EP4315478A1 - Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug - Google Patents

Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug

Info

Publication number
EP4315478A1
EP4315478A1 EP22709672.4A EP22709672A EP4315478A1 EP 4315478 A1 EP4315478 A1 EP 4315478A1 EP 22709672 A EP22709672 A EP 22709672A EP 4315478 A1 EP4315478 A1 EP 4315478A1
Authority
EP
European Patent Office
Prior art keywords
cell
energy storage
electrical energy
ees
storage cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22709672.4A
Other languages
English (en)
French (fr)
Inventor
Torsten Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP4315478A1 publication Critical patent/EP4315478A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/238Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/056Folded around rigid support or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for producing a cell contacting system for a cell assembly made up of energy storage cells of an electrical energy storage device.
  • the invention also relates to an electrical energy store and a motor vehicle.
  • electrical energy stores which can be used, for example, as traction batteries for electrified motor vehicles, ie electric or hybrid vehicles.
  • Such electrical energy stores usually have at least one cell assembly made up of a plurality of energy storage cells.
  • a cell contacting system is used to interconnect the energy storage cells.
  • the cell contacting system usually includes cell connectors, which are placed individually in the form of sheet metal parts in an electrically insulating carrier. These sheet metal parts are contacted with cell terminals of the energy storage cells via bonding wires.
  • a disadvantage of such a cell contacting system is the multipart nature and low rigidity and strength of the arrangement of cell assembly and cell contacting system. Due to the many parts, the cell contacting system has a high manufacturing complexity and high costs.
  • a method according to the invention is used to produce a cell contacting system for a cell assembly made up of energy storage cells of an electrical energy storage device. Included In a first step, a first part of a circuit pattern for interconnecting the energy storage cells is produced by structuring a conductive material, with recesses being cut out of the conductive material during the structuring. In a second step, the structured conductor material is integrated into an electrically insulating carrier by means of joining by primary shaping of an insulating material, with the insulating material for mechanically connecting the conductor tracks being arranged at least in regions on the cutouts and with access openings in the insulating material for exposing conductor track sections serving as cell contacts and be formed for the production of at least a second part of the circuit pattern. In a third step, at least a second part of the layout of the conductor tracks is produced by structuring the conductor material, in that further cutouts are cut out of the conductor material via the access openings in the insulating material.
  • the invention also relates to an electrical energy storage device with at least one cell assembly made up of energy storage cells, a storage housing and at least one cell contacting system, which is produced by means of a method according to the invention, the at least one cell assembly and the at least one cell contacting system being arranged in a housing interior of the storage housing and the cell contacts are electrically connected to cell terminals of the energy storage cells.
  • the electrical energy store can be a high-voltage energy store, for example, which is used as a rechargeable traction battery or as a traction accumulator for an electrically driven motor vehicle.
  • the electrical energy store has the at least one cell assembly, which includes a plurality of energy storage cells.
  • the energy storage cells can be designed, for example, as prismatic energy storage cells or pouch cells.
  • the energy storage cells are preferably in the form of round cells.
  • the energy storage cells have cell terminals or cell poles.
  • a first cell terminal can be formed, for example, on a cell housing cover of a cell housing of the energy storage cells.
  • a second cell terminal can be formed, for example, by an electrically conductive, metallic cell housing lower part, which is electrically insulated from the cell housing cover and has a cell housing bottom and cell housing side walls.
  • the cell contacting system is provided for interconnecting the energy storage cells.
  • the cell contacting system is arranged on the side of the cell assembly on which the cell terminals are located. With cell terminals on the cell housing cover, the cell contacting system is attached to a top side formed by the cell housing cover Arranged cell network.
  • the cell contacting system has conductor tracks which have conductor track sections in the form of cell contacts and connections.
  • the interconnect pattern or interconnect layout is created according to a predetermined, desired interconnection of the energy storage cells, so that the cell contacts can be electrically connected selectively to individual cell terminals of the energy storage cells and to one another via the connections.
  • the cell contact system is manufactured in several alternating structuring and primary shaping process steps. First, a conductor material, for example in the form of sheet metal, is provided.
  • a first step recesses are cut out of this conductor material, in particular by stamping.
  • the recesses are selected in such a way that the remaining conductor material areas are mechanically but also electrically connected, so that the conductor material is still present in one piece. These remaining conductor material areas form the first part of the conductor track pattern.
  • the circuit pattern produced by cutting out is also referred to as a leadframe or stamping comb.
  • the structured conductor material is now integrated into the carrier.
  • the structured conductor material is connected to the insulation material in a second step by joining through archetypes.
  • the insulating material is a stabilizing, electrically insulating material, such as a plastic.
  • the solid support with a geometrically defined shape is produced from the shapeless insulation material.
  • the insulation material is, for example, plasticized, formed and cured.
  • the structured conductor material is embedded in the insulation material and is thus mechanically connected to the insulation material.
  • Such a connection technique in the form of joining by reshaping can be, for example, encapsulation and/or encapsulation of the structured conductor material with the insulating material.
  • the recesses in the structured conductor material are covered with the insulating material at least in regions.
  • the remaining conductor material areas can be mechanically connected to one another by the insulating material.
  • the insulating material can be attached to the structured conductor material on both sides.
  • surface profiles or height profiles for the carrier can be formed during the primary shaping of the insulation material.
  • the surface profiles can be different on the bottom and the top of the conductor material.
  • This surface profile includes, for example, the access openings via which the energy storage cells can be contacted when arranging the cell contacting system on the cell assembly with those conductor track sections which are the cell contacts form.
  • the access openings are used for further structuring of the conductor material in a third step.
  • this third step further openings are cut out of the conductor material via the access openings.
  • those areas that could not be separated out in the first step are cut out for designing or completing the conductor track pattern, since otherwise a multi-piece conductor track layout consisting of individual parts would have existed, but which would form an undesirable electrical connection between conductor material areas.
  • the circuit pattern can be completed.
  • further second and third steps are carried out.
  • a cost-effective cell contacting system with a highly complex conductor pattern can be produced in a simple manner.
  • the conductor track sections which form the cell contacts, are stepped starting from the carrier and form a flat, leaf-spring-like contact surface.
  • a step is thus formed in the conductor material in the region of the access openings by bending, with an end section of the conductor track forming the flat contact surface, which can be arranged over the entire area on the cell terminals.
  • conductor track sections can be produced which serve as power terminals for contacting the cell assembly and/or sensing terminals for contacting sensors of the electrical energy storage device and/or cell connectors for connecting the cell contacts and/or constrictions designed as fuses and/or with the cell contacts connected, pin-like contact elements are formed.
  • Conductor tracks can also be integrated into the conductor track pattern, for example for the passage of lines between a rear end and a front end of the motor vehicle for the connection of drives and/or auxiliary units.
  • wall areas for receptacles for the energy storage cells and/or receptacles for reinforcing elements and/or insulating coverings of conductor track sections and/or latching elements of the carrier are produced during the primary shaping of the insulating material. So it will be this Surface profile on the underside of the carrier facing the cell assembly is manufactured in such a way that the receptacles for the energy storage cells are formed.
  • These receptacles consist of wall areas which extend at least partially over the cell housing side walls in the height direction of the energy storage cells. In the case of round cells, the receptacles can be cylindrical or honeycomb-shaped, for example.
  • Thickenings can be formed in the wall areas, which narrow the receptacle in certain areas and thus fix the energy storage cells in the receptacles by clamping.
  • the insulation covers can be made, for example, on the top of the carrier.
  • receptacles for reinforcement elements can be produced, which are arranged, for example, in the wall areas.
  • the receptacles can, for example, be through openings into which reinforcement elements in the form of struts are introduced.
  • the latching elements can, for example, latch with corresponding latching elements on the cell housings of the energy storage cells and thus fix the energy storage cells.
  • the latching elements can also latch with other elements, for example force-transmitting elements.
  • At least one bending edge is formed in the carrier by producing linear material recesses in the carrier during the primary shaping of the insulating material, with at least one edge region of the cell contacting system being folded over the at least one bending edge to form a frame that at least partially surrounds the cell assembly.
  • the carrier can be rectangular, with the edge areas of all sides being foldable.
  • the folded edge areas can also have conductor track sections.
  • one of the edge areas can have the power connections for contacting the cell assembly, so that the power connections are arranged on the side of the cell assembly.
  • a housing part facing the cell contacting system has at least one bulge, which is designed to press the cell contacts onto the cell terminals of the energy storage cells.
  • the storage housing can have housing parts in the form of a housing cover or a housing upper part and a housing base or a housing lower part, which are joined together to form the housing interior.
  • One of the housing parts, for example the housing cover can have at least one bulge, which is positioned on the cell contacting system in this way presses that the cell contacts are pressed against the cell terminals.
  • the at least one bulge thus forms a pressure contact.
  • the bulge can be shaped like an anvil, for example, and thus press on the flat contact surface of the cell contacts.
  • the housing cover and the housing base of the accumulator housing are double-walled for conducting a coolant.
  • the at least one cell assembly can thus be cooled on two sides.
  • This embodiment is particularly advantageous in combination with the at least one bulge that forms the pressure contact, since in this case each of the double-walled housing parts is arranged close to the at least one cell assembly, so that the coolant flowing through can transport away the waste heat from the energy storage cells.
  • the electrical energy storage device has a monitoring device which is arranged on the carrier on a side of the cell contacting system which is remote from the cell assembly and which is designed to transmit signals between sensor devices of the energy storage cells and at least one control unit of the electrical energy storage device in order to monitor the energy storage cells.
  • the monitoring device has a waveguide for transmitting acoustic and/or optical signals, the waveguide being designed as a one-piece or multi-piece molded part.
  • a side of the monitoring device facing the cell contacting system can have guide elements for pressure contact pins for pressing the cell contacts onto the cell terminals.
  • the molded part is designed to couple at least one sensor device to at least one control unit of the electrical energy store in a potential-free manner.
  • the molded part has at least one collecting duct for connection to the control unit and connection ducts connected to it for connection to the sensor devices of the energy storage cells and is a finished part which can be arranged on the energy storage cells and the control unit in just one assembly step.
  • the molded part does not consist of individual parts which have to be connected or wired to one another, but rather already provides a one-piece transmission network, for example a bus network, for signal transmission.
  • the molded part can have flexible areas so that it can be folded together with the cell contacting system.
  • the invention also includes a motor vehicle with at least one electrical energy store according to the invention.
  • the motor vehicle is designed in particular as an electrically driven motor vehicle in the form of a passenger car.
  • FIG. 1a-1d process steps for the production of an embodiment of a
  • FIG. 2 shows a schematic representation of a conductor material of the cell contacting system with a completed conductor track layout
  • FIG. 3 shows a schematic representation of a carrier of the cell contacting system
  • FIG. 4 shows a schematic sectional illustration of an embodiment of an electrical energy store with a cell contacting system
  • FIG. 5 shows a schematic side sectional illustration of a further embodiment of an electrical energy store
  • FIG. 6 shows a schematic sectional illustration of a further embodiment of an electrical energy store
  • Fig. 7 is a schematic representation of the cell contacting system with a
  • FIG. 1a to 1d show method steps for producing a cell contacting system 6, of which an embodiment is shown in FIG. 1d.
  • the cell contacting system 6 is used to connect energy storage cells 36 (see FIG. 4) of an electrical energy storage device EES to form at least one cell assembly.
  • the electrical energy store EES can be used, for example, as a traction battery for an electrified motor vehicle.
  • a conductor material 1 for example in the form of sheet metal, is provided and structured.
  • insulating cutouts 2 are cut out of the conductor material 1 in order to produce a first part of a functional conductor track pattern 3 or conductor track layout (see FIG. 2).
  • the insulating cutouts 2 are introduced at least in all those areas which are covered by stabilizing insulating material 4 in a second production step shown in FIG. 1b.
  • the isolating recesses 2 are restricted in such a way that the dimensional reference of all areas consisting of the conductor material 1 is retained.
  • a further requirement of the isolating recesses 2 is, in particular, that they allow sufficient material connection for the stabilizing isolating material 4 applied on both sides and thus a high stability of the arrangement 5 against shearing forces.
  • a third production step which is shown in FIG. 1c, further insulating recesses 2 are introduced into the areas not covered by the insulating material 4, which form access openings for the production of a second part of the conductor pattern 3, in order to complete the conductor pattern 3.
  • the production sequence can be extended by further production steps according to FIG. 1b and FIG.
  • the planar arrangement 5 is folded to form the finished cell contacting system 6.
  • a monitoring device 7 can be mounted on the cell contacting system 6, which is designed here as a sense board 7a.
  • the raised contacts 13 can be formed, for example, during the first production step according to FIG. 1a, the third production step according to FIG. 1c or the fourth production step according to FIG. 1d.
  • the stabilizing insulation material 4 forms a carrier 14 or a carrier element, which is shown in FIG. 3 .
  • the carrier element 14 includes receptacles 15 for the energy storage cells 36, receptacles 16 for reinforcement elements 20 (see Fig. 1b,
  • Fig. 1c, Fig. 4 cutouts 17 for web insulation, which can be produced in the third production step according to Fig. 1c, linear material cutouts 18 for bends, which form bending edges for folding the planar arrangement 5 in the fourth production step according to Fig. 1d, and insulation coverings 19 over areas which are bridged with conductor track sections.
  • the reinforcement elements 20 can already be introduced into the carrier 14, as a result of which a separate formation of the receptacles 16 for the reinforcement elements 20 is no longer necessary. As shown in FIG.
  • the carrier 14 can also contain catches 21, by means of which force-transmitting elements 22 can be held in the carrier 14 and/or the energy storage cells 36 can be held in the receptacles 15 (see FIG. 6). It is possible via the force-transmitting elements 22 to design the first cell contacts 10 and second cell contacts 11 as pressure contacts to the energy storage cell 36 . Alternatively, it is possible to connect the cell contacts 10, 11 to the cell by means of welding or soldering processes.
  • the senseboard 7a is designed, for example, as a rigid-flex PCB and contains flexible areas for unfolding the senseboard 7a during assembly on the cell contacting system 6 and, as shown in FIG. 1d) contact areas 23 for external contacting , For contacting the circuit pattern 3 and for additional sensor devices 24 of the energy storage cells 36, such as temperature sensors.
  • the senseboard 7a can have connecting conductor tracks and guide elements 25 for the exposed contacts 13 include.
  • the senseboard 7a can also be electrically connected to the functional conductor track pattern 3 and the supplementary sensor devices 24 via pressure contacts 26 or metallurgical connections 27 .
  • the senseboard 7a can also contain recesses 29 in the area of the degassing openings 28 of the energy storage cells 36 in order to enable unhindered degassing of the energy storage cells 36 in the event of degassing.
  • the cell contacting system 6 is mechanically connected via the carrier 14 and via the reinforcement elements 20 to a first housing part 30 and a second housing part 31 of a storage housing 32 of the electrical energy storage device EES.
  • the second housing part 31 is double-walled here and forms a cooling channel 34 for conducting a coolant.
  • An inner side 33 of the second housing part 31 facing the energy storage cells 36 is provided with electrical insulation 35 .
  • the energy storage cells 36 contained in the carrier 14 are also connected to the second housing part 31 mechanically and with good thermal conductivity.
  • the energy storage cells 36 have a cell housing 37 with a cell housing cover 38 and an electrically insulating cell seal 39 .
  • An active cell part 40 ie a galvanic element, is arranged in the cell housing 37.
  • the cell housing cover 38 contains a cell bursting membrane 41 to cover the degassing opening 28.
  • the first cell contact 10, the force-transmitting element 22, the senseboard 7a and the first housing part 30 are designed in such a way that the cell bursting membranes 41 can open unhindered in the event of excess pressure in the respective cell housing 37 and the respective energy storage cells 36 can thus degas.
  • the first housing part 30 contains housing bursting membranes 42 which also open when the locally associated energy storage cells 36 are degassed.
  • a flexible electrically insulating material 43 is introduced in the area of the cell terminals of the energy storage cells 36, which are electrically connected to the cell contacts 10, 11, of the supplementary sensor devices 24 and of the sense board 7.
  • the power connections 8 and the measuring connections of the cell contacting system 6 and the connections 23 for the external contacting of the senseboard 7a are routed through openings in the second housing part 31, as shown in the illustration of the electrical energy store EES in FIG.
  • the housing interior remaining around the cell contacting system 6 between the first housing part 30 and the second housing part 31 is filled with electrically insulating material 44 .
  • Storage electronics 45 of the electrical energy store EES are mounted on the second housing part 31 .
  • An electronic circuit 46 of the storage electronics 45 contains mating contacts 47 for the power connections 8 and the sense connections 9 of the cell contacting system 6, the connections 23 for the external contacting of the sense board 7a and external contacts 48 of the electrical energy store EES for connection to an external, store-external electrical circuit 49.
  • the second housing part 31 contains connections 50 for connection to an outer, storage-external cooling circuit 51.
  • the first housing part 30 is also double-walled and thus also forms a cooling channel 34 for conducting a coolant. Due to the double-walled design of the two housing parts 30, 31, the energy storage cells 36 can be cooled on both sides.
  • a side 52 facing the cell contacting system 6 has at least one bulge 53 which presses the cell contacts 10, 11 onto cell terminals of the energy storage cells 36, which are located here in the area of the cell housing cover 38.
  • the first housing part 30 is thus used as an anvil, ie the contour of the first housing part 30 represents contact surfaces with defined elasticity in the area of planar contact surfaces 54 of the cell contacts.
  • An insulating surface 55 is arranged on the second side.
  • the second housing part 31 also has openings 56 here, which are arranged in alignment with the degassing openings 28 and via which the hot gas can escape from the housing interior of the storage housing 32 into an environment.
  • FIG. 7 shows a further embodiment of the monitoring device 7, which is designed here as a molded part 7b.
  • the molded part 7b forms a waveguide for conducting acoustic and/or optical signals.
  • the molded part 7b can be partially made of plastic.
  • the sensor devices 24 used to monitor the electrical energy store EES can be on the first cell contacts 10, second cell contacts 11, their connections, the carrier
  • the energy storage cells 36 may be attached.
  • 8a and 8b are sectional views of the carrier 14 in the area of the receptacles
  • the receptacles 15 for the energy storage cells 36 are shown.
  • wall areas 57 which form the receptacles 15
  • thickenings 58 are formed in some areas, through which the energy storage cells 36 are clamped in the receptacles.
  • the receptacles 15 have support elements 59 for supporting the energy storage cells 36 in the receptacles 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines Zellkontaktiersystems (6) für einen Zellverbund aus Energiespeicherzellen (36) eines elektrischen Energiespeichers (EES), mit folgenden Schritten: - Fertigen eines ersten Teils eines Leiterbahnbildes (3) zum Verschalten der Energiespeicherzellen (36) durch Strukturieren eines Leitermaterials (1), wobei beim Strukturieren Aussparungen (2) aus dem Leitermaterial (1) herausgetrennt werden; - Integrieren des strukturierten Leitermaterials (1) in einen elektrisch isolierenden Träger (14) mittels Fügen durch Urformen eines Isolationsmaterials (4), wobei das Isolationsmaterial (4) zum mechanischen Verbinden von Leiterbahnen des Leiterbahnbildes (3) zumindest bereichsweise an den Aussparungen (2) angeordnet wird und wobei in dem Isolationsmaterial (4) Zugangsöffnungen zum Freilegen von als Zellkontakte (10, 11) dienenden Leiterbahnabschnitten und zum Fertigen zumindest eines zweiten Teils des Leiterbahnbildes (3) ausgebildet werden; und - Fertigen des zumindest einen zweiten Teils des Leiterbahnbildes (3) durch weiteres Strukturieren des Leitermaterials (1), indem weitere Aussparungen (2) über die Zugangsöffnungen (2) in dem Isolationsmaterial (4) aus dem Leitermaterial (1) herausgetrennt werden. Die Erfindung betrifft außerdem einen elektrischen Energiespeicher (EES) sowie ein Kraftfahrzeug.

Description

Verfahren zum Herstellen eines Zellkontaktiersystems, elektrischer Energiespeicher sowie
Kraftfahrzeug
Die Erfindung betrifft ein Verfahren zum Herstellen eines Zellkontaktiersystems für einen Zellverbund aus Energiespeicherzellen eines elektrischen Energiespeichers. Die Erfindung betrifft außerdem einen elektrischen Energiespeicher sowie ein Kraftfahrzeug.
Vorliegend richtet sich das Interesse auf elektrische Energiespeicher, welche beispielsweise als Traktionsbatterien für elektrifizierte Kraftfahrzeuge, also Elektro- oder Hybridfahrzeuge, eingesetzt werden können. Solche elektrischen Energiespeicher weisen üblicherweise zumindest einen Zellverbund aus mehreren Energiespeicherzellen auf. Zum Verschalten der Energiespeicherzellen wird ein Zellkontaktiersystem verwendet. Das Zellkontaktiersystem umfasst üblicherweise Zellverbinder, welche in Form von Blechteilen einzeln in einen elektrisch isolierenden Träger eingelegt werden. Diese Blechteile werden über Bonddrähte mit Zellterminals der Energiespeicherzellen kontaktiert. Nachteilig an einem solchen Zellkontaktiersystem ist die Vielteiligkeit sowie eine geringe Steifigkeit und Festigkeit der Anordnung aus Zellverbund und Zellkontaktiersystem. Aufgrund der Vielteiligkeit weist das Zellkontaktiersystem einen hohen Fertigungsaufwand sowie hohe Kosten auf.
Es ist Aufgabe der vorliegenden Erfindung, eine Lösung bereitzustellen, wie ein Zellkontaktiersystem auf einfache und kostengünstige Weise hergestellt werden kann.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren, einen elektrischen Energiespeicher sowie ein Kraftfahrzeug mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung sowie der Figuren.
Ein erfindungsgemäßes Verfahren dient zum Herstellen eines Zellkontaktiersystems für einen Zellverbund aus Energiespeicherzellen eines elektrischen Energiespeichers. Dabei wird in einem ersten Schritt ein erster Teil eines Leiterbahnbildes zum Verschalten der Energiespeicherzellen durch Strukturieren eines Leitermaterials gefertigt, wobei beim Strukturieren Aussparungen aus dem Leitermaterial herausgetrennt werden. In einem zweiten Schritt wird das strukturierte Leitermaterial in einen elektrisch isolierenden Träger mittels Fügen durch Urformen eines Isolationsmaterials integriert, wobei das Isolationsmaterial zum mechanischen Verbinden der Leiterbahnen zumindest bereichsweise an den Aussparungen angeordnet wird und wobei in dem Isolationsmaterial Zugangsöffnungen zum Freilegen von als Zellkontakte dienenden Leiterbahnabschnitten und zum Fertigen zumindest eines zweiten Teils des Leiterbahnbildes ausgebildet werden. In einem dritten Schritt wird zumindest ein zweiter Teil des Layouts der Leiterbahnen durch Strukturieren des Leitermaterials gefertigt, indem weitere Aussparungen über die Zugangsöffnungen in dem Isolationsmaterial aus dem Leitermaterial herausgetrennt werden.
Die Erfindung betrifft außerdem einen elektrischen Energiespeicher mit zumindest einem Zellverbund aus Energiespeicherzellen, einem Speichergehäuse und zumindest einem Zellkontaktiersystem, welches mittels eines erfindungsgemäßen Verfahrens hergestellt ist, wobei der zumindest eine Zellverbund und das zumindest eine Zellkontaktiersystem in einem Gehäuseinnenraum des Speichergehäuses angeordnet sind und wobei die Zellkontakte elektrisch mit Zellterminals der Energiespeicherzellen verbunden sind. Der elektrische Energiespeicher kann beispielsweise ein Hochvoltenergiespeicher sein, welcher als wiederaufladbare Traktionsbatterie bzw. als Traktionsakkumulator für ein elektrisch antreibbares Kraftfahrzeug verwendet wird. Der elektrische Energiespeicher weist den zumindest einen Zellverbund auf, welcher mehrere Energiespeicherzellen umfasst. Die Energiespeicherzellen können beispielsweise als prismatische Energiespeicherzellen oder Pouchzellen ausgebildet sein. Vorzugsweise sind die Energiespeicherzellen als Rundzellen ausgebildet. Die Energiespeicherzellen weisen Zellterminals bzw. Zellpole aus. Ein erstes Zellterminal kann beispielsweise an einem Zellgehäusedeckel eines Zellgehäuses der Energiespeicherzellen ausgebildet sein. Ein zweites Zellterminal kann beispielsweise durch ein elektrisch leitfähiges, metallisches Zellgehäuseunterteil, welches elektrisch von dem Zellgehäusedeckel isoliert ist und einen Zellgehäuseboden sowie Zellgehäuseseitenwände aufweist, ausgebildet sein.
Zum Verschalten der Energiespeicherzellen ist das Zellkontaktiersystem vorgesehen. Das Zellkontaktiersystem wird an derjenigen Seite des Zellverbunds angeordnet, an welcher sich die Zellterminals befinden. Bei Zellterminals am Zellgehäusedeckel wird das Zellkontaktiersystem an einer durch die Zellgehäusedeckel gebildeten Oberseite des Zellverbunds angeordnet. Das Zellkontaktiersystem weist Leiterbahnen auf, welche Leiterbahnabschnitte in Form von Zellkontakten und Verbindungen aufweisen. Das Leiterbahnbild bzw. Leiterbahnlayout wird entsprechend einer vorbestimmten, gewünschten Verschaltung der Energiespeicherzellen erstellt, sodass die Zellkontakte selektiv mit einzelnen Zellterminals der Energiespeicherzellen und über die Verbindungen untereinander elektrisch verbunden werden können. Das Zellkontaktiersystem wird dabei in mehreren, abwechselnden Strukturier- und Urformprozessschritten gefertigt. Zunächst wird ein Leitermaterial, beispielsweise in Form von einem Blech, bereitgestellt. Aus diesem Leitermaterial werden in einem ersten Schritt Aussparungen, insbesondere durch Stanzen, herausgetrennt. Die Aussparungen werden dabei so gewählt, dass verbleibende Leitermaterialbereiche mechanisch, jedoch auch elektrisch verbunden sind, sodass das Leitermaterial nach wie vor einstückig vorliegt. Diese verbleibenden Leitermaterialbereiche bilden den ersten Teil des Leiterbahnbildes aus. Das mittels Heraustrennen gefertigte Leiterbahnbild wird auch als Leadframe bzw. Stanzkamm bezeichnet.
Das strukturierte Leitermaterial wird nun in den Träger integriert. Dazu wird das strukturierte Leitermaterial in einem zweiten Schritt mittels Fügen durch Urformen mit dem Isolationsmaterial verbunden. Das Isolationsmaterial ist ein stabilisierendes, elektrisch isolierendes Material, beispielsweise ein Kunststoff. Beim Urformen wird aus dem formlosen Isolationsmaterial der feste Träger mit einer geometrisch definierten Form hergestellt. Dazu wird das Isolationsmaterial beispielsweise plastifiziert, geformt und ausgehärtet. Während des Urformens wird das strukturierte Leitermaterial dabei in das Isolationsmaterial eingebettet und so mit dem Isolationsmaterial mechanisch verbunden. Eine solche Verbindungstechnik in Form von Fügen durch Umformen kann beispielsweise Umspritzen und/oder Vergießen des strukturierten Leitermaterials mit dem Isolationsmaterial sein. Beim Urformen werden dabei insbesondere die Aussparungen des strukturierten Leitermaterials zumindest bereichsweise mit dem Isolationsmaterial bedeckt. Durch das Isolationsmaterial können die verbleibenden Leitermaterialbereiche mechanisch miteinander verbunden werden. Das Isolationsmaterial kann dabei beidseitig auf dem strukturierten Leitermaterial angebracht werden. Außerdem können Oberflächenprofile bzw. Höhenprofile für den Träger beim Urformen des Isolationsmaterials gebildet werden. Die Oberflächenprofile können dabei an der Unterseite und der Oberseite des Leitermaterials unterschiedlich sein. Dieses Oberflächenprofil umfasst beispielsweise die Zugangsöffnungen, über welche die Energiespeicherzellen beim Anordnen des Zellkontaktiersystems am Zellverbund mit denjenigen Leiterbahnabschnitten kontaktiert werden können, welche die Zellkontakte ausbilden. Außerdem dienen die Zugangsöffnungen zum weiteren Strukturieren des Leitermaterials in einem dritten Schritt.
In diesem dritten Schritt werden weitere Aussparungen über die Zugangsöffnungen aus dem Leitermaterial herausgetrennt. Insbesondere werden diejenigen Bereiche zum Ausgestalten bzw. Fertigstellen des Leiterbahnbilds herausgetrennt, welche im ersten Schritt nicht herausgetrennt werden konnten, da sonst ein mehrstückiges, aus Einzelteilen bestehendes Leiterbahnlayout Vorgelegen hätte, welche jedoch eine unerwünschte elektrische Verbindung zwischen Leitermaterialbereichen ausbilden würden. Nach dem dritten Schritt kann das Leiterbahnbild vollendet sein. Es kann aber auch sein, dass, ja nach Komplexität des Leiterbahnbildes weitere zweite und dritte Schritte durchgeführt werden.
Mittels eines solchen Verfahrens, welches Strukturieren, insbesondere Stanzen, und Urformen, beispielsweise Spritzgießen, umfasst, kann auf einfache Weise ein kostengünstiges Zellkontaktiersystem mit einer hohen Komplexität des Leiterbahnbildes hergestellt werden.
Es kann vorgesehen sein, dass die Leiterbahnabschnitte, welche die Zellkontakte ausbilden, ausgehend von dem Träger abgestuft sind und eine ebene, blattfederartige Kontaktfläche ausbilden. In dem Leitermaterial wird somit im Bereich der Zugangsöffnungen durch Biegen eine Stufe ausgebildet, wobei ein Endabschnitt der Leiterbahn die ebene Kontaktfläche ausbildet, welche vollflächig auf den Zellterminals angeordnet werden kann. Ferner können durch das Strukturieren des Leitermaterials Leiterbahnabschnitte gefertigt werden, welche als Leistungsanschlüsse zum Kontaktieren des Zellverbunds und/oder Sensieranschlüsse zum Kontaktieren von Sensoren des elektrischen Energiespeichers und/oder Zellverbinder zum Verbinden der Zellkontakte und/oder als Schmelzsicherung ausgebildete Verengungen und/oder mit den Zellkontakten verbundene, stiftartige Kontaktelemente ausgebildet sind. Auch können Leiterbahnen in das Leiterbahnbild integriert werden, beispielsweise für die Durchführung von Leitungen zwischen einem Hinterwagen und einem Vorderwagen des Kraftfahrzeugs zum Anschluss von Antrieben und/oder Hilfsaggregaten.
Es erweist sich als vorteilhaft, wenn beim Urformen des Isolationsmaterials Wandbereiche für Aufnahmen für die Energiespeicherzellen und/oder Aufnahmen für Verstärkungselemente und/oder Isolationsüberdeckungen von Leiterbahnabschnitten und/oder Verrastungselemente des Trägers gefertigt werden. Es wird also das Oberflächenprofil an der dem Zellverbund zugewandten Unterseite des Trägers so gefertigt, dass die Aufnahmen für die Energiespeicherzellen gebildet werden. Diese Aufnahmen bestehen aus Wandbereichen, welche sich zumindest teilweise in Höhenrichtung der Energiespeicherzellen über die Zellgehäuseseitenwände erstrecken. Im Falle von Rundzellen können die Aufnahmen beispielsweise zylinderförmig oder wabenförmig sein. In den Wandbereichen können Verdickungen ausgebildet sein, welche die Aufnahme bereichsweise verengen und somit die Energiespeicherzellen durch Festklemmen in den Aufnahmen fixieren. Die Isolationsüberdeckungen können beispielsweise an der Oberseite des Trägers gefertigt sein. Außerdem können Aufnahmen für Verstärkungselemente gefertigt werden, welche beispielsweise in den Wandbereichen angeordnet sind. Die Aufnahmen können beispielsweise Durchgangsöffnungen sein, in welche Verstärkungselemente in Form von Streben eingeführt werden. Die Verrastungselemente können beispielsweise mit korrespondierenden Verrastungselementen an den Zellgehäusen der Energiespeicherzellen verrasten und die Energiespeicherzellen somit fixieren. Auch können die Verrastungselemente mit anderen Elementen, beispielsweise kraftübertragenden Elementen, verrasten.
In einer Weiterbildung des Verfahrens wird zumindest eine Biegekante in dem Träger ausgebildet, indem beim Urformen des Isolationsmaterials linienförmige Materialaussparungen in dem Träger hergestellt werden, wobei über die zumindest eine Biegekante zumindest ein Randbereich des Zellkontaktiersystems zum Ausbilden eines den Zellverbund zumindest teilweise umgebenden Rahmes gefaltet wird. Beispielsweise kann der Träger rechteckförmig ausgebildet sein, wobei die Randbereiche aller Seiten faltbar ausgebildet sind. Die gefalteten Randbereiche können dabei ebenfalls Leiterbahnabschnitte aufweisen. Beispielsweise kann einer der Randbereiche die Leistungsanschlüsse zum Kontaktieren des Zellverbunds aufweisen, sodass die Leistungsanschlüsse seitlich am Zellverbund angeordnet sind.
In einer Ausgestaltung des elektrischen Energiespeichers weist ein dem Zellkontaktiersystem zugewandte Gehäuseteil zumindest eine Auswölbung auf, welche dazu ausgelegt ist, die Zellkontakte an die Zellterminals der Energiespeicherzellen anzupressen. Das Speichergehäuse kann Gehäuseteile in Form von einem Gehäusedeckel bzw. einem Gehäuseoberteil und einem Gehäuseboden bzw. einem Gehäuseunterteil aufweisen, welche unter Ausbildung des Gehäuseinnenraums zusammengefügt sind. Eines der Gehäuseteile, beispielsweise der Gehäusedeckel, kann die zumindest eine Auswölbung aufweisen, welche derart auf das Zellkontaktiersystem drückt, dass die Zellkontakte an die Zellterminals angepresst werden. Die zumindest eine Auswölbung bildet somit einen Druckkontakt aus. Die Auswölbung kann beispielsweise ambossartig geformt sein und somit auf die ebene Kontaktfläche der Zellkontakte drücken.
Auch kann vorgesehen sein, dass der Gehäusedeckel und der Gehäuseboden des Speichergehäuses zum Leiten eines Kühlmittels doppelwandig ausgebildet sind. Der zumindest eine Zellverbund kann somit zweiseitig gekühlt werden. Diese Ausführungsform ist in Kombination mit der zumindest eine Auswölbung, welche den Druckkontakt ausbildet, besonders vorteilhaft, da in diesem Fall jedes der doppelwandigen Gehäuseteile nahe an dem zumindest einen Zellverbund angeordnet ist, sodass das hindurchströmende Kühlmittel die Abwärme der Energiespeicherzellen abtransportieren kann.
In einer Weiterbildung weist der elektrische Energiespeicher eine Überwachungseinrichtung auf, welche an einer dem Zellverbund abgewandten Seite des Zellkontaktiersystems auf dem Träger angeordnet ist und welche dazu ausgelegt ist, zur Überwachung der Energiespeicherzellen Signale zwischen Sensoreinrichtungen der Energiespeicherzellen und zumindest einem Steuergerät des elektrischen Energiespeichers zu übermitteln. Dabei kann vorgesehen sein, dass die Überwachungseinrichtung einen Wellenleiter zum Übertragen von akustischen und/oder optischen Signalen aufweist, wobei der Wellenleiter als ein einstückiges oder mehrstückiges Formteil ausgebildet ist. Eine dem Zellkontaktiersystem zugewandte Seite der Überwachungseinrichtung kann Führungselemente für Druckkontaktstifte zum Anpressen der Zellkontakte an die Zellterminals aufweisen. Das Formteil ist dazu ausgelegt, zumindest eine Sensoreinrichtung mit zumindest einem Steuergerät des elektrischen Energiespeichers potentialfrei zu koppeln. In einer besonderen Ausführungsform weist das Formteil dazu zumindest einen Sammelkanal zum Anschließen an das Steuergerät und daran angeschlossenen Anschlusskanäle zum Anschließen an die Sensoreinrichtungen der Energiespeicherzellen auf und ist dabei ein Fertigteil, welches mit nur einem Montageschritt an den Energiespeicherzellen und dem Steuergerät angeordnet werden kann. Das Formteil besteht in dieser Form also nicht aus Einzelteilen, welche miteinander verbunden bzw. verkabelt werden müssen, sondern stellt bereits ein einstückiges Übertragungsnetzwerk, beispielsweise ein Bus-Netzwerk, zur Signalübertragung bereit. Das Formteil kann flexible Bereiche aufweisen, sodass es gemeinsam mit dem Zellkontaktiersystem gefaltet werden kann. Zur Erfindung gehört außerdem ein Kraftfahrzeug mit zumindest einem erfindungsgemäßen elektrischen Energiespeicher. Das Kraftfahrzeug ist insbesondere als ein elektrisch antreibbares Kraftfahrzeug in Form von einem Personenkraftwagen ausgebildet.
Die mit Bezug auf das erfindungsgemäße Verfahren vorgestellten Ausführungsformen und deren Vorteile gelten entsprechend für den erfindungsgemäßen elektrischen Energiespeicher sowie für das erfindungsgemäße Kraftfahrzeug.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, der Figuren und der Figurenbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
Fig. 1a-1d Verfahrensschritte zur Herstellung einer Ausführungsform eines
Zellkontaktiersystems;
Fig. 2 eine schematische Darstellung eines Leitermaterials des Zellkontaktiersystems mit einem fertiggestellten Leiterbahnlayout;
Fig. 3 eine schematische Darstellung eines Trägers des Zellkontaktiersystems;
Fig. 4 eine schematische Schnittdarstellung einer Ausführungsform eines elektrischen Energiespeichers mit einem Zellkontaktiersystem;
Fig.5 eine schematische Seitenschnittdarstellung einer weiteren Ausführungsform eines elektrischen Energiespeichers;
Fig. 6 eine schematische Schnittdarstellung einer weiteren Ausführungsform eines elektrischen Energiespeichers; Fig. 7 eine schematische Darstellung des Zellkontaktiersystems mit einer
Ausführungsform einer Überwachungseinrichtung; und
Fig. 8a, 8b schematische Schnittdarstellungen des Trägers mit Energiespeicherzellen.
In den Figuren sind gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
Fig. 1a bis Fig. 1d zeigen Verfahrensschritte zur Herstellung eines Zellkontaktiersystems 6, von welchem eine Ausführungsform in Fig. 1d gezeigt ist. Das Zellkontaktiersystem 6 dient zum Verschalten von Energiespeicherzellen 36 (siehe Fig. 4) eines elektrischen Energiespeichers EES zu zumindest einem Zellverbund. Der elektrische Energiespeicher EES kann beispielsweise als Traktionsbatterie für ein elektrifiziertes Kraftfahrzeug verwendet werden. Zum Fertigen des Zellkontaktiersystems 6 wird, wie in Fig. 1a, gezeigt, ein Leitermaterial 1, beispielsweise in Form von einem Blech, bereitgestellt und strukturiert. Dazu werden isolierende Aussparungen 2 aus dem Leitermaterial 1 herausgetrennt, um einen ersten Teil eines funktionalen Leiterbahnbildes 3 bzw. Leiterbahnlayouts (siehe Fig. 2) zu fertigen. Die isolierenden Aussparungen 2 werden zumindest in all jenen Bereichen eingebracht, welche in einem in Fig. 1b dargestellten zweiten Fertigungsschritt durch stabilisierendes Isolationsmaterial 4 überdeckt werden.
Die isolierenden Aussparungen 2 sind hierbei derart eingeschränkt, dass der maßliche Bezug aller aus dem Leitermaterial 1 bestehenden Bereiche erhalten bleibt. Eine weitere Anforderung an die isolierenden Aussparungen 2 ist insbesondere, dass diese für das beidseitig angebrachte stabilisierende Isolationsmaterial 4 ausreichend Materialschluss und damit eine hohe Stabilität der Anordnung 5 gegen Scherkräfte ermöglichen.
In einem dritten Fertigungsschritt, welcher in Fig. 1c gezeigt ist, werden in die von dem Isolationsmaterial 4 nicht überdeckten Bereiche, welche Zugangsöffnungen für die Fertigung eines zweiten Teils des Leiterbahnbildes 3 bilden, weitere isolierende Aussparungen 2 eingebracht, um das Leiterbahnbild 3 fertigzustellen. Die Fertigungsfolge kann bei besonderen Anforderungen an das Leiterbahnbild 3 um weitere Fertigungsschritte gemäß Fig. 1b und Fig. 1c erweitert werden. In einem optionalen vierten Fertigungsschritt gemäß Fig. 1d wird die ebene Anordnung 5 zu dem fertigen Zellkontaktiersystem 6 gefaltet. Auf das Zellkontaktiersystem 6 kann eine Überwachungseinrichtung 7 montiert werden, welche hier als ein Senseboard 7a ausgebildet ist. Das in Fig. 2 beispielhaft dargestellte funktionale Leiterbahnbild 3, welches durch das zumindest zweimalige Strukturieren des Leitermaterials 1 fertiggestellt ist, enthält Leiterbahnabschnitte, welche als Leistungsanschlüsse 8 zum Kontaktieren des Zellverbunds aus verschalteten Energiespeicherzellen 36, Sensieranschlüsse 9, teilweise miteinander verbundene erste Zellkontakte 10 und zweite Zellkontakte 11, als Schmelzsicherung ausgebildete Verengungen 12 der Leiterbahnen sowie stiftartige Kontaktelemente 13 bzw. aufgestellte Kontakte. Die aufgestellten Kontakte 13 können beispielsweise während des ersten Fertigungsschrittes gemäß Fig. 1a, des dritten Fertigungsschrittes gemäß Fig. 1c oder des vierten Fertigungsschrittes gemäß Fig. 1d ausgeformt werden.
Das stabilisierende Isolationsmaterial 4 bildet einen Träger 14 bzw. ein Trägerelement aus, welches in Fig. 3 gezeigt ist. Der Trägerelement 14 beinhaltet Aufnahmen 15 für die Energiespeicherzellen 36, Aufnahmen 16 für Verstärkungselemente 20 (siehe Fig. 1b,
Fig. 1c, Fig. 4), Aussparungen 17 für Stegisolationen, die im dritten Fertigungsschritt gemäß Fig. 1 c erzeugt werden können, linienförmige Materialaussparungen 18 für Biegungen, welche Biegekanten zum Falten der ebenen Anordnung 5 im vierten Fertigungsschritt gemäß Fig. 1d ausbilden, und Isolationsüberdeckungen 19 über Bereichen, welche mit Leiterbahnabschnitten überbrückt sind. Im zweiten Fertigungsschritt gemäß Fig. 1b können die Verstärkungselemente 20 bereits in den Träger 14 eingebracht werden, wodurch eine gesonderte Ausbildung der Aufnahmen 16 für die Verstärkungselemente 20 entfällt. Ebenfalls kann der Träger 14, wie in Fig. 4 gezeigt, Verrastungen 21 enthalten, durch welche kraftübertragende Elemente 22 im Träger 14 und/oder die Energiespeicherzellen 36 in den Aufnahmen 15 (siehe Fig. 6) gehalten werden können. Über die kraftübertragenden Elemente 22 ist es möglich, die ersten Zellkontakte 10 und zweiten Zellkontakte 11 als Druckkontakte zu der Energiespeicherzelle 36 auszuführen. Alternativ ist es möglich, die Zellkontakte 10, 11 mittels Schweiß- bzw. Lötverfahren mit der Zelle zu verbinden.
Das Senseboard 7a ist in der Ausführungsform gemäß Fig. 1d beispielsweise als ein Starrflex-PCB ausgebildet und beinhaltet flexible Bereiche für die Auffaltung des Senseboards 7a bei der Montage auf das Zellkontaktiersystem 6 sowie, wie in Fig. 1d gezeigt) Kontaktbereiche 23 für eine äußere Kontaktierung, für eine Kontaktierung des Leiterbahnbildes 3 und für ergänzende Sensoreinrichtungen 24 der Energiespeicherzellen 36, wie beispielsweise Temperatursensoren. Außerdem kann das Senseboard 7a verbindende Leiterbahnen sowie Führungselemente 25 für die ausgestellten Kontakte 13 umfassen. Das Senseboard 7a kann dabei ebenfalls über Druckkontakte 26 oder metallurgische Verbindungen 27 mit dem funktionalen Leiterbahnbild 3 und den ergänzenden Sensoreinrichtungen 24 elektrisch verbunden werden. Ebenfalls kann das Senseboard 7a im Bereich von Entgasungsöffnungen 28 der Energiespeicherzellen 36 Aussparungen 29 beinhalten, um im Entgasungsfall eine ungehinderte Entgasung der Energiespeicherzellen 36 zu ermöglichen.
In der beispielhaften Anordnung ist das Zellkontaktiersystem 6 über den Träger 14 sowie über die Verstärkungselemente 20 mit einem ersten Gehäuseteil 30 und einem zweiten Gehäuseteil 31 eines Speichergehäuses 32 des elektrischen Energiespeichers EES mechanisch verbunden. Das zweite Gehäuseteil 31 ist hier doppelwandig ausgebildet und formt einen Kühlkanal 34 zum Leiten eines Kühlmittels. Eine den Energiespeicherzellen 36 zugewandte Innenseite 33 des zweiten Gehäuseteils 31 ist mit einer elektrischen Isolation 35 versehen.
Die in dem Träger 14 enthaltenen Energiespeicherzellen 36 sind ebenfalls mit dem zweiten Gehäuseteil 31 mechanisch und gut wärmeleitend verbunden. Die Energiespeicherzellen 36 weisen ein Zellgehäuse 37 mit einem Zellgehäusedeckel 38 und einer elektrisch isolierenden Zelldichtung 39 auf. In dem Zellgehäuse 37 ist ein Zellaktivteil 40, also ein galvanisches Element angeordnet. Der Zellgehäusedeckel 38 beinhaltet hier eine Zellberstmembran 41 zur Abdeckung der Entgasungsöffnung 28.
Der erste Zellkontakt 10, das kraftübertragende Element 22, das Senseboard 7a und das erste Gehäuseteil 30 sind derart ausgestaltet, dass die Zellberstmembranen 41 bei einem Überdruck in dem jeweiligen Zellgehäuse 37 ungehindert öffnen können und die jeweiligen Energiespeicherzellen 36 somit entgasen können. Dazu enthält das erste Gehäuseteil 30 hier Gehäuseberstmembranen 42, die bei einer Entgasung der lokal zugehörigen Energiespeicherzellen 36 ebenfalls öffnen. Im Bereich von Zellterminals der Energiespeicherzellen 36, welche mit den Zellkontakten 10, 11 elektrisch verbunden sind, der ergänzenden Sensoreinrichtungen 24 und des Senseboards 7 ist ein flexibles elektrisch isolierendes Material 43 eingebracht.
Die Leistungsanschlüsse 8 und die Messanschlüsse des Zellkontaktiersystems 6 sowie die Anschlüsse 23 für die äußere Kontaktierung des Senseboards 7a sind, wie in der Darstellung des elektrischen Energiespeichers EES in Fig. 5 gezeigt, durch Öffnungen im zweiten Gehäuseteil 31 geführt. Der um das Zellkontaktiersystem 6 verbleibende Gehäuseinnenraum zwischen dem ersten Gehäuseteil 30 und dem zweiten Gehäuseteil 31 ist durch elektrisch isolierendes Material 44 ausgefüllt. Auf das zweite Gehäuseteil 31 ist eine Speicherelektronik 45 des elektrischen Energiespeichers EES montiert. Eine elektronische Schaltung 46 der Speicherelektronik 45 beinhaltet Gegenkontakte 47 für die Leistungsanschlüsse 8 und die Sensieranschlüsse 9 des Zellkontaktiersystems 6, die Anschlüsse 23 für die äußere Kontaktierung des Senseboards 7a sowie Außenkontakte 48 des elektrischen Energiespeichers EES zur Verbindung mit einem äußeren, speicherexternen elektrischen Kreis 49. Das zweite Gehäuseteil 31 beinhaltet Anschlüsse 50 zur Verbindung mit einem äußeren, speicherexternen Kühlkreislauf 51.
Fig. 6 zeigt eine weitere Ausführungsform des elektrischen Energiespeichers 1. Hier ist das erste Gehäuseteil 30 ebenfalls doppelwandig ausgebildet und formt somit ebenfalls einen Kühlkanal 34 zum Leiten eines Kühlmittels. Durch die doppelwandige Ausbildung der beiden Gehäuseteile 30, 31 können die Energiespeicherzellen 36 beidseitig gekühlt werden. Außerdem weist eine dem Zellkontaktiersystem 6 zugewandte Seite 52 zumindest eine Auswölbung 53 auf, welche die Zellkontakte 10, 11 an Zellterminals der Energiespeicherzellen 36, welche sich hier im Bereich des Zellgehäusedeckels 38 befinden, anpresst. Das erste Gehäuseteil 30 wird somit als Amboss verwendet, das heißt die Kontur des ersten Gehäuseteils 30 stellt im Bereich von ebenen Kontaktflächen 54 der Zellkontakte Anpressflächen mit definierter Elastizität dar. An der zweiten Seite ist eine Isolationsfläche 55 angeordnet. Hier weist außerdem das zweite Gehäuseteil 31 Öffnungen 56 auf, welche fluchtend zu den Entgasungsöffnungen 28 angeordnet sind und über welche das Heißgas aus dem Gehäuseinnenraum des Speichergehäuses 32 in eine Umgebung entweichen kann. Fig. 7 zeigt eine weitere Ausgestaltung der Überwachungseinrichtung 7, welche hier als ein Formteil 7b ausgebildet. Das Formteil 7b bildet einen Wellenleiter zum Leiten von akustischen und/oder optischen Signalen aus. Das Formteil 7b kann teilweise aus Kunststoff gebildet sein. Die zur Überwachung des elektrischen Energiespeichers EES dienenden Sensoreinrichtungen 24 können dabei auf den ersten Zellkontakten 10, zweiten Zellkontakten 11, deren Verbindungen, dem Träger
14 oder den Energiespeicherzellen 36 angebracht sein.
In Fig. 8a und Fig. 8b sind Schnittdarstellung des Trägers 14 im Bereich der Aufnahmen
15 für die Energiespeicherzellen 36 gezeigt. In Wandbereichen 57, welche die Aufnahmen 15 ausbilden, sind bereichsweise Verdickungen 58 ausgebildet, durch welche die Energiespeicherzellen 36 in den Aufnahmen festgeklemmt werden. Außerdem weisen die Aufnahmen 15 Stützelemente 59 zum Abstützen der Energiespeicherzellen 36 in den Aufnahmen 15 auf.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines Zellkontaktiersystems (6) für einen Zellverbund aus Energiespeicherzellen (36) eines elektrischen Energiespeichers (EES), mit folgenden Schritten:
- Fertigen eines ersten Teils eines Leiterbahnbildes (3) zum Verschalten der Energiespeicherzellen (36) durch Strukturieren eines Leitermaterials (1), wobei beim Strukturieren Aussparungen (2) aus dem Leitermaterial (1) herausgetrennt werden;
- Integrieren des strukturierten Leitermaterials (1) in einen elektrisch isolierenden Träger (14) mittels Fügen durch Urformen eines Isolationsmaterials (4), wobei das Isolationsmaterial (4) zum mechanischen Verbinden von Leiterbahnen des Leiterbahnbildes (3) zumindest bereichsweise an den Aussparungen (2) angeordnet wird und wobei in dem Isolationsmaterial (4) Zugangsöffnungen zum Freilegen von als Zellkontakte (10, 11) dienenden Leiterbahnabschnitten und zum Fertigen zumindest eines zweiten Teils des Leiterbahnbildes (3) ausgebildet werden; und
- Fertigen des zumindest einen zweiten Teils des Leiterbahnbildes (3) durch weiteres Strukturieren des Leitermaterials (1), indem weitere Aussparungen (2) über die Zugangsöffnungen (2) in dem Isolationsmaterial (4) aus dem Leitermaterial (1) herausgetrennt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Aussparungen (2) durch Stanzen aus dem Leitermaterial (1) herausgetrennt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das strukturierte Leitermaterial (1) beim Fügen durch Urformen mit dem Isolationsmaterial (4) umspritzt und/oder vergossen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Urformen des Isolationsmaterials Aufnahmen (15) für die Energiespeicherzellen (36) und/oder Aufnahmen (16) für Verstärkungselemente (20) und/oder Isolationsüberdeckungen (19) von Leiterbahnabschnitten und/oder Verrastungselemente (21) des Trägers (14) gefertigt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch Strukturieren des Leitermaterials (1) Leiterbahnabschnitte in Form von Leistungsanschlüssen (8) zum Kontaktieren des Zellverbunds und/oder Sensieranschlüsse (9) zum Kontaktieren von Sensoreinrichtungen (24) des elektrischen Energiespeichers (EES) und/oder Zellverbinder zum Verbinden der Zellkontakte (10, 11) und/oder als Schmelzsicherung ausgebildete Verengungen (12) und/oder mit den Zellkontakten (10, 11) verbundene, stiftartige Kontaktelemente (13) gefertigt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterbahnabschnitte, welche die Zellkontakte (10, 11) ausbilden, ausgehend von dem Träger (14) abgestuft werden und eine ebene, blattfederartige Kontaktfläche (54) ausbilden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Biegekante in dem Träger (14) ausgebildet wird, indem beim Urformen des Isolationsmaterials (4) linienförmige Materialaussparungen (18) in dem Träger (14) hergestellt werden, wobei über die zumindest eine Biegekante zumindest ein Randbereich des Zellkontaktiersystems (6) zum Ausbilden eines den Zellverbund zumindest teilweise umgebenden Rahmes gefaltet wird.
8. Elektrischer Energiespeicher (EES) mit zumindest einem Zellverbund aus Energiespeicherzellen (36), einem Speichergehäuse (32) und zumindest einem Zellkontaktiersystem (6), welches mittels eines Verfahrens nach einem der vorhergehenden Ansprüche hergestellt ist, wobei der zumindest eine Zellverbund und das zumindest eine Zellkontaktiersystem (6) in einem Gehäuseinnenraum des Speichergehäuses (32) angeordnet sind und wobei die Zellkontakte (10, 11) elektrisch mit Zellterminals der Energiespeicherzellen (36) verbunden sind.
9. Elektrischer Energiespeicher (EES) nach Anspruch 8, dadurch gekennzeichnet, dass ein dem Zellkontaktiersystem (6) zugewandtes Gehäuseteil (30) zumindest eine Auswölbung (53) aufweist, welche dazu ausgelegt ist, die Zellkontakte (10, 11) an die Zellterminals der Energiespeicherzellen (36) anzupressen.
10. Elektrischer Energiespeicher (EES) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein erstes Gehäuseteil (30) in Form von einem Gehäusedeckel und ein zweites Gehäuseteil (31) in Form von einem Gehäuseboden des Speichergehäuses (32) zum Leiten eines Kühlmittels doppelwandig ausgebildet sind.
11. Elektrischer Energiespeicher (EES) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der elektrische Energiespeicher (EES) eine Überwachungseinrichtung (7) aufweist, welche an einer dem Zellverbund abgewandten Seite des Zellkontaktiersystems (6) auf dem Träger (14) angeordnet ist und welche dazu ausgelegt ist, zur Überwachung der Energiespeicherzellen (36) Signale zwischen Sensoreinrichtungen (24) der Energiespeicherzellen (36) und zumindest einem Steuergerät des elektrischen Energiespeichers (EES) zu übermitteln.
12. Elektrischer Energiespeicher (EES) nach Anspruch 11 , dadurch gekennzeichnet, dass die Überwachungseinrichtung (7) einen Wellenleiter zum Übertragen von akustischen und/oder optischen Signalen aufweist, wobei der Wellenleiter als Formteil (7b) ausgebildet ist.
13. Elektrischer Energiespeicher (EES) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass eine dem Zellkontaktiersystem (6) zugewandte Seite der Überwachungseinrichtung (7) Führungselemente (25) für Druckkontaktstifte zum Anpressen der Zellkontakte (10, 11) an die Zellterminals aufweist.
14. Kraftfahrzeug mit zumindest einem elektrischen Energiespeicher (EES) nach einem der Ansprüche 8 bis 13.
EP22709672.4A 2021-03-22 2022-02-25 Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug Pending EP4315478A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021106943.2A DE102021106943A1 (de) 2021-03-22 2021-03-22 Verfahren zum Herstellen eines Zellkontaktiersystems, elektrischer Energiespeicher sowie Kraftfahrzeug
PCT/EP2022/054771 WO2022199981A1 (de) 2021-03-22 2022-02-25 Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug

Publications (1)

Publication Number Publication Date
EP4315478A1 true EP4315478A1 (de) 2024-02-07

Family

ID=80735987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22709672.4A Pending EP4315478A1 (de) 2021-03-22 2022-02-25 Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug

Country Status (5)

Country Link
US (1) US20240106082A1 (de)
EP (1) EP4315478A1 (de)
CN (1) CN116670915A (de)
DE (1) DE102021106943A1 (de)
WO (1) WO2022199981A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123144A1 (de) 2022-09-12 2024-03-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Anordnung von Batteriezellen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011015152A1 (de) * 2011-03-25 2012-09-27 Li-Tec Battery Gmbh Energiespeichervorrichtung, Energiespeicherzelle und Wärmeleitelement mit elastischem Mittel
TW201315000A (zh) * 2011-06-17 2013-04-01 Shin Kobe Electric Machinery 電化學電池模組及電化學電池模組單元以及支持器
DE102012005120A1 (de) * 2012-03-14 2013-09-19 Diehl Metal Applications Gmbh Verbindungssystem für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit dem Verbindungssystem
DE102012011607B4 (de) 2012-06-12 2021-09-23 Volkswagen Aktiengesellschaft Verbindereinheit zum Kontaktieren elektrischer Speicherzellen, Verfahren zum Herstellen einer solchen Verbindereinheit und Akkumulatorenbatterie mit der Verbindereinheit
DE102012218500A1 (de) 2012-10-11 2014-04-17 Continental Automotive Gmbh Vorrichtung zum Verbinden von elektrischen Energiespeichern zu einer Batterie und Herstellungsverfahren für eine solche Vorrichtung
DE102013016845A1 (de) 2013-10-10 2015-04-16 Daimler Ag Batteriemanagementmodul und Verfahren zu dessen Herstellung
JP6177352B2 (ja) 2013-12-25 2017-08-09 矢崎総業株式会社 電池配線モジュール
US9705121B2 (en) 2014-08-18 2017-07-11 Johnson Controls Technology Company Lead frame for a battery module

Also Published As

Publication number Publication date
CN116670915A (zh) 2023-08-29
DE102021106943A1 (de) 2022-09-22
US20240106082A1 (en) 2024-03-28
WO2022199981A1 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
DE19857623B4 (de) Instrumententafelaufbau
DE69908896T2 (de) Elektrische Anschlussdose mit einer Sammelschiene
EP2989669B1 (de) Verfahren zum herstellen eines batterienkontaktierungssystems und batterienkontaktierungssystem
DE60119610T2 (de) Elektrisches Verbindungsgehäuse
DE3912210C2 (de)
DE69929384T2 (de) Gitterleiterplatte
EP1734621B1 (de) Anordnung und Verfahren zum elektrischen Anschluss einer elektronischen Schaltung in einem Gehäuse
WO2009080150A1 (de) Batterie mit einer kühlplatte und verfahren zur herstellung einer batterie
DE112005000245T5 (de) Schaltkreismodul
EP1199913B1 (de) Verfahren zur Herstellung von Leiterfolie-Trägergehäuse-Einheiten
DE10356754A1 (de) Schmelzsicherungseinsatz und Verfahren zur Herstellung eines Schmelzsicherungseinsatzes
DE10232650A1 (de) Elektrischer Verbindungskasten und Verfahren zur Herstellung desselben
DE102004011986A1 (de) Busschienenstrukturplatte und Herstellungsverfahren eines Schaltkreisstrukturkörpers unter Verwendung hiermit
DE102008050627B4 (de) Stromanschlusskasten
WO2022199981A1 (de) Verfahren zum herstellen eines zellkontaktiersystems, elektrischer energiespeicher sowie kraftfahrzeug
WO2018219966A1 (de) Kontaktierungselement für ein zellkontaktierungssystem für eine elektrochemische vorrichtung und verfahren zum herstellen eines zellkontaktierungssystems für eine elektrochemische vorrichtung
DE19963332B4 (de) Drahtleitungsträger und Verfahren zum Fertigen eines Drahtleitungsträgers
DE102012205969B4 (de) Sensorvorrichtung
EP4084202A1 (de) Batteriezellenverbindungseinrichtung, batteriemodul, batterievorrichtung mit wenigstens zwei batteriemodulen und verfahren zum herstellen einer batterievorrichtung
EP1212813B1 (de) Kabelverbindung zwischen flachbandkabel und rundbandkabel bzw. rundkabel und verfahren zu deren herstellung
DE60016105T2 (de) Elektrisches Anschlussgehäuse
DE60103326T2 (de) Verbindungsmethode für ein verdrilltes Paar elektrischer Drähte und ein Andrückverbinder in Kombination mit einem verdrillten Paar elektrischer Drähte
DE102021134339B3 (de) Kraftfahrzeugbatterie mit verbesserter elektrischer Anbindung einer zugehörigen elektronischen Steuer- und/oder Überwachungsschaltung sowie zugehöriges Montageverfahren
WO2022214259A1 (de) Elektrischer energiespeicher mit lateralem zellkontaktiersystem sowie kraftfahrzeug
DE10230239B4 (de) Steckverbinder

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR