EP4374445A1 - Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte - Google Patents

Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte

Info

Publication number
EP4374445A1
EP4374445A1 EP22754785.8A EP22754785A EP4374445A1 EP 4374445 A1 EP4374445 A1 EP 4374445A1 EP 22754785 A EP22754785 A EP 22754785A EP 4374445 A1 EP4374445 A1 EP 4374445A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte composition
group
lithium
salt
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22754785.8A
Other languages
German (de)
English (en)
Inventor
Juliane Kluge
Peter Lamp
Sebastian Scharner
Roland Jung
Thomas Woehrle
Arianna Moretti
Alexander Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP4374445A1 publication Critical patent/EP4374445A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Liquid electrolyte composition and an electrochemical cell containing the electrolyte composition Liquid electrolyte composition and an electrochemical cell containing the electrolyte composition
  • the present invention relates to an electrolyte composition and an electrochemical cell with the electrolyte composition.
  • Electrochemical cells are of great importance in many technical fields.
  • electrochemical cells are often used for applications in which low voltages are required, such as for the operation of laptops or mobile phones.
  • An advantage of electrochemical cells is that many individual cells can be connected together. For example, cells connected in series can deliver a high voltage, while connecting cells in parallel results in a high nominal capacity. Such interconnections result in higher energy batteries.
  • Such battery systems are also suitable for high-voltage applications and can, for example, enable vehicles to be driven electrically.
  • Corresponding systems can also be used for stationary energy storage.
  • electrochemical cell is used synonymously for all designations customary in the prior art for rechargeable galvanic elements, such as cell, battery, battery cell, accumulator, battery accumulator and secondary battery.
  • An electrochemical cell is able to provide electrons for an external circuit during the discharge process. Conversely, an electrochemical cell can be charged during the charging process by means of an external circuit by supplying electrons.
  • An electrochemical cell has at least two different electrodes, a positive (cathode) and a negative (anode) electrode. Both electrodes are in contact with an electrolyte composition.
  • the most commonly used electrochemical cell is the lithium ion cell, also called lithium ion battery.
  • Lithium ion cells known from the prior art have a composite anode, which very often consists of a carbon-based anode active material, typically graphitic carbon, which is deposited on a metallic copper carrier foil.
  • the cathode consists of metallic aluminum which is coated with an active cathode material, for example a layered oxide.
  • composite cathodes very often consist of a layered oxide (for example LiCo0 2 or LiNii / 3 Mni / 3 Coi / 3 0 2 ), which is coated onto a rolled aluminum carrier foil.
  • Electrolyte composition plays a key role in the safety and performance of an electrochemical cell. This ensures the charge balance between the cathode and anode during the charging and discharging process. The flow of current required for this is achieved by the ion transport of a conductive salt in the electrolyte composition.
  • the conductive salt is a lithium conductive salt, and lithium ions serve as the current-carrying ions.
  • electrolyte compositions contain a solvent which enables dissociation of the conductive salt and sufficient mobility of the lithium ions.
  • Liquid organic solvents are known in the art and consist of a variety of linear and cyclic dialkyl carbonates. Typically, mixtures of ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC), and ethyl methyl carbonate (EMC) are used.
  • each solvent has a specific range of cell voltage stability, also known as a "voltage window”. called.
  • the electrochemical cell can run stably during operation. If the cell voltage approaches the upper voltage limit, an electrochemical oxidation of the components of the electrolyte composition takes place. On the other hand, reductive processes take place at the lower end of the voltage window. Both redox reactions are unwanted, reduce the performance and reliability of the cell and, in the worst case, lead to its failure.
  • Gassing means an electrochemical decomposition of the components of the electrolyte into volatile and gaseous compounds due to the use of too high a cell voltage. Gassing reduces the proportion of electrolyte and leads to the formation of unwanted decomposition products, resulting in a shorter service life and lower performance of the lithium-ion cell.
  • fluorinated solvents or additives are added to the electrolyte compositions in the prior art.
  • Fluorinated solvents such as fluoroethylene carbonate (FEC) are chemically inert and electrochemically stable to the operating voltages of the lithium ion cell.
  • a widespread disadvantage of fluorinated electrolytes is that in the event of a thermal defect in the cell, increased heat release and the formation and emission of noxious gases such as hydrogen fluoride (HF) can occur.
  • HF hydrogen fluoride
  • lithium-ion cells have a large number of regulating and control mechanisms in order to keep the cells in a voltage range that is optimal for the respective solvent during operation and thus to stabilize the electrolyte composition.
  • EP 1 689 756 B1 describes a process for preparing weakly coordinating anions of the formula X(OR F ) m , in which X is selected from the group consisting of B, Al, Ga, In, P, As and Sb, m 3 or 5 and R F is a straight or branched chain, partially or fully fluorinated alkyl or aryl radical.
  • the weakly coordinating anions form salts with monovalent or divalent cations, preferably with alkali metal ions. Due to the chemical stability, in particular of the anion, the salts disclosed were proposed, inter alia, for use as inert lithium conductive salts in lithium ion batteries. However, an electrolyte composition with the weakly coordinating anions for use in lithium-ion batteries has not been demonstrated.
  • the stability of the battery cells can also be increased by selecting a suitable solvent.
  • Electrolyte compositions based on sulfur dioxide have, in particular, increased ionic conductivity and thus enable battery cells to be operated at high discharge currents without adversely affecting the stability of the cells.
  • electrolyte compositions based on sulfur dioxide are characterized by a high energy density, a low self-discharge rate, and limited overcharging and deep discharging.
  • a disadvantage of sulfur dioxide is that it only insufficiently dissolves many lithium conductive salts that are readily soluble in organic solvents. Therefore, for example, the widely used lithium conducting salt lithium hexafluorophosphate cannot be used for electrolyte compositions containing sulfur dioxide.
  • EP 1 201 004 B1 discloses a rechargeable electrochemical cell with an electrolyte based on sulfur dioxide.
  • sulfur dioxide is not added as an additive, but represents the main component of the electrolyte composition. It should therefore at least partially ensure the mobility of the ions of the conducting salt, which bring about the charge transport between the electrodes.
  • lithium tetrachloroaluminate is used as a lithium-containing conducting salt in combination with a cathode active material made of a metal oxide, in particular one Intercalation compound such as lithium cobalt oxide (UC0O2).
  • a salt additive for example an alkali metal halide such as lithium fluoride, sodium chloride or lithium chloride
  • EP 2534719 B1 shows a rechargeable lithium battery cell with an electrolyte based on sulfur dioxide in combination with lithium iron phosphate as cathode active material. Lithium tetrachloroaluminate was used as the preferred conductive salt in the electrolyte composition. In experiments with cells based on these components, a high electrochemical resistance of the cells could be demonstrated.
  • WO 2021/019042 A1 describes rechargeable battery cells with an active metal, a layered oxide as cathode active material and an electrolyte containing sulfur dioxide. Due to the poor solubility of many common lithium conductive salts in sulfur dioxide, a conductive salt of the formula M + [Z(OR)4] was used in the cells, where M represents a metal selected from the group consisting of alkali metal, alkaline earth metal and a metal the 12th group of the periodic table, and R is a hydrocarbyl radical.
  • the alkoxy groups -OR are each monovalently bonded to the central atom, which can be aluminum or boron.
  • the cells contain a perfluorinated conductive salt of the formula Li + [AI(OC(CF3)3)4].
  • Cells consisting of the described components show a stable electrochemical performance in experimental studies.
  • the conductive salts, in particular the perfluorinated anion have a surprising hydrolytic stability.
  • the electrolytes should be oxidation-stable up to an upper potential of 5.0 V. It was further shown that cells with the disclosed electrolytes can be discharged or charged at low temperatures of down to -41°C. However, no measurements of the electrochemical performance at high temperatures have been made.
  • the object is achieved according to the invention by a liquid
  • Electrolyte composition for an electrochemical cell according to claim 1.
  • Electrolyte composition are specified in the subclaims, which can optionally be combined with each other. According to the invention the object is achieved by a liquid
  • Electrolyte composition for an electrochemical cell includes the following components:
  • M is a metal cation selected from the group consisting of alkali metals, alkaline earth metals and Group 12 metals of the periodic table
  • m represents an integer from 1 to 2
  • Z represents a central ion selected from the group consisting of aluminum and boron.
  • Ri and R2 are each a monovalent hydrocarbon radical and are independently selected from the group C Cs-alkyl, C2-Cio-alkenyl, C2-Cio-alkynyl, C6-Ci2-cycloalkyl and C6-Ci4-aryl.
  • L 1 , L 2 and L 3 each independently represent an aliphatic or aromatic bridging group.
  • the bridging group forms a ring with the central ion Z and with two oxygen atoms bonded to the central ion Z and the bridging group, the ring forming a continuous sequence of 2 contains up to 5 carbon atoms.
  • the salts proposed according to the invention have an anion which contains at least one bidentate ligand.
  • a bidentate ligand is a molecule which has at least two oxygen atoms and which binds to a central ion Z via the at least two oxygen atoms. It would also be conceivable to use other multidentate ligands which have a different denticity, such as, for example, tridentate, tetradentate, pentadentate or hexadentate.
  • Bidentate or multidentate ligands are also generally known as chelate ligands and the complexes composed of them as chelate complexes.
  • the anion of the salt of formula (I) and formula (II) is thus a chelate complex.
  • chelate complexes and the salts formed therefrom have various advantages over monovalent complexes and the salts formed therefrom.
  • Chelate complexes are chemically more stable than their monovalent derivatives.
  • the bonds between the chelating ligand and the central ion are difficult to solve, which is why the chelate complexes according to the invention are chemically inert to external chemical and physical influences.
  • a chelate complex represents the anion of the at least one salt of the formula (I) or (II), the salt serving as the conducting salt of the electrolyte composition.
  • the electrolyte composition thus balances the charge between the two electrodes with which it is in contact.
  • the chelate complexes used according to the invention are chemically and electrochemically stable compounds which, due to the strongly coordinating properties of the ligand to the central ion, have a low affinity for binding to positively charged ions.
  • the chelate complexes themselves are therefore weakly coordinating anions.
  • the conducting salt can therefore dissociate efficiently in the electrolyte composition practically completely without reforming back to the starting salt and forms ions with a high mobility and a correspondingly high ionic conductivity in solution. This in turn increases the electrochemical performance of the electrochemical cell.
  • the chelate complexes used according to the invention are resistant to both temperature and hydrolysis.
  • the salts described are sufficiently soluble in liquid sulfur dioxide, which is the inorganic solvent of the electrolyte composition.
  • sulfur dioxide is not only as an additive in low concentrations in the
  • Contain electrolyte composition is present to an extent that it can ensure the mobility of the ions of the conductive salt as a solvent.
  • Sulfur dioxide is gaseous at room temperature under atmospheric pressure and forms stable liquid solvate complexes with lithium conducting salts, which have a noticeably reduced vapor pressure compared to sulfur dioxide as a pure substance.
  • the gaseous sulfur dioxide is thus bound in liquid form and can be safely and relatively easy to handle.
  • a particular advantage is the non-combustibility of sulfur dioxide itself and of the solvate complexes, which increases the operational safety of the electrolyte compositions based on such solvate complexes and of the cells produced using the electrolyte composition.
  • the salts described with the chelate complexes of the formulas (I) and (II) are non-flammable.
  • the electrolyte compositions according to the invention are therefore also non-flammable and enable safe operation of an electrochemical cell which comprises the disclosed components of the electrolyte composition. If sulfur dioxide escapes from the cell due to mechanical damage, it cannot ignite outside the cell.
  • the electrolyte composition according to the invention is also inexpensive compared to conventional organic electrolytes.
  • the increased temperature stability and resistance to hydrolysis enable direct and almost complete recycling of the electrolyte composition from old batteries without increased effort.
  • Hydrothermal processes under high pressure and at high temperatures are usually used to recycle old batteries.
  • Conventional electrolyte compositions are usually not resistant to hydrolysis and therefore have to be worked up in some other way.
  • the electrolyte compositions are extracted from batteries in a laborious process, for example by rinsing the cells with supercritical carbon dioxide.
  • more recent electrolyte formulations based on aluminate, borate or gallate salts, as are described in the prior art are usually not sufficiently thermally stable.
  • the electrolyte composition proposed here is thermally stable and resistant to hydrolysis and can therefore be recycled directly from the electrochemical cells at low cost using water-based extraction methods. Due to the water solubility of the proposed components, the electrolyte composition proposed here has a high recycling potential with a high recycling rate.
  • the electrolyte composition comprises at least one salt of the formula (I) or (II), the salt containing an anionic complex with at least one bidentate ligand.
  • the charge on the anion is stoichiometrically balanced by a positively charged metal cation selected from the group consisting of alkali metals, alkaline earth metals and Group 12 metals of the periodic table.
  • the metal cation is a lithium ion and the salt is a lithium salt m is an integer from 1 to 2 where m is stoichiometrically determined by the oxidation number of the metal cation used.
  • Z in formula (I) or (II) is a central ion selected from the group consisting of aluminum and boron.
  • the salts are thus either aluminates or borates and the anions of formula (I) or (II) are correspondingly singly negatively charged .
  • Ri and R2 each represent a monovalent hydrocarbon radical and are independently selected from the group consisting of CrCs-alkyl, C2-Cio-alkenyl, C2-Cio-alkynyl, C6-Ci2-cycloalkyl and C6-Ci4-aryl.
  • monovalent means that the hydrocarbon radicals R 1 and R 2 each bond to the central ion Z via a single oxygen atom.
  • the term CrCs-alkyl includes linear or branched saturated hydrocarbon radicals having one to eight carbon atoms.
  • Preferred hydrocarbon radicals include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, 2,2-dimethylpropyl, n-hexyl, iso- hexyl, 2-ethylhexyl, n-heptyl, iso-heptyl, n-octyl and iso-octyl.
  • C2-Cio-alkenyl includes linear or branched at least partially unsaturated hydrocarbon radicals having two to ten carbon atoms, the hydrocarbon radicals having at least one CC double bond.
  • Preferred hydrocarbon radicals include, for example, ethenyl, 1-propenyl, 2-propenyl, 1-n-butenyl, 2-n-butenyl, isobutenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl, 1-octenyl, and 1-nonenyl 1-decenyl.
  • C2-Cio-alkynyl encompasses linear or branched, at least partially linear, unsaturated hydrocarbon radicals having two to ten carbon atoms, the hydrocarbon radicals having at least one C-C triple bond.
  • Preferred hydrocarbon radicals include, for example, ethynyl, 1-propynyl, 2-propynyl, 1-n-butynyl, 2-n-butynyl, isobutynyl, 1-pentynyl, 1-hexynyl, 1-heptynyl, 1-octynyl, and 1-nonynyl 1-decynyl.
  • C6-Ci2-cycloalkyl encompasses cyclic, saturated hydrocarbon radicals having six to twelve carbon atoms.
  • Preferred hydrocarbon radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclohexyl, cyclononyl and cyclodecanyl.
  • C6-Ci4-aryl encompasses aromatic hydrocarbon radicals having six to twelve carbon atoms.
  • Preferred hydrocarbon radicals include, for example, phenyl, naphthyl and anthracyl.
  • the hydrocarbon radicals Ri and/or R 2 are at least partially fluorine-substituted.
  • the bidentate chelating ligand has at least two oxygen atoms and a bridging moiety L 1 , L 2 or L 3 which bonds to both oxygen atoms.
  • L 1 , L 2 and L 3 each independently represent an aliphatic or aromatic bridging group.
  • the bridging radicals L 1 , L 2 and/or L 3 each have a linear, branched or cyclic, saturated, optionally fluorine-substituted hydrocarbon skeleton.
  • the hydrocarbon skeleton of the bridge radicals L 1 , L 2 and/or L 3 preferably has 6 to 9 carbon atoms. Hydrocarbon skeletons which have a number of carbon atoms in the range mentioned yield anions which form particularly stable salts of the formula (I) or (II).
  • the bridging radicals L 1 , L 2 and/or L 3 each comprise an at least partially fluorine-substituted hydrocarbon skeleton.
  • the binding of the bridging radicals to the central ion via the oxygen atoms can be interpreted as a coordinate binding within the meaning of the invention.
  • the binding of the ligand to the central ion forms a ring consisting of a bridging residue, the two oxygen atoms bound to the bridging residue and the central ion Z.
  • the ring has at least one continuous sequence of 2 to 5 carbon atoms, preferably 2, 3 or 5 carbon atoms.
  • M is a metal cation selected from the group consisting of alkali metals, alkaline earth metals and metals of group 12 of the periodic table
  • m is 1 or 2
  • Z represents a central ion selected from the group consisting of aluminum and boron.
  • the anion of the salt of formula (III) has either two polycyclic rings according to the bonding situation according to formula (II) or one polycyclic ring and the radicals OR 1 and OR 2 according to the bonding situation according to formula (I).
  • the radicals R can be identical or different and independently selected from the group consisting of CrC4-alkyl, hydrogen and fluorine.
  • C1-C4-alkyl includes linear or branched saturated hydrocarbon radicals having one to four carbon atoms.
  • Preferred hydrocarbon radicals include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl and tert-butyl.
  • the hydrocarbon radicals R can be at least partially fluorinated.
  • Preferred fluorinated hydrocarbon radicals include, for example, trifluoromethyl or pentafluoroethyl.
  • the ring formed with the central ion Z, the bridging group and the two oxygen atoms bonded to the bridging group is pentacyclic and has a continuous sequence of 2 carbon atoms.
  • the ring formed with the central ion Z, the bridging group and the two oxygen atoms bonded to the bridging group is hexacyclic and has a continuous sequence of 3 carbon atoms.
  • the ring formed with the central ion Z, the bridging group and the two oxygen atoms bonded to the bridging group is eight-membered and has a continuous sequence of 5 carbon atoms.
  • n is 0 and the R's are the same and are optionally fluoro-substituted methyl.
  • chelate ligands are derived from pinacol as the simplest representative.
  • component (B) of the electrolyte composition comprises at least one lithium salt of the formula (II).
  • Lithium salts are particularly suitable for use as lithium conducting salts in lithium ion batteries.
  • the lithium salt can preferably be selected from the group consisting of lithium bis (1, 1, 1, 4, 4, 4-hexafluoro-2, 3-bis (trifluoromethyl) -2, 3-butanediolato) borate with the Molecular formula Li[B(C>2C2(CF3)4)2], abbreviated here as lithium bis(perfluoropinacolato)borate (LiBPFPB), of the formula (IV) Lithium bis(1,1,1,3,3,5,5,5-octafluoro-2,4-bis-trifluoromethylpentane-2,4-diolato)aluminate with the molecular formula Li[AI(0 2 C 2 ( CF 3 ) 4 CF 2 ) 2 ], abbreviated here as LiOTA of formula (V) and lithium bis(1,1,1,5,5,5-hexafluoro-2,3,3,4-tetrakis-trifluoromethylpentane-2,4-diolato)aluminate having the molecular formula Li[
  • the lithium salts LiBPFPB (IV), LiOTA (V), and LiHTTDA (VI) can be prepared using Examples 1, 2, and 3 described below.
  • the proposed lithium salts dissolve well in liquid sulfur dioxide as a solvent.
  • the electrolyte compositions produced therefrom are non-flammable and have extremely good ionic conductivity over a wide temperature range.
  • the conductivity of the lithium salts can be determined by conductive measurement methods. For this purpose, different concentrations of the lithium salts (IV)-(VI) are produced in sulfur dioxide. The conductivities of the solutions are then determined using a two-electrode sensor immersed in the solution at constant room temperature. For this purpose, the conductivity of the solution with the lithium salts (IV)-(VI) is measured in a range from 0 - 100 mS/cm. Due to the high electrochemical stability of the lithium salts, they do not participate in cyclical and calendar aging processes in the battery cell.
  • the proposed lithium salts have an increased thermal, chemical and electrochemical stability and a particularly pronounced resistance to hydrolysis.
  • the thermal stability can be examined, for example, by means of a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).
  • the electrolyte compositions made from the lithium salts are also less expensive to operate.
  • the properties of the lithium conductive salts mentioned enable the selection of a suitable recycling process.
  • a recycling process based on water as a solvent can preferably be used.
  • the lithium conducting salts can thus be completely recovered from the used batteries.
  • the improved recyclability of the electrolyte saves costs in the battery manufacturing process, which can be offset against the manufacturing costs of the electrolyte salts.
  • the electrolyte composition contains component (B) in a concentration of 0.01 to 15 mol/L, preferably 0.1 to 10 mol/L, particularly preferably 0.5 to 5 mol/L, based on the total volume of the electrolyte composition .
  • the electrolyte composition may further comprise at least one other additive in a proportion of 0-10% by weight, preferably 0.1-2% by weight, based on the total weight of the electrolyte composition.
  • the other additives include compounds selected from the group consisting of 2-vinylpyridine, 4-vinylpyridine, cyclic exomethylene carbonates, sulfones, cyclic and acyclic sulfonates, acyclic sulfites, cyclic and acyclic sulfinates, organic esters of inorganic Acids, acyclic and cyclic alkanes, aromatics, halogenated cyclic and acyclic sulfonylimides, halogenated cyclic and acyclic phosphate esters, halogenated cyclic and acyclic phosphines, halogenated cyclic and acyclic phosphites, halogenated cyclic and acyclic phosphazenes, halogenated cyclic and acyclic silylamines, halogenated cyclic and acyclic halogenated esters, halogenated cyclic and acycl
  • the other additives contribute to the stability of the electrolyte composition during operation in an electrochemical cell.
  • the further additives can also make at least one further lithium-containing conductive salt available to the electrolyte composition.
  • the further lithium-containing conducting salt can contribute to adapting the conductivity of the electrolyte composition to the requirements of the respective cell or to increasing the corrosion resistance of the cathodic metal carrier foil.
  • Preferred lithium-containing conductive salts include lithium tetrafluoroborate (L1BF4), lithium trifluoromethanesulfonate, lithium fluoride, lithium bromide, lithium sulfate, lithium oxalate, lithium (bisoxalato)borate, lithium difluoro(oxalato)borate,
  • lithium tetrahaloaluminate lithium hexafluorophosphate
  • lithium bis(trifluoromethanesulfonyl)imide LiTFSI
  • lithium bis(fluorosulfonyl)imide LiFSI
  • the other additives can also include other solvents.
  • Other solvents can contribute to adjusting the solubility of the electrolyte composition with respect to polar or non-polar components in the same.
  • the other solvents preferably include vinyl ethylene carbonate (VEC), ethyl methyl carbonate (EMC), vinylene carbonate (VC) and 4-fluoro-1,3-dioxolane-2-one (FEC).
  • VEC vinyl ethylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • FEC 4-fluoro-1,3-dioxolane-2-one
  • the further additives can also include at least one solid inorganic lithium ion conductor (solid electrolyte).
  • solid inorganic lithium ion conductors include perovskites, garnets, sulfides, and amorphous compounds such as glasses, and combinations thereof.
  • the electrolyte composition comprises the following components:
  • the salt is preferably a lithium salt, particularly preferably selected from the group consisting of the compounds of formula (IV), (V) and (VI) and combinations thereof;
  • (C) 0-10% by weight, preferably 0.1-2% by weight, of at least one additive, the additive preferably being selected from the group consisting of vinylene carbonate (VC), 4-fluoro-1,3- dioxolan-2-one (FEC), lithium hexafluorophosphate, c/s-4,5-difluoro-1,3-dioxolan-2-one (cDFEC), 4-(trifluoromethyl)-1,3-dioxolan-2-one, Bis-(trifluoromethanesulfonyl)imide (LiTFSI) and bis-(fluorosulfonyl)imide (LiFSI) and combinations thereof, based on the total weight of the electrolyte composition.
  • VC vinylene carbonate
  • FEC 4-fluoro-1,3- dioxolan-2-one
  • cDFEC lithium hexafluorophosphate
  • cDFEC c/s-4,5-difluor
  • the invention relates to an electrochemical cell with a cathode, an anode and the described electrolyte composition, which is in contact with the cathode and the anode.
  • the electrochemical cell is a lithium-ion cell, with the electrolyte composition comprising the following components:
  • the proposed lithium-ion cells are inexpensive and can be safely operated at different working voltages.
  • the associated electrochemical properties can be determined by measurements on test cells.
  • the cyclic aging resistance of the test cells can be determined via the number of cycles.
  • the test cells are initially charged with a constant charging current up to a maximum permissible cell voltage.
  • the upper switch-off voltage is kept constant until a charging current has fallen to a specified value or the maximum charging time has been reached. This is also known as I/U loading.
  • the test cells are then discharged with a constant discharge current intensity up to a given switch-off voltage. Depending on the desired number of cycles, charging can be repeated.
  • the upper cut-off voltage and the lower cut-off voltage as well as the given charging or discharging current strengths must be chosen experimentally. This also applies to the value to which the charging current has dropped.
  • the calendrical aging resistance and the extent of self-discharge can be determined by storing a fully charged battery cell, in particular at elevated temperature. To do this, the battery cell is charged up to the permissible upper voltage limit and maintained at this voltage until the charging current has dropped to a previously specified limit value. The cell is then disconnected from the power supply and stored in a temperature chamber at an elevated temperature, for example at 45 °C, for a specific time, for example one month (variant 1). The cell is then removed from the temperature chamber and the remaining capacity is determined under defined conditions. For this purpose, a discharge current is selected which, for example, numerically corresponds to one third of the nominal capacity, and the cell is thus discharged down to the lower discharge limit.
  • a second variant of the storage (variant 2), the storage takes place in a temperature chamber with the power supply connected, the voltage corresponding to the upper voltage limit and this voltage being maintained is. Tests are carried out according to the two storage variants. The actual calendrical aging and the self-discharge of the battery cell is then determined from these tests: The calendrical aging corresponds to the capacity loss due to storage according to variant 2 and is calculated by subtracting the determined residual capacity 2 from the nominal capacity. The self-discharge rate is determined from the difference between the residual capacities 1 and 2 determined by storage according to variants 1 and 2 in relation to the nominal capacity of the battery cell.
  • the cathode of the lithium ion cell preferably comprises a cathode active material.
  • Preferred cathode active materials for the electrochemical cell include lithium cobalt oxide (LCO), lithium nickel oxide (LNO), lithium nickel cobalt alumina (NCA), lithium nickel manganese cobalt oxide (NMC), lithium manganese oxide (LMO), lithium iron phosphate (LFP), lithium nickel manganese oxide (LMR), lithium nickel manganese oxide spinel (LNMO) and combinations thereof.
  • LCO lithium cobalt oxide
  • LNO lithium nickel oxide
  • NCA lithium nickel cobalt alumina
  • NMC lithium nickel manganese cobalt oxide
  • LMO lithium manganese oxide
  • LFP lithium iron phosphate
  • LMR lithium nickel manganese oxide spinel
  • LNMO lithium nickel manganese oxide spinel
  • NMC Lithium-nickel-manganese-cobalt compounds
  • NCM Lithium-nickel-manganese-cobalt compounds
  • NMC-based cathode materials are used in particular in lithium-ion batteries for vehicles.
  • NMC as a cathode material has an advantageous combination of desirable properties, for example a high specific capacity, a reduced cobalt content, high current capability and high intrinsic safety, which is reflected, for example, in sufficient stability in the event of overcharging.
  • Certain stoichiometries are given in the literature as triples of numbers, for example NMC 811, NMC 622, NMC 532 and NMC 111.
  • the triple of numbers indicates the relative nickel:manganese:cobalt content in each case.
  • lithium and manganese-rich NMCs with the general formula unit ⁇ i +e (N ⁇ c Mh ⁇ o z ) i- e q2 are used, with e being preferably between 0.1 and 0.6 in particular is between 0.2 and 0.4.
  • These lithium-rich layered oxides are also known as Overlithitated (Layered) Oxides (OLO).
  • the cathode can have other components and additives, such as a foil carrier (rolled metal foil) or a metal-coated polymer foil, an electrode binder and/or an electrical conductivity improver, for example conductive carbon black. All customary compounds and materials known in the prior art can be used as further components and additives.
  • the anode of the lithium ion cell preferably has an anode active material.
  • the anode active material can be selected from the group consisting of carbonaceous materials, soft carbon, hard carbon, natural graphite, synthetic graphite, silicon, silicon suboxide, silicon alloys, lithium, lithium alloys, aluminum alloys, indium, indium alloys, tin, tin alloys, cobalt alloys, niobium pentoxide, titanium dioxide , titanates, for example lithium titanates (LUTisO ⁇ or U2T13O7), tin dioxide and mixtures thereof.
  • carbonaceous materials soft carbon, hard carbon, natural graphite, synthetic graphite, silicon, silicon suboxide, silicon alloys, lithium, lithium alloys, aluminum alloys, indium, indium alloys, tin, tin alloys, cobalt alloys, niobium pentoxide, titanium dioxide , titanates, for example lithium titanates (LUTisO ⁇ or U2T13O7), tin dioxide and mixtures thereof.
  • the anode active material is preferably selected from the group consisting of synthetic graphite, natural graphite, graphene, mesocarbon, doped carbon, hard carbon, soft carbon, fullerene, silicon-carbon composite, silicon, surface-coated silicon, silicon suboxide, silicon alloys, lithium, aluminum alloys, indium alloys, tin alloys, cobalt alloys and mixtures thereof.
  • the anode can have other components and additives, such as a foil carrier, an electrode binder and/or an electrical conductivity improver, for example conductive carbon black, conductive graphite, so-called “carbon nanotubes” (CNT), carbon fibers and/or graphene. All customary compounds and materials known in the prior art can be used as further components and additives. Examples:
  • 2,4-dimethylpentane-2,4-diol (1) is dissolved in carbon tetrachloride and reacted with phosgene (COC ) to give the corresponding 4,4,6,6-tetramethyl-1,3-dioxolane-2-dione (2).
  • COC phosgene
  • Crystallization purified in diethyl ether and dried under vacuum.
  • the dried carbonate compound (2) is dissolved in dry acetonitrile.
  • a gas stream is passed through the resulting solution, the gas stream consisting of a fluorine:nitrogen mixture (10% by volume:90% by volume). This converts the 4,4,6,6-tetramethyl-1,3-dioxolane-2-dione (2) to a perfluorinated carbonate compound (3) which can be isolated by drying under vacuum.
  • the aqueous solution is then covered with a layer of diethyl ether and the diol (4) is transferred from the aqueous solution into the layered diethyl ether phase by acidification with hydrochloric acid.
  • the diol (4) is added with aluminum hydride (UAIH4) in perfluorohexane (CeFn) at 70-80°C Lithium bis ⁇ 1,1,1,3,3,5,5,5-octafluoro-2,4-bis-trifluoromethylpentane-2,4-diolato ⁇ aluminate (LiOTA) (5).
  • the salt lithium bis (1, 1, 1, 5, 5, 5-hexafluoro-2, 3, 3, 4-tetrakis- trifluoromethylpentane-2, 4-diolato) alu inate can according to the synthesis instructions according to example 1 are shown. 2,3,3,4-Tetramethylpentane-2,4-diol is used as the starting material.
  • Lithium bis(perfluoropinacolato)borate can be synthesized according to a synthesis procedure by Wu Xu and C. Austen Angell (2000 Electrochem. Solid-State Lett. 3, 366).
  • Hexafluoro-2,3-bis(trifluoromethyl)-2,3-butanediol, lithium hydroxide dihydrate and boric acid are dissolved stoichiometrically in distilled water. The resulting solution was heated at reflux overnight. The solution is then cooled to room temperature and the remaining water is removed under vacuum. The reaction product obtained, hexafluoro-2,3-bis(trifluoromethyl)-2,3-butanediol, is dried in a drying oven at 100°C for 48 hours. The reaction product is purified by vacuum sublimation at 130° C. with the formation of colorless crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une composition d'électrolyte liquide pour une cellule électrochimique. La composition d'électrolyte comprend les constituants suivants : (A) du dioxyde de soufre; (B) au moins un sel, ledit sel contenant un complexe anionique avec au moins un ligand bidenté, et le sel correspondant à la formule (I) ou à la formule (II). M est un cation métallique choisi dans le groupe constitué par les métaux alcalins, des métaux alcalino-terreux et des métaux du groupe 12 dans le tableau périodique, m représente 1 ou 2, Z représente un ion central choisi dans le groupe constitué par l'aluminium et le bore. R1 et R2 représentent chacun un groupe hydrocarboné monovalent et sont choisis indépendamment l'un de l'autre parmi le groupe constitué par un alkyle en C1-C8, un alcényle en C2-C10, un alkinyle en C2-C10, C6-C12 cycloalkyle et un aryle en C6-C12; L1, L2 et L3 représentent chacun indépendamment un groupe pont aliphatique ou aromatique, le groupe pont conjointement avec l'ion central Z et avec deux atomes d'oxygène liés à l'ion central Z et au groupe de pont formant un anneau. L'anneau contient une séquence continue de 2 à 5 atomes de carbone.
EP22754785.8A 2021-07-21 2022-07-13 Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte Pending EP4374445A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021118811.3A DE102021118811A1 (de) 2021-07-21 2021-07-21 Flüssige Elektrolytzusammensetzung sowie eine elektrochemische Zelle mit der Elektrolytzusammensetzung
PCT/EP2022/069658 WO2023001670A1 (fr) 2021-07-21 2022-07-13 Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte

Publications (1)

Publication Number Publication Date
EP4374445A1 true EP4374445A1 (fr) 2024-05-29

Family

ID=82932440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22754785.8A Pending EP4374445A1 (fr) 2021-07-21 2022-07-13 Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte

Country Status (4)

Country Link
EP (1) EP4374445A1 (fr)
CN (1) CN117642899A (fr)
DE (3) DE102021118811A1 (fr)
WO (2) WO2023001670A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118811A1 (de) 2021-07-21 2023-01-26 Bayerische Motoren Werke Aktiengesellschaft Flüssige Elektrolytzusammensetzung sowie eine elektrochemische Zelle mit der Elektrolytzusammensetzung
DE102021132747A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriezelle sowie Batteriespeicher mit der Batteriezelle
DE102021132739A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriespeicher mit einer Sicherheitsvorrichtung und ein Verfahren zum Auslösen der Sicherheitsvorrichtung
DE102021132742A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriespeicher mit einer Sicherheitsvorrichtung sowie Verfahren zum Auslösen der Sicherheitsvorrichtung
DE102021132745A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriespeicher mit einer Sicherheitsvorrichtung sowie Verfahren zum Auslösen der Sicherheitsvorrichtung
DE102021132740A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriespeicher mit einer Filtervorrichtung
DE102021132746A1 (de) 2021-12-10 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Batteriespeicher mit einer Sicherheitsvorrichtung sowie Verfahren zum Auslösen der Sicherheitsvorrichtung
WO2024012973A1 (fr) 2022-07-13 2024-01-18 Bayerische Motoren Werke Aktiengesellschaft Composition d'électrolyte liquide comprenant un sel, cellule électrochimique comprenant la composition d'électrolyte, sel et utilisation du sel dans la cellule électrochimique
WO2024012974A1 (fr) 2022-07-13 2024-01-18 Bayerische Motoren Werke Aktiengesellschaft Composition d'électrolyte liquide comprenant un sel, cellule électrochimique comprenant la composition d'électrolyte, sel et utilisation du sel dans la cellule électrochimique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730441B1 (en) 1999-06-18 2004-05-04 Gunther Hambitzer Rechargeable electrochemical cell
JP3498905B2 (ja) 1999-08-02 2004-02-23 セントラル硝子株式会社 電気化学ディバイス用電解質
US7527899B2 (en) 2000-06-16 2009-05-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrolytic orthoborate salts for lithium batteries
DE10356768A1 (de) 2003-12-04 2005-07-07 Universität Karlsruhe (TH) - Körperschaft des öffentlichen Rechts Verfahren zur Herstellung von Salzen schwach koordinierender Anionen, derartige Salze sowie deren Verwendung
EP2360772A1 (fr) 2010-02-12 2011-08-24 Fortu Intellectual Property AG Cellule électrochimique rechargeable
US8394539B2 (en) 2011-06-24 2013-03-12 GM Global Technology Operations LLC Lithium salts of fluorinated borate esters for lithium-ion batteries
DK2954588T3 (en) 2013-02-07 2017-07-24 Alevo Int S A Electrolyte for an electrochemical battery cell containing the same
PL3772129T3 (pl) 2019-07-31 2021-09-27 Innolith Technology AG Elektrolit na bazie so2 do ogniwa akumulatorowego umożliwiającego wielokrotne ładowanie i zawierające ten elektrolit ogniwo akumulatorowe umożliwiające wielokrotne ładowanie
EP4037056A1 (fr) * 2021-01-29 2022-08-03 Innolith Technology AG Électrolyte à base de so2 pour un élément de batterie rechargeable et élément de batterie rechargeable
DE102021118811A1 (de) 2021-07-21 2023-01-26 Bayerische Motoren Werke Aktiengesellschaft Flüssige Elektrolytzusammensetzung sowie eine elektrochemische Zelle mit der Elektrolytzusammensetzung

Also Published As

Publication number Publication date
WO2023001671A1 (fr) 2023-01-26
DE102023101150A1 (de) 2024-01-18
WO2023001670A1 (fr) 2023-01-26
DE102022130388A1 (de) 2024-01-18
CN117642899A (zh) 2024-03-01
DE102021118811A1 (de) 2023-01-26

Similar Documents

Publication Publication Date Title
EP4374445A1 (fr) Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte
EP3794666B1 (fr) Cellule de batterie rechargeable
EP2907189B1 (fr) Additifs pour cellules galvaniques
EP1162682A1 (fr) Composés de silane comme additives dans l'électrolyte de piles électrochimiques
EP3246982A1 (fr) Solution électrolytique pour cellule à solution électrolytique non aqueuse et cellule à solution électrolytique non aqueuse
EP1088814A1 (fr) Sulphonamides fluorés comme solvants ignifuges pour utilisation dans des cellules électrochimiques
DE102011054119A1 (de) Elektrochemische Zelle
DE10103189A1 (de) Boratsalze zur Anwendung in elektrochemischen Zellen
WO2022162005A1 (fr) Électrolyte à base de so2 pour un élément de batterie rechargeable, et élément de batterie rechargeable
EP1236732B1 (fr) Sels de Phosphates de fluoroalkyl ET PREPARATION DE CEUX-CI
EP3155686A1 (fr) Électrolyte, élément de batterie et batterie comprenant l'électrolyte et son utilisation
EP2399318B1 (fr) Cellule galvanique comprenant du lithium métal ou un alliage contenant du lithium métal comme matériau d'anode et un électrolyte contenant du lithium-bis(oxalato)borate ainsi qu'au moins un autre sel complexe de lithium
EP3604276A1 (fr) Nouveaux composants pour compositions d'électrolyte
WO2024012974A1 (fr) Composition d'électrolyte liquide comprenant un sel, cellule électrochimique comprenant la composition d'électrolyte, sel et utilisation du sel dans la cellule électrochimique
WO2024012973A1 (fr) Composition d'électrolyte liquide comprenant un sel, cellule électrochimique comprenant la composition d'électrolyte, sel et utilisation du sel dans la cellule électrochimique
EP4374446A1 (fr) Composition d'électrolyte liquide et cellule électrochimique comprenant ladite composition d'électrolyte
WO2013050283A1 (fr) Cellules lithium-ion présentant des propriétés améliorées
WO2022161996A1 (fr) Cellule de batterie rechargeable
EP4037036A1 (fr) Élément de batterie rechargeable
EP4060770A1 (fr) Élément de batterie, mélange d'électrolytes et utilisation d'un mélange d'électrolytes
DE102021113877A1 (de) Lithiumionen-Batterie mit einer Elektrolytzusammensetzung und einem manganreichen Kathodenaktivmaterial sowie Verwendung der Elektrolytzusammensetzung
DE10055812A1 (de) Fluoroalkylphosphat-Salze und deren Verwendung als Leitsalze
DE102014219414A1 (de) Elektrochemische Zelle, Elektrolyt geeignet zum Befüllen einer elektrochemischen Zelle, Verfahren zum Herstellen einer elektrochemischen Zelle und Verfahren zum Betreiben einer elektrochemischen Zelle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR