EP4267032A1 - Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge - Google Patents

Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge

Info

Publication number
EP4267032A1
EP4267032A1 EP21843736.6A EP21843736A EP4267032A1 EP 4267032 A1 EP4267032 A1 EP 4267032A1 EP 21843736 A EP21843736 A EP 21843736A EP 4267032 A1 EP4267032 A1 EP 4267032A1
Authority
EP
European Patent Office
Prior art keywords
catheter
module
rotation
longitudinal translation
medical instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21843736.6A
Other languages
German (de)
English (en)
Inventor
Laurent DE CROUY-CHANEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robocath
Original Assignee
Robocath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robocath filed Critical Robocath
Publication of EP4267032A1 publication Critical patent/EP4267032A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/031Automatic limiting or abutting means, e.g. for safety torque limiting

Definitions

  • the invention relates to a catheter robot that automates the translation and rotation of an elongated flexible medical instrument located between two modules each comprising an internal mechanism for the longitudinal translation and rotation of an elongated flexible medical instrument.
  • the catheter robot has a longitudinal axis.
  • the catheter robot comprises a catheter robot support, a distal module, comprising an internal mechanism for longitudinal translation and rotation of an external elongated flexible medical instrument, a proximal module, comprising an internal mechanism for longitudinal translation and rotation of a internal elongated flexible medical instrument.
  • the distal module is placed between the patient and said proximal module.
  • the outer elongated flexible medical instrument surrounds, on at least a portion of the longitudinal axis, the inner elongated flexible medical instrument.
  • the internal elongated flexible medical instrument will have to ensure two types of movement, in particular in translation.
  • a generic movement in translation simply to be able to follow the movement in translation of the external elongated flexible medical instrument.
  • a specific displacement in translation to be able to respond to the command of the user wishing a specific relative movement between the external elongated flexible medical instrument and the internal elongated flexible medical instrument.
  • the translational movement of the internal elongated flexible medical instrument will be the combination of the generic translational movement and the specific translational movement.
  • the object of the present invention is to provide a catheter robot which at least partially overcomes the aforementioned drawbacks.
  • the invention aims to provide a catheter robot:
  • the invention proposes first of all to be able to manage part of this movement in translation of the internal elongated flexible medical instrument by an overall displacement of the whole of the proximal module and of the internal elongated flexible medical instrument which move together relative to the support of the catheter robot in order to be able to vary the distance between the distal module and the proximal module.
  • This variable distance between the distal module carrying the external elongated flexible medical instrument and the proximal module carrying the internal elongated flexible medical instrument will generate a first problem of risk of buckling of the external elongated flexible medical instrument. But this variable distance between the distal module carrying the external elongated flexible medical instrument and the proximal module carrying the internal elongated flexible medical instrument will above all render preponderant a second problem of torsion of the external elongated flexible medical instrument between the distal module and the proximal module.
  • this guide could be a relatively expensive element and would have a relatively complex structure to solve this second problem of torsion, then having to be able to deform in torsion, while sparing this deformation in torsion to the medical instrument external elongated flexible, but also on the other hand, for reasons of sanitary hygiene, because of its close proximity to the external elongated flexible medical instrument, this guide should be a consumable element discarded each time for each new patient.
  • the invention then proposes, to manage this second problem of torsion of the external elongated flexible medical instrument, made preponderant by this variable distance between the distal module carrying the external elongated flexible medical instrument and the proximal module carrying the medical instrument internal elongated flexible medical instrument, to integrate in the proximal module an internal mechanism for rotation of the external elongated flexible medical instrument, which would be slaved to the rotation of the internal mechanism for longitudinal translation and rotation of the already existing external elongated flexible medical instrument in the distal module.
  • a catheter robot having a longitudinal axis, and comprising: a catheter robot support, a distal module, comprising an internal mechanism for longitudinal translation and rotation of an external elongated flexible medical instrument, a module proximal, comprising an internal mechanism for longitudinal translation and rotation of an internal elongated flexible medical instrument, said distal module being intended to be placed between the patient and said proximal module, said external elongated flexible medical instrument surrounding, on at least a portion of the longitudinal axis, said internal elongated flexible medical instrument, characterized in that: said proximal module is movable in longitudinal translation relative to the support and/or relative to said distal module, said proximal module also comprises an internal mechanism for rotation of said external elongated flexible medical instrument, slaved to the rotation of said internal translation mechanism n longitudinal and rotation of said external elongated flexible medical instrument of said distal module.
  • said distal module is fixed relative to the support, said external elongated flexible medical instrument is a guide catheter, said internal elongated flexible medical instrument is a catheter.
  • said torsion problem of the guide catheter is solved.
  • said distal module is movable in longitudinal translation relative to the support
  • said proximal module is movable in longitudinal translation relative to the support
  • said external elongated flexible medical instrument is a catheter
  • said internal elongated flexible medical instrument is a catheter guide .
  • the present invention also proposes a catheter robot having a longitudinal axis, and comprising: a catheter robot support, a first module, comprising an internal mechanism for longitudinal translation and rotation of a guide catheter, fixed relative to the support, a second module, comprising an internal mechanism for the longitudinal translation and rotation of a catheter, a third module, comprising an internal mechanism for the longitudinal translation and rotation of a catheter guide, characterized in that: the said second module is movable in longitudinal translation relative to the support, said third module is movable in longitudinal translation relative to the support and relative to the second module, said second module also comprises an internal mechanism for rotating said guide catheter, slaved to the rotation of said internal mechanism longitudinal translation and rotation of said guide catheter of said first module, said third modu the, also comprises an internal mechanism for rotation of said catheter, slaved to the rotation of said internal mechanism for longitudinal translation and rotation of said catheter of said second module.
  • the drive members which control the movements of the guide catheter, of the catheter, and of the catheter guide will see their parts being spaced from each other in order to allow a relative translational movement between these different parts of drive members. Then, due to the spacing between the different parts of drive members, the guide catheter and the catheter will encounter an increased risk of deforming at this spacing.
  • a guide could be placed between the different drive member parts in order to guide the movement of the medical instruments in the spacing between said drive member parts.
  • the guide located between them will then have to accept the movements of said parts of drive members, which will then require the use of a guide with a complex structure (for example telescopic or concertina).
  • this guide is a single-use item that is replaced each time the robot is used for each new patient.
  • the invention comprises one or more of the following characteristics which can be used separately or in partial combination with each other or in total combination with each other, with one or other of the aforementioned objects of the invention .
  • said catheter robot comprises a control unit configured to control the longitudinal translation of the proximal module by slaving it to the longitudinal translation of the external elongated flexible medical instrument, and to control the longitudinal translation of the flexible medical instrument internal elongated by compensating the longitudinal translation of the proximal module so as to maintain the flexible internal elongated medical instrument stationary with respect to the support.
  • this second elongated flexible medical instrument can still be maintained at the same place, by transmitting to it two mutually opposed translational movements which compensate for each other exactly mutually, the movement in translation of the second module in translation in a first direction, and the movement in translation of the second flexible medical instrument elongated relatively with respect to the second module in translation in a second direction, parallel and opposite to the first direction , the two translational movements being of equal force.
  • the translational movement of the second module relative to the first medical instrument can be controlled so as to permanently maintain a certain distance with the first module in translation, so as to avoid a collision between the two modules in translation.
  • said catheter robot comprises a control unit configured to control the longitudinal translation of the second module by slaving it to the longitudinal translation of the guide catheter, and to control the longitudinal translation of the catheter by compensating for the longitudinal translation of the second module so as to keep the catheter stationary with respect to the support.
  • said catheter robot comprises a control unit configured to control the longitudinal translation of the third module by slaving it to the longitudinal translation of the catheter, and to control the longitudinal translation of the catheter guide by compensating for the translation longitudinal of the third module so as to maintain the catheter guide stationary with respect to the support.
  • said second module does not include any other internal mechanism capable of ensuring a movement of said guide catheter other than the rotation of said guide catheter.
  • said internal rotation mechanism of said guide catheter of said second module is also capable of ensuring the longitudinal translation of said guide catheter.
  • said first module also comprises a device for clamping only said guide catheter
  • said second module also comprises a device for clamping only said catheter.
  • said third module also comprises a device for clamping only said catheter guide.
  • said first module also comprises an additional internal mechanism for longitudinal translation and rotation of said guide catheter which can operate alternately with said internal mechanism for longitudinal translation and rotation of said guide catheter of said first module
  • said second module also comprises an additional internal mechanism longitudinal translation and rotation of said catheter operable alternately with said internal mechanism for longitudinal translation and rotation of said catheter of said second module
  • said third module also comprises an additional internal mechanism for longitudinal translation and rotation of said catheter guide operable alternately with said internal mechanism for longitudinal translation and rotation of said catheter guide of said third module.
  • said second module also comprises an additional internal mechanism for longitudinal translation and rotation of said guide catheter that can operate alternately with said internal mechanism for rotation of said guide catheter of said second module, said internal mechanism for rotation of said guide catheter of said second module also able to ensure the longitudinal translation of said guide catheter
  • said third module also comprises an additional internal mechanism for longitudinal translation and rotation of said catheter able to operate alternately with said internal mechanism for rotating said catheter of said third module, said internal mechanism for rotating said catheter of said third module which can also ensure the longitudinal translation of said catheter.
  • said catheter robot comprises: a first Y connector located between said internal mechanism for rotation of said guide catheter of said second module and said internal mechanism for longitudinal translation and rotation of said catheter of said second module, a second Y connector located between said internal mechanism rotation of said catheter of said third module and said internal mechanism for longitudinal translation and rotation of said catheter guide of said third module.
  • said first Y connector is fixed to said internal mechanism for rotation of said guide catheter of said second module and to said internal mechanism for longitudinal translation and rotation of said catheter of said second module
  • said second Y connector is fixed to said internal mechanism for rotation of said catheter of said third module and to said internal mechanism for longitudinal translation and rotation of said catheter guide of said third module.
  • the first Y connector and the second Y connector further improve the management of the torsion problem, respectively of the guide catheter and of the catheter.
  • said first Y connector is fixed to said internal rotation mechanism of said guide catheter of said second module via a first rotary joint.
  • said second Y connector is fixed to said internal rotation mechanism of said catheter of said third module via a second rotary joint.
  • said guide catheter surrounds said catheter which itself surrounds said catheter guide.
  • the catheter robot can be used in a coaxial configuration where the elongated flexible medical instruments are all coaxial with one another, over at least part of their length.
  • said second module and said third module are structurally identical to each other.
  • one, several or all of the internal longitudinal translation and rotation mechanisms of an elongated flexible medical instrument which can be a guide catheter, a catheter or a catheter guide, comprises: two keys which can approach and move away to respectively clamping or releasing said elongated flexible medical instrument, said two keys being able to perform a synchronous longitudinal translation to translate said elongated flexible medical instrument, said two keys being able to perform opposite transverse translations to cause said elongated flexible medical instrument to rotate around the longitudinal axis .
  • this catheter robot presents a very good compromise between efficiency and simplicity.
  • said catheter robot does not include any deformable guide located around one or the other of the elongated flexible medical instruments.
  • the structure of the catheter robot is simpler while its use is made less expensive.
  • one or more or all of the modules include a movable platform sliding longitudinally in at least one rail.
  • one or more or all of the modules comprise a longitudinally rolling carriage.
  • the invention relates to a catheter robot having a longitudinal axis, and comprising:
  • a distal module comprising an internal mechanism for the longitudinal translation and rotation of an external elongated flexible medical instrument
  • a proximal module comprising an internal mechanism for the longitudinal translation and rotation of an internal elongated flexible medical instrument
  • said external elongated flexible medical instrument surrounding, on at least part of the longitudinal axis, said internal elongated flexible medical instrument, characterized in that:
  • said proximal module is movable in longitudinal translation relative to the support and/or relative to said distal module
  • at least one of the internal longitudinal translation and rotation mechanism of the internal elongated flexible medical instrument and the internal longitudinal translation and rotation mechanism of the external elongated flexible medical instrument consists of a part of a pair of keys able to approach and move away to respectively grip or release the elongated flexible medical instrument, said pair of keys being able to perform a synchronous longitudinal translation to translate said elongated flexible medical instrument, said pair of keys being able to perform opposite transverse translations to rotating said elongated flexible medical instrument around its longitudinal axis, and on the other hand a clamping device alone of the elongated flexible medical instrument.
  • Such a catheter robot makes it possible to limit the size, while allowing to control in translation and in rotation two elongated flexible medical instruments.
  • Figure 1 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a first possible embodiment variant according to the invention.
  • Figure 2 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a second possible embodiment variant according to the invention.
  • Figure 3 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a third possible embodiment variant according to the invention.
  • Figure 4 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a fourth possible embodiment variant according to the invention.
  • the longitudinal axis of the catheter robot 1 is the axis common to the three flexible medical instruments coaxial elongates, guide catheter 2, catheter 3, and guide catheter 4. According to a possible variant, it is possible to use more than three flexible medical instruments. It is thus possible, for example, to use two catheters, the two catheters thus being parallel to the longitudinal axis of the catheter robot 1 and are introduced inside the guide catheter 2.
  • FIG. 1 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a first possible embodiment variant according to the invention.
  • At least one elongated flexible medical instrument drive element is placed at the proximal end of the guide catheter 2 and at the proximal end of the catheter 3, this element of the drive being configured to perform the same rotational movement at the proximal end of the elongated flexible medical instrument as the rotational movement imparted to the distal end of this elongated flexible medical instrument, thereby preventing twisting of the medical instrument flexible elongated.
  • a medical robot 1 for driving elongated flexible medical instruments comprises a first drive member 5 which controls the movements of a guide catheter 2, a second drive member 6 which controls the movements of a catheter 3, and a third drive member 7 which controls the movements of a guide 4 of the catheter.
  • the catheter guide 4 is placed inside the catheter 3, on which a stent or a balloon can for example be mounted, said catheter 3 itself being placed inside the guide catheter 2.
  • the first drive member 5 drives the guide catheter 2 according to a translational movement along the main axis of elongation, also called the longitudinal axis, of said guide catheter 2, and according to a rotational movement around the main axis elongation of said guide catheter 2.
  • the second drive member 6 drives the catheter 3 according to a translational movement along the main axis of elongation of said catheter 3, and according to a rotational movement around the main axis of elongation of said catheter 3.
  • the third drive member 7 drives the guide 4 of the catheter according to a translational movement along the main axis of elongation of the said guide 4 of the catheter, and according to a rotational movement around the main axis of elongation of said catheter guide 4.
  • Guide catheter 2 partially surrounds catheter 3 which itself partially surrounds guide catheter 4.
  • the guide catheter 2, the catheter 3, and the catheter guide 4 are coaxial with each other, over part of their length.
  • the first drive member 5 comprises four identical elements 51 which are each configured to grip the guide catheter 2 and give it a translational movement and/or a rotational movement.
  • Each element 51 is formed by a pair of manipulator fingers, the two fingers being located opposite each other, as described for example in the document FR3044541 (see in particular FIGS. 4a-4e and 5a-5e) , incorporated by reference.
  • the four elements 51 are divided into two pairs spaced apart from each other along the main axis of elongation of the guide catheter 2.
  • a first pair 5a of elements 51 is located at the proximal end of the guide catheter 2 and is fixed to the Y connector 21 of the guide catheter 2, and more precisely to the pivot 22 of the Y connector 21.
  • the second pair 5b of elements 51 is located at the distal end of the medical robot 1.
  • This pair 5b of elements 51 is carried by a base 12 which is fixed relative to the support 14 (and to the housing, whether the latter is closed or partially open or completely open) of the medical robot 1.
  • the movements of the first pair 5a and of the second pair 5b d elements 51 are synchronized so that the movement performed by the first pair 5a is identical to the movement performed by the second pair 5b.
  • the first pair 5a is mobile in translation relative to the second pair 5b of elements 51 along the main axis of elongation of the guide catheter 2. To do this, the first pair 5a is mounted on a first mobile platform 10 which can for example be arranged on rails, and the second pair 5b of elements 51 is kept fixed on the robot 1. The guide catheter 2 can thus be inserted or withdrawn by moving the first mobile platform 10 forwards or backwards.
  • the second drive member 6 comprises four identical elements 61 which are each configured to clamp the catheter 3 and give it a translational movement and/or a rotational movement.
  • Each element 61 is formed by a pair of manipulator fingers, the two fingers being located opposite each other, as described for example in the document FR3044541 (see in particular FIGS. 4a-4e and 5a-5e) , incorporated by reference.
  • the four elements 61 are divided into two pairs spaced apart from each other along the main axis of elongation of the catheter 3.
  • a first pair 6a of elements 61 is located at the proximal end of the catheter 3 and is fixed to the Y connector 31 of the catheter 3, and more precisely to the pivot 32 of the Y connector 31.
  • the second pair 6b of elements 61 is located at the distal end of the medical robot 1.
  • the movements of the first pair 6a and of the second pair 6b of elements 61 are synchronized so that the movement performed by the first pair 6a is identical to the movement performed by the second pair 6b.
  • the fact that the same movement is imparted by the two pairs of elements 61 makes it possible to prevent the catheter 3 from deforming at the level of the spacing between said two pairs of elements 61, in particular by preventing twisting of the catheter 3 around its own axis.
  • the first pair 6a is movable in translation with respect to the second pair 6b of elements 61 along the main axis of elongation of the catheter 3.
  • the second pair 6b being fixed to the Y connector 21 of the guide catheter 2, the second pair 6b of elements 61 is installed on the first mobile platform 10 in order to follow the translation movements of the guide catheter 2.
  • the first pair 6a of elements 61 which is fixed to the Y connector 31, is installed on a second mobile platform 11 which can for example be arranged on rails.
  • the third drive member 7 comprises two identical elements 71 which are each configured to clamp the catheter guide 4 and give it a translational movement and/or a rotational movement.
  • Each element 71 is formed by a pair of manipulator fingers, the two fingers being located opposite each other, as described for example in the document FR3044541 (see in particular FIGS. 4a-4e and 5a-5e) .
  • the two elements 71 are arranged in a pair which is fixed to the Y connector 31.
  • the third drive member 7 does not require a second pair of elements 71 because the proximal end of the catheter guide 4 being free, the guide 4 catheter is not subject to twisting or buckling.
  • the elements 71 are arranged on the second mobile platform 11 in order to follow the translational movements of the catheter 3.
  • the elements 51, 61 and 71 are structurally identical to each other.
  • the first module comprises the pair 5b of elements 51, as well as the base 12.
  • the second module comprises the first mobile platform 10, the pair 5a of elements 51, and the pair 6b of elements 61, as well as the Y connector 21.
  • the third module comprises the second mobile platform 11, the pair 6a of elements 61, and the pair 7 of elements 71, as well as the Y connector 31.
  • Structural modules can be connected to functional drive units.
  • the first module comprises a part of the first drive member 5 which is located on the base 12, as well as the base 12.
  • the second module comprises the other part of the first drive member 5 which is located on the first mobile platform 10, and the part of second drive member 6 which is located on the first mobile platform 10, as well as the Y connector 21 and as well as the first mobile platform 10.
  • the third module comprises the other part of the second drive member 6 located on the second mobile platform 11, and the third drive member 7 located on the second mobile platform 11, as well as the Y connector 31 and as well as the second mobile platform 11.
  • FIG. 2 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a second possible embodiment variant according to the invention.
  • a single elongated flexible medical instrument drive element is installed at the proximal end of the guide catheter 2 and of the catheter 3.
  • the first pair 5a of elements 51 and the first pair 6a of elements 61 of the first variant illustrated in Figure 1 are respectively each replaced by a single element 52 or 62 which is configured to transmit only a rotational movement to the elongated flexible medical instrument.
  • the first drive member 5 comprises a pair of elements 51 which are located at the distal end of the robot 1.
  • the first drive member 5 also comprises an element 52 of rotation which is fixed to the Y connector 21 of the guide catheter 2.
  • the element 52 is an element which comprises a pair of manipulator fingers, the two fingers being located one in front of the other, as is for example described in document FR3044541.
  • the element 52 is a simplified element for which the displacement of the manipulator fingers along the main axis of elongation of the guide catheter 2 is suppressed, the manipulator fingers being only capable of clamping the guide catheter 2 and of transmitting to it a rotational movement around its axis.
  • the element 52 is thus more compact than an element 51 which can make translational and rotational movements.
  • the rotational movement given by the element 52 is synchronized with the rotational movement given by the pair of elements 51, thus preventing the torsion of the guide catheter 2 around its axis.
  • the fingers of the element 52 are tight around the guide catheter 2 and the first mobile platform 10 moves the element 52 in translation.
  • element 52 drives the proximal end of guide catheter 2 in rotation and said element 52 is moved in translation by first mobile platform 10.
  • the second drive member 6 comprises a pair of elements 61 which is fixed to the Y connector 21 of the guide catheter 2 and which is installed on the first mobile platform 10.
  • the second drive member 6 also comprises a rotation element 62 which is attached to the Y connector 31 of the catheter 3.
  • the element 62 is an element which comprises a pair of manipulator fingers, the two fingers being located one in front of the other, as is for example described in the document FR3044541.
  • the element 62 is a simplified element for which the displacement of the manipulator fingers along the main axis of elongation of the catheter 3 is suppressed, the manipulator fingers being only capable of clamping the catheter 3 and of transmitting a movement to it. of rotation around its axis.
  • the element 62 is thus more compact than an element 61 which can make translational and rotational movements.
  • the rotational movement given by the element 62 is synchronized with the rotational movement given by the pair of elements 61, thus preventing the torsion of the catheter 3 around its axis.
  • the fingers of the element 62 are tight around the catheter 3 and the second mobile platform 11 moves the element 62 in translation.
  • the element 62 drives the proximal end of the catheter 3 in rotation and said element 62 is moved in translation by the second mobile platform 11.
  • the third drive member 7 of the second variant is identical to that of the first variant.
  • the first module comprises the pair of elements 51, as well as the base 12.
  • the second module comprises the first mobile platform 10, the element 52, and the pair 6b of elements 61, as well as the Y connector 21.
  • the third module comprises the second mobile platform 11, the element 62, and the pair 7 of elements 71, as well as the Y connector 31.
  • Structural modules can be connected to functional drive units.
  • the first module comprises a part of the first drive member 5 which is located on the base 12, as well as the base 12.
  • the second module comprises the other part of the first drive member 5 which is located on the first mobile platform 10, and the part of the second drive member 6 which is located on the first mobile platform 10, as well as the Y connector 21 and as well as the first mobile platform 10.
  • the third module comprises the other part of the second drive member drive 6 located on the second mobile platform 11, and the third drive member 7 located on the second mobile platform 11, as well as the Y connector 31 and as well as the second mobile platform 11.
  • FIG. 3 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a third possible embodiment variant according to the invention.
  • the elongated flexible medical instrument driving element in order to simplify the catheter robot, can only perform rotational training of the elongated flexible medical instrument.
  • one of the three kinematic blocks of the element can be removed, in fact the kinematic block which causes the fingers to move the catheter 3 can be removed.
  • the third variant illustrated in FIG. 3 is a variant in which the structure of the robot 1 is simplified, and in which the guide catheter 2 and the catheter 3 are no longer driven in translation and in rotation with a continuous movement.
  • the first drive member 5 of the third variant corresponds to the first drive member of the second variant (FIG. 2) in which one of the elements 51 is replaced by a clamping device 53 which can only clamp or release the guide catheter 2 in order to keep it in position or to leave it free.
  • the clamping device 53 can for example be formed by a pair of manipulator fingers which clamp or release the guide catheter 2.
  • the clamping device 53 has the function of holding the guide catheter 2 in position while the manipulator fingers of the element 51 are not in engagement around guide catheter 2 during back and forth movements of said manipulator fingers of element 51.
  • the second drive member 6 of the third variant corresponds to the second drive member 6 of the second variant ( Figure 2) in which one of the elements 61 is replaced by a clamping device 63 which can only clamp or release the catheter 3 in order to keep it in position or to leave it free.
  • the clamping device 63 can for example be formed by a pair of manipulator fingers which clamp or release the catheter 3.
  • the clamping device 63 has the function of holding the catheter 3 in position while the manipulating fingers of the element 61 are not in engagement around the catheter 3 during the back and forth movements of said manipulator fingers of the element 61.
  • the first module comprises the element 51 and the element 53, as well as the base 12.
  • the second module comprises the first mobile platform 10, the element 52, and the elements 61 and 63, as well as the Y connector 21.
  • the third module comprises the second mobile platform 11, the element 62, and the pair 7 of elements 71, as well as the Y connector 31.
  • Structural modules can be connected to functional drive units.
  • the first module comprises a part of the first drive member 5 which is located on the base 12, as well as the base 12.
  • the second module comprises the other part of the first drive member 5 which is located on the first mobile platform 10, and the part of the second drive member 6 which is located on the first mobile platform 10, as well as the Y connector 21 and as well as the first mobile platform 10.
  • the third module comprises the other part of the second drive member drive 6 located on the second mobile platform 11, and the third drive member 7 located on the second mobile platform 11, as well as the Y connector 31 and as well as the second mobile platform 11.
  • FIG. 4 schematically represents an example of a catheter robot for driving elongated flexible medical instruments according to a fourth possible embodiment variant according to the invention.
  • a fourth possible variant embodiment of the invention which makes it possible to simplify the catheter robot even more, but however to the detriment of no longer having a completely continuous movement of translation of the elongated flexible medical instrument, only a an elongated flexible medical instrument drive element in rotation and in translation is installed at the distal end of the elongated flexible medical instrument, this single elongated flexible medical instrument drive element being coupled to a clamping device which can block any movement of the elongated flexible medical instrument by pinching it.
  • the fourth variant illustrated in FIG. 4 corresponds to the third variant (FIG. 3) in which the third drive member 7 also comprises an element 71 which is replaced by a clamping device 73.
  • Such a third drive member 7 is more compact than those comprising a pair of elements 71, but the movement of the catheter guide 4 given by the third drive member 7 is not continuous, which causes it to lose fluidity.
  • the first module comprises the element 51 and the element 53, as well as the base 12.
  • the second module comprises the first mobile platform 10, the element 52, and the elements 61 and 63, as well as the Y connector 21.
  • the third module comprises the second mobile platform 11, the element 62, and the elements 71 and 73, as well as the Y connector 31.
  • Structural modules can be connected to functional drive units.
  • the first module comprises a part of the first drive member 5 which is located on the base 12, as well as the base 12.
  • the second module comprises the other part of the first drive member 5 which is located on the first mobile platform 10, and the part of second drive member 6 which is located on the first mobile platform 10, as well as the Y connector 21 and as well as the first mobile platform 10.
  • the third module comprises the other part of the second drive member 6 located on the second mobile platform 11, and the third drive member 7 located on the second mobile platform 11, as well as the Y connector 31 and as well as the second mobile platform 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Robotics (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Manipulator (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

L'invention concerne un robot cathéter présentant un axe longitudinal, et comprenant: un support (14) de robot cathéter, un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d'un instrument médical souple allongé externe, un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d'un instrument médical souple allongé interne, ledit module distal étant destiné à être disposé entre le patient et ledit module proximal, ledit instrument médical souple allongé externe entourant, sur au moins une partie de l'axe longitudinal, ledit instrument médical souple allongé interne, caractérisé en ce que: ledit module proximal est mobile en translation longitudinale par rapport au support (14) et/ou par rapport audit module distal, ledit module proximal comprend aussi un mécanisme interne de rotation dudit instrument médical souple allongé externe, asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit instrument médical souple allongé externe dudit module distal.

Description

DESCRIPTION
TITRE ; ROBOT CATHETER COMPRENANT AU MOINS DEUX MODULES DE TRANSLATION D’INSTRUMENT MEDICAL SOUPLE ALLONGE
DOMAINE DE L’INVENTION
L’invention concerne un robot cathéter automatisant la translation et la rotation d’un instrument médical souple allongé situé entre deux modules comprenant chacun un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé.
ARRIERE PLAN TECHNOLOGIQUE DE L’INVENTION
Selon un art antérieur, le robot cathéter présente un axe longitudinal. Le robot cathéter comprend un support de robot cathéter, un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé externe, un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé interne. Le module distal est disposé entre le patient et ledit module proximal. L’instrument médical souple allongé externe entoure, sur au moins une partie de l’axe longitudinal, l’instrument médical souple allongé interne.
L’instrument médical souple allongé interne va devoir assurer deux types de déplacement, en particulier en translation. D’une part, un déplacement générique en translation, simplement pour pouvoir suive le mouvement en translation de l’instrument médical souple allongé externe. D’autre part, un déplacement spécifique en translation, pour pouvoir répondre à la commande de l’utilisateur souhaitant un mouvement relatif spécifique entre l’instrument médical souple allongé externe et l’instrument médical souple allongé interne. Le mouvement en translation de l’instrument médical souple allongé interne sera la combinaison du déplacement générique en translation et du déplacement spécifique en translation.
La gestion de ce mouvement en translation de l’instrument médical souple allongé interne d’une part sera assez complexe et d’autre part pourra nécessiter de grandes longueurs d’instrument médical souple allongé interne, surtout si le robot cathéter comprend non plus seulement deux, mais trois instruments médicaux souples allongés coaxiaux, ce qui sera souvent le cas en pratique. DE L’INVENTION
Le but de la présente invention est de fournir un robot cathéter palliant au moins partiellement les inconvénients précités.
Plus particulièrement, l’invention vise à fournir un robot cathéter :
> qui d’abord, simplifie la complexité du mouvement de translation d’instrument médical souple allongé situé entre deux modules comprenant chacun un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé, en créant une distance variable entre les deux modules,
> et qui ensuite, résout un problème de torsion d’instrument médical souple allongé situé entre deux modules comprenant chacun un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé, rendu important par la création de cette distance variable entre les deux modules.
Plus précisément, l’invention se propose d’abord de pouvoir gérer une partie de ce mouvement en translation de l’instrument médical souple allongé interne par un déplacement global de l’ensemble du module proximal et de l’instrument médical souple allongé interne qui se déplacent ensemble par rapport au support du robot cathéter afin de pouvoir faire varier la distance entre le module distal et le module proximal.
Cette distance variable entre le module distal portant l’instrument médical souple allongé externe et le module proximal portant l’instrument médical souple allongé interne, va générer un premier problème de risque de flambage de l’instrument médical souple allongé externe. Mais cette distance variable entre le module distal portant l’instrument médical souple allongé externe et le module proximal portant l’instrument médical souple allongé interne va surtout rendre prépondérant un deuxième problème de torsion de l’instrument médical souple allongé externe entre le module distal et le module proximal.
Il pourrait être envisagé de résoudre ce deuxième problème de torsion par l’utilisation d’un guide de l’instrument médical souple allongé externe entre le module distal et le module proximal. Mais alors, non seulement d’une part ce guide serait un élément relativement coûteux et présenterait une structure relativement complexe pour résoudre ce deuxième problème de torsion, devant alors pouvoir se déformer en torsion, tout en épargnant cette déformation en torsion à l’instrument médical souple allongé externe, mais aussi d’autre part, pour des raisons d’hygiène sanitaire, en raison de sa proximité immédiate avec l’instrument médical souple allongé externe, ce guide devrait être un élément consommable jeté à chaque fois pour chaque nouveau patient. L’invention se propose ensuite, pour gérer ce deuxième problème de torsion de l’instrument médical souple allongé externe, rendu prépondérant par cette distance variable entre le module distal portant l’instrument médical souple allongé externe et le module proximal portant l’instrument médical souple allongé interne, d’intégrer dans le module proximal un mécanisme interne de rotation de l’instrument médical souple allongé externe, qui serait asservi sur la rotation du mécanisme interne de translation longitudinale et de rotation de l’instrument médical souple allongé externe existant déjà dans le module distal.
Ce mécanisme interne de rotation de l’instrument médical souple allongé externe, intégré dans le module proximal, résout le deuxième problème prépondérant de torsion de l’instrument médical souple allongé externe, mais il ne s’intéresse pas au premier problème de risque de flambage de l’instrument médical souple allongé externe généré par la création d’une distance variable entre le module distal portant l’instrument médical souple allongé externe et le module proximal portant l’instrument médical souple allongé interne.
A cette fin, la présente invention propose un robot cathéter présentant un axe longitudinal, et comprenant : un support de robot cathéter, un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé externe, un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé interne, ledit module distal étant destiné à être disposé entre le patient et ledit module proximal, ledit instrument médical souple allongé externe entourant, sur au moins une partie de l’axe longitudinal, ledit instrument médical souple allongé interne, caractérisé en ce que : ledit module proximal est mobile en translation longitudinale par rapport au support et/ou par rapport audit module distal, ledit module proximal comprend aussi un mécanisme interne de rotation dudit instrument médical souple allongé externe, asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit instrument médical souple allongé externe dudit module distal.
De préférence, ledit module distal est fixe par rapport au support, ledit instrument médical souple allongé externe est un cathéter guide, ledit instrument médical souple allongé interne est un cathéter. Ainsi, le problème de torsion du cathéter guide est résolu.
De préférence, ledit module distal est mobile en translation longitudinale par rapport au support, ledit module proximal est mobile en translation longitudinale par rapport au support, ledit instrument médical souple allongé externe est un cathéter, ledit instrument médical souple allongé interne est un guide de cathéter. Ainsi, le problème de torsion du cathéter est résolu. A cette fin, la présente invention propose aussi un robot cathéter présentant un axe longitudinal, et comprenant : un support de robot cathéter, un premier module, comprenant un mécanisme interne de translation longitudinale et de rotation d’un cathéter guide, fixe par rapport au support, un deuxième module, comprenant un mécanisme interne de translation longitudinale et de rotation d’un cathéter, un troisième module, comprenant un mécanisme interne de translation longitudinale et de rotation d’un guide de cathéter, caractérisé en ce que : ledit deuxième module est mobile en translation longitudinale par rapport au support, ledit troisième module est mobile en translation longitudinale par rapport au support et par rapport au deuxième module, ledit deuxième module comprend aussi un mécanisme interne de rotation dudit cathéter guide, asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit cathéter guide dudit premier module, ledit troisième module, comprend aussi un mécanisme interne de rotation dudit cathéter, asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit cathéter dudit deuxième module.
Selon des modes réalisation de l’invention, afin de pouvoir utiliser des cathéters du type OTW (« Over The Wire » en langue anglaise), les organes d’entrainement qui contrôlent les mouvements du cathéter guide, du cathéter, et du guide de cathéter, vont voir leurs parties être espacés les unes des autres afin de permettre un mouvement de translation relatif entre ces différentes parties d’organes d’entrainement. Alors, du fait de l’espacement entre les différentes parties d’organes d’entrainement, le cathéter guide et le cathéter vont rencontrer un risque accru de se déformer au niveau de cet espacement.
Pour résoudre ce type de problème de déformation, on pourrait disposer un guide entre les différentes parties d’organes d’entrainement afin de guider le déplacement des instruments médicaux dans l’espacement entre lesdites parties d’organes d’entrainement. Toutefois, lorsque les parties d’organes d’entrainement sont mobiles en translation afin de permettre un mouvement relatif entre elles, le guide situé entre eux va alors devoir accepter les mouvements desdites parties d’organes d’entrainement, ce qui va alors nécessiter l’utilisation d’un guide avec une structure complexe (par exemple télescopique ou bien en accordéon). Or, pour des raisons d’hygiène, ce guide est un élément à usage unique qui est remplacé à chaque utilisation du robot pour chaque nouveau patient.
Mais, en fait, la déformation la plus gênante et la plus complexe à gérer est la torsion de l’instrument médical autour de son propre axe. Le système de guide déformable suivant les mouvements des parties d’organes d’entrainement, en plus d’être complexe et coûteux car à usage unique, peut également ne pas suffire à empêcher la torsion du cathéter ou du cathéter guide. Suivant des modes de réalisation préférés, l’invention comprend une ou plusieurs des caractéristiques suivantes qui peuvent être utilisées séparément ou en combinaison partielle entre elles ou en combinaison totale entre elles, avec l’un ou l’autre des objets de l’invention précités.
De préférence, ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du module proximal en l’asservissant sur la translation longitudinale de l’instrument médical souple allongé externe, et pour contrôler la translation longitudinale de l’instrument médical souple allongé interne en compensant la translation longitudinale du module proximal de manière à maintenir l’instrument médical souple allongé interne stationnaire par rapport au support.
Ainsi, lorsqu’un premier instrument médical souple allongé est déplacé en translation par un premier module en translation, et lorsqu’un deuxième module en translation d’un deuxième instrument médical souple allongé est asservi sur ce déplacement en translation, et lorsque simultanément ce deuxième instrument médical souple allongé n’a pas besoin d’être déplacé en translation, alors ce deuxième instrument médical souple allongé peut être encore maintenu au même endroit, en lui transmettant deux mouvements en translation opposés l’un à l’autre et qui se compensent exactement mutuellement, le mouvement en translation du deuxième module en translation dans une première direction, et le mouvement en translation du deuxième instrument médical souple allongé relativement par rapport au deuxième module en translation dans une deuxième direction, parallèle et de sens opposé à la première direction, les deux mouvements en translation étant de force égale. L’asservissement du déplacement en translation du deuxième module par rapport au premier instrument médical peut être réalisé de manière à conserver en permanence une certaine distance avec le premier module en translation, de manière à éviter une collision entre les deux modules en translation.
De préférence, de manière similaire, ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du deuxième module en l’asservissant sur la translation longitudinale du cathéter guide, et pour contrôler la translation longitudinale du cathéter en compensant la translation longitudinale du deuxième module de manière à maintenir le cathéter stationnaire par rapport au support.
De préférence, de manière similaire, ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du troisième module en l’asservissant sur la translation longitudinale du cathéter, et pour contrôler la translation longitudinale du guide de cathéter en compensant la translation longitudinale du troisième module de manière à maintenir le guide de cathéter stationnaire par rapport au support. De préférence, ledit deuxième module ne comprend aucun autre mécanisme interne capable d’assurer un autre mouvement dudit cathéter guide que la rotation dudit cathéter guide.
Ainsi, tout en restant bien efficace, le deuxième module est beaucoup simplifié.
Alternativement, ledit mécanisme interne de rotation dudit cathéter guide dudit deuxième module est également capable d’assurer la translation longitudinale dudit cathéter guide.
De préférence, ledit premier module comprend aussi un dispositif de pinçage seul dudit cathéter guide, ledit deuxième module comprend aussi un dispositif de pinçage seul dudit cathéter.
Ainsi, tout en restant bien efficace, le deuxième module est beaucoup simplifié.
De préférence, ledit troisième module comprend aussi un dispositif de pinçage seul dudit guide de cathéter.
Ainsi, tout en restant bien efficace, le deuxième module est beaucoup simplifié.
De préférence, ledit premier module comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter guide pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter guide dudit premier module, ledit deuxième module comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter dudit deuxième module, ledit troisième module comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit guide de cathéter pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit guide de cathéter dudit troisième module.
Ainsi, le déplacement en translation des différents instruments médicaux souples allongés va pouvoir être rendu plus fluide et plus rapide, au prix toutefois d’une certaine complexification de l’ensemble du robot cathéter. Mais cette amélioration de la fluidité et de la rapidité, rendant plus naturel, pour le praticien, le déplacement en translation des différents instruments médicaux souples allongés, va ainsi pouvoir s’effectuer de manière plus maîtrisée par le praticien, et donc en fin de compte, de manière globalement plus sécurisée, tout en étant plus efficace.
Dans une alternative, ledit deuxième module comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter guide pouvant fonctionner alternativement avec ledit mécanisme interne de rotation dudit cathéter guide dudit deuxième module, ledit mécanisme interne de rotation dudit cathéter guide dudit deuxième module pouvant également assurer la translation longitudinale dudit cathéter guide, ledit troisième module comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter pouvant fonctionner alternativement avec ledit mécanisme interne de rotation dudit cathéter dudit troisième module, ledit mécanisme interne de rotation dudit cathéter dudit troisième module pouvant également assurer la translation longitudinale dudit cathéter.
De préférence, ledit robot cathéter comprend : un premier connecteur Y situé entre ledit mécanisme interne de rotation dudit cathéter guide dudit deuxième module et ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter dudit deuxième module, un deuxième connecteur Y situé entre ledit mécanisme interne de rotation dudit cathéter dudit troisième module et ledit mécanisme interne de translation longitudinale et de rotation dudit guide de cathéter dudit troisième module.
Ainsi, d’autres instruments médicaux souples allongés ou d’autres produits peuvent être ajoutés latéralement à l’axe longitudinal du robot cathéter, par le côté donc, de manière à ensuite être déplacés en translation parallèlement aux instruments médicaux souples allongés déjà en ligne le long de l’axe longitudinal du robot cathéter.
De préférence, ledit premier connecteur Y est fixé audit mécanisme interne de rotation dudit cathéter guide dudit deuxième module et audit mécanisme interne de translation longitudinale et de rotation dudit cathéter dudit deuxième module, ledit deuxième connecteur Y est fixé audit mécanisme interne de rotation dudit cathéter dudit troisième module et audit mécanisme interne de translation longitudinale et de rotation dudit guide de cathéter dudit troisième module.
Ainsi, le premier connecteur Y et le deuxième connecteur Y améliorent encore la gestion du problème de torsion, respectivement du cathéter guide et du cathéter.
Avantageusement, ledit premier connecteur Y est fixé audit mécanisme interne de rotation dudit cathéter guide dudit deuxième module par l’intermédiaire d’un premier joint tournant. Avantageusement, ledit deuxième connecteur Y est fixé audit mécanisme interne de rotation dudit cathéter dudit troisième module par l’intermédiaire d’un deuxième joint tournant.
De préférence, sur au moins une partie dudit axe longitudinal : ledit cathéter guide entoure ledit cathéter qui entoure lui-même ledit guide de cathéter.
Ainsi, le robot cathéter est utilisable dans une configuration coaxiale où les instruments médicaux souples allongés sont tous coaxiaux entre eux, sur au moins une partie de leur longueur. De préférence, ledit deuxième module et ledit troisième module sont structurellement identiques entre eux.
Ainsi, la structure globale du robot cathéter est simplifié, sans sacrifier son efficacité globale.
De préférence, un, plusieurs ou tous les mécanismes internes de translation longitudinale et de rotation d’un instrument médical souple allongé pouvant être un cathéter guide, un cathéter ou un guide de cathéter, comprend : deux touches pouvant se rapprocher et s’éloigner pour respectivement enserrer ou libérer ledit instrument médical souple allongé, lesdites deux touches pouvant effectuer une translation longitudinale synchrone pour translater ledit instrument médical souple allongé, lesdites deux touches pouvant effectuer des translations transversales opposées pour faire tourner ledit instrument médical souple allongé autour de l’axe longitudinal.
Ainsi, ce robot cathéter présente un très bon compromis entre efficacité et simplicité.
De préférence, ledit robot cathéter ne comprend aucun guide déformable situé autour de l’un ou de l’autre des instruments médicaux souples allongés.
Ainsi, la structure du robot cathéter est plus simple tandis que son utilisation est rendue moins coûteuse.
Dans un mode de réalisation, un ou plusieurs ou tous les modules comprennent une plateforme mobile coulissant longitudinalement dans au moins un rail.
Dans un autre mode de réalisation, un ou plusieurs ou tous les modules comprennent un charriot roulant longitudinalement.
Selon un autre objet, l’invention concerne un robot cathéter présentant un axe longitudinal, et comprenant :
> un support de robot cathéter,
> un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé externe,
> un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé interne,
> ledit module distal étant destiné à être disposé entre le patient et ledit module proximal,
> ledit instrument médical souple allongé externe entourant, sur au moins une partie de l’axe longitudinal, ledit instrument médical souple allongé interne, caractérisé en ce que :
> ledit module proximal est mobile en translation longitudinale par rapport au support et/ou par rapport audit module distal, > au moins un parmi le mécanisme interne de translation longitudinale et de rotation de l’instrument médical souple allongé interne et le mécanisme interne de translation longitudinale et de rotation de l’instrument médical souple allongé externe est constitué d’une part d’une paire de touches pouvant se rapprocher et s’éloigner pour respectivement enserrer ou libérer l’instrument médical souple allongé, ladite paire de touches pouvant effectuer une translation longitudinale synchrone pour translater ledit instrument médical souple allongé, ladite paire de touches pouvant effectuer des translations transversales opposées pour faire tourner ledit instrument médical souple allongé autour de son axe longitudinal, et d’autre part d’un dispositif de pinçage seul de l’instrument médical souple allongé.
Un tel robot cathéter permet de limiter l’encombrement, tout en permettant piloter en translation et en rotation deux instruments médicaux souples allongés.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d’un mode de réalisation préféré de l'invention, donnée à titre d'exemple et en référence aux dessins annexés.
BREVE DESCRIPTION DES DESSINS
[Fig.1] La figure 1 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une première variante possible de mode de réalisation selon l’invention.
[Fig.2] La figure 2 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une deuxième variante possible de mode de réalisation selon l’invention.
[Fig.3] La figure 3 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une troisième variante possible de mode de réalisation selon l’invention.
[Fig-4] La figure 4 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une quatrième variante possible de mode de réalisation selon l’invention.
DESCRIPTION DETAILLEE DES MODES DE REALISATION DE L’INVENTION
Dans toute la suite du texte de la description, et pour toutes les figures, on parlera indifféremment, de robot cathéter, de robot médical ou de robot cathéter médical. L’axe longitudinal du robot cathéter 1 est l’axe commun aux trois instruments médicaux souples allongés coaxiaux, le cathéter guide 2, le cathéter 3, et le guide 4 de cathéter. Selon une variante possible il est possible d’utiliser plus de trois instruments médicaux souples. On peut ainsi par exemple utiliser deux cathéters, les deux cathéters étant ainsi parallèles à l’axe longitudinal du robot cathéter 1 et sont introduits à l’intérieur du cathéter guide 2.
La figure 1 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une première variante possible de mode de réalisation selon l’invention.
Selon une première variante de mode de réalisation de l’invention, au moins un élément d’entraînement d’instrument médical souple allongé est placé à l’extrémité proximale du cathéter guide 2 et à l’extrémité proximale du cathéter 3, cet élément d’entraînement étant configuré pour réaliser le même mouvement de rotation à l’extrémité proximale de l’instrument médical souple allongé que le mouvement de rotation donné à l’extrémité distale de cet instrument médical souple allongé, empêchant ainsi la torsion de l’instrument médical souple allongé.
Dans la première variante illustrée dans la figure 1, un robot médical 1 pour l’entrainement d’instruments médicaux souples allongés comprend un premier organe d’entrainement 5 qui contrôle les mouvements d’un cathéter guide 2, un deuxième organe d’entrainement 6 qui contrôle les mouvements d’un cathéter 3, et un troisième organe d’entrainement 7 qui contrôle les mouvements d’un guide 4 de cathéter.
Le guide 4 de cathéter est disposé à l’intérieur du cathéter 3, sur lequel un stent ou un ballon peuvent par exemple être montés, ledit cathéter 3 étant lui-même disposé à l’intérieur du cathéter guide 2.
Le premier organe d’entrainement 5 entraîne le cathéter guide 2 selon un mouvement de translation le long de l’axe principal d’élongation, encore appelé axe longitudinal, dudit cathéter guide 2, et selon un mouvement de rotation autour de l’axe principal d’élongation dudit cathéter guide 2. De manière similaire, le deuxième organe d’entrainement 6 entraine le cathéter 3 selon un mouvement de translation le long de l’axe principal d’élongation dudit cathéter 3, et selon un mouvement de rotation autour de l’axe principal d’élongation dudit cathéter 3. De manière similaire, le troisième organe d’entrainement 7 entraine le guide 4 de cathéter selon un mouvement de translation le long de l’axe principal d’élongation dudit guide 4 de cathéter, et selon un mouvement de rotation autour de l’axe principal d’élongation dudit guide 4 de cathéter. Le cathéter guide 2 entoure partiellement le cathéter 3 qui entoure lui- même partiellement le guide 4 de cathéter. Le cathéter guide 2, le cathéter 3, et le guide 4 de cathéter, sont coaxiaux entre eux, sur une partie de leur longueur. Afin de contrôler les mouvements du cathéter guide 2, le premier organe d’entrainement 5 comprend quatre éléments 51 identiques qui sont chacun configurés pour serrer le cathéter- guide 2 et lui donner un mouvement de translation et/ou un mouvement de rotation. Chaque élément 51 est formé par une paire de doigts manipulateurs, les deux doigts étant situés l’un en face de l’autre, comme cela est par exemple décrit dans le document FR3044541 (voir notamment les figures 4a-4e et 5a-5e), incorporé par référence. Les quatre éléments 51 sont répartis en deux paires espacées l’une de l’autre selon l’axe principal d’élongation du cathéter guide 2. Une première paire 5a d’éléments 51 est située à l’extrémité proximal du cathéter guide 2 et est fixée au connecteur Y 21 du cathéter guide 2, et plus précisément au pivot 22 du connecteur Y 21. La deuxième paire 5b d’éléments 51 est située à l’extrémité distale du robot médical 1. Cette paire 5b d’éléments 51 est portée par un socle 12 qui est fixe par rapport au support 14 (et au boîtier, que celui-ci soit fermé ou partiellement ouvert ou complètement ouvert) du robot médical 1. Les mouvements de la première paire 5a et de la deuxième paire 5b d’éléments 51 sont synchronisés de sorte que le mouvement réalisé par la première paire 5a est identique au mouvement réalisé par la deuxième paire 5b. Le fait qu’un même mouvement soit imprimé par les deux paires de éléments 51 permet d’empêcher que le cathéter guide 2 ne se déforme au niveau de l’espacement entre lesdites deux paires 5a et 5b d’éléments 51, notamment en empêchant la torsion du cathéter guide 2 autour de son propre axe.
La première paire 5a est mobile en translation par rapport à la deuxième paire 5b d’éléments 51 selon l’axe principal d’élongation du cathéter guide 2. Pour ce faire, la première paire 5a est montée sur une première plateforme mobile 10 qui peut par exemple être disposée sur des rails, et la deuxième paire 5b d’éléments 51 est maintenue fixe sur le robot 1. Le cathéter guide 2 peut ainsi être enfoncé ou retiré en faisant avancer ou en faisant reculer la première plateforme mobile 10.
Afin de contrôler les mouvements du cathéter 3, le deuxième organe d’entrainement 6 comprend quatre éléments 61 identiques qui sont chacun configurés pour serrer le cathéter 3 et lui donner un mouvement de translation et/ou un mouvement de rotation. Chaque élément 61 est formé par une paire de doigts manipulateurs, les deux doigts étant situés l’un en face de l’autre, comme cela est par exemple décrit dans le document FR3044541 (voir notamment les figures 4a-4e et 5a-5e), incorporé par référence. Les quatre éléments 61 sont répartis en deux paires espacées l’une de l’autre selon l’axe principal d’élongation du cathéter 3. Une première paire 6a d’éléments 61 est située à l’extrémité proximale du cathéter 3 et est fixée au connecteur Y 31 du cathéter 3, et plus précisément au pivot 32 du connecteur Y 31. La deuxième paire 6b d’éléments 61 est située à l’extrémité distale du robot médical 1. Les mouvements de la première paire 6a et de la deuxième paire 6b d’éléments 61 sont synchronisés de sorte que le mouvement réalisé par la première paire 6a est identique au mouvement réalisé par la deuxième paire 6b. Le fait qu’un même mouvement soit imprimé par les deux paires d’éléments 61 permet d’empêcher que le cathéter 3 ne se déforme au niveau de l’espacement entre lesdites deux paires d’éléments 61, notamment en empêchant la torsion du cathéter 3 autour de son propre axe.
La première paire 6a est mobile en translation par rapport à la deuxième paire 6b d’éléments 61 selon l’axe principal d’élongation du cathéter 3. La deuxième paire 6b étant fixée au connecteur Y 21 du cathéter-guide 2, la deuxième paire 6b de éléments 61 est installée sur la première plateforme mobile 10 afin de suivre les mouvements de translation du cathéter guide 2. En outre, afin de permettre d’enfoncer ou de sortir le cathéter 3, la première paire 6a d’éléments 61, qui est fixée au connecteur Y 31, est installée sur une deuxième plateforme mobile 11 qui peut par exemple être disposée sur des rails.
Afin de contrôler les mouvements du guide 4 de cathéter, le troisième organe d’entrainement 7 comprend deux éléments 71 identiques qui sont chacun configurés pour serrer le guide 4 de cathéter et lui donner un mouvement de translation et/ou un mouvement de rotation. Chaque élément 71 est formé par une paire de doigts manipulateurs, les deux doigts étant situés l’un en face de l’autre, comme cela est par exemple décrit dans le document FR3044541 (voir notamment les figures 4a-4e et 5a-5e). Les deux éléments 71 sont disposés en une paire qui est fixée au connecteur Y 31. Le troisième organe d’entrainement 7 ne nécessite pas une deuxième paire d’éléments 71 car l’extrémité proximale du guide 4 de cathéter étant libre, le guide 4 de cathéter ne risque pas de subir de torsion ou de flambage. Le éléments 71 sont disposés sur la deuxième plateforme mobile 11 afin de suivre les mouvements de translation du cathéter 3.
Dans cette première variante illustrée sur la figure 1, les éléments 51, 61 et 71 sont structurellement identiques entre eux.
Le premier module comprend la paire 5b d’éléments 51, ainsi que le socle 12. Le deuxième module comprend la première plateforme mobile 10, la paire 5a d’éléments 51, et la paire 6b d’éléments 61, ainsi que le connecteur Y 21. Le troisième module comprend la deuxième plateforme mobile 11, la paire 6a d’éléments 61, et la paire 7 d’éléments 71, ainsi que le connecteur Y 31.
On peut relier les modules structurels aux organes d’entraînement fonctionnels. Le premier module comprend une partie du premier organe d’entraînement 5 qui est située sur le socle 12, ainsi que le socle 12. Le deuxième module comprend l’autre partie du premier organe d’entraînement 5 qui est située sur la première plateforme mobile 10, et la partie du deuxième organe d’entraînement 6 qui est située sur la première plateforme mobile 10, ainsi que le connecteur Y 21 et ainsi que la première plateforme mobile 10. Le troisième module comprend l’autre partie du deuxième organe d’entraînement 6 située sur la deuxième plateforme mobile 11, et le troisième organe d’entraînement 7 situé sur la deuxième plateforme mobile 11, ainsi que le connecteur Y 31 et ainsi que la deuxième plateforme mobile 11.
La figure 2 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une deuxième variante possible de mode de réalisation selon l’invention.
Selon une deuxième variante préférentielle de mode de réalisation de l’invention, afin de limiter l’encombrement du robot cathéter, uniquement un seul élément d’entraînement d’instrument médical souple allongé est installé à l’extrémité proximale du cathéter guide 2 et du cathéter 3.
Dans la deuxième variante illustrée sur la figure 2, la première paire 5a de éléments 51 et la première paire 6a de éléments 61 de la première variante illustrée sur la figure 1 sont respectivement chacune remplacée par un unique élément 52 ou 62 qui est configuré pour transmettre uniquement un mouvement de rotation à l’instrument médical souple allongé.
Ainsi, d’une manière similaire à la première variante, le premier organe d’entrainement 5 comprend une paire de éléments 51 qui sont situés à l’extrémité distale du robot 1. Le premier organe d’entrainement 5 comprend également un élément 52 de rotation qui est fixé au connecteur Y 21 du cathéter guide 2. L’élément 52 est un élément qui comprend une paire de doigts manipulateurs, les deux doigts étant situés l’un en face de l’autre, comme cela est par exemple décrit dans le document FR3044541. Cependant, l’élément 52 est un élément simplifié pour lequel le déplacement des doigts manipulateurs le long de l’axe principal d’élongation du cathéter guide 2 est supprimé, les doigts manipulateurs étant uniquement capables de serrer le cathéter guide 2 et de lui transmettre un mouvement de rotation autour de son axe. L’élément 52 est ainsi plus compact qu’un élément 51 qui peut faire des mouvements de translation et de rotation. Le mouvement de rotation donné par l’élément 52 est synchronisé avec le mouvement de rotation donné par la paire d’éléments 51, empêchant ainsi la torsion du cathéter guide 2 autour de son axe. Lors des mouvements de pure translation du cathéter guide 2, les doigts de l’élément 52 sont serrés autour du cathéter guide 2 et la première plateforme mobile 10 déplace l’élément 52 en translation. Lors des mouvements de translation et de rotation combinés du cathéter guide 2, l’élément 52 entraine l’extrémité proximale du cathéter guide 2 en rotation et ledit élément 52 est déplacé en translation par la première plateforme mobile 10. De manière similaire à la première variante, le deuxième organe d’entrainement 6 comprend une paire de éléments 61 qui est fixée au connecteur Y 21 du cathéter guide 2 et qui est installée sur la première plateforme mobile 10. Le deuxième organe d’entrainement 6 comprend également un élément 62 de rotation qui est fixé au connecteur Y 31 du cathéter 3. L’élément 62 est un élément qui comprend une paire de doigts manipulateurs, les deux doigts étant situés l’un en face de l’autre, comme cela est par exemple décrit dans le document FR3044541. Cependant, l’élément 62 est un élément simplifié pour lequel le déplacement des doigts manipulateurs le long de l’axe principal d’élongation du cathéter 3 est supprimé, les doigts manipulateurs étant uniquement capables de serrer le cathéter 3 et de lui transmettre un mouvement de rotation autour de son axe. L’élément 62 est ainsi plus compact qu’un élément 61 qui peut faire des mouvements de translation et de rotation. Le mouvement de rotation donné par l’élément 62 est synchronisé avec le mouvement de rotation donné par la paire d’éléments 61, empêchant ainsi la torsion du cathéter 3 autour de son axe. Lors des mouvements de pure translation du cathéter 3, les doigts de l’élément 62 sont serrés autour du cathéter 3 et la deuxième plateforme mobile 11 déplace l’élément 62 en translation. Lors des mouvements de translation et de rotation combinés du cathéter 3, l’élément 62 entraine l’extrémité proximale du cathéter 3 en rotation et ledit élément 62 est déplacé en translation par la deuxième plateforme mobile 11.
Le troisième organe d’entrainement 7 de la deuxième variante est identique à celui de la première variante.
Le premier module comprend la paire d’éléments 51, ainsi que le socle 12. Le deuxième module comprend la première plateforme mobile 10, l’élément 52, et la paire 6b d’éléments 61, ainsi que le connecteur Y 21. Le troisième module comprend la deuxième plateforme mobile 11, l’élément 62, et la paire 7 d’éléments 71, ainsi que le connecteur Y 31.
On peut relier les modules structurels aux organes d’entraînement fonctionnels. Le premier module comprend une partie du premier organe d’entraînement 5 qui est située sur le socle 12, ainsi que le socle 12. Le deuxième module comprend l’autre partie du premier organe d’entraînement 5 qui est située sur la première plateforme mobile 10, et la partie du deuxième organe d’entraînement 6 qui est située sur la première plateforme mobile 10, ainsi que le connecteur Y 21 et ainsi que la première plateforme mobile 10. Le troisième module comprend l’autre partie du deuxième organe d’entraînement 6 située sur la deuxième plateforme mobile 11, et le troisième organe d’entraînement 7 situé sur la deuxième plateforme mobile 11, ainsi que le connecteur Y 31 et ainsi que la deuxième plateforme mobile 11. La figure 3 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une troisième variante possible de mode de réalisation selon l’invention.
Selon une troisième variante intéressante de mode de réalisation de l’invention, afin de simplifier le robot cathéter, l’élément d’entraînement d’instrument médical souple allongé, ou bien la paire d’éléments d’entraînement d’instrument médical souple allongé, ne peut réaliser qu’un entrainement en rotation de l’instrument médical souple allongé. Ainsi, un des trois blocs cinématiques de l’élément peut être supprimé, en fait on peut supprimer le bloc cinématique qui entraine les doigts pour la translation du cathéter 3.
La troisième variante illustrée sur la figure 3 est une variante dans lequel la structure du robot 1 est simplifiée, et dans laquelle le cathéter guide 2 et le cathéter 3 ne sont plus entraînés en translation et en rotation avec un mouvement continu.
Le premier organe d’entrainement 5 de la troisième variante (figure 3) correspond premier organe d’entrainement de la deuxième variante (figure 2) dans lequel un des éléments 51 est remplacé par un dispositif de pinçage 53 qui peut uniquement pincer ou relâcher le cathéter guide 2 afin de le maintenir en position ou de le laisser libre. Le dispositif de pinçage 53 peut par exemple être formé par une paire de doigts manipulateurs qui viennent serrer ou relâcher le cathéter guide 2. Le dispositif de pinçage 53 a pour fonction de maintenir en position le cathéter guide 2 pendant que les doigts manipulateurs de l’élément 51 ne sont pas en prise autour du cathéter guide 2 lors des mouvements d’aller-retour desdits doigts manipulateurs de l’élément 51.
Le deuxième organe d’entrainement 6 de la troisième variante (figure 3) correspond deuxième organe d’entrainement 6 de la deuxième variante (figure 2) dans lequel un des éléments 61 est remplacé par un dispositif de pinçage 63 qui peut uniquement pincer ou relâcher le cathéter 3 afin de le maintenir en position ou de le laisser libre. Le dispositif de pinçage 63 peut par exemple être formé par une paire de doigts manipulateurs qui viennent serrer ou relâcher le cathéter 3. Le dispositif de pinçage 63 a pour fonction de maintenir en position le cathéter 3 pendant que les doigts manipulateurs de l’élément 61 ne sont pas en prise autour du cathéter 3 lors des mouvements d’aller-retour desdits doigts manipulateurs de l’élément 61.
Le premier module comprend l’élément 51 et l’élément 53, ainsi que le socle 12. Le deuxième module comprend la première plateforme mobile 10, l’élément 52, et les éléments 61 et 63, ainsi que le connecteur Y 21. Le troisième module comprend la deuxième plateforme mobile 11, l’élément 62, et la paire 7 d’éléments 71, ainsi que le connecteur Y 31. On peut relier les modules structurels aux organes d’entraînement fonctionnels. Le premier module comprend une partie du premier organe d’entraînement 5 qui est située sur le socle 12, ainsi que le socle 12. Le deuxième module comprend l’autre partie du premier organe d’entraînement 5 qui est située sur la première plateforme mobile 10, et la partie du deuxième organe d’entraînement 6 qui est située sur la première plateforme mobile 10, ainsi que le connecteur Y 21 et ainsi que la première plateforme mobile 10. Le troisième module comprend l’autre partie du deuxième organe d’entraînement 6 située sur la deuxième plateforme mobile 11, et le troisième organe d’entraînement 7 situé sur la deuxième plateforme mobile 11, ainsi que le connecteur Y 31 et ainsi que la deuxième plateforme mobile 11.
La figure 4 représente schématiquement un exemple de robot cathéter pour l’entrainement d’instruments médicaux souples allongés selon une quatrième variante possible de mode de réalisation selon l’invention.
Selon une quatrième variante possible de mode de réalisation de l’invention, qui permet de simplifier le robot cathéter encore plus, mais toutefois au détriment de ne plus avoir un mouvement tout à fait continu de translation de l’instrument médical souple allongé, uniquement un élément d’entraînement d’instrument médical souple allongé en rotation et en translation est installé à l’extrémité distale de l’instrument médical souple allongé, cet unique élément d’entraînement d’instrument médical souple allongé étant couplé à un dispositif de pinçage qui peut bloquer tout mouvement de l’instrument médical souple allongé en le pinçant.
La quatrième variante illustrée sur la figure 4 correspond à la troisième variante (figure 3) dans laquelle le troisième organe d’entrainement 7 comprend également un élément 71 qui est remplacé par un dispositif de pinçage 73. Un tel troisième organe d’entrainement 7 est plus compact que ceux comprenant une paire de éléments 71 , mais le mouvement du guide 4 de cathéter donné par le troisième organe d’entrainement 7 n’est pas continu, ce qui lui fait perdre de la fluidité.
Le premier module comprend l’élément 51 et l’élément 53, ainsi que le socle 12. Le deuxième module comprend la première plateforme mobile 10, l’élément 52, et les éléments 61 et 63, ainsi que le connecteur Y 21. Le troisième module comprend la deuxième plateforme mobile 11, l’élément 62, et les éléments 71 et 73, ainsi que le connecteur Y 31.
On peut relier les modules structurels aux organes d’entraînement fonctionnels. Le premier module comprend une partie du premier organe d’entraînement 5 qui est située sur le socle 12, ainsi que le socle 12. Le deuxième module comprend l’autre partie du premier organe d’entraînement 5 qui est située sur la première plateforme mobile 10, et la partie du deuxième organe d’entraînement 6 qui est située sur la première plateforme mobile 10, ainsi que le connecteur Y 21 et ainsi que la première plateforme mobile 10. Le troisième module comprend l’autre partie du deuxième organe d’entraînement 6 située sur la deuxième plateforme mobile 11, et le troisième organe d’entraînement 7 situé sur la deuxième plateforme mobile 11, ainsi que le connecteur Y 31 et ainsi que la deuxième plateforme mobile 11.
Bien entendu, la présente invention n'est pas limitée aux exemples et au mode de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.

Claims

REVENDICATIONS
1. Robot cathéter présentant un axe longitudinal, et comprenant :
> un support (14) de robot cathéter,
> un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé externe,
> un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé interne,
> ledit module distal étant destiné à être disposé entre le patient et ledit module proximal,
> ledit instrument médical souple allongé externe entourant, sur au moins une partie de l’axe longitudinal, ledit instrument médical souple allongé interne, caractérisé en ce que :
> ledit module proximal est mobile en translation longitudinale par rapport au support (14) et/ou par rapport audit module distal,
> ledit module proximal comprend aussi un mécanisme interne de rotation dudit instrument médical souple allongé externe, asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit instrument médical souple allongé externe dudit module distal.
2. Robot cathéter selon la revendication 1, caractérisé en ce que :
> ledit module distal (12) est fixe par rapport au support (14),
> ledit instrument médical souple allongé externe est un cathéter guide (2),
> ledit instrument médical souple allongé interne est un cathéter (3).
3. Robot cathéter selon la revendication 1, caractérisé en ce que :
> ledit module distal (10) est mobile en translation longitudinale par rapport au support (14),
> ledit module proximal (11) est mobile en translation longitudinale par rapport au support (14),
> ledit instrument médical souple allongé externe est un cathéter (3),
> ledit instrument médical souple allongé interne est un guide (4) de cathéter.
4. Robot cathéter selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du module proximal en l’asservissant sur la translation longitudinale de l’instrument médical souple allongé externe, et pour contrôler la translation longitudinale de l’instrument médical souple allongé interne en compensant la translation longitudinale du module proximal de manière à maintenir l’instrument médical souple allongé interne stationnaire par rapport au support. Robot cathéter présentant un axe longitudinal, et comprenant :
> un support (14) de robot cathéter,
> un premier module (12), comprenant un mécanisme interne de translation longitudinale et de rotation d’un cathéter guide (2), fixe par rapport au support,
> un deuxième module (10), comprenant un mécanisme interne de translation longitudinale et de rotation d’un cathéter (3),
> un troisième module (11), comprenant un mécanisme interne de translation longitudinale et de rotation d’un guide (4) de cathéter, caractérisé en ce que :
> ledit deuxième module (10) est mobile en translation longitudinale par rapport au support (14),
> ledit troisième module (11) est mobile en translation longitudinale par rapport au support (14) et par rapport au deuxième module (10),
> ledit deuxième module (10) comprend aussi un mécanisme interne de rotation dudit cathéter guide (2), asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit cathéter guide (2) dudit premier module (12),
> ledit troisième module (11), comprend aussi un mécanisme interne de rotation dudit cathéter (3), asservi sur la rotation dudit mécanisme interne de translation longitudinale et de rotation dudit cathéter (3) dudit deuxième module (11). Robot cathéter selon la revendication 5, caractérisé en ce que ledit deuxième module (10) ne comprend aucun autre mécanisme interne capable d’assurer un autre mouvement dudit cathéter guide (2) que la rotation dudit cathéter guide (2). Robot cathéter selon la revendication 5, caractérisé en ce que ledit mécanisme interne de rotation dudit cathéter guide (2) dudit deuxième module (10) est également capable d’assurer la translation longitudinale dudit cathéter guide (2). Robot cathéter selon l’une quelconque des revendications 5 à 7, caractérisé en ce que :
> ledit premier module (12) comprend aussi un dispositif de pinçage (53) seul dudit cathéter guide (2), > ledit deuxième module (10) comprend aussi un dispositif de pinçage (63) seul dudit cathéter (3).
9. Robot cathéter selon la revendication 8, caractérisé en ce que ledit troisième module (11) comprend aussi un dispositif de pinçage (73) seul dudit guide (4) de cathéter.
10. Robot cathéter selon la revendication 5, caractérisé en ce que :
> ledit premier module (12) comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter guide (2) pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter guide (2) dudit premier module (12),
> ledit deuxième module (10) comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter (3) pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter (3) dudit deuxième module (10),
> ledit troisième module (11) comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit guide (4) de cathéter pouvant fonctionner alternativement avec ledit mécanisme interne de translation longitudinale et de rotation dudit guide (4) de cathéter dudit troisième module (11).
11. Robot cathéter selon la revendication 10, caractérisé en ce que :
> ledit deuxième module (10) comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter guide (2) pouvant fonctionner alternativement avec ledit mécanisme interne de rotation dudit cathéter guide (2) dudit deuxième module (10), ledit mécanisme interne de rotation dudit cathéter guide (2) dudit deuxième module (10) pouvant également assurer la translation longitudinale dudit cathéter guide (2),
> ledit troisième module (11) comprend aussi un mécanisme interne supplémentaire de translation longitudinale et de rotation dudit cathéter (3) pouvant fonctionner alternativement avec ledit mécanisme interne de rotation dudit cathéter (3) dudit troisième module (11), ledit mécanisme interne de rotation dudit cathéter (3) dudit troisième module (11) pouvant également assurer la translation longitudinale dudit cathéter (3).
12. Robot cathéter selon l’une quelconque des revendications 5 à 11, caractérisé en ce que :
> ledit robot cathéter comprend : o un premier connecteur Y (21) situé entre ledit mécanisme interne de rotation dudit cathéter guide (2) dudit deuxième module (10) et ledit mécanisme interne de translation longitudinale et de rotation dudit cathéter (3) dudit deuxième module (10), o un deuxième connecteur Y (31) situé entre ledit mécanisme interne de rotation dudit cathéter (3) dudit troisième module (11) et ledit mécanisme interne de translation longitudinale et de rotation dudit guide (4) de cathéter dudit troisième module (11).
13. Robot cathéter selon la revendication 12, caractérisé en ce que :
> ledit premier connecteur Y (21) est fixé audit mécanisme interne de rotation dudit cathéter guide (2) dudit deuxième module (10) et audit mécanisme interne de translation longitudinale et de rotation dudit cathéter (3) dudit deuxième module (10),
> ledit deuxième connecteur Y (31) est fixé audit mécanisme interne de rotation dudit cathéter (3) dudit troisième module (11) et audit mécanisme interne de translation longitudinale et de rotation dudit guide (4) de cathéter dudit troisième module (11).
14. Robot cathéter selon l’une quelconque des revendications 5 à 13, caractérisé en ce que, sur au moins une partie dudit axe longitudinal ledit cathéter guide (2) entoure ledit cathéter (3) qui entoure lui-même ledit guide (4) de cathéter.
15. Robot cathéter selon l’une quelconque des revendications 5 à 14, caractérisé en ce que ledit deuxième module (10) et ledit troisième module (11) sont structurellement identiques entre eux.
16. Robot cathéter selon l’une quelconque des revendications 5 à 15, caractérisé en ce que ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du deuxième module (10) en l’asservissant sur la translation longitudinale du cathéter guide (2), et pour contrôler la translation longitudinale du cathéter (3) en compensant la translation longitudinale du deuxième module (10) de manière à maintenir le cathéter stationnaire par rapport au support (14).
17. Robot cathéter selon l’une quelconque des revendications 5 à 16, caractérisé en ce que ledit robot cathéter comprend une unité de contrôle configurée, pour commander la translation longitudinale du troisième module (11) en l’asservissant sur la translation longitudinale du cathéter (3), et pour contrôler la translation longitudinale du guide (4) de cathéter en compensant la translation longitudinale du troisième module (11) de manière à maintenir le guide (4) de cathéter stationnaire par rapport au support (14). . Robot cathéter selon l’une quelconque des revendications précédentes, caractérisé en ce que :
> un, plusieurs ou tous les mécanismes internes de translation longitudinale et de rotation d’un instrument médical souple allongé pouvant être un cathéter guide (2), un cathéter (3) ou un guide (4) de cathéter, comprend : o deux touches pouvant se rapprocher et s’éloigner pour respectivement enserrer ou libérer ledit instrument médical souple allongé, o lesdites deux touches pouvant effectuer une translation longitudinale synchrone pour translater ledit instrument médical souple allongé, o lesdites deux touches pouvant effectuer des translations transversales opposées pour faire tourner ledit instrument médical souple allongé autour de l’axe longitudinal. . Robot cathéter selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit robot cathéter ne comprend aucun guide déformable situé autour de l’un ou de l’autre des instruments médicaux souples allongés. . Robot cathéter selon l’une quelconque des revendications 1 à 19, caractérisé en ce qu’un ou plusieurs ou tous les modules comprennent une plateforme mobile coulissant longitudinalement dans au moins un rail. . Robot cathéter selon l’une quelconque des revendications 1 à 19, caractérisé en ce qu’un ou plusieurs ou tous les modules comprennent un charriot roulant longitudinalement. Robot cathéter présentant un axe longitudinal, et comprenant :
> un support (14) de robot cathéter,
> un module distal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé externe,
> un module proximal, comprenant un mécanisme interne de translation longitudinale et de rotation d’un instrument médical souple allongé interne,
> ledit module distal étant destiné à être disposé entre le patient et ledit module proximal,
> ledit instrument médical souple allongé externe entourant, sur au moins une partie de l’axe longitudinal, ledit instrument médical souple allongé interne, caractérisé en ce que :
> ledit module proximal est mobile en translation longitudinale par rapport au support (14) et/ou par rapport audit module distal,
> au moins un parmi le mécanisme interne de translation longitudinale et de rotation de l’instrument médical souple allongé interne et le mécanisme interne de translation longitudinale et de rotation de l’instrument médical souple allongé externe est constitué d’une part d’une paire de touches pouvant se rapprocher et s’éloigner pour respectivement enserrer ou libérer l’instrument médical souple allongé, ladite paire de touches pouvant effectuer une translation longitudinale synchrone pour translater ledit instrument médical souple allongé, ladite paire de touches pouvant effectuer des translations transversales opposées pour faire tourner ledit instrument médical souple allongé autour de son axe longitudinal, et d’autre part d’un dispositif de pinçage seul de l’instrument médical souple allongé.
EP21843736.6A 2020-12-28 2021-12-22 Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge Pending EP4267032A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2014196A FR3118406B1 (fr) 2020-12-28 2020-12-28 Robot catheter comprenant au moins deux modules de translation d’instrument medical souple allonge
PCT/EP2021/087253 WO2022144266A1 (fr) 2020-12-28 2021-12-22 Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge

Publications (1)

Publication Number Publication Date
EP4267032A1 true EP4267032A1 (fr) 2023-11-01

Family

ID=76034677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21843736.6A Pending EP4267032A1 (fr) 2020-12-28 2021-12-22 Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge

Country Status (7)

Country Link
US (1) US20240058082A1 (fr)
EP (1) EP4267032A1 (fr)
JP (1) JP2024500540A (fr)
KR (1) KR20230124932A (fr)
CN (1) CN116867458A (fr)
FR (1) FR3118406B1 (fr)
WO (1) WO2022144266A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023531852A (ja) * 2021-07-05 2023-07-26 深▲せん▼市愛博医療機器人有限公司 介入手術ロボットスレーブ装置
EP4137090A4 (fr) * 2021-07-05 2023-11-22 Shenzhen Institute of Advanced Biomedical Robot Co., Ltd. Dispositif d'extrémité esclave pour un robot chirurgical d'intervention
EP4373433A1 (fr) * 2021-07-23 2024-05-29 Stryker Corporation Gestion, suivi et commande d'ensemble endovasculaire coaxial

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684962B2 (en) * 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US9492234B2 (en) * 2011-11-16 2016-11-15 Vanderbilt University Motive device for use in magnetically-sensitive environments
CN107427327A (zh) * 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
FR3044541B1 (fr) * 2015-12-07 2017-12-29 Robocath Module robotise d'entrainement d'organe medical souple allonge
FR3065164B1 (fr) * 2017-04-14 2019-05-10 Robocath Module d'entrainement d'organes medicaux souples allonges
MX2020008464A (es) * 2018-02-13 2020-12-07 Auris Health Inc Sistema y metodo para accionar instrumento medico.

Also Published As

Publication number Publication date
CN116867458A (zh) 2023-10-10
FR3118406A1 (fr) 2022-07-01
FR3118406B1 (fr) 2024-05-03
US20240058082A1 (en) 2024-02-22
JP2024500540A (ja) 2024-01-09
KR20230124932A (ko) 2023-08-28
WO2022144266A1 (fr) 2022-07-07

Similar Documents

Publication Publication Date Title
EP4267032A1 (fr) Robot catheter comprenant au moins deux modules de translation d'instrument medical souple allonge
EP2483040B1 (fr) Structure de robot ou d'interface haptique a bras en parallele
EP2164432B1 (fr) Mecanisme de rotation d'avant-bras et orthese comportant un tel mecanisme
EP1597017B1 (fr) Dispositif de deplacement et d orientation d un objet d ans l espace et utilisation en usinage rapide
EP3399937B1 (fr) Module robotisable d'entraînement d'un organe médical souple allongé, robot médical et système comprenant un tel module
EP3109011B1 (fr) Bras articulé motorisé à cabestan à câble sécurisé
FR3115672A1 (fr) Un robot polyvalent pour les operations d’angiographie et chirurgicales interventionnelles
WO2003094759A1 (fr) Systeme de positionnement sur un patient d'un dispositif d'observation et/ou d'intervention
FR2780629A1 (fr) Appareil mobile perfectionne de rayons x
EP1292431A1 (fr) Bras de commande a deux branches en parallele
WO2014135808A1 (fr) Module d'entraînement de système de cathétérisme robotisé
EP0871563B1 (fr) Appareil de telemanipulation du type "maitre-esclave" a six degres de liberte
FR3037840A1 (fr) Bras articule motorise a cabestan a cable comprenant un frein.
WO2012001026A1 (fr) Instrument chirurgical notamment pour chirurgie peritoneale
FR3037249A1 (fr) Procede robotise d'entrainement de catheter et de guide de catheter
WO2014096731A1 (fr) Module d'entraînement de système de cathétérisme
CA3129470A1 (fr) Dispositif de guidage d'une aiguille medicale
FR2870428A1 (fr) Machine a rayons x mobile
FR3081318A1 (fr) Dispositif de maintien et procede pour le blocage du dispositif de maintien
EP1894540A1 (fr) Instrument à main à usage dentaire ou chirurgical
FR2932081A1 (fr) Mecanisme d'epaule pour orthese.
FR2950830A1 (fr) Structure de robot ou d'interface haptique a bras en paralleles
FR2610562A1 (fr) Pince d'intervention articulee a cinq degres de liberte
EP4034024B1 (fr) Dispositif d'aide a la chirurgie
FR3134706A1 (fr) système d’entrainement en rotation et en TRANSLATION D’un INSTRUMENT MEDICAL SOUPLE ALLONGE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)