WO2022208031A1 - Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue - Google Patents

Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue Download PDF

Info

Publication number
WO2022208031A1
WO2022208031A1 PCT/FR2022/050613 FR2022050613W WO2022208031A1 WO 2022208031 A1 WO2022208031 A1 WO 2022208031A1 FR 2022050613 W FR2022050613 W FR 2022050613W WO 2022208031 A1 WO2022208031 A1 WO 2022208031A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing process
process according
metallurgical
precious metal
less
Prior art date
Application number
PCT/FR2022/050613
Other languages
English (en)
Inventor
Foad NAIMI
Original Assignee
Sintermat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintermat filed Critical Sintermat
Priority to EP22718746.5A priority Critical patent/EP4312655A1/fr
Publication of WO2022208031A1 publication Critical patent/WO2022208031A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/005Coating layers for jewellery
    • A44C27/006Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the present invention relates to the manufacture by sintering of parts in precious metals, or noble metals, for example based on gold or silver, in particular the manufacture of parts having mechanical properties of particular hardness.
  • Precious metals are used in particular in the fields of watchmaking and jewelry.
  • Gold has the particularity of being one of the most malleable and ductile materials of known metals, both dense and soft.
  • pure silver is not used in jewelry. This is why it is used in alloy, mixed with copper for example according to the following mixture/composition: 92.5% fine silver and 7.5% copper in order to make the material harder.
  • Another object of the invention is to limit the number of operations and/or treatments.
  • the invention proposes a method for manufacturing a metallurgical part based on precious metal characterized by the following steps:
  • metallurgical material with a particle size of less than 400 ⁇ m (micrometers) and comprising at least 75% precious metal
  • the part obtained according to the invention makes it possible to increase the hardness compared to the results of the prior art, while limiting the costs thanks in particular to the reduction in the number of operations and/or treatments.
  • - SPS sintering acronym for "Spark Plasma Sintering"
  • Spark Plasma Sintering a pressure sintering process based on the densification of a powder sample by applying a mechanical stress associated with the passage of a pulsed current to heat the sample; for example a sintering method related to hot isostatic pressing but using the Joule effect to heat the precompacted powder in a hollow cylindrical crucible between two graphite electrodes under an inert atmosphere or under vacuum, the assembly being subjected to a pressure of several megapascals under the action of a hydraulic press.
  • a direct or alternating current of several kiloamperes, pulsed or not, is applied between the electrodes with a voltage of a few volts. ;
  • any material making it possible to improve the densification and/or the final mechanical properties giving mechanical cohesion to the final part for example cobalt material or another sintering agent;
  • grain size or grain size, or grain size, the size characterized by the values dlO, d90, d50 in order to quantify the dispersion of this grain size distribution
  • - form factor the ratio between two characteristic lengths, each length extending in a determined direction, said characteristic lengths having a non-zero angle with respect to each other, for example an angle of 90 degrees;
  • - atomization or atomization in particular concerning a powder, a method of transforming a metal ingot into spherical powder by melting and spraying metal drops under a gas stream to make them spherical;
  • - grinding or milling in particular concerning a powder, a method of transformation by mechanical action, for example by balls, so as to reduce the size of the crystallites and/or the size of the grains of a powder;
  • the grain size is measurable by an optical or electronic microscope or by a granulometer.
  • the particle sizer it is possible to use a particle sizer of the laser or optical type, in the dry or liquid way.
  • the metallurgical material is a powder of metallurgical material.
  • the precious metal is:
  • the material comprises at least 90% precious metal.
  • the additional material comprises the ceramic filler which makes it possible to reinforce the final material.
  • the material further comprises copper, nickel, rhodium, palladium or silver, the silver being added in the case where the base precious metal is gold.
  • the metallurgical material is at least one plate element.
  • the at least one plate element has a thickness greater than or equal to one millimeter.
  • the reduction in the size of the grains and/or the crystallites of the powder comprises:
  • the method comprises a step of atomizing the powder used so that the size of the grains has a size less than or equal to 250 micrometers, preferably less than or equal to 150 micrometers, preferably less than or equal to 100 micrometers.
  • the reduction in the size of the grains and/or crystallites of the powder comprises:
  • a step of grinding the metallurgical material so that the size of the agglomerates has a size of less than 1000 micrometers.
  • the atomization step is carried out before the grinding step.
  • Each grain type has a predetermined grain size, a predetermined crystallite size, and a predetermined aspect ratio.
  • the metallurgical material has a particle size of less than 200 ⁇ m (micrometers).
  • the powder is reduced so that:
  • the aggregates have a characteristic size of less than 200 micrometers, and/or
  • the average crystallite size is less than 100 nanometers.
  • d50 being between 0.1 and 100 ⁇ m
  • One embodiment consists in using a monomodal particle size distribution before grinding of between 0.1 and 100 micrometers ( ⁇ m).
  • the powders have a bimodal distribution before grinding with d50 values separated by a decade, typically 0.1 ⁇ m and 1 ⁇ m or 1 ⁇ m and
  • the distribution is trimodal with d50s separated by a decade, typically 0.1 ⁇ m, 1 ⁇ m and 10 ⁇ m. These examples are obviously non-limiting.
  • the powder is used as is, raw from the supplier.
  • this powder may have a d50 value, in particular a grain diameter, of less than 100 micrometers, preferably less than 50 micrometers, preferably less than 15 micrometers.
  • the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the particle size distribution.
  • the size of the crystallites coherent crystallographic domains
  • the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the particle size distribution.
  • the size of the crystallites is between 20 and 1000 nanometers (nm).
  • the size of the crystallites is between 20 and 100 nm.
  • the size of the crystallites is between 20 and 50 nm. In one embodiment, it is possible to associate several sizes of crystallites.
  • the manufacturing method comprises a step of adding at least one doping agent with the metallurgical material, before the sintering step.
  • the at least one doping agent is or comprises boron nitride BN, titanium carbide TiC, tungsten carbide WC, silicon carbide SiC, niobium carbide NbC, boron carbide B 4 C , silicon nitride Si 3 N 4 , aluminum oxide AL0 3 , zirconium oxide ZrO , yttrium oxide Y 2 0 3 or a mixture thereof.
  • the at least one doping agent is or comprises the doped variants of the preceding elements.
  • the material comprises between 0% and 25% of at least one doping agent, corresponding to the complement of material.
  • the manufacturing process only comprises a step of atomization of the metallurgical material, and then the powder obtained, called intermediate powder, can be mixed, or not, with at least one doping agent.
  • the manufacturing method only comprises a step of grinding the metallurgical material, and then the powder obtained, called intermediate powder, can be mixed, or not, with at least one doping agent.
  • the sintering step is carried out until a piece of predetermined shape is obtained which is composed or consists of the sintered metallurgical material.
  • the part of predetermined shape is composed or consists solely of sintered metallurgical material, the metallurgical material comprising one or more of the characteristics stated above.
  • the sintering step is carried out until a part, called the starting part, is covered with a layer of sintered metallurgical material so as to obtain a part of predetermined shape.
  • the manufacturing process also includes the following steps - choosing a part, called the starting part, - sintering the reduced powder on the starting part until said part is covered so as to obtain the metallurgical part.
  • the starting part is obtained by the sintering step according to the first embodiment.
  • the starting part is composed of a metallurgical material which is not a precious metal, or which is not composed based on a precious metal such as silver or gold.
  • the manufacturing method comprises a step of adding at least one substrate metal powder with the metallurgical material, before the sintering step.
  • substrate metal powder means any alloy that is thermochemically compatible with the metallurgical powder resulting in metallic materials of high hardness.
  • the substrate metal powder is 316L steel or nickel-free stainless steel.
  • the manufacturing process further comprises a heat treatment step after the sintering step.
  • the invention proposes a metallurgical part based on precious metal obtained according to one or more of the characteristics of the manufacturing process of the first aspect.
  • the precious metal-based metallurgical part is obtained by SPS sintering of a powder of a metallurgical material characterized in that the powder has a grain size of less than 1000 micrometers and/or a crystallite size of less than 200 nanometers, so that said piece obtained has a Vickers hardness greater than 150Hv.
  • the reduction in grain size is obtained after the grinding step.
  • the powder has an agglomerate size, after the grinding step, of less than 1000 micrometers.
  • the metallurgical part is for example a watch case, or a decorative part.
  • the manufacturing process provides for taking into account only the grain size and/or the crystallite size.
  • the stress applied may be greater than 0 MPa, preferably greater than or equal to 5
  • MPa and less than or equal to 150 MPa preferably less than or equal to 75 MPa, preferably less than or equal to 50 MPa, preferably less than or equal to 25 MPa, preferably less than or equal to 20 MPa, preferably less than or equal at 18 MPa, preferably less than or equal to 15 MPa;
  • the duration of the SPS sintering stage can be greater than or equal to 2 minutes and less than or equal to 45 minutes;
  • the temperature can be determined empirically by those skilled in the art depending on the nature of the metallic grade chosen.
  • the densification parameters are to be adapted according to the metallic shade of the matrix.
  • the determination of the sintering parameters described above can be defined by those skilled in the art via an empirical study.
  • the choice of the sintering parameters may or may not induce a phenomenon of filler/matrix reactivity which may improve the final reinforcement of the formed material.
  • the step of grinding the metallurgical material, preferably the metallurgical powder, and/or the co-grinding of the metallurgical powder and the hardening filler, and/or the mixing of the metallurgical powders and the fillers hardeners can be carried out in the dry or wet process. As part of the dry process, it can be carried out in air or in neutral gas depending on the nature of the metallic grade chosen. for the matrix. In the case of a wet route, the choice of solvent will be determined via empirical study known to those skilled in the art.
  • said manufacturing method provides no cryogenic grinding step.
  • the quality of the sintering can be determined by measurement of geometric density, by buoyancy of Archimedes, by helium pycnometry, by porosimetry, by intrusion of mercury, and possibly by BET (measurement of specific surface area of materials measured by adsorption of a gas (nitrogen) with the BET method (Brunauer, Emett and Teller)), or image analysis in microscopy, or a combination of several methods.
  • BET Brunauer, Emett and Teller
  • Figure 1 represents a flowchart presenting the different embodiments of the manufacturing process for the specific case of gold.
  • the "Gold" metallic material powder can only be atomized or only ground, see the first two lines,
  • the "Gold" metallic material powder can be atomized and then ground, see the third line,
  • the "Gold" metallic material powder can be atomized and mixed with an addition element or doping agent, see the fourth line,
  • the "Gold" metallic material powder can be ground and mixed with an addition element or doping agent, see the fifth line,
  • the “Gold” metallic material powder can be atomized, then ground and mixed with an addition element or doping agent, see sixth line.
  • the hardness of the ex nihilo metallurgical part obtained or of the coating of the metallurgical part obtained is: - greater than 150Hv in the case of atomization alone or grinding alone,
  • the intermediate powder can be deposited before or after a metal substrate powder so as to form a superposition of layers.
  • the coating can be applied, see “SPS D sintering", on a part, called the starting part, for example a steel, called 316L.
  • the coating may have a thickness greater than or equal to one millimeter.
  • the hardness of the part obtained is increased until it reaches a value between 150 and 250 HV, and up to 350 HV with doping agents.
  • the hardness of the part obtained is 270 Hv.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention porte sur un procédé de fabrication d'une pièce métallurgique à base de métal précieux caractérisé par les étapes suivantes : - Utiliser un matériau métallurgique, pulvérulent ou massif, présentant une granulométrie inférieure à 400 micromètres et comprenant au moins 75% de métal précieux, - réduire la taille des grains et/ou des cristallites du matériau métallurgique de manière à obtenir des agrégats d'une taille caractéristique inférieure à 1000 micromètres, et une taille moyenne de cristallites inférieure à 200 nanomètres, - Fritter en utilisant un procédé de frittage SPS le matériau réduit, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 150 Hv.

Description

PROCEDE DE FABRICATION DE PIECE EN METAUX PRECIEUX A BASE DE FRITTAGE SPS ET PIECE EN METAUX PRECIEUX AINSI OBTENUE
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne la fabrication par frittage de pièces en métaux précieux, ou métaux nobles, par exemple à base d’or ou d’argent, en particulier la fabrication de pièces présentant des propriétés mécaniques de dureté particulière.
ETAT DE LA TECHNIQUE
Les métaux précieux sont en particulier utilisés dans les domaines de l’horlogerie et la joaillerie-bijouterie. L’or a notamment la particularité d’être l’un des matériaux le plus malléable et ductile des métaux connus, à la fois dense et tendre.
L’or pur est de 24 carats (999 millièmes) et n’est pas utilisé en joaillerie dû à sa trop grande capacité à se déformer. C’est pourquoi il est utilisé en alliage, mélangé à d'autres métaux (cuivre, argent, palladium, rhodium ou nickel). Cela permet d'obtenir une meilleure tenue mécanique.
De même, l’argent pur n’est pas utilisé en joaillerie. C’est pourquoi il est utilisé en alliage, mélangé à du cuivre par exemple selon le mélange/composition suivant(e) : 92,5% d’argent fin et de 7,5% de cuivre afin de rendre le matériau plus dur.
Il est ainsi désireux de proposer un matériau présentant une dureté équivalente ou supérieure à celles de l’état de la technique, et/ou une dureté homogène en volume. Un autre but de l’invention est de limiter le nombres d’opérations et/ou de traitements.
L’INVENTION
A cet effet, et selon un premier aspect, l’invention propose un procédé de fabrication d’une pièce métallurgique à base de métal précieux caractérisé par les étapes suivantes :
- utiliser un matériau métallurgique présentant une granulométrie inférieure à 400 pim (micromètres) et comprenant au moins 75% de métal précieux,
- réduire la taille des grains et/ou des cristallites du matériau métallurgique de manière à obtenir des agrégats d’une taille caractéristique inférieure à 1000 pim (micromètres), et une taille moyenne de cristallites inférieure à 200 nm (nanomètres),
- fritter en utilisant un procédé de frittage SPS le matériau réduit, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 150 Hv.
La pièce obtenue selon l’invention permet d’augmenter la dureté par rapport aux résultats de l’art antérieur, tout en limitant les coûts grâce notamment à la diminution du nombre d’opérations et/ou de traitements.
Pour ce qui précède et pour la suite de la description, on entend par :
- frittage SPS, acronyme de « Spark Plasma Sintering », un procédé de frittage sous pression basé sur la densification d’un échantillon de poudre par application d’une contrainte mécanique associée au passage d’un courant pulsé permettant de chauffer l’échantillon ; par exemple une méthode de frittage apparentée au pressage isostatique à chaud mais utilisant l'effet joule pour chauffer la poudre précompactée dans un creuset cylindrique creux entre deux électrodes en graphite sous atmosphère inerte ou sous vide, l'ensemble étant soumis à une pression de plusieurs mégapascals sous l'action d'une presse hydraulique. Un courant continu ou alternatif de plusieurs kiloampères, pulsé ou non, est appliqué entre les électrodes avec une tension de quelques volts. ;
- liant, toute matière permettant d’améliorer la densification et/ou les propriétés mécaniques finales donnant une cohésion mécanique à la pièce finale, par exemple le matériau cobalt ou un autre agent de frittage ;
- taille de grains, ou granulométrie, ou granulométrie des grains, la taille caractérisée par les valeurs dlO, d90, d50 afin de quantifier la dispersion de cette distribution de taille de grains,
- taille de cristallites, chaque grain pouvant présenter des cristallites, la taille se rapportant aux domaines cristallographiques cohérents et qui est mesurée par des techniques du type MEB, TEM, ...;
- facteur de forme, le rapport entre deux longueurs caractéristiques, chaque longueur s’étendant selon une direction déterminée, lesdites longueurs caractéristiques présentant un angle non-nul l’une par rapport à l’autre, par exemple un angle de 90 degrés ; - atomisation ou atomiser, en particulier concernant une poudre, une méthode de transformation d’un lingot métallique en poudre sphérique par fusion et projection des gouttes métalliques sous flux gazeux pour les rendre sphérique ;
- sphéroïdisation, ou sphéroïdiser, en particulier concernant une poudre, une méthode de transformation d’une poudre métallique broyée anguleuse par fusion le plus souvent assisté plasma pour la rendre sphérique ;
- broyage ou broyer, en particulier concernant une poudre, une méthode de transformation par action mécanique, par exemple par des billes, de manière à réduire la taille des cristallites et/ou la taille des grains d’une poudre ;
- agrégats, le résultat d’une réduction de la taille des grains et/ou de la taille des cristallites, par exemple par broyage, qui aboutit à une agglomération de petits grains pour former des agglomérats plus gros, mais chaque grain constituant les agglomérats présentent des tailles de cristallites plus petits ;
- dureté, la résistance d'un matériau a être marqué par un autre, on utilisera ici la dureté Vickers.
De préférence, la taille de grain est mesurable par un microscope optique ou électronique ou par un granulomètre. Dans le cas du granulomètre, il est possible d’utiliser un granulomètre du type laser ou optique, en voie sèche ou liquide.
De préférence, le matériau métallurgique est une poudre de matériau métallurgique.
De préférence, le métal précieux est :
- de l’or ou un alliage à base d’or, ou
- de l’argent ou un alliage à base d’argent.
Selon un mode de réalisation, le matérau comprend au moins 90% de métal précieux.
De préférence, le complément de matériau comprend la charge céramique qui permet de renforcer le matériau final. Ainsi, il est possible de renforcer par l’effet du broyage, soit renforcer par l’effet du broyage et de la charge. Selon les modes de réalisation, le matériau comprend en outre du cuivre, du nickel, du rhodium, du paladium ou de l’argent, l’argent étant ajouté dans le cas où le métal précieux de base est de l’or.
Selon un autre mode de réalisation, le matériau métallurgique est au moins un élément de plaque. L’au moins un élément de plaque présente une épaisseur supérieure ou égale à un millimètre.
Selon des variantes de réalisation pouvant, ou non, être combinées, la réduction de la taille des grains et/ou des cristallites de la poudre comprend :
- une étape d’atomisation du matériau métallurgique, et/ou
- une étape de broyage du matériau métallurgique, de manière que la poudre utilisée présente une granulométrie inférieure à 1000 micromètres.
De préférence, le procédé comprend une étape d’atomisation de la poudre utilisée de manière que la taille des grains présente une taille inférieure ou égale à 250 micromètres, de préférence inférieure ou égale à 150 micromètres, préférentiellement inférieure ou égale à 100 micromètres.
Selon d’autres variantes de réalisation, pouvant, ou non, être combinées, la réduction de la taille des grains et/ou des cristallites de la poudre comprend :
- une étape d’atomisation du matériau métallurgique, et/ou
- une étape de broyage du matériau métallurgique, de manière que la taille des agglomérats présente une taille inférieure à 1000 micromètres.
De préférence, et dans le cas de la combinaison des deux étapes, l’étape d’atomisation est réalisée avant l’étape de broyage.
Le broyage permet d’obtenir une poudre qui aura des propriétés « finales » en terme de géométrie, facteur de forme, taille de cristallites. Le broyage permet également dans certains cas de former des sites actifs en surface de poudre qui favorisent et améliorent le comportement au frittage.
Chaque type de grains présente une taille de grain prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé. μe préférence, le matériau métallurgique présente une granulométrie inférieure à 200 μm (micromètres).
De manière préférentielle, la poudre est réduite de manière que :
- les agrégats présentent une taille caractéristique inférieure à 200 micromètres, et/ou
- la taille moyenne des cristallites est inférieure à 100 nanomètres.
La microstructure de grains prédéterminée peut présenter les caractéristiques suivantes :
- Distribution granulométrique : d50 étant compris entre 0.1 et 100 μm ,
- Taille de cristallite : 20 à 1000 nm,
- Facteur de forme : entre 1 et 5 (sphérique à anguleux, sans être cylindrique).
Un mode de réalisation consiste à utiliser une distribution granulométrique monomodale avant broyage comprise entre 0.1 et 100 micromètres (μm ).
Selon un autre mode de réalisation, les poudres présentent une distribution bimodale avant broyage avec des valeurs d50 séparées d’une décade, typiquement 0.1μm et 1μm ou 1 μm et
10μm ou encore 10μm et 100μm . Il se peut que cette distribution bimodale soit séparée de
2 décades, typiquement 0.1 et 10μm ou 1 et 100μm .
Selon encore un autre mode de réalisation, la distribution est trimodale avec des d50 séparées d’une décade, typiquement 0.1μm, 1 μm et 10μm. Ces exemples sont évidemment non limitatifs.
Dans un mode de réalisation, la poudre est utilisée telle quelle, brute de fournisseur. Par exemple, cette poudre peut présenter une valeur d50, en particulier un diamètre, de grain inférieur(e) à 100 micromètres, de préférence inférieur(e) à 50 micromètres, de préférence inférieur(e) à 15 micromètres.
Dans un mode préférentiel, la poudre est broyée afin d’affiner la taille des cristallites (domaines cristallographiques cohérents) qui est différente de la distribution granulométrique. Ainsi, après broyage, on constate une réduction de la taille des cristallites, mais pas nécessairement une réduction de la taille des grains.
Préférentiellement, la taille des cristallites est comprise entre 20 et 1000 nanomètres (nm). Préférentiellement, la taille des cristallites est comprise entre 20 et 100 nm. Préférentiellement enfin, la taille des cristallites est comprise entre 20 et 50 nm. Dans un mode de réalisation, il est envisageable d’associer plusieurs tailles de cristallites.
Selon un mode de réalisation, le procédé de fabrication comprend une étape d’ajout d’au moins un agent dopant avec le matériau métallurgique, avant l’étape de frittage.
De préférence, l’au moins un agent dopant est ou comprend du nitrure de bore BN, du carbure de titane TiC, du carbure de tungstène WC, du carbure de silicium SiC, du carbure de niobium NbC, du carbure de bore B4C, du nitrue de silicium Si3N4, de l’oxide d’aluminium AL03, de l’oxyde de zirconium ZrO , de l’oxyde d’yttrium Y203 ou un mélange de ceux-ci. De manière préférentielle, l’au moins un agent dopant est ou comprend les variants dopés des éléments précédents.
De préférence, le matériau comprend entre 0% et 25% d’au moins un agent dopant, correspondant au complément de matériau.
Selon un mode de réalisation particulier, le procédé de fabrication comprend uniquement une étape d’atomisation du matériau métallurgique, et ensuite la poudre obtenue, dite poudre intermédiaire, peut être mélangée, ou non, à au moins un agent dopant.
Selon un autre mode de réalisation particulier, le procédé de fabrication comprend uniquement une étape de broyage du matériau métallurgique, et ensuite la poudre obtenue, dite poudre intermédiaire, peut être mélangée, ou non, à au moins un agent dopant.
Selon un premier mode de réalisation, l’étape de frittage est réalisée jusqu’à l’obtention d’une pièce de forme prédéterminée est composée ou constituée du matériau métallurgique fritté. De manière préférentielle, la pièce de forme prédéterminée est composée ou constituée uniquement du matériau métallurgique fritté, le matériau métallurgique comprenant l’une ou plusieurs des carctéristiques énoncées précédemment.
Selon un deuxième mode de réalisation, l’étape de frittage est réalisée jusqu’à recouvrir une pièce, dite pièce de départ, d’une couche du matériau métallurgique fritté de manière à obtenir une pièce de forme prédéterminée.
Par exemple le procédé de fabrication comprend en outre les étapes suivantes - choisir une pièce, dite pièce de départ, - fritter la poudre réduite sur la pièce de départ jusqu’à recouvrir ladite pièce de manière à obtenir la pièce métallurgique.
Selon une première variante de réalisation, la pièce de départ est obtenue par l’étape de frittage selon le premier mode de réalisation.
Selon une deuxième variante de réalisation, la pièce de départ est composée d’un matériau métallurgique qui n’est pas un métal précieux, ou qui n’est pas composée à base de métal précieux tel que l’argent ou l’or.
De préférence, selon n’importe quel mode de réalisation, le procédé de fabrication comprend une étape d’ajout d’au moins une poudre métallique de substrat avec le matériau métallurgique, avant l’étape de frittage.
On entend par poudre métallique de substrat, Tout alliage, compatible thermochimiquement avec la poudre métallurgique aboutissant au matériaux métallique de dureté élevée. Par exemple, la poudre métallique de substrat est de l’acier 316L ou de l’inox sans nickel.
De préférence, le procédé de fabrication comprend en outre une étape de traitement thermique après l’étape de frittage.
Selon un deuxième aspect, l’invention propose une pièce métallurgique à base de métal précieux obtenue selon l’une ou plusieurs des caractéristiques du procédé de fabrication du premier aspect.
En particulier, la pièce métallurgique à base de métal précieux est obtenue par frittage SPS d’une poudre d’un matériau métallurgique caractérisé en ce que la poudre présente une taille de grains inférieure à 1000 micromètres et/ou une taille de cristallites inférieure à 200 nanomètres, de manière que ladite pièce obtenue présente une dureté Vickers supérieure à 150Hv.
De préférence, la réduction de la taille de grains est obtenue après l’étape de broyage.
De manière préférentielle, la poudre présente une taille des agglomérats, après l’étape de broyage, inférieure à 1000 micromètres.
La pièce métallurgique est par exemple un boîtier de montre, ou une pièce décorative. De préférence, le procédé de fabrication prévoit de prendre en compte seulement la taille de grain et/ou la taille de cristallites.
Selon un ou plusieurs modes de réalisation, pouvant être combinable, lors de l’étape de frittage en utilisant un procédé de frittage SPS :
-la contrainte appliquée peut être supérieure à 0 MPa, de préférence supérieure ou égale à 5
MPa et inférieure ou égale à 150 MPa, de préférence inférieure ou égale à 75 MPa, de préférence inférieure ou égale à 50 MPa, de préférence inférieure ou égale à 25 MPa, de préférence inférieure ou égale à 20 MPa, de préférence inférieure ou égale à 18 MPa, de préférence inférieure ou égale à 15 MPa;
- la durée de palier du frittage SPS peut être supérieure ou égale à 2 minutes et inférieure ou égale à 45 minutes;
De préférence, la température peut être déterminée de manière empirique par l’homme du métier en fonction de la nature de la nuance métallique choisie.
Ces caractéristiques permettent d’obtenir une pièce présentant un taux de densification souhaité, qui peut être égal ou supérieur à 70% et peut être égal à 100%. En particulier, l’association de la température, de la contrainte et de la durée du pallier permettent d’accéder à un taux de densification souhaité.
De préférence, les paramètres de densification (température, durée de pallier, contrainte) sont à adapter en fonction de la nuance métallique de la matrice. Par exemple, la détermination des paramètres de frittage décrit précédemment sont définissables par l’homme du métier via une étude empirique. Selon un mode de réalisation, en fonction de la nature des agents dopants, dit aussi charges durcissantes et la nature de la nuance métallique de la matrice, le choix des paramètres de frittage peuvent induire ou non un phénomène de réactivité charge/matrice qui pourra améliorer le renforcement final du matériau formé.
Selon un mode de réalisation, l’etape de broyage du matériau métallurgique, de préférence de la poudre métallurgique, et/ou le co-broyage de la poudre métallurgique et de la charge durcissante, et/ou le mélangeage des poudres métallurgique et des charges durcissantes peut être réaliser en voie sèche ou en voie humide. Dans le cadre de la voie sèche, elle peut être réalisée sous air ou sous gaz neutre en fonction de la nature de la nuance métallique choisie pour la matrice. Dans le cas d’une voie humide, le choix du solvant sera déterminé via étude empirique connue de l’homme du métier.
De préférence, ledit procédé de fabrication prévoit aucune étape de broyage cryogénique.
De préférence, la qualité du frittage peut être déterminée par mesure de densité géométrique, par poussée d’Archimède, par pycnométrie hélium, par porosimétrie, par intrusion de mercure, et éventuellement par BET (mesure de surface spécifique des matériaux mesurée par adsorption d'un gaz (azote) avec la méthode BET (Brunauer, Emett et Teller)), ou analyse d’image en microscopie, ou une combinaison de plusieurs méthodes.
Description de la figure
La figure 1 représente un logigramme présentant les différents modes de réalisation du procédé de fabrication pour le cas spécifique de l’or.
En référence à la figure 1 , il est prévu un procédé de fabrication d’une pièce métallique au cours duquel :
- la poudre de matériau métallugique « Or » peut être seulement atomisée ou seulement broyée, voir les deux premières lignes,
- la poudre de matériau métallugique « Or » peut être atomisée puis broyée, voir la troisième ligne,
- la poudre de matériau métallugique « Or » peut être atomisée et mélangée à un élément d’addition ou agent dopant, voir la quatrième ligne,
- la poudre de matériau métallugique « Or » peut être broyée et mélangée à un élément d’addition ou agent dopant, voir la cinquième ligne,
- la poudre de matériau métallugique « Or » peut être atomisée, puis broyée et mélangée à un élément d’addition ou agent dopant, voir sixième ligne.
L’obtention de cette poudre dite poudre intermédiaire est ensuite frittée en utilisant la méthode du frittage SPS, voir « frittage SPS A ».
La dureté de la pièce métallurgique ex nihilo obtenue ou du revêtement de la pièce métallurgique obtenu est : - supérieure à 150Hv dans les cas d’une atomisation seule ou d’un broyage seul,
- supérieure à 250Hv dans le cas d’une atomisation puis d’un broyage,
- supérieure à 350Hv dans les autres cas. Selon un autre mode de réalisation, la poudre intermédiaire peut être déposée avant ou après une poudre de substrat métallique de manière à former une superposition de couches.
Ensuite cette superposition de couches est frittée en utilisant la méthode du frittage SPS, voir « frittage SPS B », permettant d’obtenir une pièce métallurgique ex nihilo obtenue. Selon une variante de réalisation, par rapport au précédent mode de réalisation, il est possible de réaliser le procédé de fabrication précédent de manière à former un revêtement, voir « frittage SPS C », sur une pièce métallurgique obtenue ex nihilo, après « frittage SPS A ».
Selon une autre variante, le revêtement peut être appliqué, voir « frittage SPS D », sur une pièce, dite pièce de départ, par exemple unacier, dit 316L.
Le revêtement peut présenter une épaisseur supérieure ou égale à un millimètre.
La dureté de la pièce obtenue est augmentée jusqu’à atteindre une valeur comprise entre 150 et 250 HV, et jusqu’à 350 HV avec des agents dopants.
Par exemple, pour une taille de grains de 5 micromètres et avec la présence d’agents dopants AI2O3 et Y2O3, la dureté de la pièce obtenue est de 270 Hv.

Claims

REVENDICATIONS
1. Procédé de fabrication d’une pièce métallurgique à base de métal précieux caractérisé par les étapes suivantes :
- Utiliser un matériau métallurgique présentant une granulométrie inférieure à 400 micromètres et comprenant au moins 75% de métal précieux,
- réduire la taille des grains et/ou des cristallites du matériau métallurgique de manière à obtenir des agrégats d’une taille caractéristique inférieure à 1000 micromètres, et une taille moyenne de cristallites inférieure à 200 nanomètres,
- Fritter en utilisant un procédé de frittage SPS le matériau réduit, de manière que la pièce métallurgique obtenue présente une dureté Vickers supérieure à 150 Hv.
2. Procédé de fabrication selon la revendication précédente, dans lequel le métal précieux est de l’or ou un alliage à base d’or.
3. Procédé de fabrication selon la revendication 1, dans lequel le métal précieux est de l’argent ou un alliage à base d’argent.
4. Procédé de fabrication selon l’une des revendications précédentes, dans lequel le matériau comprend au moins 90% de métal précieux.
5. Procédé de fabrication selon l’une des revendications précédentes, dans lequel le matériau métallurgique est une poudre.
6. Procédé de fabrication selon l’une des revendications précédentes, dans lequel le matériau métallurgique est au moins un élément de plaque.
7. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape d’atomisation du matériau métallurgique de manière qu’il présente une granulométrie inférieure à 1000 micromètres.
8. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape de broyage du matériau métallurgique de manière qu’il présente une granulométrie inférieure à 1000 micromètres.
9. Procédé de fabrication selon l’une des revendications précédentes, dans lequel le matériau métallurgique présente une granulométrie inférieure à 200 pim (micromètres).
10. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape d’ajout d’au moins un agent dopant avec le matériau métallurgique, avant l’étape de frittage.
11. Procédé de fabrication selon la revendication précédente, dans lequel l’au moins un agent dopant est du nitrure de bore, du carbure de titane, du carbure de tungstène, du carbure de silicium, du carbure de niobium, du carbure de bore, du nitrue de silicium, de l’oxide d’aluminium, de l’oxyde de zirconium, de l’oxyde d’yttrium ou un mélange de ceux-ci.
12. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape de frittage est réalisée jusqu’à l’obtention d’une pièce de forme prédéterminée composée du matériau métallurgique fritté.
13. Procédé de fabrication selon l’une des revendications 1 à 11, dans lequel l’étape de frittage est réalisée jusqu’à recouvrir une pièce, dite pièce de départ, d’une couche du matériau métallurgique fritté de manière à obtenir une pièce de forme prédéterminée.
14. Procédé de fabrication selon la revendication précédente, dans lequel la pièce de départ est obtenue par l’étape de frittage selon la revendication 12.
15. Procédé de fabrication selon la revendication 13, dans lequel la pièce de départ est composée d’un matériau métallique qui n’est pas un métal précieux.
16. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape d’ajout d’au moins une poudre métallique de substrat avec le matériau métallurgique, avant l’étape de frittage.
17. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape de traitement thermique après l’étape de frittage.
18. Pièce métallurgique caractérisée en ce qu’elle est obtenue selon l’une des revendications précédentes.
PCT/FR2022/050613 2021-03-31 2022-03-31 Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue WO2022208031A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22718746.5A EP4312655A1 (fr) 2021-03-31 2022-03-31 Procédé de fabrication de pièce en métaux précieux à base de frittage sps et pièce en métaux précieux ainsi obtenue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103303A FR3121375A1 (fr) 2021-03-31 2021-03-31 Procédé de fabrication de piece en métaux précieux à base de frittage SPS et piece en métaux précieux ainsi obtenue
FRFR2103303 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022208031A1 true WO2022208031A1 (fr) 2022-10-06

Family

ID=76601317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050613 WO2022208031A1 (fr) 2021-03-31 2022-03-31 Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue

Country Status (3)

Country Link
EP (1) EP4312655A1 (fr)
FR (1) FR3121375A1 (fr)
WO (1) WO2022208031A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293430A1 (fr) * 2022-06-15 2023-12-20 Manufacture d'Horlogerie Audemars Piguet SA Procédé pour la fabrication d'une pièce à base de plusieurs métaux précieux et pièce résultante

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153728A1 (en) * 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
CN108149057A (zh) * 2017-12-26 2018-06-12 北京有色金属与稀土应用研究所 一种AgCuNiV合金材料及其制备方法
EP3663019A1 (fr) * 2018-12-07 2020-06-10 The Swatch Group Research and Development Ltd Procédé de fabrication d'alliages de métaux précieux et alliages de métaux précieux ainsi obtenus
CN111992731A (zh) * 2020-09-18 2020-11-27 西安工程大学 一种粉末冶金法制备硬质足金的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153728A1 (en) * 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
CN108149057A (zh) * 2017-12-26 2018-06-12 北京有色金属与稀土应用研究所 一种AgCuNiV合金材料及其制备方法
EP3663019A1 (fr) * 2018-12-07 2020-06-10 The Swatch Group Research and Development Ltd Procédé de fabrication d'alliages de métaux précieux et alliages de métaux précieux ainsi obtenus
CN111992731A (zh) * 2020-09-18 2020-11-27 西安工程大学 一种粉末冶金法制备硬质足金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVODI RAMIN ET AL: "Sinterability and characterization of Ag/Al2O3 metal and ceramic matrix composites processed by mechanical milling", SCIENCE OF SINTERING, vol. 52, no. 3, 25 September 2020 (2020-09-25), YU, pages 245 - 255, XP055861912, ISSN: 0350-820X, DOI: 10.2298/SOS2003245D *

Also Published As

Publication number Publication date
FR3121375A1 (fr) 2022-10-07
EP4312655A1 (fr) 2024-02-07

Similar Documents

Publication Publication Date Title
RU2367542C2 (ru) Способ получения тонкодисперсных металлических, легированных и композиционных порошков
EP2231363B1 (fr) Particules de grenaillage
TWI654315B (zh) 濺鍍靶及製造彼之方法
CA3034169C (fr) Poudre multimateriaux a grains composites pour la synthese additive
WO2022208031A1 (fr) Procede de fabrication de piece en metaux precieux a base de frittage sps et piece en metaux precieux ainsi obtenue
WO2022038484A1 (fr) Acier à hautes caractéristiques mécaniques et son procédé de fabrication
EP1343600B1 (fr) Procede de fabrication de films minces en composite metal/ceramique
EP2683841B1 (fr) Materiau composite comprenant un metal precieux, procede de fabrication et utilisation d'un tel materiau
JP4574949B2 (ja) スパッタリングターゲットとその製造方法
EP3365304B1 (fr) Grains fondus de zircone - spinelle et produit refractaire obtenu a partir desdits grains
EP2943598B1 (fr) Procédé d'élaboration d'un matériau nanocomposite al-tic
JP4397425B1 (ja) Ti粒子分散マグネシウム基複合材料の製造方法
WO2022208032A1 (fr) Procede de fabrication de pieces metalliques et pieces metalliques obtenues a base de frittage sps
WO2022248808A1 (fr) Procede de fabrication par frittage sps de pieces comprenant du materiau metallurgique et des pierres gemmes inorganiques naturelles et pieces ainsi obtenues
FR3084376A1 (fr) Materiau composite cuivre-argent
WO2022195215A1 (fr) Procede de fabrication de pieces en carbure de tungstene et materiau obtenu a base de frittage sps de carbure de tungstene
EP3119731B1 (fr) Grains fondus d'aluminate de magnésium riche en magnésium
Chen et al. Effect of Submicron SiC Particles on the Properties of Alcocrfeni High Entropy Alloy Coatings
CH717678A2 (fr) Composant pour pièce d'horlogerie ou de bijouterie en cermet.
EP3891109A1 (fr) Article decoratif en ceramique
FR2841804A1 (fr) Procede de synthese d'un materiau composite metal-ceramique a durete renforcee et materiau obtenu par ce procede
Zhang et al. Laser melting deposition of fine-grained 90W-7Ni-3Fe alloys using pre-sintered granulated powder
EP3351064A1 (fr) Procede d'assemblage par frittage d'argent sans pression
WO2022248807A1 (fr) Procede de fabrication de piece a base de rebuts de pierres gemmes inorganiques naturelles par frittage sps et piece ainsi obtenue
Estrada et al. Relationship between Sintering Atmospheres and Mechanical Properties of P/M Al-20Si-5Fe-2Ni Products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22718746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022718746

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022718746

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE