EP4332260A1 - Alliage d'aluminium durcissable, bande ou feuille d'alliage d'aluminium à partir de cet alliage, procédé de fabrication de cette bande ou feuille d'alliage d'aluminium durcissable et son utilisation dans un formage superplastique - Google Patents

Alliage d'aluminium durcissable, bande ou feuille d'alliage d'aluminium à partir de cet alliage, procédé de fabrication de cette bande ou feuille d'alliage d'aluminium durcissable et son utilisation dans un formage superplastique Download PDF

Info

Publication number
EP4332260A1
EP4332260A1 EP23195558.4A EP23195558A EP4332260A1 EP 4332260 A1 EP4332260 A1 EP 4332260A1 EP 23195558 A EP23195558 A EP 23195558A EP 4332260 A1 EP4332260 A1 EP 4332260A1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
weight
temperature
ecd
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23195558.4A
Other languages
German (de)
English (en)
Inventor
Lukas STEMPER
Florian Schmid
Stefan Pogatscher
Sebastian SAMBERGER
Peter Uggowitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amag Rolling GmbH
Original Assignee
Amag Rolling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amag Rolling GmbH filed Critical Amag Rolling GmbH
Publication of EP4332260A1 publication Critical patent/EP4332260A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the invention relates to a hardenable aluminum alloy, a metal sheet or strip made from the hardenable aluminum alloy, a method for producing this metal sheet or strip and its use in superplastic forming.
  • the hot rolling temperatures are similarly high EP3848476A1 namely to hot roll an aluminum alloy with 4.7% by weight of magnesium (Mg) and 3.6% by weight of zinc (Zn) at a temperature in the range from 370 to 430 ° C.
  • an aluminum alloy with 4.5% by weight of magnesium (Mg) and 3.55% by weight of zinc (Zn) is known, which is subjected to hot rolling with a starting temperature of 370 ° C.
  • the rolling temperature resulting from hot rolling starting from the starting temperature is from the US2017/081749A1 not known.
  • the rolling temperature during hot rolling can vary significantly from the starting temperature depending on, for example, rolling parameters.
  • the invention has therefore set itself the task of further improving the behavior of a metal sheet or strip with a hardenable aluminum alloy, containing Zn and Mg as alloying elements, during superplastic forming.
  • a method for producing such a metal sheet or strip should be simple and reproducible.
  • the invention solves the problem set by the features of claim 1.
  • Metal sheet or strip made of a hardenable aluminum alloy comprising from 4.0 to 5.5% by weight of magnesium (Mg) and from 2.5 to 5.5% by weight of zinc (Zn), with % by weight of magnesium ( Mg) > wt.% zinc (Zn), the ratio of Mg to Zn of > 1 can be used to specify a composition that has a comparatively high precipitation of T phase (e.g.: Mg 32 (Al,Zn ) 49 ), for example in hot rolling, allows what can be used for grain refinement.
  • Mg 32 (Al,Zn ) 49 a comparatively high precipitation of T phase
  • these separated and comparatively coarse but homogeneously distributed T phases can serve as nuclei for new grains during a final annealing above the recrystallization temperature and can also act as grain growth inhibitors due to their comparatively small distance from one another.
  • This can also make it possible for the grains of the aluminum alloy to have an average circular equivalent diameter (ECD) of ⁇ 10 ⁇ m and at least 80% of these grains have a circular equivalent diameter (ECD) of ⁇ 8.5 ⁇ m.
  • ECD average circular equivalent diameter
  • the cast aluminum alloy can comprise individually or in combination from the group: to 0.8 Weight % copper (Cu) to 0.2 Weight % silver (Ag) to 1.0 Weight % Manganese (Mn) to 0.45 wt.% silicon (Si) to 0.55 Weight % iron (Fe) to 0.35 Weight % Chromium (Cr) to 0.2 wt.% titanium (Ti) to 0.8 wt.% zirconium (Zr) to 1.0 wt.% hafnium (Hf) to 0.3 wt.% niobium (Nb) to 0.25 wt.% tantalum (Ta) to 0.2 wt.% vanadium (V)
  • the rest of the cast aluminum alloy has aluminum and impurities that are unavoidable during production, each at a maximum of 0.05% by weight and a total of at most 0.15% by weight.
  • the area of the grains of the aluminum alloy which are visually represented according to ASTM E112-13, is measured.
  • ASTM E112-13 a JEOL 7200F FEG-SEM scanning electron microscope with an EBSD detector Symmetry S2 can be used for this purpose.
  • this surface can be the longitudinal (l), transverse (t) and/or planar (p) oriented surface.
  • the circular equivalent diameter (ECD) of the aluminum alloy grains optically represented according to ASTM E112-13 is measured on the longitudinal (l) oriented surface, i.e. in the L-ST plane.
  • the circle equivalent diameter of a grain results from the diameter of a circle with an area that corresponds to the measured area of the grain.
  • the mean circular equivalent diameter (ECD) represents the arithmetic mean of the measured circular equivalent diameters (ECD) of the grains. These grains are often referred to in the literature as crystal grains of the aluminum alloy.
  • the superplastic formability of the age-hardenable aluminum alloy can be further improved if the grains have an average circular equivalent Diameter (ECD) of ⁇ 8 ⁇ m, in particular ⁇ 7 ⁇ m.
  • ECD average circular equivalent Diameter
  • the mean circular equivalent diameter (ECD) of the grains is preferably in the range from 4 to 7 ⁇ m.
  • the above can be further improved if at least 70% of these grains have a circular equivalent diameter (ECD) of ⁇ 8 ⁇ m.
  • This circular equivalent diameter (ECD) is preferably ⁇ 7.5 ⁇ m.
  • the grains preferably have an average roundness S average of ⁇ 0.8.
  • this average roundness is >0.82. Because of this comparatively high average roundness, the driving force for grain growth can, for example, be due to a known low surface energy of round shapes can be further reduced, which can be used to keep the circle equivalent diameter (ECD) low.
  • ECD circle equivalent diameter
  • the aluminum alloy can preferably (measured on a flat tensile test according to DIN EN ISO 6892-2) have an elongation at break (A) of > 200% at a strain rate of 1*10 -2 [1/sec] and at a temperature of 470 °C (degrees Celsius).
  • the aluminum alloy (measured on a flat tensile test according to DIN EN ISO 6892-2) can have an elongation at break A of > 400% (percent) at a strain rate of 5*10 -5 [1/sec] and at a temperature of 470 °C (degrees Celsius). This can result in a age-hardenable aluminum alloy with excellent superelastic properties.
  • the aluminum alloy can also contain a volume fraction of second phase particles in a proportion of ⁇ 0.7% (measured according to YES Austrian et. al. "Information depth in backscattered electron microscopy of nanoparticles within a solid matrix", Materials Characterization 138 (2016) pages 145-153 ) with an average circular equivalent diameter (ECD) of > 90 nm (nanometers). Due to these intermetallic particles (dispersoids, which cannot be converted into a solid solution by solution annealing), the effect of other particles > 1 ⁇ m remains largely uninhibited, which does not adversely affect the achievable circular equivalent diameter (ECD) of the grain after recrystallization annealing.
  • ECD average circular equivalent diameter
  • the aluminum alloy is in the T4 or T4* state, where T4* represents a T4 state with a stabilization annealing treatment ("pre-aging"), which is often also referred to as T4-FH (cf. Stabilization annealing treatment: Friedrich Ostermann: Aluminum Application Technology, 3rd edition, published in 2014, ISBN 987-3-662-43806-0, page 138 or DE112011103667T5 ).
  • pre-aging a stabilization annealing treatment
  • T4-FH stabilization annealing treatment
  • the hardenable aluminum alloy according to the invention can be suitable, for example, for a metal sheet or strip.
  • the invention solves the problem set with regard to the method through the features of claim 11.
  • a comparatively high dislocation density in the aluminum alloy can be achieved.
  • This cold rolling can optionally have an intermediate annealing at a temperature below the solvus temperature of the T phase, in particular below 405 ° C.
  • the heat treatment comprising solution annealing at a temperature above the recrystallization temperature of the aluminum alloy, the dissolving T-phase particles act as nuclei for new grains and, due to their small distance from one another, in a further manner Also acts as a grain growth inhibitor.
  • the hot rolling and/or the intermediate annealing preferably takes place at a temperature in the range from 290 ° C to a maximum of 405 ° C in order to ensure a particularly high number of precipitated T phases. This is even more so if the hot rolling and/or intermediate annealing takes place at a temperature in the range from 320 to a maximum of 390 ° C.
  • Cold rolling is preferably carried out with a cold rolling ratio of >25% in order to further reduce the mean circular equivalent diameter (ECD) of the grain. This further improves when the degree of cold rolling is increased. For example, by cold rolling with a degree of cold rolling > 30%, > 40% or > 50%.
  • ECD mean circular equivalent diameter
  • the number of T phases precipitated can be further increased.
  • solution annealing can be carried out at a holding temperature of 450 ° C to 500 ° C and / or for at least 30 s (seconds) and a maximum of 1 h (hour).
  • Solution annealing is preferably carried out at a holding temperature of 460 °C to 490 °C.
  • the solution annealing preferably takes place for at least 1 minute (minute) and a maximum of 35 minutes.
  • the metal sheet or strip is transferred to the state T4*.
  • the heat treatment after solution annealing includes quenching and subsequently a stabilization annealing treatment at 95 ° C to 125 ° C, in particular at 100 ° C to 120 ° C, for at least 20 minutes and a maximum of 10 hours, in particular for at least 6 hours and a maximum of 6 h, has.
  • the invention can be particularly suitable when using a metal sheet or strip in superplastic forming, in particular sheet metal forming, and subsequent hot curing, in particular paint baking, to produce a molded part, in particular a vehicle part.
  • rolled semi-finished products namely thin sheets (which were separated from a metal strip), were produced from various aluminum alloys, as listed in Table 1.
  • Table 1 Compositions in wt.%, remainder aluminum and impurities unavoidable due to production, each with a maximum of 0.05 wt.% and a maximum of 0.15 wt.% in total.
  • alloy L1 corresponds to an aluminum alloy of type EN-AW5083 and alloy L2 corresponds to an aluminum alloy of type EN-AW7475.
  • Alloy L3 refers to the aluminum alloy according to the invention, which can be counted as a mixed alloy of the two above alloys L1 and L2.
  • Aluminum alloy L3 has Mg (magnesium) as the main alloying element (compare Mg to Zn > 1) and, in contrast to alloy L1, can be hardened due to the comparatively high Zn (zinc) content.
  • Impurities amount to a maximum of 0.05% by weight each and a maximum of 0.15% by weight overall.
  • the metal sheet or strip in condition T4 or T4* is particularly suitable for superplastic forming, as can be seen from tensile test 3(L3) in Table 3 in comparison with tensile tests 1(L1) and 2(L2).
  • Tensile test 1(L1) concerns the aluminum alloy L1 and tensile test 2(L2) concerns the aluminum alloy L2, which aluminum alloys L1 and L2 are each in the solution annealed state in a salt bath at 480 °C / 1 min.
  • the results of these tensile tests 1(L1). 2(L2), 3(L3) (tensile testing on flat tensile specimens according to the DIN EN ISO 6892-2 standard) are shown in Table 3.
  • the L3 aluminum alloy is in T4* condition.
  • Table 3 Characteristics of high-temperature tensile tests; Tensile test (alloy) Test temperature [°C] Strain rate [1/s] Elongation at break A [%] 1(L1) 470 1*10 -2 254 470 5*10 -4 337 470 5*10 -5 327 2(L2) 482 1*10 -2 150 482 2*10 -4 306 482 5*10 -5 200 3(L3) 470 1*10 -2 235 470 5*10 -4 445 470 5*10 -5 417
  • alloy L3 shows clear advantages in terms of the elongation that can be achieved. Furthermore, the alloy L3 can be hardened after the forming process, which is above the solvus temperature of the hardening phase T phase, which the non-hardenable alloy L1 is not capable of. Even in comparison to alloy L2, the advantages are clearly evident in the elongation. Despite a higher forming temperature of 482 °C compared to 470 °C for alloy L3, even at very slow strain rates, the elongation of alloy L3 is more than 100% better than that of alloy L2.
  • the aluminum alloy L3 is characterized in the tensile test 3 (L3) by a similarly high elongation at break A as is known from the aluminum alloy L2 of type EN-AW 5083. At lower strain rates, even these values are exceeded by the invention.
  • the aluminum alloy L2 of type EN-AW 7475 is completely inferior to the aluminum alloys L1 and L3.
  • the aluminum alloy L2 cannot significantly compensate for these disadvantages through increased strength values (tensile test on flat tensile samples according to DIN EN 6892-1) after hardening, as can be seen in Table 4 below.
  • Table 4 Characteristic values in the tensile test at room temperature; Rm [N/mm 2 ] R p02 [N/mm 2 ] A[%] L1 (state H116) 335 240 14 L1 (state H112) 300 145 17 L2 (state T6) 570 505 11 L3 (PB) 491.4 398.1 11.5
  • the alloy L3 according to the invention in the state after hot hardening, namely paint baking (PB or "paint bake") at 185 ° C for 20 minutes (minutes), achieves strength values that are almost similar to those known from the alloy L2 in the T6 state .
  • Alloy L1 in condition H116 according to Table 4 is clearly lagging behind in terms of strength values.
  • the alloy L3 according to the invention therefore shows comparatively high elongations at break at temperatures of 470 ° C, which is better or comparable to other alloys that are suitable for superplastic forming (SPF) - but at comparatively high strength values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
EP23195558.4A 2022-09-05 2023-09-05 Alliage d'aluminium durcissable, bande ou feuille d'alliage d'aluminium à partir de cet alliage, procédé de fabrication de cette bande ou feuille d'alliage d'aluminium durcissable et son utilisation dans un formage superplastique Pending EP4332260A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22194000 2022-09-05

Publications (1)

Publication Number Publication Date
EP4332260A1 true EP4332260A1 (fr) 2024-03-06

Family

ID=83228896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23195558.4A Pending EP4332260A1 (fr) 2022-09-05 2023-09-05 Alliage d'aluminium durcissable, bande ou feuille d'alliage d'aluminium à partir de cet alliage, procédé de fabrication de cette bande ou feuille d'alliage d'aluminium durcissable et son utilisation dans un formage superplastique

Country Status (1)

Country Link
EP (1) EP4332260A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618382A (en) 1983-10-17 1986-10-21 Kabushiki Kaisha Kobe Seiko Sho Superplastic aluminium alloy sheets
DE112011103667T5 (de) 2010-11-05 2013-08-01 Aleris Aluminum Duffel Bvba Automobil-Formteil aus einem Aluminiumlegierungsprodukt und Verfahren zu seiner Herstellung
US20170081749A1 (en) 2014-03-17 2017-03-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy sheet for structural components
RU2637842C1 (ru) * 2016-11-11 2017-12-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения сверхпластичного плакированного материала на основе алюминия
CN113106306A (zh) * 2021-04-08 2021-07-13 东北大学 一种高强度耐蚀性的5xxx系合金及其制备方法
EP3848476A1 (fr) 2020-01-07 2021-07-14 AMAG rolling GmbH Tôle ou bande en alliage d'aluminium durcissable, pièce de véhicule fabriquée à partir de celle-ci, utilisation et procédé de fabrication de tôle ou de bande

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618382A (en) 1983-10-17 1986-10-21 Kabushiki Kaisha Kobe Seiko Sho Superplastic aluminium alloy sheets
DE112011103667T5 (de) 2010-11-05 2013-08-01 Aleris Aluminum Duffel Bvba Automobil-Formteil aus einem Aluminiumlegierungsprodukt und Verfahren zu seiner Herstellung
US20170081749A1 (en) 2014-03-17 2017-03-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy sheet for structural components
RU2637842C1 (ru) * 2016-11-11 2017-12-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения сверхпластичного плакированного материала на основе алюминия
EP3848476A1 (fr) 2020-01-07 2021-07-14 AMAG rolling GmbH Tôle ou bande en alliage d'aluminium durcissable, pièce de véhicule fabriquée à partir de celle-ci, utilisation et procédé de fabrication de tôle ou de bande
CN113106306A (zh) * 2021-04-08 2021-07-13 东北大学 一种高强度耐蚀性的5xxx系合金及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.A. ÖSTERREICHER: "Information depth in backscattered electron microscopy of nanoparticles within a solid matrix", MATERIALS CHARACTERIZATION, vol. 138, 2018, pages 145 - 153
MIKHAYLOVSKAYA A V ET AL: "Superplastic behaviour of Al-Mg-Zn-Zr-Sc-based alloys at high strain rates", MATERIALS SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 659, 21 February 2016 (2016-02-21), pages 225 - 233, XP029447943, ISSN: 0921-5093, DOI: 10.1016/J.MSEA.2016.02.061 *

Similar Documents

Publication Publication Date Title
EP3314031B1 (fr) Bande almg facilement déformable et très résistante et son procédé de fabrication
EP2959028B1 (fr) Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci
EP1819838B1 (fr) Alliage a base d'aluminures de titane
DE112004000596B4 (de) Hochfeste Al-Zn-Legierung und Verfahren zum Herstellen eines solchen Legierungsprodukts
DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
DE1558521C3 (de) Verwendung einer Nickel Chrom Knetlegierung als superplastischer Werk stoff
DE69703420T3 (de) Produkt aus AlMgMn-Legierung für Schweissstrukturen mit verbesserter Korossionsbeständigkeit
EP2270249B1 (fr) Bande AIMgSi pour applications ayant des exigences de déformation élevées
EP2888382B1 (fr) Bande d'alliage en aluminium résistant à la corrosion intercristalline et son procédé de fabrication
DE2264997A1 (de) Ausscheidungshaertbare nickel-, eisenlegierung
EP2570509B1 (fr) Procédé de fabrication pour une bande d'aluminium AlMgSi
EP2888383B1 (fr) Bande d'alliage en aluminium résistant à la corrosion intercristalline et son procédé de fabrication
DE2824136C2 (de) Verfahren zur Herstellung von Blechen aus einer Aluminiumlegierung mit verbesserter Zähigkeit
WO2021105229A1 (fr) Pièce coulée sous pression, élément de carrosserie doté de cette pièce coulée sous pression, véhicle à moteur pourvu de cet élément de carrosserie ainsi que procédé de fabrication de cette pièce coulée sous pression
DE3903774C2 (de) Verfahren zum Herstellen eines legierten Stahlblechs
DE2606632A1 (de) Kohlenstoffstahl von sehr hohem kohlenstoffgehalt und verfahren zur herstellung desselben
DE2235168C2 (de) Verfahren zur Herstellung von Aluminiumlegierungen und deren Verwendung
EP1748088B1 (fr) Procédé de fabrication de produit semi-fini ou de composant pour des applications de châssis ou de structure automobiles
DE2500083B2 (de) Halbzeug aus Aluminium-Knetlegierungen und Verfahren zu dessen Herstellung
EP4332260A1 (fr) Alliage d'aluminium durcissable, bande ou feuille d'alliage d'aluminium à partir de cet alliage, procédé de fabrication de cette bande ou feuille d'alliage d'aluminium durcissable et son utilisation dans un formage superplastique
DE102019105598A1 (de) Verfahren zur Herstellung eines Aluminiumbands mit hoher Festigkeit und hoher elektrischer Leitfähigkeit
EP3511433A1 (fr) Alliage d'aluminium, méthode de fabrication d'un produit plat d'aluminium, le produit plat d'aluminium et utilisation
WO2023031334A9 (fr) Bande d'alliage d'aluminium optimisée pour le formage, et son procédé de fabrication
EP3981893A1 (fr) Plaque d'un alliage d'aluminium laminé et fabrication d'une telle plaque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR