partners as defined above can be dosed independently or by use of different fixed combinations with distinguished amounts of the combination partners, i.e. simultaneously or at different time points.
- the parts of the kit of parts can then, e.g., be administered simultaneously or chronologically staggered, that is at different time points and with equal or different time intervals for any part of the kit of parts.
- the ratio of the total amounts of the combination partners to be administered in the combined preparation can be varied.
- the combination partners can be administered by the same route or by different routes.
- LP-100 (Irofulven) and LP-184 ((-) - hydroxyureamethyl acylfulvene) belong to the acylfulvene compound family known to induce DNA lesions repaired by the Transcription- Coupled Nucleotide Excision Repair (TC-NER) pathway. If the TC-NER pathway is impaired, DNA damage can no longer be repaired, and cell death will occur.
- TC-NER Transcription- Coupled Nucleotide Excision Repair
- PARP inhibitor selectively induces cell death and inhibits the growth of cancer cells. In combination with an acylfulvene, the cells or tumors were killed or reduced.
- FIGs. 3 A, 3B, 3C, and 3D show that LP-184 and Olaparib have a synergistic effect on the BRCA2 mutant ovarian tumor cell line PEOl.
- Cell sensitivity analysis was performed to evaluate the synergistic effect of LP- 184 and Olaparib on PEOl cell line, which is an established BRCA2 mutant ovarian tumor cell line.
- Cells were seeded onto 96- well plate and were continuously exposed to drug treatment for 8.5 days.
- IC50 data were obtained from Olaparib, LP-184 single treatment and combination treatment.
- IC50 data for Olaparib and LP184 alone was 1248. InM and 108.2nM respectively (FIGs. 3A and 3B).
- IC50 data of Olaparib and LP-184 single treatment was 1248. InM (FIG. 3A) and 108.2nM (FIG.3B) respectively.
- IC50 data of Olaparib and LP-184 co-treatment was 278.6nM Olaparib and 13.93nM LP-184 (FIG. 3C).
- the synergistic effect of LP-184 and Olaparib was analyzed through an Isobole plot (FIG. 3Dt). The interaction index was 0.352.
- FIGs 4A-4D shows LP-184 and Talazoparib have synergistic effect on BRCA2 mutant ovarian cancer cell line PEOL IC50 data of Talazoparib and LP-184 single treatment was 13. InM (FIG. 4A) and 87.4nM (FIG. 4B) respectively. IC50 of Talazoparib and LP-184 co-treatment was 3.6nM Olaparib and 7.2nM LP-184 (FIG. 4C). Synergistic effect of LP-184 and Talazoparib was analyzed through an Isobole plot (FIG. 4D). The interaction index was 0.357.
- MacSynergy II software was used to score the combination of LP-184/LP-100 and PARP inhibitor. This program allows the three-dimensional examination of drug interactions of all data points generated from the checkerboard combination of two inhibitors with Bliss-Independence model (not shown). Confidence bounds are determined from replicate data. If the 95% confidence limits (CL) do not overlap the theoretic additive surface, then the interaction between the two drugs differs significantly from additive.
- the volumes of synergy or antagonism can be determined and graphically depicted in three dimensions and represent the relative quantity of synergism or antagonism per change in the two drug concentrations.
- Synergy and antagonism volumes are based on the Bliss independence model, which assumes that both compounds act independently on different targets.
- a bliss synergy score >10 indicates synergy between the two testing compounds.
- Table 1 shows the bliss synergistic score of LP-100 and Olaparib, Rucaparib, and Niraparib.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nutrition Science (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
La présente invention concerne une méthode de traitement du cancer qui comprend une association d'une quantité thérapeutiquement efficace d'une illudine ou d'un analogue de l'illudine associé, d'un dérivé ou d'un sel pharmaceutiquement acceptable associé; et une quantité thérapeutiquement efficace d'un inhibiteur de PARP ou d'un analogue, d'un dérivé ou d'un sel pharmaceutiquement acceptable associé. L'invention englobe également des compositions et des kits associés.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163227260P | 2021-07-29 | 2021-07-29 | |
US202263365995P | 2022-06-07 | 2022-06-07 | |
PCT/US2022/074314 WO2023010119A1 (fr) | 2021-07-29 | 2022-07-29 | Traitement de cancers avec des associations d'inhibiteur de parp et d'acylfulvènes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4376822A1 true EP4376822A1 (fr) | 2024-06-05 |
Family
ID=85087343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22850545.9A Pending EP4376822A1 (fr) | 2021-07-29 | 2022-07-29 | Traitement de cancers avec des associations d'inhibiteur de parp et d'acylfulvènes |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4376822A1 (fr) |
JP (1) | JP2024528725A (fr) |
CA (1) | CA3227306A1 (fr) |
MX (1) | MX2024001314A (fr) |
WO (1) | WO2023010119A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024016014A2 (fr) * | 2022-07-15 | 2024-01-18 | Lantern Pharma Inc. | Méthode de traitement de cancers du sein et de cancers du sein résistant à parp |
WO2024187196A1 (fr) * | 2023-03-09 | 2024-09-12 | Lantern Pharma Inc. | Procédé de traitement du carcinome ou du cancer des cellules rénales |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1909783B1 (fr) * | 2005-08-03 | 2011-10-12 | The Regents of the University of California | Analogues d'illudine utiles en tant qu'agents anticancereux |
WO2017100162A1 (fr) * | 2015-12-07 | 2017-06-15 | General Oncology, Inc. | Combinaison pour le traitement efficace d'un cancer métastatique chez des patients |
WO2020081414A1 (fr) * | 2018-10-14 | 2020-04-23 | Lantern Pharma Inc. | Procédés de traitement de cancers à tumeur solide à l'aide d'illudines et de biomarqueurs |
-
2022
- 2022-07-29 MX MX2024001314A patent/MX2024001314A/es unknown
- 2022-07-29 WO PCT/US2022/074314 patent/WO2023010119A1/fr active Application Filing
- 2022-07-29 CA CA3227306A patent/CA3227306A1/fr active Pending
- 2022-07-29 EP EP22850545.9A patent/EP4376822A1/fr active Pending
- 2022-07-29 JP JP2024505026A patent/JP2024528725A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024528725A (ja) | 2024-07-30 |
MX2024001314A (es) | 2024-04-30 |
WO2023010119A1 (fr) | 2023-02-02 |
CA3227306A1 (fr) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023010119A1 (fr) | Traitement de cancers avec des associations d'inhibiteur de parp et d'acylfulvènes | |
CN106659765B (zh) | 二脱水半乳糖醇及其类似物或衍生物用于治疗非小细胞肺癌和卵巢癌的用途 | |
Ferraris | Evolution of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic | |
US11162095B2 (en) | Use of a combination of Dbait molecule and PARP inhibitors to treat cancer | |
RU2563193C2 (ru) | Комбинации ингибитора pi3k и ингибитора мек | |
US6358975B1 (en) | Method of using selective parp inhibitors to prevent or treat neurotoxicity | |
TWI636795B (zh) | 使用放射敏感劑放射敏感化腫瘤之方法 | |
JP6855243B2 (ja) | 癌治療のためのアピリモド(apilimod)組成物 | |
WO2014179528A2 (fr) | Compositions et procédés permettant d'améliorer le bénéfice thérapeutique des composés chimiques administrés de manière suboptimale comprenant des naphtalimides substitués tels que l'amonafide pour le traitement des maladies immunologiques, métaboliques, infectieuses et infectieuses ou hyperprolifératives et néoplastiques. | |
He et al. | Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution | |
US20190091195A1 (en) | Use of dianhydrogalactitol and derivatives thereof in the treatment of glioblastoma, lung cancer, and ovarian cancer | |
Leonetti et al. | Targeted therapy for brain tumours: role of PARP inhibitors | |
WO1999008680A1 (fr) | Procede d'utilisation d'inhibiteurs selectifs de parp pour prevenir ou traiter la neurotoxicite | |
CA3227308A1 (fr) | Traitement de cancers avec des combinaisons de spironolactone et d'acylfulvenes | |
JP2008501007A (ja) | 異常な細胞増殖を治療するための方法 | |
EP3047034A1 (fr) | Biomarqueurs corrélés avec un inhibiteur de parp pour le traitement de patients souffrant d'aml | |
US20240299322A1 (en) | Treating cancers with combinations of parp inhibitor and acylfulvenes | |
Lal et al. | A therapeutic update on PARP inhibitors: implications in the treatment of glioma | |
Swamy Murahari et al. | Current overview on the usage of poly (ADP-ribose) polymerase (PARP) inhibitors in treating cancer | |
AU2017384134A1 (en) | Combination of a protein kinase inhibitor and an additional chemotherapeutic agent | |
WO2024016014A2 (fr) | Méthode de traitement de cancers du sein et de cancers du sein résistant à parp | |
WO2017176756A1 (fr) | Compositions et méthodes de traitement du cancer | |
JP2023510426A (ja) | 癌を治療するための上皮細胞増殖因子受容体チロシンキナーゼ阻害剤 | |
TW202131922A (zh) | 用於治療癌症的表皮生長因子受體酪胺酸激酶抑制劑 | |
MX2013009955A (es) | Metodo para la administracion de un inhibidor de gamma secretasa. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |