EP4313446A1 - Procédé de fabrication de pièces métalliques et pièces métalliques obtenues à base de frittage sps - Google Patents

Procédé de fabrication de pièces métalliques et pièces métalliques obtenues à base de frittage sps

Info

Publication number
EP4313446A1
EP4313446A1 EP22718747.3A EP22718747A EP4313446A1 EP 4313446 A1 EP4313446 A1 EP 4313446A1 EP 22718747 A EP22718747 A EP 22718747A EP 4313446 A1 EP4313446 A1 EP 4313446A1
Authority
EP
European Patent Office
Prior art keywords
powder
manufacturing process
process according
metallurgical
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22718747.3A
Other languages
German (de)
English (en)
Inventor
Foad NAIMI
Arnaud BOLSONELLA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintermat SAS
Original Assignee
Sintermat SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintermat SAS filed Critical Sintermat SAS
Publication of EP4313446A1 publication Critical patent/EP4313446A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the manufacture of metal parts by sintering, in particular the manufacture of parts having mechanical properties of particular hardness.
  • a metallurgical material such as steel mainly comprises iron and carbon, the carbon being between 0.02% and 2% by mass.
  • the carbon content In order to increase the hardness of a steel, it is known to increase the carbon content.
  • some steels have carbon concentrations above 1.7% (ledeburitic steels).
  • heat treatments these treatments being mainly surface treatments.
  • Another object of the invention is to limit the number of operations and/or treatments.
  • the invention proposes a method for manufacturing a metallurgical part characterized by the following steps:
  • the part obtained according to the invention makes it possible to increase the hardness compared to the results of the prior art, while limiting the costs thanks in particular to the reduction in the number of operations and/or post-treatments. In addition, this makes it possible to limit the carbon content by compared to the results of the prior art.
  • the metallurgical part obtained is thus intrinsically different from the results of the prior art.
  • - SPS sintering acronym for "Spark Plasma Sintering"
  • Spark Plasma Sintering a pressure sintering process based on the densification of a powder sample by applying a mechanical stress associated with the passage of a pulsed current to heat the sample; for example a sintering method related to hot isostatic pressing but using the Joule effect to heat the precompacted powder in a hollow cylindrical crucible between two graphite electrodes under an inert atmosphere or under vacuum, the assembly being subjected to a pressure of several megapascals under the action of a hydraulic press.
  • a direct or alternating current of several kiloamperes, pulsed or not, is applied between the electrodes with a voltage of a few volts. ;
  • any material making it possible to improve the densification and/or the final mechanical properties giving mechanical cohesion to the final part for example cobalt material or another sintering agent;
  • grain size or grain size, or grain size, the size characterized by the values d10, d90, d50 in order to quantify the dispersion of this grain size distribution;
  • - spheroidization, or spheroidize in particular concerning a powder, a method of transforming an angular ground metal powder by melting, most often plasma assisted, to make it spherical; - grinding or milling, in particular concerning a powder, a method of transformation by mechanical action, for example by balls, so as to reduce the size of the crystallites and/or the size of the grains of a powder;
  • the grain size is measurable by an optical or electronic microscope or by a granulometer.
  • the particle sizer it is possible to use a particle sizer of the laser or optical type, in the dry or liquid way.
  • the metallurgical part or the metallurgical material comprises at least one metallic element.
  • the part or material comprises at least 50% by mass of at least one metallic element.
  • the powder of metallurgical material used has a particle size of less than 50 mna (micrometers).
  • the powder of metallurgical material used comprises:
  • the powder of metallurgical material may include doping agents to further increase the final hardness, in order to complete the composition of said powder and respectively:
  • metal phase means a metallurgical or crystallographic phase which is a particular compound combining several chemical elements and having a particular microstructure.
  • An alloy is an association of metallic elements mainly and optionally in a minority of ceramic elements.
  • An alloy can comprise one or more metallurgical phases.
  • the metallic phase is an iron-based alloy, such as steel or cast iron, or an aluminum-based alloy, or a titanium-based alloy, or a nickel-based alloy.
  • the present invention deals with all alloys.
  • the metallurgical material has a carbon content of less than or equal to 2% by weight relative to the total weight of the metallurgical material.
  • the metallurgical material has a carbon content of less than or equal to 2%, preferably less than or equal to 1.75%, preferably less than or equal to 1.5%, preferably less than or equal to 1.25 %, preferably less than or equal to 1%, preferably less than or equal to 0.75%, preferably less than or equal to 0.5%.
  • Each grain type has a predetermined grain size, a predetermined crystallite size, and a predetermined aspect ratio.
  • the powder is reduced, in particular when the powder cannot be used as it is, so that:
  • the aggregates have a characteristic size of less than 200 micrometers, and/or
  • the average crystallite size is less than 100 nanometers.
  • the reduction in the size of the grains and/or the crystallites of the powder comprises:
  • the method comprises a step of atomizing the powder used so that the size of the grains has a size less than or equal to 150 micrometers.
  • the reduction in the size of the grains and/or crystallites of the powder comprises:
  • a step of grinding the metallurgical material so that the size of the agglomerates has a size of less than 1000 micrometers.
  • the atomization step is carried out before the grinding step.
  • d50 being between 0.1 and 100 m m ,
  • One embodiment consists in using a monomodal particle size distribution before grinding of between 0.1 and 100 micrometers (jim).
  • the powders have a bimodal distribution before grinding with d50 values separated by a decade, typically O. ⁇ iti and 1 m m or 1 mm m and
  • the distribution is trimodal with d50 separated by a decade, typically O. ⁇ iti, 1 m m and IO iti. These examples are obviously non-limiting.
  • the powder is used as is, raw from the supplier.
  • this powder may have a d50 value, in particular a grain diameter, of less than 100 micrometers, preferably less than 50 micrometers, preferably less than 15 micrometers.
  • the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the distribution particle size.
  • the size of the crystallites coherent crystallographic domains
  • the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the distribution particle size.
  • the size of the crystallites is between 20 and 1000 nanometers (nm).
  • the size of the crystallites is between 20 and 100 nm.
  • the size of the crystallites is between 20 and 50 nm. In one embodiment, it is possible to associate several sizes of crystallites.
  • the manufacturing method comprises a step of adding at least one doping agent with the metallurgical material, before the sintering step.
  • the at least one doping agent is or comprises boron nitride BN, titanium carbide TiC, tungsten carbide WC, silicon carbide SiC, niobium carbide NbC, boron carbide B C, Silicon nitride SiN , aluminum oxide AlO , zirconium oxide ZrO , yttrium oxide Y0 or a mixture of these.
  • the at least one doping agent is or comprises the doped variants of the preceding elements.
  • the manufacturing process only comprises a step of atomizing the powder of the metallurgical material, and then the powder obtained, called intermediate powder, can be mixed, or not, with at least one doping agent.
  • the manufacturing method only comprises a step of grinding the powder of the metallurgical material, and then the powder obtained, called intermediate powder, can be mixed, or not, with at least one doping agent.
  • the sintering step is carried out until a piece of predetermined shape is obtained which is composed or consists of the sintered metallurgical material.
  • the part of predetermined shape is composed or consists solely of sintered metallurgical material, the metallurgical material comprising one or more of the characteristics stated above.
  • the sintering step is carried out until a part, called the starting part, is covered with a layer of sintered metallurgical material so as to obtain a part of predetermined shape.
  • the manufacturing process further comprises the following steps:
  • the starting part is obtained by the sintering step according to the first embodiment.
  • the manufacturing method comprises a step of adding at least one substrate metal powder with the metallurgical material, before the sintering step.
  • the height of each layer of sintered powder according to the need is the height of each layer of sintered powder according to the need.
  • substrate metal powder means any alloy that is thermochemically compatible with the metallurgical powder resulting in metallic materials of high hardness.
  • the substrate metal powder is 316L steel or nickel-free stainless steel.
  • the manufacturing process further comprises a heat treatment step after the sintering step.
  • the invention proposes a metallurgical part obtained according to one or more of the characteristics of the manufacturing process of the first aspect.
  • the metallurgical part is for example, and in a non-limiting manner, a cutting tool for machining or drilling.
  • the metallurgical part is obtained by SPS sintering of a powder of a metallurgical material characterized in that the powder has a grain size of less than 1000 micrometers and/or a crystallite size of less than 200 nanometers, so that the metallurgical part obtained has a Vickers hardness greater than 320Hv.
  • the manufacturing process provides for taking into account only the grain size and/or the crystallite size.
  • the manufacturing process provides for taking into account only the grain size and/or the crystallite size.
  • the stress applied may be greater than 0 MPa, preferably greater than or equal to 5
  • MPa and less than or equal to 150 MPa preferably less than or equal to 75 MPa, preferably less than or equal to 50 MPa, preferably less than or equal to 25 MPa, preferably less than or equal to 20 MPa, preferably less than or equal at 18 MPa, preferably less than or equal to 15 MPa;
  • the duration of the SPS sintering stage can be greater than or equal to 2 minutes and less than or equal to 45 minutes.
  • the temperature can be determined empirically by those skilled in the art depending on the nature of the metallic grade chosen.
  • the densification parameters are to be adapted according to the metallic shade of the matrix.
  • the determination of the sintering parameters described above can be defined by those skilled in the art via an empirical study.
  • the choice of the sintering parameters may or may not induce a phenomenon of filler/matrix reactivity which may improve the final reinforcement of the formed material.
  • the filler content is greater than a few mass %.
  • the rate is greater than 1%, preferably greater than 5%, preferably less than 30%, preferably less than 25%.
  • the step of grinding the metallurgical material, preferably the metallurgical powder, and/or the co-grinding of the metallurgical powder and the hardening filler, and/or the mixing of the metallurgical powders and the fillers hardeners can be carried out by dry or wet process. As part of the dry process, it can be carried out in air or in neutral gas depending on the nature of the metallic shade of the matrix. In the case of a wet route, the choice of solvent will be determined via empirical study known to those skilled in the art.
  • said manufacturing method provides for a cryogenic grinding step.
  • the quality of the sintering can be determined by measurement of geometric density, by buoyancy of Archimedes, by helium pycnometry, by porosimetry, by intrusion of mercury, and possibly by BET (measurement of specific surface area of materials measured by adsorption of a gas (nitrogen) with the BET method (Brunauer, Emett and Teller)), or image analysis in microscopy, or a combination of several methods.
  • BET Brunauer, Emett and Teller
  • FIG. 1 represents a flowchart presenting the various embodiments of the manufacturing method.
  • the "Alloy" metallic material powder can be only atomized or only ground, see the first two lines,
  • the "Alloy" metallic material powder can be atomized and mixed with an addition element or doping agent, see the fourth line,
  • the "Alloy" metallic material powder can be ground and mixed with an addition element or doping agent, see the fifth line,
  • the “Alloy” metallic material powder can be atomized, then ground and mixed with an addition element or doping agent, see sixth line.
  • the hardness of the ex nihilo metallurgical part obtained or of the coating of the metallurgical part obtained is:
  • the intermediate powder can be deposited before or after a metal substrate powder so as to form a superposition of layers. Adjust the height of each layer as needed.
  • the coating can be applied, see “SPS D sintering”, on a part, called the starting part, for example a steel called 316L.
  • the coating may have a thickness greater than or equal to one millimeter.
  • the hardness of the parts obtained is thus increased until it reaches a value between 200 Hv and 1500 Hv with doping agents.
  • the doping agent is for example silicon carbide.
  • the aggregates have for example a size of between 100 and 500 micrometers.
  • the grain size is for example between 50 and 150 nanometers. This example makes it possible to obtain a part with a hardness approximately equal to 1000 Hv.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention porte sur un procédé de fabrication d'une pièce métallurgique caractérisé par les étapes suivantes : - Utiliser une poudre d'un matériau métallurgique présentant une granulométrie inférieure à 400 micromètres, - réduire la taille des grains et/ou des cristallites de la poudre de manière à obtenir des agrégats d'une taille caractéristique inférieure à 1000 micromètres, et une taille moyenne de cristallites inférieure à 200 nanomètres, - Fritter en utilisant un procédé de frittage SPS la poudre réduite, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 320Hv.

Description

PROCEDE DE FABRICATION DE PIECES METALLIQUES ET PIECES METALLIQUES OBTENUES A BASE DE FRITTAGE SPS
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne la fabrication de pièces métalliques par frittage, en particulier la fabrication de pièces présentant des propriétés mécaniques de dureté particulière.
ETAT DE LA TECHNIQUE
Un matériau métallurgique tel que l’acier comprend principalement du fer et du carbone, le carbone étant compris entre 0,02% et 2% en masse. Afin d’augmenter la dureté d’un acier, il est connu d’augmenter la teneur en carbone. Par exemple, certains aciers présentent des concentrations de carbone supérieures à 1,7% (aciers lédéburitiques). En outre, il est possible de réaliser des traitements thermiques, ces traitements étant principalement surfaciques.
Il est ainsi désireux de proposer un matériau présentant une dureté équivalente ou supérieure à celles de l’état de la technique, et/ou une dureté homogène en volume. Un autre but de l’invention est de limiter le nombres d’opérations et/ou de traitements.
L’INVENTION
A cet effet, et selon un premier aspect, l’invention propose un procédé de fabrication d’une pièce métallurgique caractérisé par les étapes suivantes :
- utiliser une poudre d’un matériau métallurgique présentant une granulométrie inférieure à 400 pim (micromètres),
- réduire la taille des grains et/ou des cristallites de la poudre de manière à obtenir des agrégats d’une taille caractéristique inférieure à 1000 pim (micromètres), et une taille moyenne de cristallites inférieure à 200 nm (nanomètres),
- fritter en utilisant un procédé de frittage SPS la poudre réduite, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 320Hv.
La pièce obtenue selon l’invention permet d’augmenter la dureté par rapport aux résultats de l’art antérieur, tout en limitant les coûts grâce notamment à la diminution du nombre d’opérations et/ou de post- traitements. En outre, cela permet de limiter la teneur en carbone par rapport aux résultats de l’art antérieur. La pièce métalurgique obtenue est ainsi intrinsèquement différente par rapport aux résultats de l’art antérieur.
Pour ce qui précède et pour la suite de la description, on entend par :
- frittage SPS, acronyme de « Spark Plasma Sintering », un procédé de frittage sous pression basé sur la densification d’un échantillon de poudre par application d’une contrainte mécanique associée au passage d’un courant pulsé permettant de chauffer l’échantillon ; par exemple une méthode de frittage apparentée au pressage isostatique à chaud mais utilisant l'effet joule pour chauffer la poudre précompactée dans un creuset cylindrique creux entre deux électrodes en graphite sous atmosphère inerte ou sous vide, l'ensemble étant soumis à une pression de plusieurs mégapascals sous l'action d'une presse hydraulique. Un courant continu ou alternatif de plusieurs kiloampères, pulsé ou non, est appliqué entre les électrodes avec une tension de quelques volts. ;
- liant, toute matière permettant d’améliorer la densification et/ou les propriétés mécaniques finales donnant une cohésion mécanique à la pièce finale, par exemple le matériau cobalt ou un autre agent de frittage ;
- taille de grains, ou granulométrie, ou granulométrie des grains, la taille caractérisée par les valeurs dlO, d90, d50 afin de quantifier la dispersion de cette distribution de taille de grains ;
- taille de cristallites, ou taille moyenne de cristallites, chaque grain pouvant présenter des cristallites, la taille se rapportant aux domaines cristallographiques cohérents et qui est mesurée par des techniques du type MEB, TEM, ...;
- facteur de forme, le rapport entre deux longueurs caractéristiques, chaque longueur s’étendant selon une direction déterminée, lesdites longueurs caractéristiques présentant un angle non- nul l’une par rapport à l’autre, par exemple un angle de 90 degrés ;
- atomisation ou atomiser, en particulier concernant une poudre, une méthode de transformation d’un lingot métallique en poudre sphérique par fusion et projection des gouttes métalliques sous flux gazeux pour les rendre sphériques,
- sphéroïdisation, ou sphéroïdiser, en particulier concernant une poudre, une méthode de transformation d’une poudre métallique broyée anguleuse par fusion le plus souvent assisté plasma pour la rendre sphérique ; - broyage ou broyer, en particulier concernant une poudre, une méthode de transformation par action mécanique, par exemple par des billes, de manière à réduire la taille des cristallites et/ou la taille des grains d’une poudre ;
- agrégats, le résultat d’une réduction de la taille des grains et/ou de la taille des cristallites, par exemple par broyage, qui aboutit à une agglomération de petits grains pour former des agglomérats plus gros, mais chaque grain constituant les agglomérats présentent des tailles de cristallites plus petits ;
- dureté, la résistance d'un matériau a être marqué par un autre, on utilisera ici la dureté Vickers.
De préférence, la taille de grain est mesurable par un microscope optique ou électronique ou par un granulomètre. Dans le cas du granulomètre, il est possible d’utiliser un granulomètre du type laser ou optique, en voie sèche ou liquide.
De préférence, la pièce métallurgique ou le matériau métallurgique comprend au moins un élément métallique. La pièce ou le matériau comprend au moins 50% en masse de l’au moins un élément métallique.
De manière préférentielle, la poudre de matériau métallurgique utilisée présente une granulométrie inférieure à 50 mna (micromètres).
Selon des variantes de réalisation, la poudre de matériau métallurgique utilisée comprend :
- au moins 98% d’une phase métallique, ou
- au moins 95% d’une phase métallique, ou
- au moins 85% d’une phase métallique, ou
- au moins 80% d’une phase métallique, ou
- au moins 75% d’une phase métallique.
En lien avec le paragraphe précédent, la poudre de matériau métallurgique peut comprendre des agents dopants permettant d’augmenter encore plus la dureté finale, afin de compléter la composition de ladite poudre et respectivement :
- au plus 2% d’un ou plusieurs agents dopants,
- au plus 5% d’un ou plusieurs agents dopants,
- au plus 15% d’un ou plusieurs agents dopants, - au plus 20% d’un ou plusieurs agents dopants,
- au plus 25% d’un ou plusieurs agents dopants.
On entend par phase métallique, une phase métallurgique, ou cristallographique qui est un composé particulier associant plusieurs éléments chimiques et présentant une microstructure particulière. Un alliage est une association d’éléments métalliques principalement et optionnellement de manière minoritaire des éléments céramiques. Un alliage peut comporter une ou plusieurs phases métallurgiques.
De préférence, la phase métallique est un alliage à base de fer, tel que l’acier ou la fonte, ou un alliage à base d’aluminium, ou un alliage à base de titane, ou un alliage à base de nickel. La présente invention traite de tous les alliages.
De préférence, le matériau métallurgique présente une teneur en carbone inférieure ou égale à 2% en poids par rapport au poids total du matériau métallurgique. De manière préférentielle, le matériau métallurgique présente une teneur en carbone inférieure ou égale à 2% , de préférence inférieure ou égale à 1,75%, de préférence inférieure ou égale à 1,5%, de préférence inférieure ou égale à 1,25%, de manière préférée inférieure ou égale à 1%, de préférence inférieure ou égale à 0,75%, de manière préférentielle inférieure ou égale à 0,5%.
Chaque type de grains présente une taille de grain prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé.
De préférence, la poudre est réduite, en particulier lorsque la poudre ne peut pas être utilisée telle quelle, de manière que :
- les agrégats présentent une taille caractéristique inférieure à 200 micromètres, et/ou
- la taille moyenne des cristallites est inférieure à 100 nanomètres.
Selon des variantes de réalisation pouvant, ou non, être combinées, la réduction de la taille des grains et/ou des cristallites de la poudre comprend :
- une étape d’atomisation du matériau métallurgique, et/ou
- une étape de broyage du matériau métallurgique, de manière que la poudre utilisée présente une granulométrie inférieure à 1000 micromètres. De préférence, le procédé comprend une étape d’atomisation de la poudre utilisée de manière que la taille des grains présente une taille inférieure ou égale à 150 micromètres.
Selon d’autres variantes de réalisation, pouvant, ou non, être combinées, la réduction de la taille des grains et/ou des cristallites de la poudre comprend :
- une étape d’atomisation du matériau métallurgique, et/ou
- une étape de broyage du matériau métallurgique, de manière que la taille des agglomérats présente une taille inférieure à 1000 micromètres.
De préférence, et dans le cas de la combinaison des deux étapes, l’étape d’atomisation est réalisée avant l’étape de broyage.
La microstructure de grains prédéterminée peut présenter les caractéristiques suivantes :
- Distribution granulométrique : d50 étant compris entre 0.1 et 100 m m ,
- Taille de cristallite : 20 à 1000 nm,
- Facteur de forme : entre 1 et 5 (sphérique à anguleux, sans être cylindrique).
Un mode de réalisation consiste à utiliser une distribution granulométrique monomodale avant broyage comprise entre 0.1 et 100 micromètres (jim ).
Selon un autre mode de réalisation, les poudres présentent une distribution bimodale avant broyage avec des valeurs d50 séparées d’une décade, typiquement O.ΐ iti et 1 m m ou 1 m m et
1 Om m ou encore 1 Om m et 1 ()()// m . Il se peut que cette distribution bimodale soit séparée de
2 décades, typiquement 0.1 et 1 Om m ou 1 et 1 ()()// m .
Selon encore un autre mode de réalisation, la distribution est trimodale avec des d50 séparées d’une décade, typiquement O.ΐ iti, 1 m m et IO iti. Ces exemples sont évidemment non limitatifs.
Dans un mode de réalisation, la poudre est utilisée telle quelle, brute de fournisseur. Par exemple, cette poudre peut présenter une valeur d50, en particulier un diamètre, de grain inférieur(e) à 100 micromètres, de préférence inférieur(e) à 50 micromètres, de préférence inférieur(e) à 15 micromètres.
Dans un mode préférentiel, la poudre est broyée afin d’affiner la taille des cristallites (domaines cristallographiques cohérents) qui est différente de la distribution granulométrique. Ainsi, après broyage, on constate une réduction de la taille des cristallites, mais pas nécessairement une réduction de la taille des grains.
Préférentiellement, la taille des cristallites est comprise entre 20 et 1000 nanomètres (nm). Préférentiellement, la taille des cristallites est comprise entre 20 et 100 nm. Préférentiellement enfin, la taille des cristallites est comprise entre 20 et 50 nm. Dans un mode de réalisation, il est envisageable d’associer plusieurs tailles de cristallites.
Selon un mode de réalisation, le procédé de fabrication comprend une étape d’ajout d’au moins un agent dopant avec le matériau métallurgique, avant l’étape de frittage.
De préférence, l’au moins un agent dopant est ou comprend du nitrure de bore BN, du carbure de titane TiC, du carbure de tungstène WC, du carbure de silicium SiC, du carbure de niobium NbC, du carbure de bore B C, du Nitrure de silicium SiN , de l’oxide d’aluminium Al O , de l’oxyde de zirconium ZrO , de l’oxyde d’yttrium Y0 ou un mélange de ceux-ci. De manière préférentielle, l’au moins un agent dopant est ou comprend les variants dopés des éléments précédents.
Selon un mode de réalisation particulier, le procédé de fabrication comprend uniquement une étape d’atomisation de la poudre du matériau métallurgique, et ensuite la poudre obtenue, dite poudre intermédiaire, peut être mélangée, ou non, à au moins un agent dopant.
Selon un autre mode de réalisation particulier, le procédé de fabrication comprend uniquement une étape de broyage de la poudre du matériau métallurgique, et ensuite la poudre obtenue, dite poudre intermédiaire, peut être mélangée, ou non, à au moins un agent dopant.
Selon un premier mode de réalisation, l’étape de frittage est réalisée jusqu’à l’obtention d’une pièce de forme prédéterminée est composée ou constituée du matériau métallurgique fritté. De manière préférentielle, la pièce de forme prédéterminée est composée ou constituée uniquement du matériau métallurgique fritté, le matériau métallurgique comprenant l’une ou plusieurs des carctéristiques énoncées précédemment.
Selon un deuxième mode de réalisation, l’étape de frittage est réalisée jusqu’à recouvrir une pièce, dite pièce de départ, d’une couche du matériau métallurgique fritté de manière à obtenir une pièce de forme prédéterminée. Par exemple le procédé de fabrication comprend en outre les étapes suivantes :
- choisir une pièce, dite pièce de départ,
- fritter la poudre réduite sur la pièce de départ jusqu’à recouvrir ladite pièce de manière à obtenir la pièce métallurgique.
Selon une variante de réalisation, la pièce de départ est obtenue par l’étape de frittage selon le premier mode de réalisation.
De préférence, selon n’importe quel mode de réalisation, le procédé de fabrication comprend une étape d’ajout d’au moins une poudre métallique de substrat avec le matériau métallurgique, avant l’étape de frittage.
De manière préférentielle, selon n’importe quel mode de réalisation, la hauteur de chaque couche de poudre frittée en fonction du besoin.
On entend par poudre métallique de substrat, Tout alliage, compatible thermochimiquement avec la poudre métallurgique aboutissant au matériaux métallique de dureté élevée. Par exemple, la poudre métallique de substrat est de l’acier 316L ou de l’inox sans nickel.
De préférence, le procédé de fabrication comprend en outre une étape de traitement thermique après l’étape de frittage.
Selon un deuxième aspect, l’invention propose une pièce métallurgique obtenue selon l’une ou plusieurs des caractéristiques du procédé de fabrication du premier aspect.
La pièce métallurgique est par exemple, et de manière non limitative, un outil de coupe pour l’usinage ou le forage.
La pièce métallurgique est obtenue par frittage SPS d’une poudre d’un matériau métallurgique caractérisé en ce que la poudre présente une taille de grains inférieure à 1000 micromètres et/ou une taille de cristallites inférieure à 200 nanomètres, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 320Hv.
De préférence, le procédé de fabrication prévoit de prendre en compte seulement la taille de grain et/ou la taille de cristallites. Selon un ou plusieurs modes de réalisation, pouvant être combinable, lors de l’étape de frittage en utilisant un procédé de frittage SPS :
-la contrainte appliquée peut être supérieure à 0 MPa, de préférence supérieure ou égale à 5
MPa et inférieure ou égale à 150 MPa, de préférence inférieure ou égale à 75 MPa, de préférence inférieure ou égale à 50 MPa, de préférence inférieure ou égale à 25 MPa, de préférence inférieure ou égale à 20 MPa, de préférence inférieure ou égale à 18 MPa, de préférence inférieure ou égale à 15 MPa;
- la durée de palier du frittage SPS peut être supérieure ou égale à 2 minutes et inférieure ou égale à 45 minutes.
De préférence, la température peut être déterminée de manière empirique par l’homme du métier en fonction de la nature de la nuance métallique choisie.
Ces caractéristiques permettent d’obtenir une pièce présentant un taux de densification souhaité, qui peut être égal ou supérieur à 70% et peut être égal à 100%. En particulier, l’association de la température, de la contrainte et de la durée du pallier permettent d’accéder à un taux de densification souhaité.
De préférence, les paramètres de densification (température, durée de pallier, contrainte) sont à adapter en fonction de la nuance métallique de la matrice. Par exemple, la détermination des paramètres de frittage décrit précédemment sont définissable par l’homme du métier via une étude empirique. Selon un mode de réalisation, en fonction de la nature des agents dopants, dit aussi charges durcissantes et la nature de la nuance métallique de la matrice, le choix des paramètres de frittage peuvent induire ou non un phénomène de réactivité charge/matrice qui pourra améliorer le renforcement final du matériaux formé. Par exemple, le taux de charges est supérieur à quelques % massiques. Par exemple, le taux est supérieur à 1%, de préférence supérieure à 5%, de préférence inférieur à 30%, de préférence inférieur à 25%.
Selon un mode de réalisation, l’etape de broyage du matériau métallurgique, de préférence de la poudre métallurgique, et/ou le co-broyage de la poudre métallurgique et de la charge durcissante, et/ou le mélangeage des poudres métallurgique et des charges durcissantes peut être réaliser en voie sèche ou en voie humide. Dans le cadre de la voie sèche, elle peut être réalisée sous air ou sous gaz neutre en fonction de la nature de la nuance métallique de la matrice. Dans le cas d’une voie humide, le choix du solvant sera déterminé via étude empirique connue de l’homme du métier.
De préférence, ledit procédé de fabrication prévoit une étape de broyage cryogénique.
De préférence, la qualité du frittage peut être déterminée par mesure de densité géométrique, par poussée d’Archimède, par pycnométrie hélium, par porosimétrie, par intrusion de mercure, et éventuellement par BET (mesure de surface spécifique des matériaux mesurée par adsorption d'un gaz (azote) avec la méthode BET (Brunauer, Emett et Teller)), ou analyse d’image en microscopie, ou une combinaison de plusieurs méthodes.
Description de la figure
La figure 1 représente un logigramme présentant les différents modes de réalisation du procédé de fabrication.
En référence à la figure 1 , il est prévu un procédé de fabrication d’une pièce métallique au cours duquel :
- la poudre de matériau métallugique « Alliage » peut être seulement atomisée ou seulement broyée, voir les deux premières lignes,
- la poudre de matériau métallugique « Alliage » peut être atomisée puis broyée, voir la troisième ligne,
- la poudre de matériau métallugique « Alliage » peut être atomisée et mélangée à un élément d’addition ou agent dopant, voir la quatrième ligne,
- la poudre de matériau métallugique « Alliage » peut être broyée et mélangée à un élément d’addition ou agent dopant, voir la cinquième ligne,
- la poudre de matériau métallugique « Alliage » peut être atomisée, puis broyée et mélangée à un élément d’addition ou agent dopant, voir sixième ligne.
L’obtention de cette poudre dite poudre d’alliage intermédiaire est ensuite fritter en utilisant la méthode du frittage SPS, voir « frittage SPS A ».
La dureté de la pièce métallurgique ex nihilo obtenue ou du revêtement de la pièce métallurgique obtenu est :
- supérieure à 200Hv dans les cas d’une atomisation seule ou d’un broyage seule, - supérieure à 350Hv dans le cas d’une atomisation puis d’un broyage,
- supérieure à 450Hv dans les autres cas.
Selon un autre mode de réalisation, la poudre intermédiaire peut être déposée avant ou après une poudre de substrat métallique de manière à former une superposition de couches. On ajustera la hauteur de chaque couche en fonction du besoin.
Ensuite cette superposition de couches est frittée en utilisant la méthode du frittage SPS, voir « frittage SPS B », permettant d’obtenir une pièce métallurgique ex nihilo obtenue.
Selon une variante de réalisation par rapport au précédent mode de réalisation, il est possible de réaliser le procédé de fabrication précédent de manière à former un revêtement, voir « frittage SPS C », sur une pièce métallurgique obtenue ex nihilo, après « frittage SPS A » .
Selon une autre variante, le revêtement peut être appliqué, voir « frittage SPS D », sur une pièce, dite pièce de départ, par exemple un acier dit 316L.
Le revêtement peut présenter une épaisseur supérieure ou égale à un millimètre.
La dureté des pièces obtenues est ainsi augmentée jusqu’à atteindre une valeur comprise entre 200 Hv et 1500 Hv avec des agents dopants.
Selon un mode de réalisation, l’agent de dopage est par exemple du carbure de silicium. Les agrégats présentent par exemple une taille comprise entre 100 et 500 micromètres. La taille des grains est par exemple comprise entre 50 et 150 nanomètres. Cet exemple permet d’obtenir une pièce présentant une dureté environ égale à 1000 Hv.

Claims

REVENDICATIONS
1. Procédé de fabrication d’une pièce métallurgique caractérisé par les étapes suivantes :
- Utiliser une poudre d’un matériau métallurgique présentant une granulométrie inférieure à 400 micromètres,
- réduire la taille des grains et/ou des cristallites de la poudre de manière à obtenir des agrégats d’une taille caractéristique inférieure à 1000 micromètres, et une taille moyenne de cristallites inférieure à 200 nanomètres,
- Fritter en utilisant un procédé de frittage SPS la poudre réduite, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 320Hv.
2. Procédé de fabrication selon la revendication précédente, dans lequel la poudre de matériau métallurgique comprend au moins 98% d’une phase métallique.
3. Procédé de fabrication selon la revendication précédente, dans lequel la poudre de matériau métallurgique comprend au moins 75% d’une phase métallique.
4. Procédé de fabrication selon la revendication 2 ou 3, dans lequel la phase métallique est un alliage à base de fer, tel que l’acier, ou un alliage à base d’aluminium, ou un alliage à base de titane, ou un alliage à base de nickel.
5. Procédé de fabrication selon l’une des revendications précédentes, dans lequel les agrégats présentent une taille caractéristique inférieure à 200 micromètres.
6. Procédé de fabrication selon l’une des revendications précédentes, dans lequel la taille moyenne des cristallites est inférieure à 100 nanomètres.
7. Procédé de fabrication selon l’une des revendications précédentes, dans lequel la réduction de la taille des grains et/ou des cristallites de la poudre comprend une étape d’atomisation du matériau métallurgique de manière qu’il présente une granulométrie inférieure à 1000 micromètres.
8. Procédé de fabrication selon l’une des revendications précédentes, dans lequel la réduction de la taille des grains et/ou des cristallites de la poudre comprend une étape de broyage du matériau métallurgique de manière qu’il présente une granulométrie inférieure à 1000 micromètres.
9. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape d’ajout d’au moins un agent dopant avec le matériau métallurgique, avant l’étape de frittage.
10. Procédé de fabrication selon la revendication précédente, dans lequel l’au moins un agent dopant est du nitrure de bore, du carbure de titane, du carbure de tungstène, du carbure de silicium, du carbure de niobium, du carbure de bore, du borure de silicium, de l’oxide d’aluminium, de l’oxyde de zirconium, de l’oxyde d’yttrium ou un mélange de ceux-ci.
11. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape de frittage est réalisée jusqu’à l’obtention d’une pièce de forme prédéterminée composée du matériau métallurgique fritté.
12. Procédé de fabrication selon l’une des revendications 1 à 10, comprenant en outre les étapes suivantes :
- choisir une pièce, dite pièce de départ,
- fritter la poudre réduite sur la pièce de départ jusqu ’ à recouvrir ladite pièce de manière à obtenir la pièce métallurgique.
13. Procédé de fabrication selon la revendication précédente, dans lequel la pièce de départ est obtenue par l’étape de frittage selon la revendication 11.
14. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape d’ajout d’au moins une poudre métallique de substrat avec le matériau métallurgique, avant l’étape de frittage.
15. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape de traitement thermique après l’étape de frittage.
16. Pièce métallurgique caractérisée en ce qu’elle est obtenue selon l’une des revendications précédentes.
EP22718747.3A 2021-03-31 2022-03-31 Procédé de fabrication de pièces métalliques et pièces métalliques obtenues à base de frittage sps Pending EP4313446A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103304A FR3121374A1 (fr) 2021-03-31 2021-03-31 Procédé de fabrication de pieces métalliques et pieces métalliques obtenues à base de frittage SPS
PCT/FR2022/050614 WO2022208032A1 (fr) 2021-03-31 2022-03-31 Procede de fabrication de pieces metalliques et pieces metalliques obtenues a base de frittage sps

Publications (1)

Publication Number Publication Date
EP4313446A1 true EP4313446A1 (fr) 2024-02-07

Family

ID=76601318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22718747.3A Pending EP4313446A1 (fr) 2021-03-31 2022-03-31 Procédé de fabrication de pièces métalliques et pièces métalliques obtenues à base de frittage sps

Country Status (3)

Country Link
EP (1) EP4313446A1 (fr)
FR (1) FR3121374A1 (fr)
WO (1) WO2022208032A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208045A1 (en) * 2011-02-11 2012-08-16 The Board Of Regents For Oklahoma State University Method of fabricating amorphous coatings on crystalline substrates
JP2013181213A (ja) * 2012-03-01 2013-09-12 Hokkaido Univ 酸化物分散強化型ニッケル基超合金
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN107475564B (zh) * 2017-08-22 2019-05-28 东北大学 一种高强致密钛合金-陶瓷生物复合材料的制备方法
CN110257684B (zh) * 2019-07-22 2021-05-04 合肥工业大学 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN110735063B (zh) * 2019-08-27 2021-05-25 江苏大学 一种高性能高温钛合金基复合材料的制备方法

Also Published As

Publication number Publication date
FR3121374A1 (fr) 2022-10-07
WO2022208032A1 (fr) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI649294B (zh) 形成具有功能梯度材料之新穎組合物的金屬或陶瓷物件的方法及含該組合物的物件
EP3787822B1 (fr) Poudre d'alliage ods, son procédé de fabrication par traitement plasma, et son utilisation
JP5905903B2 (ja) 耐熱合金およびその製造方法
EP2231363B1 (fr) Particules de grenaillage
IL173056A (en) Method for the production of fine metal powder, alloy powder and composite powder
JP7272353B2 (ja) 超硬合金、切削工具および超硬合金の製造方法
WO2000008222A1 (fr) Procede de fabrication d'un alliage intermetallique fer-aluminium renforce par des dispersoides de ceramique et alliage ainsi obtenu
EP3365304B1 (fr) Grains fondus de zircone - spinelle et produit refractaire obtenu a partir desdits grains
EP4200455A1 (fr) Acier à hautes caractéristiques mécaniques et son procédé de fabrication
US9884367B2 (en) Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder
WO2022208031A1 (fr) Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue
WO2022074904A1 (fr) Éléments de machine de pulvérisation, d'agitation, de mélange et de malaxage
JP5872590B2 (ja) 耐熱合金およびその製造方法
EP2943598B1 (fr) Procédé d'élaboration d'un matériau nanocomposite al-tic
WO2018168735A1 (fr) Corps fritté dur
EP4313446A1 (fr) Procédé de fabrication de pièces métalliques et pièces métalliques obtenues à base de frittage sps
KR102010307B1 (ko) 알루미늄-티타늄 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-티타늄 복합재료
WO2018003877A1 (fr) Corps fritté super-dur
Kamrani et al. Synthesis and characterization of Al–SiC nanocomposites produced by mechanical milling and Sintering
KR20200045462A (ko) 복합 소결체
EP4308325A1 (fr) Procede de fabrication de pieces en carbure de tungstene et materiau obtenu a base de frittage sps de carbure de tungstene
WO2022248808A1 (fr) Procede de fabrication par frittage sps de pieces comprenant du materiau metallurgique et des pierres gemmes inorganiques naturelles et pieces ainsi obtenues
Esparza-Vázquez et al. Strengthening of alumina-based ceramics with titanium nanoparticles
Sui et al. Microstructure and mechanical properties of WC-Co-Ti (C0. 5, N0. 5)-Mo cemented carbides
Enayati Formation of nanoscale layered structures and subsequent transformations during mechanical alloying of Ni60Nb40 powder mixture in a low energy ball mill

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)