EP4256633A1 - Elektrode für quasi-feste li-ionen-batterie - Google Patents
Elektrode für quasi-feste li-ionen-batterieInfo
- Publication number
- EP4256633A1 EP4256633A1 EP21839603.4A EP21839603A EP4256633A1 EP 4256633 A1 EP4256633 A1 EP 4256633A1 EP 21839603 A EP21839603 A EP 21839603A EP 4256633 A1 EP4256633 A1 EP 4256633A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- hfp
- polymer
- catholyte
- vdf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 29
- 239000007787 solid Substances 0.000 title abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 12
- 229920002313 fluoropolymer Polymers 0.000 claims description 46
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 43
- 239000002904 solvent Substances 0.000 claims description 36
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 29
- -1 glymes Chemical class 0.000 claims description 28
- 239000003792 electrolyte Substances 0.000 claims description 26
- 229920001577 copolymer Polymers 0.000 claims description 22
- 239000004811 fluoropolymer Substances 0.000 claims description 19
- 229910003002 lithium salt Inorganic materials 0.000 claims description 19
- 159000000002 lithium salts Chemical class 0.000 claims description 19
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 claims description 19
- 229920005596 polymer binder Polymers 0.000 claims description 16
- 239000002491 polymer binding agent Substances 0.000 claims description 16
- 229920001519 homopolymer Polymers 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000002482 conductive additive Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 8
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 8
- 239000011149 active material Substances 0.000 claims description 7
- 239000007772 electrode material Substances 0.000 claims description 7
- 150000002825 nitriles Chemical class 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 150000002170 ethers Chemical class 0.000 claims description 6
- 150000002596 lactones Chemical class 0.000 claims description 6
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 6
- 229910001290 LiPF6 Inorganic materials 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 235000019241 carbon black Nutrition 0.000 claims description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 150000004675 formic acid derivatives Chemical class 0.000 claims description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 4
- 229920005597 polymer membrane Polymers 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229910012265 LiPO2F2 Inorganic materials 0.000 claims description 3
- 239000011532 electronic conductor Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 229910010364 Li2MSiO4 Inorganic materials 0.000 claims description 2
- 229910013191 LiMO2 Inorganic materials 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 229910010941 LiFSI Inorganic materials 0.000 claims 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims 1
- 229910013462 LiC104 Inorganic materials 0.000 claims 1
- 229910013684 LiClO 4 Inorganic materials 0.000 claims 1
- 229910001305 LiMPO4 Inorganic materials 0.000 claims 1
- 229910012258 LiPO Inorganic materials 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 17
- 239000010410 layer Substances 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 13
- 239000007784 solid electrolyte Substances 0.000 description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 7
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 150000002605 large molecules Chemical class 0.000 description 7
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 7
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 239000002227 LISICON Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 6
- 239000011244 liquid electrolyte Substances 0.000 description 6
- 150000003568 thioethers Chemical class 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 239000002228 NASICON Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000002223 garnet Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- XTBFPVLHGVYOQH-UHFFFAOYSA-N methyl phenyl carbonate Chemical compound COC(=O)OC1=CC=CC=C1 XTBFPVLHGVYOQH-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002887 superconductor Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OWPOSEUJTSUPSG-UHFFFAOYSA-N 2-methoxypentanedinitrile Chemical compound COC(C#N)CCC#N OWPOSEUJTSUPSG-UHFFFAOYSA-N 0.000 description 2
- SFPQDYSOPQHZAQ-UHFFFAOYSA-N 2-methoxypropanenitrile Chemical compound COC(C)C#N SFPQDYSOPQHZAQ-UHFFFAOYSA-N 0.000 description 2
- FPPLREPCQJZDAQ-UHFFFAOYSA-N 2-methylpentanedinitrile Chemical compound N#CC(C)CCC#N FPPLREPCQJZDAQ-UHFFFAOYSA-N 0.000 description 2
- MTPJEFOSTIKRSS-UHFFFAOYSA-N 3-(dimethylamino)propanenitrile Chemical compound CN(C)CCC#N MTPJEFOSTIKRSS-UHFFFAOYSA-N 0.000 description 2
- WTQMTUQXPWPJIT-UHFFFAOYSA-N 3-methylpentanedinitrile Chemical compound N#CCC(C)CC#N WTQMTUQXPWPJIT-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229930186657 Lat Natural products 0.000 description 2
- 229910012050 Li4SiO4-Li3PO4 Inorganic materials 0.000 description 2
- 229910012069 Li4SiO4—Li3PO4 Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-O Pyrazolium Chemical compound C1=CN[NH+]=C1 WTKZEGDFNFYCGP-UHFFFAOYSA-O 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- QLDHWVVRQCGZLE-UHFFFAOYSA-N acetyl cyanide Chemical compound CC(=O)C#N QLDHWVVRQCGZLE-UHFFFAOYSA-N 0.000 description 2
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 2
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 150000001913 cyanates Chemical class 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-O hydron;1,3-oxazole Chemical compound C1=COC=[NH+]1 ZCQWOFVYLHDMMC-UHFFFAOYSA-O 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 2
- QHDRKFYEGYYIIK-UHFFFAOYSA-N isovaleronitrile Chemical compound CC(C)CC#N QHDRKFYEGYYIIK-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 description 2
- 239000003202 long acting thyroid stimulator Substances 0.000 description 2
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 2
- 150000005217 methyl ethers Chemical class 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- JAMNHZBIQDNHMM-UHFFFAOYSA-N pivalonitrile Chemical compound CC(C)(C)C#N JAMNHZBIQDNHMM-UHFFFAOYSA-N 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- FOWDZVNRQHPXDO-UHFFFAOYSA-N propyl hydrogen carbonate Chemical compound CCCOC(O)=O FOWDZVNRQHPXDO-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- FWZHZWOOUOCBME-UHFFFAOYSA-N 1,3,4,6-tetrafluoro-2,5-dimethoxy-5-methylcyclohexa-1,3-diene Chemical compound COC1(C)C(C(=C(C(=C1F)F)OC)F)F FWZHZWOOUOCBME-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical class O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- MMZYCBHLNZVROM-UHFFFAOYSA-N 1-fluoro-2-methylbenzene Chemical compound CC1=CC=CC=C1F MMZYCBHLNZVROM-UHFFFAOYSA-N 0.000 description 1
- SKDGWNHUETZZCS-UHFFFAOYSA-N 2,3-ditert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(O)=C1C(C)(C)C SKDGWNHUETZZCS-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- XUGNJOCQALIQFG-UHFFFAOYSA-N 2-ethenylquinoline Chemical compound C1=CC=CC2=NC(C=C)=CC=C21 XUGNJOCQALIQFG-UHFFFAOYSA-N 0.000 description 1
- YXDXXGXWFJCXEB-UHFFFAOYSA-N 2-furonitrile Chemical compound N#CC1=CC=CO1 YXDXXGXWFJCXEB-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical class C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- DTYXUWCJYMNDQD-UHFFFAOYSA-N 3-ethenylpyridazine Chemical compound C=CC1=CC=CN=N1 DTYXUWCJYMNDQD-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- 101500021165 Aplysia californica Myomodulin-A Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910010367 Li2MPO3F Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical class CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical class C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- CCRCUPLGCSFEDV-UHFFFAOYSA-N cinnamic acid methyl ester Chemical class COC(=O)C=CC1=CC=CC=C1 CCRCUPLGCSFEDV-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- DFJYZCUIKPGCSG-UHFFFAOYSA-N decanedinitrile Chemical compound N#CCCCCCCCCC#N DFJYZCUIKPGCSG-UHFFFAOYSA-N 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- BGSFCOHRQUBESL-UHFFFAOYSA-N ethyl prop-2-enyl carbonate Chemical class CCOC(=O)OCC=C BGSFCOHRQUBESL-UHFFFAOYSA-N 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- CVVIFWCYVZRQIY-UHFFFAOYSA-N lithium;2-(trifluoromethyl)imidazol-3-ide-4,5-dicarbonitrile Chemical compound [Li+].FC(F)(F)C1=NC(C#N)=C(C#N)[N-]1 CVVIFWCYVZRQIY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002735 metacrylic acids Chemical class 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- CCRCUPLGCSFEDV-BQYQJAHWSA-N methyl trans-cinnamate Chemical class COC(=O)\C=C\C1=CC=CC=C1 CCRCUPLGCSFEDV-BQYQJAHWSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 1
- KBMBVTRWEAAZEY-UHFFFAOYSA-N trisulfane Chemical compound SSS KBMBVTRWEAAZEY-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical class [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Chemical class 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/16—Homopolymers or copolymers of vinylidene fluoride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention generally relates to the field of the storage of electrical energy in rechargeable secondary batteries of the Li-ion type. More specifically, the invention relates to a cathode composition comprising an intrinsically incorporated catholyte. The invention also relates to a quasi-solid Li-ion battery comprising said cathode, an anode and a separator, and a method of manufacturing said Li-ion battery.
- a Li-ion battery includes at least a negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte.
- the electrolyte consists of a lithium salt, generally lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
- a high dielectric constant favors the dissociation of ions, and therefore the number of ions available in a given volume, while a low viscosity favors ionic diffusion which plays an essential role, among other parameters, in the velocities of charging and discharging of the electrochemical system.
- Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated chemical reactions that take place at the positive and negative electrodes of the battery are reversible. Secondary cell electrodes can be regenerated multiple times by applying an electrical charge. Many advanced electrode systems have been developed to store electrical charge. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
- Lithium-ion batteries conventionally use liquid electrolytes composed of solvent(s), lithium salt(s) and additive(s). These electrolytes have good ionic conductivity but are prone to leaking or igniting if the battery is damaged.
- the use of solid or quasi-solid electrolytes overcomes these difficulties.
- the advantage of solid or quasi-solid electrolytes is also to allow the use of lithium metal at the negative electrode, by preventing the formation of dendrites which can cause short circuits during cycling.
- the use of lithium metal allows a gain in energy density compared to the negative electrodes of insertion or alloy.
- solid or quasi-solid electrolytes are generally less conductive than liquid electrolytes, especially in the cathode and anode.
- the solid or quasi-solid electrolyte incorporated in the cathode is called catholyte.
- a recurring problem with all-solid or quasi-solid batteries is to obtain a catholyte that is chemically and electrochemically compatible with the cathode, while having sufficient conductivity and low resistivity at the interfaces with the cathode.
- Document FR 3049114 describes an all-solid battery comprising a solid polymer electrolyte, a negative electrode comprising lithium metal or a lithium metal alloy, and a positive electrode comprising an ion-conductive polymer.
- the disadvantage of this battery is that the ionic conductivity of the solid electrolyte incorporated in the cathode is low at room temperature, and the lithium-ion cell must be heated to 80°C to have good electrochemical performance.
- PVDF Poly(vinylidene fluoride)
- P(VDF-co-HFP) copolymer copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- a secondary battery cell 20 comprising a cathode 21, an anode 22, a separator 23 and an electrolyte 24.
- the latter comprises a high molecular weight compound and a solution of electrolyte prepared by dissolving an electrolyte salt in a solvent, and the electrolyte solution is held in the high molecular weight compound to gel the electrolyte solution.
- Said high molecular weight compound comprises a first compound having a weight average molecular weight of 550,000 or more; and a second compound having a weight average molecular weight of 1000 or more but not exceeding 300,000.
- the first high molecular weight compound functions to improve the adhesion between the electrolyte 24, the cathode 21 and the anode 22.
- the second high molecular weight compound is believed to improve the permeability of the electrolyte 24 in the cathode 21 and the anode 22.
- a third high molecular weight compound can be incorporated into the electrolyte.
- Each of these compounds is chosen from PVDF and P(VDF-co-HFP) copolymers.
- the copolymers are block copolymers, and the mass content of HFP in the copolymer varies from 3% to 7.5%.
- a cathode active material and a binder (copolymer of VDF-HFP), and, optionally, an electrical conductor are mixed to prepare a cathode mixture, and the cathode mixture is dispersed in a solvent such as methyl -2-pyrrolidone to form a cathode mixture slurry. Then, after applying the cathode mixing slurry to one side or both sides of the cathode current collector 21A and drying it, the cathode active material layer 21B is formed by compression molding so as to form the cathode 21.
- an electrolyte solution obtained by mixing, on the one hand, a solution formed from said high molecular weight compounds dissolved in a solvent such as dimethyl carbonate, and on the other hand, a solvent comprising ethylene carbonate, propylene carbonate and LiPF6.
- the active material layer 21B of the cathode was allowed to stand at room temperature for 8 hours to volatilize the dimethyl carbonate, leading to the formation of the electrolyte 24.
- this preparatory method remains laborious, because it adds a step of coating the electrolyte solution, as well as a step of evaporating the dimethyl carbonate, which lengthen the time required to obtain the electrolyte and lead to additional costs. Manufacturing.
- cathode compositions comprising a catholyte, having a good compromise between ionic conductivity within the cathode at room temperature and low resistivity at the interfaces with the solid or quasi-solid electrolyte, and which are suitable to a simplified implementation, without requiring prior transformation steps. Additionally, the amount of catholyte in the cathode should be minimized in order to maximize the energy density of the Li-ion cell.
- the object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a cathode for a quasi-solid Li-ion battery comprising a catholyte infiltrated into the electrode material and which allows sufficient swelling polymer binder incorporated into said material without loss of cohesion within the cathode or adhesion to the current collector.
- Sufficient swelling means that the ionic conductivity at room temperature of the cathode containing the catholyte is such that the capacity delivered in discharge at C/10 is greater than or equal to 80% of the theoretical reversible capacity.
- the invention also relates to a rechargeable Li-ion secondary battery comprising such a cathode containing a catholyte, an anode and a separator.
- the invention relates to a process for preparing a Li-ion battery comprising said cathode containing a catholyte, and which is compatible with the usual industrial processes.
- the technical solution proposed by the present invention is a cathode comprising a catholyte intrinsically mixed with the electrode material.
- the invention relates to a cathode for a lithium-ion battery comprising an electrode active material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte.
- said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP from polymer A.
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- the catholyte includes at least one solvent and at least one lithium salt.
- the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
- the invention relates to a process for preparing a Li-ion battery comprising said cathode.
- the present invention makes it possible to overcome the drawbacks of the state of the art. It is characterized by good conductivity at ambient temperature of the catholyte within the cathode. The cohesion and adhesion of the cathode as well as its flexibility are maintained with the catholyte.
- the manufacture of the battery described by this invention does not require additional steps compared to the conventional manufacturing method used in the production of Li-ion cells: no catholyte coating step; no intense heat treatment, e.g. no sintering required in the case of solid oxide-based electrolytes, with temperatures above 500°C; no very high pressure compression step; does not require more humidity or atmosphere control than current processes.
- the advantage of this technology is to offer a better guarantee of safety compared to liquid electrolytes: no electrolyte leakage and reduced flammability due to the gelation of the catholyte.
- Figure 1 is a diagram representing the impedance spectra of cathodes in symmetrical stacks.
- Figure 2 is a diagram showing the capacitance performance of a cathode according to the invention and a cathode according to a comparative example, at an IC discharge current.
- the invention relates to a cathode for a lithium-ion battery comprising an active electrode material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte, in which:
- said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP polymer A, and
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- - Said catholyte comprises at least one solvent and at least one lithium salt.
- said cathode comprises the following characters, possibly combined. The contents indicated are expressed by weight, unless otherwise indicated.
- Said active electrode material is chosen from compounds of the xLi2MnO3-(l-x)LiMO2 type where 0 ⁇ x ⁇ 1, of the LiMPCL type, of the Li2MPO3F type, of the Li2MSiO4 type, where M is Co, Ni, Mn, Fe or a combination of these, of the LiM Ch type, and of the Ss type.
- Said conductive additive is chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, metal fibers and powders, conductive metal oxides, or mixtures thereof.
- Said inorganic oxide is chosen from silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or mixtures thereof.
- the fluorinated polymer A comprises at least one VDF-HFP copolymer having an HFP content greater than or equal to 3% by weight, preferably greater than or equal to 8%, advantageously greater than or equal to 13%.
- Said VDF-HFP copolymer has a mass content of HFP less than or equal to 55%, preferably 50%.
- This very poorly crystalline copolymer swells easily in electrolyte solvents such as carbonates, nitriles, glymes, which gives the binder good ionic conductivity.
- the swelling can be quantified by the caking of the electrolyte binder.
- the caking of this copolymer is at least greater than or equal to 5% by weight.
- the fluorinated polymer A consists of a single VDF-HFP copolymer with an HFP content greater than or equal to 3%.
- the level of HFP in this VDF-HFP copolymer is between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
- the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP content of each copolymer being greater than or equal to 3%.
- each of the copolymers has an HFP content of between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
- Fluorinated polymer B comprises at least one VDF-HFP copolymer having a mass content of HFP lower by at least 3% compared to the mass content of HFP of polymer A. This makes it possible to provide sufficient mechanical strength to the cathode after swelling. Sufficient mechanical strength means that the adhesion of the cathode to the current collector is maintained after swelling, as well as the cohesion between the particles of active material.
- the fluoropolymer B consists of a single VDF-HFP copolymer.
- the level of HFP in this VDF-HFP copolymer is between 1% and 5%, limits included.
- the level of HFP in this VDF-HFP copolymer is between 1% and 10%, limits included.
- the fluorinated polymer B is a mixture of PVDF homopolymer with a VDF-HFP copolymer or else a mixture of two or more VDF-HFP copolymers.
- the HFP content of the mixture of polymers A and B is greater than 7% by weight.
- the mixture of fluorinated polymers A and B has a melting point above 150°C.
- the molar composition of units in fluoropolymers can be determined by various means such as infrared spectroscopy or RAMAN spectroscopy. Conventional methods of elemental analysis in the elements carbon, fluorine and chlorine or bromine or iodine, such as X-ray fluorescence spectroscopy, make it possible to calculate without ambiguity the mass composition of the polymers, from which the molar composition is deduced.
- At least one of the fluorinated polymers A and B comprises units bearing at least one of the following functionalities: carboxylic acid, carboxylic acid anhydride, carboxylic acid ester, epoxy group (such as glycidyl), amide, alcohol, carbonyl, mercapto, sulfide, oxazoline and phenol.
- Said functionality is introduced onto the fluoropolymer by a chemical reaction which may be grafting, or a copolymerization reaction of the fluoropolymer with a compound bearing at least one of said functionalities, using techniques known to those skilled in the art.
- said functionality is a terminal group located at the end of the fluoropolymer chain.
- the monomer carrying a functional group is intercalated in the fluoropolymer chain.
- the acrylic acid functionality is a hydrophilic group of (meth)acrylic type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and (meth)acrylate. )hydroxyethylhexyl acrylate.
- the mass content of functional groups is at least 0.01%, and less than or equal to 5% based on the weight of the fluorinated polymers.
- the mass ratio between polymer A and polymer B is greater than 1. catholyte
- the catholyte includes at least one solvent and at least one lithium salt.
- said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
- ethers such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
- DME dimethoxyethane
- methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
- esters mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
- the glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
- lactones mention may in particular be made of gamma-butyrolactone.
- nitriles mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
- cyclic carbonates such as, for example, propylene carbonate (PC) (CAS: 108-32-7), butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8), methyl ethyl carbonate (EMC) (CAS: 623-53-0 ), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) (CAS: 623-96-1), methyl and propyl carbonate (MPC) (CAS: 1333-41-1), ethyl and propyl carbonate (EPC), vinylene carbonate (VC) (CAS: 872-36-6), fluoroethylene carbonate ( FEC) (CAS: 114435-02-8), trifluoropropylene carbonate (CAS: 1679
- PC propylene carbonate
- BC butylene
- said lithium salt is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTFSI (lithium bis(trifluoromethane)sulfonimide), LiTDI (2 lithium -trifluoromethyl-4,5-dicyano-imidazolate), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiCICL and mixtures thereof.
- the catholyte further comprises salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
- organic cations By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
- anions By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide (abbreviated as NTf2-) or bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4-); phosphates, in particular hexafluorophosphate (abbreviated PF6-); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA-); aluminates, in particular tetrachloroaluminate (A1C14-), halides (such as bromide, chloride and iodide anions), cyanates, acetates (CH3COO-), in particular trifluoroacetate; sulphonates, in particular methanesulphonate (CH3SO3-), trifluoromethanesul
- the catholyte consists of a mixture of solvent and lithium salt and is devoid of polymer binder.
- the catholyte also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Hello.
- solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Hello.
- the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
- the catholyte also comprises a conductive organic polymer such as polymers based on PEO, PAN, PMMA, PVA.
- the catholyte has a lithium salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent.
- said cathode has the following mass composition:
- - 1% to 11% conductive additive preferably from 1.5% to 7.5%
- inorganic oxide preferably 0% to 1%
- catholyte preferably from 5% to 20%, the sum of all these percentages being 100%.
- the catholyte/polymer binder mass ratio is from 0.05 to 20, preferably from 0.1 to 10.
- said cathode has a ratio between the mass contents of the electronic conductive additive and of the polymer binder, greater than 0.7. Indeed, it was found that the contact resistance of the cathode increases when the rate of conductive additive decreases with respect to the rate of polymer binder.
- the cathode described above is manufactured by a method comprising the following steps: mixing an active electrode material, a conductive additive, an inorganic oxide and a polymer binder in a solvent, to obtain an ink.
- the mixture can be prepared using a planetary mixer or a dispersing disc.
- a solution of polymer binder in a solvent is prepared, having a solids content between 2% and 20%.
- the inorganic oxide is then dispersed in this solution.
- the conductive additive is then dispersed in this solution.
- the active material is then dispersed in this solution and the dry extract of the ink is adjusted by adding solvent, to reach a value of between 30% and 80%. coating said ink on a current collector support.
- This collector can be an aluminum sheet, coated or not with a layer of electronic conductor and/or of polymer, with a thickness of between 5 ⁇ m and 30 ⁇ m.
- the ink can be applied to one side or to both sides of the current collector. drying said ink to form a coating. The drying can be carried out on a heating plate or in an oven at a temperature varying in a range between 20°C and 150°C, with or without air flow. calendering the assembly formed by the coating and the collector so as to obtain a temperature of between 50° C. and 130° C.; impregnating said coating with an electrolyte comprising at least one solvent and at least one lithium salt.
- the cathode is impregnated in the Li-ion cell at the time of filling and before sealing the cell. Li-ion battery
- the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
- the anode is a sheet of lithium metal.
- the anode comprises a lithium insertion material such as graphite, metal oxides, non-graphitizable carbon, pyrolytic carbon, coke, carbon fibers, activated carbon, a material of alloy such as based on the elements Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, or a mixture of said anode materials.
- a lithium insertion material such as graphite, metal oxides, non-graphitizable carbon, pyrolytic carbon, coke, carbon fibers, activated carbon
- a material of alloy such as based on the elements Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, or a mixture of said anode materials.
- said is a “conventional” separator comprising one or more porous layers of polypropylene and/or polyethylene, and optionally comprising a coating on one or both sides of the separator.
- Said coating comprises a polymeric binder and inorganic particles.
- said separator is a gelled polymer membrane comprising a fluorinated polymer film and an electrolyte comprising at least one solvent and at least one lithium salt, said fluorinated film comprising at least one layer, said layer consisting of a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluorinated polymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluorinated polymer B having a mass content of HFP lower by at least 3% by weight compared to the mass content of HFP of polymer A.
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- said film consists of a single layer.
- said mixture comprises: i. a mass content of polymer A greater than or equal to 10% and less than or equal to 99%, preferably greater than or equal to 50% and less than or equal to 95%, advantageously greater than or equal to 25% and less than or equal to 95%, and ii. a mass content of polymer B less than or equal to 90% and greater than 1%, preferably less than 50% and greater than 5%.
- said monolayer fluoropolymer film has a thickness of 1 to 1000 ⁇ m, preferably from 1 ⁇ m to 500 ⁇ m, and even more preferably between 5 ⁇ m and 100 ⁇ m.
- said fluoropolymer film can be manufactured by a solvent process.
- Polymers A and B are dissolved in a solvent known for polyvinylidene fluoride or its copolymers.
- solvent known for polyvinylidene fluoride or its copolymers.
- solvent of n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetone.
- the film is obtained after deposition of the solution on a flat substrate and evaporation of the solvent.
- said fluoropolymer film is a multilayer film of which at least one of the layers is composed of a mixture of polymers A and B according to the invention.
- the overall thickness of the multilayer film is between 2 ⁇ m and 1000 ⁇ m, the thickness of the fluoropolymer layer according to the invention being between 1 ⁇ m and 999 ⁇ m.
- the additional layer or layers are chosen from the following polymer compositions: a composition consisting of a fluorinated polymer chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 90% by weight of VDF; a composition consisting of a mixture of a fluorinated polymer, chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 85% by weight of VDF, with a methyl methacrylate (MM A) homopolymer and the copolymers containing at least 50% by mass of MMA and at least one other monomer copolymerizable with the MMA.
- MM A methyl methacrylate
- the polymer (homopolymer or copolymer) of MMA comprises by mass from 0 to 20% and preferably 5 to 15% of a C1-C8 alkyl (meth)acrylate, which is preferably methyl acrylate and/or ethyl acrylate.
- the polymer (homopolymer or copolymer) of MMA can be functionalised, i.e. it contains, for example, acid, acid chloride, alcohol and anhydride functions.
- the functionality is in particular the acid function provided by the acrylic acid comonomer. It is also possible to use a monomer with two neighboring acrylic acid functions which can dehydrate to form an anhydride.
- the proportion of functionality can be from 0 to 15% by weight of the MMA polymer, for example from 0 to 10% by weight.
- said fluoropolymer film is manufactured by a process for transforming polymers in the molten state such as flat extrusion, extrusion by sheath blowing, calendering, thermocompression.
- the membrane forming the separator further comprises inorganic fillers such as silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or their mixture.
- the membrane also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures.
- solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures.
- the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
- said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
- ethers such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
- DME dimethoxyethane
- methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
- esters mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
- the glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
- lactones mention may in particular be made of gamma-butyrolactone.
- nitriles mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
- cyclic carbonates such as for example ethylene carbonate (EC) (CAS: 96-49-1), propylene carbonate (PC) (CAS: 108-32-7) , butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8 ), methyl carbonate (EMC) (CAS: 623-53-0), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) ( CAS: 623-96-1), methyl propyl carbonate (MPC) (CAS: 1333-41-1), ethyl propyl carbonate (EPC), vinylene carbonate (VC) (CAS : 872-36-6), fluoroethylene carbonate (FEC) (CAS: 114435-02-8), trifluor
- said lithium salt present in the separator is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTDI (2-trifluoromethyl-4,5-dicyano -lithium imidazolate), LiTFSI (lithium bis(trifluoromethane)sulphonimide), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiClO4 or their mixture.
- the electrolyte present in the separator comprises, in addition to the solvent and the lithium salt, at least one additive.
- the additive can be selected from the group consisting of fluoroethylene carbonate (FEC), vinylene carbonate, 4-vinyl-1,3-dioxolan-2-one, pyridazine, vinyl pyridazine, quinoline , vinyl quinoline, butadiene, sebaconitrile, alkyl disulphide, fluorotoluene, 1,4-dimethoxytetrafluorotoluene, t-butylphenol, di-t-butylphenol, tris(pentafluorophenyl)borane, oximes, aliphatic epoxides , halogenated biphenyls, metacrylic acids, allyl ethyl carbonate, vinyl acetate, divinyl adipate, propanesultone, acrylonitrile, 2-vinylpyr
- the additive can also be chosen from salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
- organic cations By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
- anions By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4); phosphates, in particular hexafluorophosphate (abbreviated PF ⁇ ); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA); aluminates, in particular tetrachloroaluminate (AICI4), halides (such as bromide, chloride or iodide anions), cyanates, acetates (CEECOO- ), in particular trifluoroacetate; sulfonates, in particular methanesulfonate (CH3SO3), trifluoromethanesulfonate; and sulphates, especially hydrogen sulph
- said electrolyte has a salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent.
- the electrolyte/fluorinated polymers ratio is from 0.05 to 20, preferably from 0.1 to 10.
- said film has a caking at least greater than or equal to 5% by weight, preferably ranging from 10% to 1000%.
- the separator in the form of a gelled polymer membrane is non-porous, which means that the gas permeability of the separator is 0 ml/min, as detected by the gas permeability test (when the surface of the separator is of 10 cm 2 , the gas pressure difference between the two sides is 1 atm, and the time is 10 minutes).
- said separator contains a single gelled polymer membrane.
- said separator consists of a multilayer film, each layer of which has the composition of the film described above.
- the membrane is not supported by a support.
- the invention relates to a process for preparing a Li-ion battery comprising said cathode.
- the Li-ion cell is prepared by assembling the anode, separator and cathode.
- a liquid electrolyte comprising at least one solvent and at least one lithium salt is introduced into the cell before sealing the cell in order to form the catholyte by swelling the binder in the cathode.
- the cell can be heated between 30°C and 90°C, and preferentially between 40°C and 70°C for 5 min to 24 h, and preferentially for 30 min to 12 h to promote the swelling of the binder of the cathode impregnated with the catholyte, and polymer gel in the separator (if applicable).
- the Li-ion cell can also be pressurized by 0.01 MPa to 3 MPa to promote the impregnation of the catholyte in the cathode.
- the cathode containing the catholyte is assembled with a separator and an anode, the separator possibly being a solid or quasi-solid electrolyte such as a polymer gel electrolyte.
- PVDF 1 Copolymer of vinylidene fluoride (VDF) and vinylidene hexafluoride (HFP) with 25% by weight of HFP, characterized by a viscosity in the molten state of 1000 Pa.s at 100 s 1 and 230 °C.
- PVDF 2 Homopolymer of vinylidene fluoride characterized by a melt viscosity of 1000 Pa.s at 100 s 1 and 230°C.
- PVDF 3 Acid functionalized vinylidene fluoride homopolymer with a functionality rate of approximately 1% by mass, characterized by a viscosity of 547 cP at 5 s -1 and 25°C in a 10% NMP solution of dry extract.
- LiFSI Lithium bis(fluorosulfonyl)imide
- quasi-solid cathodes are prepared by mixing the active material, the carbon black electronic conductor, and the binder, which can be a mixture of a copolymer and a homopolymer of PVDF, in the solvent N-methyl pyrrolidone.
- the ink is smeared onto an aluminum current collector, which is then dried to evaporate the solvent.
- the electrode is then calendered to reduce the porosity.
- Impedance measurements are carried out in a button cell containing two similar cathodes, separated by a three-layer PP/PE/PP separator.
- the appended figure 1 presents the impedance spectra obtained with the cathodes of table 1.
- the diameter of the semi-circle is proportional to the contact resistance at the interface between the cathode and the aluminum current collector.
- the cathodes of Examples 1 and 2 have a relatively low contact resistance close to that of Comparative Example 1.
- the contact resistance increases when the carbon black content relative to the binder decreases, as shown by the NC/PVDE ratio values in Table 1.
- the cathode of example 2 is assembled as a button cell facing a lithium metal anode.
- the separator is a membrane made up of PVDE 1 and PVDE 2. 20 ⁇ L of liquid electrolyte containing 0.75M LiESI in the dimethoxyethane solvent is injected into the button cell before it is sealed. The battery is then placed in an oven at 45°C for 2 hours so that the electrolyte swells the polymer and forms a gel in the separator and the catholyte.
- the cathode of comparative example 1 is assembled as a button cell facing a lithium metal anode.
- the separator is a tri-layer PP/PE/PP and the electrolyte contains IM LiPE6 in EC/EMC (3:7, vol).
- FIG. 2 shows the capacitance delivered by the cathodes E2 and EC1 at a discharge current of IC.
- the quasi-solid cathode of Example 2 assembled with a polymer gel electrolyte has similar IC performance to the cathode of Comparative Example 1 operating with a liquid electrolyte.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
- Cell Separators (AREA)
- Conductive Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2012476A FR3116950B1 (fr) | 2020-12-01 | 2020-12-01 | Electrode pour batterie li-ion quasi solide |
PCT/FR2021/052162 WO2022117953A1 (fr) | 2020-12-01 | 2021-12-01 | Electrode pour batterie li-ion quasi solide |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4256633A1 true EP4256633A1 (de) | 2023-10-11 |
Family
ID=75539395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21839603.4A Pending EP4256633A1 (de) | 2020-12-01 | 2021-12-01 | Elektrode für quasi-feste li-ionen-batterie |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240021872A1 (de) |
EP (1) | EP4256633A1 (de) |
JP (1) | JP2024501146A (de) |
KR (1) | KR20230117185A (de) |
CN (1) | CN116636033A (de) |
FR (1) | FR3116950B1 (de) |
TW (1) | TW202232812A (de) |
WO (1) | WO2022117953A1 (de) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4466007B2 (ja) | 2003-07-18 | 2010-05-26 | ソニー株式会社 | 電池 |
KR100965125B1 (ko) * | 2009-07-27 | 2010-06-23 | 배트로닉스(주) | 박막형 리튬/산화망간 전지 제조방법 |
FR2987624B1 (fr) * | 2012-03-01 | 2015-02-20 | Arkema France | Composition polymerique fluoree |
FR3049114B1 (fr) | 2016-03-18 | 2018-03-09 | Blue Solutions | Batterie lithium metal polymere a haute densite d'energie |
EP3809500A4 (de) * | 2018-06-12 | 2021-07-28 | Kureha Corporation | Bindemittelzusammensetzung, elektrodengemisch, elektrodenstruktur, verfahren zur herstellung einer elektrodenstruktur und sekundärzelle |
-
2020
- 2020-12-01 FR FR2012476A patent/FR3116950B1/fr active Active
-
2021
- 2021-12-01 JP JP2023533290A patent/JP2024501146A/ja active Pending
- 2021-12-01 TW TW110144923A patent/TW202232812A/zh unknown
- 2021-12-01 CN CN202180080747.0A patent/CN116636033A/zh active Pending
- 2021-12-01 US US18/038,730 patent/US20240021872A1/en active Pending
- 2021-12-01 WO PCT/FR2021/052162 patent/WO2022117953A1/fr active Application Filing
- 2021-12-01 EP EP21839603.4A patent/EP4256633A1/de active Pending
- 2021-12-01 KR KR1020237022268A patent/KR20230117185A/ko unknown
Also Published As
Publication number | Publication date |
---|---|
FR3116950A1 (fr) | 2022-06-03 |
WO2022117953A1 (fr) | 2022-06-09 |
FR3116950B1 (fr) | 2023-04-14 |
CN116636033A (zh) | 2023-08-22 |
JP2024501146A (ja) | 2024-01-11 |
TW202232812A (zh) | 2022-08-16 |
US20240021872A1 (en) | 2024-01-18 |
KR20230117185A (ko) | 2023-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3341987B1 (de) | Lithium-ionen-gelbatterie | |
EP2729978B1 (de) | Lithium-/schwefelakkumulator | |
WO2020102907A1 (fr) | Compositions polymériques comprenant au moins deux sels de lithium et leur utilisation dans des cellules électrochimiques | |
WO2021237335A1 (fr) | Cellules électrochimiques à l'état solide, procédés pour leur préparation et leurs utilisations | |
EP3648205A1 (de) | Elektrochemischer generator auf lithium- und fluorkohlenwasserstoff-basis, der ein spezifisches negatives elektrodenmaterial umfasst | |
EP4008031B1 (de) | Verfahren zur herstellung einer elektrode mit einer einen elektrolyten einfangenden polymermatrix | |
EP4320668A1 (de) | Festelektrolyt für li-ionen-batterie | |
EP4256633A1 (de) | Elektrode für quasi-feste li-ionen-batterie | |
EP3327832B1 (de) | Verfahren zur herstellung einer positiven elektrode für eine lithium-schwefel-batterie | |
EP4058508B1 (de) | Gelierte polymermembran für li-ionen-batterie | |
EP3647443A1 (de) | Spezifische negative elektrode auf lithiumbasis und elektrochemischer generator auf lithiumbasis, der eine solche negative elektrode umfasst | |
WO2024105128A1 (fr) | Composition d'electrolyte a base de sel de (2-cyanoethyl)phosphonium et batterie le comprenant | |
WO2023047064A1 (fr) | Revetement de cathode pour batterie li-ion | |
EP3327831B1 (de) | Verfahren zur herstellung einer porösen positiven elektrode für eine lithium-schwefel-batterie | |
EP3472882B1 (de) | Verfahren zur herstellung einer als positivelektrode und als stromabnehmer wirkenden struktur für einen elektrochemischen lithium-schwefel-akkumulator | |
EP3659201B1 (de) | Lithium-schwefel-batteriezelle mit einem spezifischen separator | |
WO2023047065A1 (fr) | Revetement d'anode pour batterie li-ion tout solide | |
WO2024156965A1 (fr) | Procédé de fabrication d'un électrolyte tout solide pour batteries secondaires | |
FR3112029A1 (fr) | Electrode traitee en surface, les elements, modules et batteries la comprenant | |
WO2023139329A1 (fr) | Electrolyte solide pour batterie tout solide | |
CA2232107C (fr) | Generateurs a electrolyte polymere possedant un sel de potassium permettant de stabiliser les performances et la vie utile de la batterie | |
CA2249630C (fr) | Composition electrolytique a base de polymeres pour generateur electrochimique | |
FR3145236A1 (fr) | Procédé de fabrication de cellule électrochimique | |
FR3127331A1 (fr) | Formulation d’une composition pour cathode comprenant une matière active fonctionnant à haut potentiel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |