WO2023139329A1 - Electrolyte solide pour batterie tout solide - Google Patents

Electrolyte solide pour batterie tout solide Download PDF

Info

Publication number
WO2023139329A1
WO2023139329A1 PCT/FR2023/050062 FR2023050062W WO2023139329A1 WO 2023139329 A1 WO2023139329 A1 WO 2023139329A1 FR 2023050062 W FR2023050062 W FR 2023050062W WO 2023139329 A1 WO2023139329 A1 WO 2023139329A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
chosen
vdf
copolymer
lithium salt
Prior art date
Application number
PCT/FR2023/050062
Other languages
English (en)
Inventor
Gérôme GODILLOT
Christophe Navarro
Christine TARISSE
Anthony Bonnet
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2023139329A1 publication Critical patent/WO2023139329A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte

Definitions

  • the present invention generally relates to the field of electrical energy storage in all-solid batteries, in particular in secondary batteries of the Li-ion type. More specifically, the invention relates to a solid electrolyte consisting of a polymer matrix and a mechanical reinforcement, which allows the manufacture of a non-porous film having a very good compromise between ionic conductivity, electrochemical stability, thermal stability, mechanical strength and fire resistance. This film is intended for an all-solid battery separator or electrolyte application, in particular for Li-ion batteries. The invention also relates to an all-solid battery comprising such a separator and/or such a non-porous film.
  • a Li-ion battery includes at least a negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator and an electrolyte.
  • the electrolyte consists of a lithium salt, generally lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
  • a high dielectric constant promotes the dissociation of ions, and therefore the number of ions available in a given volume, while a low viscosity is favorable to ionic diffusion which plays an essential role, among other parameters, in the charging and discharging rates of the electrochemical system.
  • Lithium-ion batteries conventionally use liquid electrolytes composed of solvent(s), lithium salt(s) and additive(s). These electrolytes have good ionic conductivity but are prone to leaking or igniting if the battery is damaged.
  • solid electrolytes overcomes these difficulties.
  • solid electrolytes are generally less conductive than liquid electrolytes.
  • the difficulty of solid electrolytes is to reconcile high ionic conductivity, good electrochemical stability and sufficient temperature resistance.
  • the ionic conductivity must be equivalent to that of liquid electrolytes (ie around 1 mS/cm at 25°C).
  • the electrochemical stability must allow the use of the electrolyte with cathode materials that can operate at high voltage (> 4.5 V).
  • the solid electrolyte must operate at least up to 80°C and not ignite below 130°C.
  • sufficient mechanical strength must be obtained at the level of the separator. The latter must, in particular, prevent the formation of dendrites during charge/discharge cycles.
  • the solid electrolyte must demonstrate better safety, but this cannot be done to the detriment of other performances.
  • the solid electrolyte must be able to be manipulated (stretched) and rolled.
  • PVDF Poly(vinylidene fluoride)
  • P(VDF-HFP) copolymer copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • Document US 5296318 describes solid electrolyte compositions comprising a mixture of copolymer P (VDF-co-HFP), lithium salt, and compatible solvent with a medium boiling point (i.e. between 100 ° C and 150 ° C), capable of forming an extensible and self-supporting film.
  • Example 2 describes the preparation of a film having a thickness of 100 ⁇ m from a composition containing a copolymer P(VDF-HFP), LiPF6 (lithium hexafluorophosphate) and a mixture of ethylene carbonate and propylene carbonate.
  • Composite solid electrolytes exhibit improved mechanical properties.
  • PVDF/PP/PVDF composites Polypropylene (PP) is Celgard 2400 microporous film.
  • PVDF is HSV900 type homopolymer from Shenzhen Kejing Star Technology Co. The composite contains 25 wt% LiCIC.
  • a PVDF/PP/PVDF tri-layer film of 100 ⁇ m displays an ionic conductivity of 0.15 mS/cm at 25°C and makes it possible to increase the Young's modulus from 24 to 102 MPa compared to a PVDF monolayer.
  • the trilayer is prepared in N,N-dimethylformamide (DMF), and a significant amount of free DMF remains trapped in the PVDF after drying, which limits the electrochemical stability.
  • DMF N,N-dimethylformamide
  • the object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a solid electrolyte composition having performances at least equivalent to those of a liquid electrolyte.
  • the invention also relates to a non-porous polymeric film consisting of said composition having good properties of mechanical strength, ionic conductivity and electrochemical stability.
  • the invention also aims to provide at least one method for manufacturing this polymeric film.
  • Another object of the invention is a separator, in particular for a Li-ion battery consisting, in whole or in part, of said film.
  • This separator can also be used in a battery, a capacitor, an electrochemical double layer capacitor, a membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device.
  • MEA membrane-electrode assembly
  • the invention aims to provide all-solid batteries, in particular rechargeable Li-ion batteries comprising such a separator.
  • the invention relates firstly to a solid electrolyte composition consisting of a matrix consisting of the following components a), b) and c): a) at least one copolymer of vinylidene fluoride (VDF) and at least one comonomer compatible with VDF, b) at least one plasticizer, c) at least one lithium salt, and d) at least one mechanical reinforcement (component d).
  • VDF vinylidene fluoride
  • plasticizer a plasticizer
  • lithium salt at least one lithium salt
  • mechanical reinforcement component d
  • comonomer compatible with VDF is meant a comonomer which can be polymerized with VDF; these monomers are preferably chosen from vinyl fluoride, trifluoroethylene, chloro trifluoroethylene (CTFE), 1,2-difluoroethylene, tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alky vinyl) ethers such as perfluoro (methylvinyl) ether (PMVE), perfluoro (ethylvinyl) ether (PEVE), perfluoro (propylvinyl) ether (PP VE).
  • CCTFE chloro trifluoroethylene
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • perfluoro (alky vinyl) ethers such as perfluoro (methylvinyl) ether (PMVE), perfluoro (ethylvinyl) ether (PEVE), perfluoro
  • the VDF copolymer is a terpolymer.
  • component a) is at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), or P(VDF-HFP).
  • said P(VDF-HFP) copolymer has a mass content of HFP greater than or equal to 5% and less than or equal to 45%.
  • said lithium salt is chosen from the list: LiFSI, LiTFSI, LiTDI, LiPF 6 , LiBF 4 and LiBOB.
  • the reinforcement is made of any material that improves the mechanical properties compared to the matrix alone.
  • the invention also relates to a non-porous film consisting of said solid electrolyte composition.
  • the film does not contain a solvent with a low boiling point (namely below 150° C.) and has a high ionic conductivity.
  • Another object of the invention is a separator, in particular for a Li-ion rechargeable battery, comprising a film as described.
  • the invention also relates to an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • Another object of the invention is an all-solid lithium-based battery, for example a Li-ion battery, or Li-S or Li-air batteries, comprising a negative electrode, a positive electrode and a separator, in which said separator comprises a film as described.
  • the invention also relates to an all-solid battery comprising such a non-porous film.
  • the present invention makes it possible to overcome the drawbacks of the state of the art. It more particularly provides a non-porous film capable of functioning as an all-solid battery separator, which combines high ionic conductivity, good electrochemical stability, temperature resistance, and sufficient mechanical strength to allow easy handling.
  • the advantage of this invention is to offer a better guarantee of safety compared to a separator or an electrolyte based on liquid electrolyte, for electrochemical performances at least equal to those of liquid electrolytes. There is therefore no possible electrolyte leakage, and the flammability of the electrolyte is greatly reduced.
  • the solid electrolyte according to the invention can be used in a battery with an anode made of graphite, silicon or graphite and silicon.
  • anode made of graphite, silicon or graphite and silicon.
  • its resistance to the growth of dendrites on the surface of the anode also allows a lithium metal anode, which allows a gain in energy density compared to conventional Li-ion technologies.
  • Figure 1 is a diagram representing the variation of the tensile force as a function of the elongation for two films: comparative film 1, and film 2 according to the invention.
  • the invention relates to a solid electrolyte composition consisting of a matrix consisting of the following components a), b) and c): a) at least one copolymer of vinylidene fluoride (VDF) and at least one comonomer compatible with VDF, b) at least one plasticizer, c) at least one lithium salt, and d) at least one mechanical reinforcement (component d).
  • VDF vinylidene fluoride
  • b) at least one plasticizer at least one lithium salt
  • mechanical reinforcement component d
  • said solid electrolyte film comprises the following characteristics, possibly combined.
  • the contents indicated are expressed by weight, unless otherwise indicated.
  • the concentration ranges given include the limits, unless otherwise indicated.
  • Component a) consists of at least one copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride (hereinafter referred to as "VDF copolymer").
  • VDF copolymer contains at least 50% by mass of vinylidene difluoride, advantageously at least 70% by mass of VDF and preferably at least 80% by mass of VDF.
  • Comonomers compatible with vinylidene difluoride can be halogenated (fluorinated, chlorinated or brominated) or non-halogenated.
  • fluorinated comonomers examples include: vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoropropenes and in particular 3,3,3-trifluoropropene, tetrafluoropropenes and in particular 2,3,3,3-tetrafluoropropene or 1,3,3,3-tetrafluoropropene, hexafluoroisobutylene, perfluorobutylethylene, pentafluoropropenes and in particular 1,1,3, 3,3-pentafluoropropene or 1,2,3,3,3-pentafluoropropene, perfluoroalkylvinylethers and in particular those of general formula Rf-O-CF-CF2, Rf being an alkyl group, preferably C1 to C4 (preferred examples being perfluoropropyl vinylether and perfluoromethylvinylether).
  • the fluorinated monomer can contain a chlorine or bromine atom. It can in particular be chosen from bromotrifluoroethylene, chlorofluoroethylene, chlorotrifluoroethylene and chlorotrifluoropropene.
  • Chlorofluoroethylene can denote either 1-chloro-1-fluoroethylene or 1-chloro-2-fluoroethylene.
  • the 1-chloro-1-fluoroethylene isomer is preferred.
  • the chlorotrifluoropropene is preferably 1-chloro-3,3,3-trifluoropropene or 2-chloro-3,3,3-trifluoropropene.
  • component a) consists of a VDF copolymer.
  • component a) consists of a P(VDF-HFP) copolymer.
  • the P(VDF-HFP) copolymer has a mass content of HFP greater than or equal to 5%, preferably greater than or equal to 8%, advantageously greater than or equal to 11%, and less than or equal to 45%, preferably less than or equal to 30%.
  • said component a) consists of a mixture of two VDF copolymers of different structures.
  • component a) consists of a VDF copolymer to which is added a PVDF homopolymer in a mass proportion ranging from 0 to 10% based on the weight of said component a).
  • said component a) consists of a mixture of a PVDF homopolymer (in a proportion of up to 10%) and of a P(VDF-HFP) copolymer.
  • the VDF copolymer and/or the PVDF homopolymer forming part of the composition of component a) comprises monomer units bearing at least one of the following functions: carboxylic acid, carboxylic acid anhydride, carboxylic acid esters, epoxy groups (such as glycidyl), amide, hydroxyl, carbonyl, mercapto, sulphide, oxazoline, phenolics, ester, ether, siloxane, sulphonic, sulfuric, phosphoric, phosphonic.
  • the function is introduced by a chemical reaction which can be grafting, or a copolymerization of the fluorinated monomer with a monomer bearing at least one of said functional groups and a vinyl function capable of copolymerizing with the fluorinated monomer, according to techniques well known by those skilled in the art.
  • the functional group bears a carboxylic acid function which is a group of (meth)acrylic acid type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and hydroxyethylhexyl (meth) acrylate.
  • the units carrying the carboxylic acid function also comprise a heteroatom chosen from oxygen, sulphur, nitrogen and phosphorus.
  • the functional group content of the VDF copolymer and/or of the PVDF homopolymer forming part of the composition of component a) is at least 0.01% molar, preferably at least 0.1% molar, and at most 15% molar, preferably at most 10% molar.
  • the VDF copolymer has a high molecular weight.
  • high molecular weight as used herein, is meant a copolymer having a melt viscosity greater than 100 Pa.s, preferably greater than 500 Pa.s, more preferably greater than 1000 Pa.s, according to the ASTM D-3835 method measured at 232 ° C and 100 sec -1 .
  • VDF copolymers used in the invention can be obtained by known polymerization methods such as polymerization in emulsion, in solution or in suspension.
  • they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
  • said VDF copolymer is a random copolymer.
  • This type of copolymer has the advantage of having a homogeneous distribution of the comonomer along the vinylidene fluoride chains.
  • said VDF copolymer is a so-called “heterogeneous” copolymer, which is characterized by a non-homogeneous distribution of the comonomer along the VDF chains, due to the synthesis process described by the applicant, for example in document US 6187885 or in document US 10570230.
  • a heterogeneous copolymer has two (or more) distinct phases, with a phase rich in homopolymer PVDF and a copolymer phase rich in comonomer.
  • the heterogeneous copolymer consists of discontinuous, discrete and individual copolymer domains of comonomer-rich phase, which are homogeneously distributed in a continuous PVDF-rich phase. We then speak of a non-continuous structure.
  • the heterogeneous copolymer is a copolymer having two (or more) continuous phases which are intimately linked together and cannot be physically separated. We then speak of a co-continuous structure.
  • said heterogeneous copolymer comprises two or more co-continuous phases which comprise: a) from 25 to 50 percent by weight of a first co-continuous phase comprising 90-100 percent by weight of monomer units of vinylidene fluoride and 0 to 10 percent by weight of units of other fluoromonomers, and b) from more than 50% by weight to 75% by weight of a second co-continuous phase comprising from 65 to 95% by weight of vinylidene fluoride monomer units and an effective amount of a or more comonomers, such as hexafluoropropylene and perfluorovinyl ether, to cause phase separation of the co-continuous second phase from the continuous first phase.
  • a first co-continuous phase comprising 90-100 percent by weight of monomer units of vinylidene fluoride and 0 to 10 percent by weight of units of other fluoromonomers
  • a second co-continuous phase comprising from 65 to 95% by weight of vinylidene fluoride
  • the heterogeneous copolymer can be made by forming an initial polymer that is rich in VDF monomer units, generally greater than 90 wt% VDF, preferably greater than 95 wt%, and in a preferred embodiment, a PVDF homopolymer, then adding a co-monomer to the reactor well into the polymerization to produce a copolymer.
  • VDF-rich polymer and copolymer will form distinct phases resulting in an intimate heterogeneous copolymer.
  • Copolymerization of VDF with a comonomer, for example with HFP results in a latex generally having a solids content of 10 to 60% by weight, preferably 10 to 50%, and having a weight average particle size of less than 1 micron, preferably less than 800 nm, and more preferably less than 600 nm.
  • the weight average size of the particles is generally at least 20 nm, preferably at least 50 nm, and advantageously the average size is in the range of 100 to 400 nm.
  • the polymer particles can form agglomerates whose average size by weight is from 1 to 30 micrometers, and preferably from 2 to 10 micrometers. Agglomerates can break down into discrete particles during formulation and application to a substrate.
  • VDF copolymers used in the invention can form a gradient between the core and the surface of the particles, in terms of composition (comonomer content, for example) and/or molecular mass.
  • the VDF copolymers contain bio-based VDF.
  • bio-based VDF means “derived from biomass”. This improves the ecological footprint of the membrane.
  • Bio-based VDF can be characterized by a renewable carbon content, i.e. carbon of natural origin and coming from a biomaterial or biomass, of at least 1 atomic % as determined by the 14C content according to standard NF EN 16640.
  • renewable carbon indicates that the carbon is of natural origin and comes from a biomaterial (or from biomass), as indicated below.
  • the bio-carbon content of the VDF can be greater than 5%, preferably greater than 10%, preferably greater than 25%, preferably greater than or equal to 33%, preferably greater than 50%, preferably greater than or equal to 66%, preferably greater than 75%, preferably greater than 90%, preferably greater than 95%, preferably greater than 98%, preferably greater than 99%, advantageously equal to 100%.
  • the second component of the solid electrolyte composition of the invention consists of at least one plasticizer.
  • said plasticizer is an ionic liquid.
  • An ionic liquid is a salt that is liquid at room temperature, i.e. it has a melting point below 100°C under atmospheric pressure. It is formed by the association of an organic cation and an anion whose ionic interactions are weak enough not to form a solid.
  • this cation may comprise a C1-C30 alkyl group, such as 1-butyl-1-methylpyrrolidinium, 1-ethyl-3-methylimidazolium, N-methyl-N-propylpyrrolydinium or N-methyl-N-butylpiperidinium.
  • the anions which are associated with them are chosen from: imides, in particular bis(fluorosulfonyl)imide and bis(trifhioromethanesulfonyl)imide; borates; phosphates; phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide; aluminates, in particular tetrachloroaluminate; halides (such as bromide, chloride, iodide anions); cyanates; acetates (CH3COO), in particular trifluoroacetate; sulfonates, in particular methanesulfonate (CH3SO3), trifluoromethanesulfonate; and sulphates, especially hydrogen sulphate.
  • imides in particular bis(fluorosulfonyl)imide and bis(trifhioromethanesulfonyl)imide
  • borates phosphates; phos
  • the anions are chosen from tetrafluoroborate (BFF), bis(oxalato)borate (BOB'), F hexafluorophosphate (PF ⁇ '), hexafluoroarsenate (ASF ⁇ "), triflate or trithioromethylsulfonate (CF3SO3'), bis(thiorosulfonyl)imide (FSF), bis-(trifhioromethanesulfonyl)imide (TFSF), nitrate (NO3') and 4,5-dicyano-2- (trifhioromethyl)imidazole (TDF).
  • BFF tetrafluoroborate
  • BOB' bis(oxalato)borate
  • PF ⁇ ' F hexafluorophosphate
  • ASF ⁇ hexafluoroarsenate
  • CF3SO3' triflate or trithioromethylsulfonate
  • FSF bis(thiorosulfon
  • said anion of the ionic liquid is chosen from TDF, FSF, TFSF, PF ⁇ ′, BF 4 ′, NO 3 ⁇ and BOB′.
  • said anion of the ionic liquid is FSF.
  • said component b) is a mixture of at least two ionic liquids chosen from those described above.
  • component b) of the solid electrolyte composition of the invention is a mixture of at least one ionic liquid and at least one solvent with a high boiling point (above 160°C).
  • said solvent is chosen from: - vinylene carbonate (VC) (CAS: 872-36-6),
  • F2EC trans-4,5-difluoro-l,3-dioxolan-2-one
  • PC - propylene carbonate
  • - ethers such as poly ethylene glycol dimethyl ethers, in particular diethylene glycol dimethyl ether (EG2DME), triethylene glycol dimethyl ether (EG3DME), and tetraethylene glycol dimethyl ether (EG4DME).
  • EG2DME diethylene glycol dimethyl ether
  • EG3DME triethylene glycol dimethyl ether
  • EG4DME tetraethylene glycol dimethyl ether
  • Plasticizers provide improved properties of conductivity, electrochemical stability, thermal stability, compatibility with electrodes, capacity retention compared to conventional liquid electrolytes.
  • component b) according to the invention are the following mixtures:
  • the mass ratio between the ionic liquids and the solvents forming the compound b) varies from 10:0.1 to 0.1:10.
  • the lithium salt present in the solid electrolyte composition comprises the same anion as those of the ionic liquid present in component b).
  • said lithium salt is chosen from: LiPF6, LiFSI, LiTFSI, LiTDI, LiBF 4 , LiNO 3 and LiBOB.
  • the mechanical reinforcement consists of any material (porous membrane, woven or non-woven) allowing the mechanical properties to be improved compared to the matrix alone (components a+b+c). This may be, without limitation:
  • microporous film based on polyolefins such as polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), Celgard® Li-ion separator,
  • PVDF polyethersulfone
  • PES polyethersulfone
  • PSU polysulfone
  • a woven substrate e.g. PP, PE, PET, PVDF, PES, PSU, inorganic fibres
  • melt blown for example PP, PET, PVDF, PES, PSU
  • spunbond substrate for example PP, PET, PVDF, PES, PSU
  • the mechanical reinforcement is a multilayer material with at least one polyolefin layer and at least one inorganic layer, for example Celgard® PP coated with an alumina layer on both sides.
  • the mechanical reinforcement can be chosen from polymers (for example polyolefin, PVDF, PTFE, polyamide, polyimide, polyaramid, polybenzoaxoles, polybenzimidazoles, polybenzthiazoles, polyphosphazenes, PEKK, PEEK, PES, PSU), carbon fibers (for example "vapor grown carbon fibers” (VGCF®)), carbon nanotubes (NTC), inorganic fibers (for example glass fibers), and vegetable fibers (for example paper, lignin, cellulose, cellulose nanowhiskers).
  • polymers for example polyolefin, PVDF, PTFE, polyamide, polyimide, polyaramid, polybenzoaxoles, polybenzimidazoles, polybenzthiazoles, polyphosphazenes, PEKK, PEEK, PES, PSU
  • carbon fibers for example "vapor grown carbon fibers” (VGCF®)
  • carbon nanotubes for example glass fibers
  • vegetable fibers for example paper, lign
  • the woven or nonwoven is made of fibers and has a basis weight of less than 50 g/m 2 , preferably less than 30 g/m 2 , preferably less than 20 g/m 2 and advantageously less than 15 g/m 2 .
  • the solid electrolyte composition consists of: a) 8 to 66.5% of VDF copolymer(s), b) 4 to 76% of plasticizer(s), and c) 0.8 to 28.5% of lithium salt(s), d) 5 to 60% of mechanical reinforcement, the sum of all the constituents being 100%.
  • the solid electrolyte composition consists of:
  • the solid electrolyte composition consists of a P(VDF-HFP) copolymer, an EMIM-FSEEG4DME, LiFSI mixture, and a PVDF nonwoven in a mass proportion of 32/44.8/3.2/20, the EMIM-FSVEG4DME mass ratio being 1:1.
  • the invention also relates to a non-porous film or membrane consisting of said solid electrolyte composition.
  • the film does not contain any solvent and has a high ionic conductivity.
  • the film is self-supporting, that is to say it can be manipulated without the aid of a support.
  • the film is able to be rolled up, that is to say that it can be manipulated so that it can be rolled up on a reel.
  • said film has a thickness of 5 to 60 ⁇ m, preferably from 5 to 30 ⁇ m, more preferably from 7 ⁇ m to 20 ⁇ m.
  • the film according to the invention has an ionic conductivity ranging from 0.01 to 5 mS/cm, preferably from 0.05 to 5 mS/cm, advantageously from 0.5 to 5 mS/cm, at 25°C.
  • Conductivity is measured by electrochemical impedance spectroscopy.
  • the non-porous film is placed between two gold electrodes in a sealed conductivity cell and under an inert atmosphere (CESH, Biology) and an electrochemical impedance spectroscopy is carried out between 1 Hz and 1 MHz with an amplitude of 10 mV.
  • the conductivity value at a given temperature is obtained by taking the average of at least two measurements carried out on different samples.
  • the film according to the invention has good electrochemical stability over the temperature range from -20°C to 80°C.
  • the film according to the invention has a content of solvent(s) with a boiling point of less than 150° C., less than 1% by weight, preferably less than 0.1%, preferably less than 10 ppm.
  • the film retains its properties up to 80°C and does not ignite below 130°C.
  • the film according to the invention has a mechanical strength characterized by an elastic modulus, measured at 1 Hz and 23° C. by dynamic mechanical analysis, greater than 0.1 MPa, preferably greater than IMPa, even more preferably greater than
  • the invention also aims to provide at least one method for manufacturing this non-porous polymeric film.
  • said film is manufactured by immersion in a solution containing a, b and c.
  • Said at least one VDF copolymer is dissolved at room temperature in a solvent chosen from: n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetonitrile, and acetone.
  • Said at least one lithium salt is dissolved in a solution of at least one plasticizer, to obtain a lithium salt solution.
  • the two solutions are mixed.
  • a mechanical reinforcement is then immersed in the final solution.
  • the film is then dried, for example at 60° C. under vacuum for 1 night. In the case of acetone, it can be dried in a ventilated oven. A perfectly homogeneous and transparent self-supported film is finally obtained.
  • said film is manufactured by coating.
  • Said at least one VDF copolymer is dissolved at room temperature in a solvent chosen from: n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetonitrile, and acetone.
  • Said at least one lithium salt is dissolved in the ionic liquid/plasticizer mixture, to obtain a lithium salt solution. The two solutions are mixed.
  • a mechanical reinforcement is coated on one side or both sides, by the mixture thus obtained, for example using a doctor blade.
  • the film is then dried, for example at 60° C. under vacuum for 1 night. In the case of acetone, it can be dried in a ventilated oven. A perfectly homogeneous and transparent self-supported film is finally obtained.
  • Another object of the invention is an all-solid battery separator consisting, in whole or in part, of said film.
  • the invention also relates to an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • Another object of the invention is an all-solid battery, for example a Li-ion battery, or Li-S or Li-air batteries, comprising a negative electrode, a positive electrode and a separator, in which said separator comprises a film as described above.
  • said battery comprises a lithium metal anode.
  • the invention also relates to an all-solid battery comprising an anode, a cathode and a separator, in which the anode and/or the cathode comprise such a non-porous film.
  • P(VDF-HFP) poly(vinylidene fluoride)-co-hexafluoropropylene
  • EMIM-FSI lithium bis(fluorosulfonyl)amide
  • EMIM-FSI l-ethyl-3-methylimidazolium bis(fluorosulfonyl imide
  • EG4DME tetraethylene glycol dimethyl ether
  • the residual solvent is measured by GC-MS.
  • the amount of acetone is below the detection limit of this technique, i.e. 10 ppm.
  • a solid electrolyte of the same composition as example 1 is prepared with a different imbibition process.
  • 0.4 g of P(VDF-HFP) (containing 11% of HFP by weight) are dissolved in 1.93 g of acetone at ambient temperature.
  • 0.056 g of LiFSI lithium bis (fluoro sulfonyl) amide
  • EMIM-FSI l-ethyl-3-methylimidazolium bis (fluoro sulfonyl imide)
  • EMIM-FSI l-ethyl-3-methylimidazolium bis (fluoro sulfonyl imide
  • EG4DME tetraethylene glycol dimethyl ether
  • the final solution is then coated on a non -woven polypropylene (thickness 40 ⁇ m, porosity approximately 50%, weight 18 g/m 2 ) using a doctor blade.
  • the height of the doctor blade is greater than the thickness of the nonwoven. It is then dried at 60° C. under vacuum for 1 night. A self-supporting transparent film of approximately 60 ⁇ m is finally obtained.
  • the residual solvent is measured by GC-MS.
  • the amount of acetone is below the detection limit of this technique, i.e. 10 ppm.
  • the conductivity is evaluated by electrochemical impedance spectroscopy by placing the solid electrolyte (prepared under an inert atmosphere) between the two gold electrodes of a cell of sealed conductivity and under inert atmosphere (CESH, Bilogic). 0.26 mS/cm are measured at 25° C. on the submerged solid electrolyte and 0.21 mS/cm at 25° C. on the coated solid electrolyte.
  • Figure 1 shows the result of a tensile test carried out on two films of solid electrolyte, in the form of a graph presenting the tensile force applied to each specimen as a function of the elongation.
  • the film (1) is composed only of a polymer matrix without mechanical reinforcement, while the film (2) is composed of a matrix (the same matrix as film 1) with a mechanical reinforcement in the form of non-woven polypropylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention a trait de manière générale au domaine du stockage d'énergie électrique dans des batteries tout solide, notamment dans les batteries secondaires de type Li-ion. Plus précisément, l'invention concerne un électrolyte solide constitué d'une matrice polymère et d'un renfort fibreux, qui permet la fabrication d'un film non-poreux présentant un très bon compromis entre conductivité ionique, stabilité électrochimique, stabilité à haute température, et tenue mécanique. Ce film est destiné à une application de séparateur de batterie tout solide, notamment pour les batteries Li-ion. L'invention concerne aussi une batterie tout solide comprenant un tel séparateur et/ou un tel électrolyte.

Description

ELECTROLYTE SOLIDE POUR BATTERIE TOUT SOLIDE
DOMAINE DE L'INVENTION
La présente invention a trait de manière générale au domaine du stockage d’énergie électrique dans des batteries tout solide, notamment dans les batteries secondaires de type Li-ion. Plus précisément, l’invention concerne un électrolyte solide constitué d’une matrice polymère et d’un renfort mécanique, qui permet la fabrication d’un film non-poreux présentant un très bon compromis entre conductivité ionique, stabilité électrochimique, stabilité thermique, tenue mécanique et résistance au feu. Ce film est destiné à une application de séparateur ou électrolyte de batterie tout solide, notamment pour les batteries Li-ion. L’invention concerne aussi une batterie tout solide comprenant un tel séparateur et/ou un tel film non-poreux.
ARRIERE-PLAN TECHNIQUE
Une batterie Li-ion comprend au moins une électrode négative ou anode couplée à un collecteur de courant en cuivre, une électrode positive ou cathode couplée avec un collecteur de courant en aluminium, un séparateur et un électrolyte. L’électrolyte est constitué d’un sel de lithium, généralement l’hexafluorophosphate de lithium, mélangé à un solvant qui est un mélange de carbonates organiques, choisis pour optimiser le transport et la dissociation des ions. Une constante diélectrique élevée favorise la dissociation des ions, et donc, le nombre d’ions disponibles dans un volume donné, alors qu’une faible viscosité est favorable à la diffusion ionique qui joue un rôle essentiel, entre autres paramètres, dans les vitesses de charge et décharge du système électrochimique.
Les batteries lithium-ion utilisent classiquement des électrolytes liquides composés de solvant(s), sel(s) de lithium et additif(s). Ces électrolytes ont une bonne conductivité ionique mais sont susceptibles de fuir ou de s’enflammer si la batterie est endommagée.
L’utilisation d’électrolytes solides permet de pallier à ces difficultés. Cependant, les électrolytes solides sont généralement moins conducteurs que les électrolytes liquides. La difficulté des électrolytes solides est de concilier une conductivité ionique élevée, une bonne stabilité électrochimique ainsi qu’une tenue en température suffisante. La conductivité ionique doit être équivalente à celle des électrolytes liquides (i.e. de l’ordre de 1 mS/cm à 25 °C). La stabilité électrochimique doit permettre l’utilisation de l’électrolyte avec des matériaux de cathode pouvant fonctionner à haute tension (> 4,5 V). De même, l’électrolyte solide doit fonctionner au moins jusqu’à 80°C et ne pas s’enflammer en-dessous de 130°C. Par ailleurs, une tenue mécanique suffisante doit être obtenue au niveau du séparateur. Ce dernier doit, en particulier, empêcher la formation de dendrites au cours des cycles de charge/décharge .
D’une manière générale l’électrolyte solide doit démontrer une meilleure sécurité, mais cela ne peut se faire au détriment des autres performances.
Enfin, d’un point de vue procès sabilité et mise en œuvre, l’électrolyte solide doit pouvoir être manipulé (étiré) et mis en rouleau.
Le poly(fluorure de vinylidène) (PVDF) et ses dérivés présentent un intérêt comme matériau constitutif principal du séparateur pour leur stabilité électrochimique, et pour leur constante diélectrique élevée qui favorise la dissociation des ions et donc la conductivité. Le copolymère P(VDF-HFP) (copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP)) a été étudié en tant que membrane gélifiée car il présente une cristallinité inférieure au PVDF. De ce fait, l’intérêt de ces copolymères de P(VDF-HFP) est qu’ils permettent d’atteindre des gonflements plus importants et favoriser ainsi la conductivité.
Le document US 5296318 décrit des compositions d'électrolytes solides comprenant un mélange de copolymère P(VDF-co-HFP), de sel de lithium, et de solvant compatible à point d'ébullition moyen (i.e. compris entre 100°C et 150°C), capables de former un film extensible et autoportant. L’exemple 2 décrit la préparation d’un film ayant une épaisseur de 100 pm à partir d’une composition contenant un copolymère P(VDF-HFP), LiPFô (hexafluorophosphate de lithium) et un mélange de carbonate d’éthylène et de carbonate de propylène.
Les électrolytes solides composites présentent des propriétés mécaniques améliorées.
La publication de Kun Shi et al. dans Journal of Membrane Science 638 (2021) 119713 décrit des composites PVDF/PP/PVDF. Le polypropylène (PP) est un film microporeux Celgard 2400. Le PVDF est un homopolymère de type HSV900 de Shenzhen Kejing Star Technology Co. Le composite contient 25% massique de LiCIC . Un film tri-couche PVDF/PP/PVDF de 100 pm affiche une conductivité ionique de 0,15 mS/cm à 25°C et permet d’augmenter le module d’ Young de 24 à 102 MPa par rapport à un monocouche PVDF. Toutefois, le tricouche est préparé dans le N,N-diméthylformamide (DMF), et une quantité non négligeable de DMF libre reste piégé dans le PVDF après séchage, ce qui limite la stabilité électrochimique.
Il existe toujours un besoin de développer de nouveaux électrolytes solides qui présentent un bon compromis entre conductivité ionique, stabilité électrochimique et tenue en température, et qui sont adaptés à une mise en œuvre simplifiée, compatible avec une application industrielle. L’invention a donc pour but de remédier à au moins un des inconvénients de l’art antérieur, à savoir proposer une composition d’électrolyte solide présentant des performances au moins équivalentes à celles d’un électrolyte liquide.
L’invention concerne également un film polymérique non-poreux consistant en ladite composition présentant de bonnes propriétés de tenue mécanique, de conductivité ionique et de stabilité électrochimique.
L’invention vise également à fournir au moins un procédé de fabrication de ce film polymérique.
Un autre objet de l’invention est un séparateur, notamment pour batterie Li-ion consistant, en tout ou partie, en ledit film. Ce séparateur peut également être utilisé dans une batterie, un condensateur, un condensateur à double couche électrochimique, un assemblage membrane- électrode (AME) pour pile à combustible ou un dispositif électrochrome.
Enfin, l’invention vise à fournir des batteries tout solide, notamment des batteries Li-ion rechargeables comprenant un tel séparateur.
RESUME DE L’INVENTION
L’invention concerne en premier lieu une composition d’électrolyte solide consistant en une matrice constituée de composants a), b) et c) suivants : a) au moins un copolymère de fluorure de vinylidène (VDF) et d’au moins un comonomère compatible avec le VDF, b) au moins un plastifiant, c) au moins un sel de lithium, et d) au moins un renfort mécanique (composant d).
Par « comonomère compatible avec le VDF » on entend un comonomère polymérisable avec le VDF ; ces monomères sont choisis de préférence parmi le fluorure de vinyle, le trifluoroéthylène, le chloro trifluoroéthylène (CTFE), le 1,2-difluoroéthylène, tétrafluoroéthylène (TFE), l’hexafluoropropylène (HFP), les perfluoro(alky vinyl) éthers tels que le perfluoro (méthylvinyl)éther (PMVE), le perfluoro (éthylvinyl)éther (PEVE), le perfluoro(propylvinyl)éther (PP VE) .
Selon un mode de réalisation, le copolymère de VDF est un terpolymère.
Selon un mode de réalisation, le composant a) est au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP), ou P(VDF-HFP).
Avantageusement, ledit copolymère P(VDF-HFP) a un taux massique d’HFP supérieur ou égal à 5% et inférieur ou égal à 45%. Selon un mode de réalisation, ledit sel de lithium est choisi dans la liste : LiFSI, LiTFSI, LiTDI, LiPF6, LiBF4 et LiBOB.
Le renfort est constitué de tout matériau permettant d’améliorer les propriétés mécaniques par rapport à la matrice seule.
L’invention concerne également un film non-poreux consistant en ladite composition d’électrolyte solide. Avantageusement, le film ne contient pas de solvant de faible température d’ébullition (à savoir inférieur à 150°C) et présente une conductivité ionique élevée.
Un autre objet de l’invention est un séparateur, notamment pour batterie rechargeable Li- ion, comprenant un film tel que décrit.
L’invention concerne également un dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un séparateur tel que décrit.
Un autre objet de l’invention est une batterie tout solide à base de lithium, par exemple une batterie Li-ion, ou des batteries Li-S ou Li-air, comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur comprend un film tel que décrit.
L’invention concerne aussi une batterie tout solide comprenant un tel film non-poreux.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement un film non-poreux capable de fonctionner en tant que séparateur de batterie tout solide, qui réunit une conductivité ionique élevée, une bonne stabilité électrochimique, une tenue en température, et une tenue mécanique suffisante pour permettre une manipulation aisée.
L’avantage de cette invention est d’offrir un meilleur gage de sécurité par rapport à un séparateur ou un électrolyte à base d’électrolyte liquide, pour des performances électrochimiques au moins égales à celles des électrolytes liquides. Il n’y a donc pas de fuite d’électrolyte possible, et l’inflammabilité de l’électrolyte s’en trouve fortement réduite.
Tout comme les électrolytes liquides, l’électrolyte solide selon l’invention peut être utilisé dans une batterie avec une anode en graphite, en silicium ou en graphite et silicium. Cependant, sa résistance à la croissance de dendrites à la surface de l’anode autorise également une anode de lithium métal, ce qui permet un gain en densité d’énergie par rapport aux technologies Li-ion classiques. BREVE DESCRIPTION DES FIGURES
La Figure 1 est un diagramme représentant la variation de la force de traction en fonction de l’allongement pour deux films : le film 1 comparatif, et le film 2 selon l’invention.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Selon un premier aspect, l’invention concerne une composition d’électrolyte solide consistant en une matrice constituée de composants a), b) et c) suivants : a) au moins un copolymère de fluorure de vinylidène (VDF) et d’au moins un comonomère compatible avec le VDF, b) au moins un plastifiant, c) au moins un sel de lithium, et d) d’au moins un renfort mécanique (composant d).
Selon diverses réalisations, ledit film électrolyte solide comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. Les gammes de concentration indiquées comprennent les bornes, sauf si indiqué autrement.
Composant a)
Le composant a) consiste en au moins un copolymère comprenant des unités de difluorure de vinylidène (VDF) et un ou plusieurs types d’unités de co-monomères compatibles avec le difluorure de vinylidène (appelé ci-après « copolymère de VDF »). Le copolymère de VDF contient au moins 50 % en masse de difluorure de vinylidène, avantageusement au moins 70% en masse de VDF et de préférence au moins 80% en masse de VDF.
Les comonomères compatibles avec le difluorure de vinylidène peuvent être halogénés (fluorés, chlorés ou bromés) ou non-halogénés.
Des exemples de comonomères fluorés appropriés sont : le fluorure de vinyle, le tétrafluoroéthylène, l’hexafluoropropylène, les trifluoropropènes et notamment le 3,3,3- trifluoropropène, les tétrafluoropropènes et notamment le 2,3,3,3-tétrafluoropropène ou le 1, 3,3,3- tétrafluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, les pentafluoropropènes et notamment le 1,1,3,3,3-pentafluoropropène ou le 1,2,3,3,3-pentafluoropropène, les perfluoroalkylvinyléthers et notamment ceux de formule générale Rf-O-CF-CF2, Rf étant un groupement alkyle, de préférence en Cl à C4 (des exemples préférés étant le perfluoropropyl vinyléther et le perfluorométhylvinyléther). Le monomère fluoré peut comporter un atome de chlore ou de brome. Il peut en particulier être choisi parmi le bromotrifluoroéthylène, le chlorofluoroethylène, le chlorotrifluoroéthylène et le chlorotrifluoropropène. Le chlorofluoroéthylène peut désigner soit le 1 -chloro- 1-fluoroéthylène, soit le l-chloro-2- fluoroéthylène. L’isomère 1 -chloro- 1-fluoroéthylène est préféré. Le chlorotrifluoropropène est de préférence le l-chloro-3,3,3-trifluoropropène ou le 2-chloro-3,3,3-trifluoropropène.
Selon un mode de réalisation, le composant a) consiste en un copolymère de VDF.
Selon un mode de réalisation, le composant a) consiste en un copolymère P(VDF-HFP). Avantageusement, le copolymère P(VDF-HFP) a un taux massique d’HFP supérieur ou égal à 5%, de préférence supérieur ou égal à 8%, avantageusement supérieur ou égal à 11%, et inférieur ou égal à 45%, de préférence inférieur ou égal à 30%.
Selon un mode de réalisation, ledit composant a) consiste en un mélange de deux copolymères de VDF de structures différentes.
Selon un mode de réalisation, le composant a) consiste en un copolymère de VDF auquel est ajoutée un PVDF homopolymère en une proportion massique allant de 0 à 10% basé sur le poids dudit composant a).
Selon un mode de réalisation, ledit composant a) consiste en un mélange d’un PVDF homopolymère (en proportion de jusqu’à 10%) et d’un copolymère P(VDF-HFP).
Selon un mode de réalisation, le copolymère de VDF et/ou le PVDF homopolymère entrant dans la composition du composant a) comprend des unités monomères portant au moins l’une des fonctions suivantes: acide carboxylique, anhydride d’acide carboxylique, esters d’acide carboxylique, groupes époxy (tel que le glycidyle), amide, hydroxyle, carbonyle, mercapto, sulfure, oxazoline, phénoliques, ester, éther, siloxane, sulfonique, sulfurique, phosphorique, phosphonique. La fonction est introduite par une réaction chimique qui peut être du greffage, ou une copolymérisation du monomère fluoré avec un monomère portant au moins un desdits groupes fonctionnels et une fonction vinylique capable de copolymériser avec le monomère fluoré, selon des techniques bien connues par l’homme du métier.
Selon un mode de réalisation, le groupement fonctionnel est porteur d’une fonction acide carboxylique qui est un groupe de type acide (méth) acrylique choisi parmi l’acide acrylique, l’acide méthacrylique, hydroxyéthyl(méth)acrylate, hydroxypropyl(méth)acrylate et hydroxyéthylhexyl(méth) acrylate .
Selon un mode de réalisation, les unités portant la fonction acide carboxylique comprennent en outre un hétéroatome choisi parmi l’oxygène, le soufre, l’azote et le phosphore. La teneur en groupes fonctionnels du copolymère de VDF et/ou du PVDF homopolymère entrant dans la composition du composant a) est d’au moins 0,01% molaire, de préférence d’au moins 0,1 % molaire, et au plus de 15% molaire, de préférence au plus 10% molaire.
Selon un mode de réalisation, le copolymère de VDF a un poids moléculaire élevé. Par poids moléculaire élevé, tel qu'utilisé ici, on entend un copolymère ayant une viscosité à l'état fondu supérieure à 100 Pa.s, de préférence supérieure à 500 Pa.s, plus préférablement supérieure à 1000 Pa.s, selon la méthode ASTM D-3835 mesurée à 232°C et 100 sec-1.
Les copolymères de VDF utilisés dans l’invention peuvent être obtenus par des méthodes de polymérisation connues comme la polymérisation en émulsion, en solution ou en suspension.
Selon un mode de réalisation, ils sont préparés par un procédé de polymérisation en émulsion en l’absence d’agent tensioactif fluoré.
Selon un mode de réalisation, ledit copolymère de VDF est un copolymère statistique. Ce type de copolymère présente l’avantage de présenter une répartition homogène du comonomère le long des chaînes de fluorure de vinylidène.
Selon un mode de réalisation, ledit copolymère de VDF est un copolymère dit « hétérogène », qui se caractérise par une distribution non-homogène du comonomère le long des chaînes de VDF, due au procédé de synthèse décrit par la demanderesse par exemple dans le document US 6187885 ou dans le document US 10570230. Un copolymère hétérogène possède deux (ou plusieurs) phases distinctes, avec une phase riche en PVDF homopolymère et une phase de copolymère riche en comonomère.
Selon un mode de réalisation, le copolymère hétérogène est constitué de domaines copolymères discontinus, discrets et individuels de phase riche en comonomère, qui sont distribués de manière homogène dans une phase continue riche en PVDF. On parle alors d'une structure non- continue.
Selon un autre mode de réalisation, le copolymère hétérogène est un copolymère ayant deux (ou plus) phases continues qui sont intimement liées entre elles et ne peuvent être physiquement séparées. On parle alors d’une structure co-continue.
Selon un mode de réalisation, ledit copolymère hétérogène comprend deux ou plusieurs phases co-continues qui comprennent : a) de 25 à 50 pour cent en poids d'une première phase co-continue comprenant 90-100 pour cent en poids de motifs monomères de fluorure de vinylidène et 0 à 10 pour cent en poids de motifs d'autres fluoromonomères, et b) de plus de 50 % en poids à 75 % en poids d'une seconde phase co-continue comprenant de 65 à 95 % en poids de motifs monomères de fluorure de vinylidène et une quantité efficace d'un ou plusieurs comonomères, tels que l'hexafluoropropylène et l'éther perfluoro vinylique, pour provoquer la séparation de phase de la seconde phase co-continue de la première phase continue.
Le copolymère hétérogène peut être fabriqué en formant un polymère initial qui est riche en unités monomères VDF, généralement supérieur à 90% en poids de VDF, de préférence supérieur à 95% en poids, et dans une mode de réalisation préféré, un homopolymère PVDF, puis en ajoutant un co-monomère dans le réacteur à un point bien avancé de la polymérisation pour produire un copolymère. Le polymère et le copolymère riches en VDF formeront des phases distinctes, ce qui donnera un copolymère hétérogène intime.
La copolymérisation du VDF avec un comonomère, par exemple avec l’HFP, aboutit à un latex ayant généralement une teneur en solides de 10 à 60 % en poids, de préférence de 10 à 50 %, et ayant une taille de particule moyenne en poids inférieure à 1 micromètre, de préférence inférieure à 800 nm, et plus préférablement inférieure à 600 nm. La taille moyenne en poids des particules est généralement d'au moins 20 nm, de préférence d'au moins 50 nm, et avantageusement la taille moyenne est comprise dans la gamme de 100 à 400 nm. Les particules de polymère peuvent former des agglomérats dont la taille moyenne en poids est de 1 à 30 micromètres, et de préférence de 2 à 10 micromètres. Les agglomérats peuvent se briser en particules discrètes pendant la formulation et l'application sur un substrat.
Les copolymères de VDF utilisés dans l’invention peuvent former un gradient entre le cœur et la surface des particules, en termes de composition (teneur en comonomère, par exemple) et/ou de masse moléculaire.
Selon certains modes de réalisation, les copolymères de VDF contiennent du VDF biosourcé. Le terme « biosourcé » signifie « issu de la biomasse ». Ceci permet d’améliorer l’empreinte écologique de la membrane. Le VDF biosourcé peut être caractérisé par une teneur en carbone renouvelable, c’est-à-dire en carbone d’origine naturelle et provenant d’un biomatériau ou de la biomasse, d'au moins 1 % atomique comme déterminé par la teneur en 14C selon la norme NF EN 16640. Le terme de « carbone renouvelable » indique que le carbone est d’origine naturelle et provient d'un biomatériau (ou de la biomasse), comme indiqué ci-après. Selon certains modes de réalisation, la teneur en bio-carbone du VDF peut être supérieure à 5%, de préférence supérieure à 10%, de préférence supérieure à 25%, de préférence supérieure ou égale à 33%, de préférence supérieure à 50%, de préférence supérieure ou égale à 66%, de préférence supérieure à 75%, de préférence supérieure à 90%, de préférence supérieure à 95%, de préférence supérieure à 98%, de préférence supérieure à 99%, avantageusement égale à 100%.
Composant b) Le deuxième composant de la composition d’électrolyte solide de l’invention est constitué d’au moins un plastifiant.
Selon un mode de réalisation, ledit plastifiant est un liquide ionique.
Un liquide ionique est un sel liquide à température ambiante, c’est-à-dire qu’il possède une température de fusion inférieure à 100°C sous pression atmosphérique. Il est formé par l’association d’un cation organique et d’un anion dont les interactions ioniques sont suffisamment faibles pour ne pas former un solide.
A titre d’exemples de cations organiques, on peut citer les cations : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs mélanges. Selon un mode de réalisation, ce cation peut comprendre un groupe alkyle C1-C30, comme le 1 -butyl- 1- methylpyrrolidinium, le l-éthyl-3-méthylimidazolium, le N-méthyl-N-propylpyrrolydinium ou le N -méthyl-N -butylpiperidinium.
Selon un mode de réalisation, les anions qui leur sont associés sont choisis parmi : les imides, notamment bis(fluorosulfonyl)imide et bis(trifhiorométhanesulfonyl)imide; les borates; les phosphates; les phosphinates et les phosphonates, notamment les alkyl-phosphonates ; les amides, notamment dicyanamide; les aluminates, notamment tetrachloroaluminate ; les halogénures (tels que les anions bromure, chlorure, iodure) ; les cyanates ; les acétates (CH3COO ), notamment trifluoroacétate ; les sulfonates, notamment méthanesulfonate (CH3SO3 ), trifluorométhanesulfonate ; et les sulfates, notamment hydrogène sulfate.
Selon un mode de réalisation, les anions sont choisis parmi le tétrafluoroborate (BFF), le bis(oxalato)borate (BOB’), F hexafluorophosphate (PFÔ’), l’hexafluoroarsénate (ASFÔ"), le triflate ou trifhiorométhylsulfonate (CF3SO3’), le bis(fhiorosulfonyl)imide (FSF), le bis- (trifhioromethanesulfonyl)imide (TFSF), le nitrate (NO3’) et le 4,5-dicyano-2- (trifhioromethyl)imidazole (TDF).
Selon un mode de réalisation, ledit anion du liquide ionique est choisi parmi TDF, FSF, TFSF, PFÔ’, BF4’, NO3- et BOB’.
Selon un mode de réalisation, ledit anion du liquide ionique est le FSF.
Selon un mode de réalisation, ledit composant b) est un mélange d’au moins deux liquides ioniques choisi parmi ceux décrits ci-dessus.
Selon un mode de réalisation, le composant b) de la composition d’électrolyte solide de l’invention est un mélange d’au moins un liquide ionique et d’au moins un solvant à point d’ébullition élevé (supérieur à 160 °C). Selon un mode de réalisation, ledit solvant est choisi parmi : - le carbonate de vinylène (VC) (CAS : 872-36-6),
- le carbonate de fluoroéthylène ou 4-fluoro-l,3-dioxolan-2-one (FEC ou F1EC) (CAS : 114435-02-8),
- le trans-4,5-difluoro-l,3-dioxolan-2-one (F2EC) (CAS: 171730-81-7),
- le carbonate d’éthylène (EC) (CAS : 96-49-1),
- le carbonate de propylène (PC) (CAS : 108-32-7),
- le (2-cyanoéthyl)triéthoxysilane (CAS : 919-31-3),
- le 3-methoxypropionitrile (CAS No. 110-67-8),
- le sulfolane (126-33-0),
- les éthers tels que les poly éthylène glycol diméthyle éthers, notamment le diéthylène glycol diméthyle éther (EG2DME), le triéthylène glycol diméthyle éther (EG3DME), et le tétraéthylène glycol diméthyle éther (EG4DME).
Les plastifiants permettent d’obtenir des propriétés améliorées de conductivité, stabilité électrochimique, stabilité thermique, de compatibilité avec les électrodes, de rétention de capacité par rapport aux électrolytes liquides conventionnels.
Des exemples de composant b) selon l’invention sont les mélanges suivants:
- l-éthyl-3-méthylimidazolium-FSI et FEC,
- l-éthyl-3-méthylimidazolium-FSI et tetraéthylene glycol diméthyl ether,
- 1 -butyl- 1-methylpyrrolidinium-FSI et FEC,
- l-éthyl-3-méthylimidazolium-TFSI et FEC,
- 1 -éthyl- 3 -méthylimidazolium-FSI,
- 1 -butyl- 1 -methylpyrrolidinium-FSI.
Selon un mode de réalisation, dans le mélange d’au moins un liquide ionique et d’un solvant, le rapport massique entre les liquides ioniques et les solvants formant le composé b) varie de 10 : 0,1 à 0,1 : 10.
Composant c)
Le sel de lithium présent dans la composition d’électrolyte solide comprend le même anion que ceux du liquide ionique présent dans le composant b).
Selon un mode de réalisation, ledit sel de lithium est choisi parmi : LiPFô, LiFSI, LiTFSI, LiTDI, LiBF4, LiNO3 et LiBOB.
Composant d) Le renfort mécanique est constitué de tout matériau (membrane poreuse, tissé ou non-tissé) permettant d’améliorer les propriétés mécaniques par rapport à la matrice seule (composants a+b+c). Il peut s’agir, de manière non limitative :
- d’un film microporeux à base de polyoléfines, tels que polyéthylène (PE), polyéthylène téréphthalate (PET), polypropylène (PP), séparateur Li-ion Celgard®,
- d’un film poreux à base de PVDF, de polyéthersulfone (PES) ou de polysulfone (PSU),
- d’un substrat tissé (par exemple PP, PE, PET, PVDF, PES, PSU, fibres inorganiques),
- d’un substrat non-tissé de type : fondu soufflé (« melt blown ») (par exemple PP, PET, PVDF, PES, PSU), d’un substrat filé-collé (« spunbond ») (par exemple PP, PET, PVDF, PES, PSU),
- d’un séparateur cellulosique,
- d’agrafes fibres courtes (« staples short fibers »), ou
- de fibres filées à l’état fondu.
Selon un mode de réalisation, le renfort mécanique est un matériau multicouche avec au moins une couche de polyoléfine et au moins une couche inorganique, par exemple Celgard® PP revêtu d’une couche d’alumine sur les deux faces.
Le renfort mécanique peut être choisi parmi les polymères (par exemple polyoléfine, PVDF, PTFE, polyamide, polyimide, polyaramide, polybenzoaxoles, polybenzimidazoles, polybenzthiazoles, polyphosphazenes, PEKK, PEEK, PES, PSU), les fibres de carbones (par exemple des « vapor grown carbon fibers» (VGCF®)), les nanotubes de carbone (NTC), les fibres inorganiques (par exemple fibres de verre), et les fibres végétales (par exemple du papier, lignine, cellulose, nanowhiskers de cellulose).
Selon un mode de réalisation, le tissé ou le non-tissé est constitué de fibres et présente un grammage inférieur à 50 g/m2, de préférence inférieur à 30 g/m2, de préférence inférieur à 20 g/m2 et avantageusement inférieur à 15 g/m2.
Selon un mode de réalisation, la composition d’électrolyte solide consiste en : a) 8 à 66,5% de copolymère(s) de VDF, b) 4 à 76% de plastifiant(s), et c) 0,8 à 28,5% de sel(s) de lithium, d) 5 à 60% de renfort mécanique, la somme de tous les constituants étant de 100%.
Selon un mode de réalisation, la composition d’électrolyte solide consiste en :
- 18 à 45% de composant a),
- 24 à 63% de composant b), - 1,8 à 9% de composant c), et
- 10 à 40% de composant d).
Selon un mode de réalisation, la composition d’électrolyte solide consiste en un copolymère P(VDF-HFP), un mélange EMIM-FSEEG4DME, LiFSI, et un non-tissé de PVDF en proportion massique de 32/44,8/3,2/20, le rapport massique EMIM-FSVEG4DME étant de 1:1.
L’invention concerne également un film non-poreux ou membrane consistant en ladite composition d’électrolyte solide. Avantageusement, le film ne contient pas de solvant et présente une conductivité ionique élevée. Avantageusement, le film est autosupporté, c'est-à-dire qu’il est manipulable sans l'aide de support. Avantageusement, le film est apte à s’enrouler, c’est-à-dire qu’il est manipulable de sorte qu’on puisse l’enrouler sur une bobine.
Selon un mode de réalisation, ledit film présente une épaisseur de 5 à 60 |im, de préférence de 5 à 30 pm, plus préférentiellement de 7 pm à 20 pm.
Selon un mode de réalisation, le film selon l’invention présente une conductivité ionique allant de 0,01 à 5 mS/cm, de préférence de 0,05 à 5 mS/cm, avantageusement de 0,5 à 5 mS/cm, à 25°C. La conductivité est mesurée par spectroscopie d’impédance électrochimique. Selon un mode de réalisation, le film non poreux est placé entre deux électrodes en or dans une cellule de conductivité étanche et sous atmosphère inerte (CESH, Biologie) et une spectroscopie d’impédance électrochimique est réalisée entre 1 Hz et 1 MHz avec une amplitude de 10 mV. On détermine ensuite la résistance R du film par régression linéaire de la courbe -Im(Z) = f (Re(Z)). La conductivité <j est alors donnée par la relation suivante : l <j = -
R x S où / est l’épaisseur du film et S sa surface. Pour chaque composition, la valeur de conductivité à une température donnée est obtenue en faisant la moyenne sur au moins deux mesures réalisées sur des échantillons différents.
Avantageusement, le film selon l’invention présente une bonne stabilité électrochimique sur la plage de températures allant de -20°C à 80°C.
Avantageusement, le film selon l’invention présente une teneur en solvant(s) à point d’ébullition inférieur à 150°C, inférieure à 1% en poids, de préférence inférieure à 0,1%, de préférence inférieure à 10 ppm.
Avantageusement, le film garde ses propriétés jusqu’à 80°C et qu’il ne s’enflamme pas en- dessous de 130°C.
Selon un mode de réalisation, le film selon l’invention présente une tenue mécanique caractérisée par un module élastique, mesuré à 1Hz et 23°C par analyse mécanique dynamique, supérieur à 0,1 MPa, préférentiellement supérieur à IMPa, encore préférentiellement supérieure à
10 MPa.
L’invention vise également à fournir au moins un procédé de fabrication de ce film polymérique non-poreux.
Selon un mode de réalisation, ledit film est fabriqué par immersion dans une solution contenant a, b et c. Ledit au moins un copolymère de VDF est solubilisé à température ambiante dans un solvant choisi parmi : la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone. Ledit au moins un sel de lithium est dissout dans une solution d’au moins un plastifiant, pour obtenir une solution de sel de lithium. Les deux solutions sont mélangées. On immerge alors un renfort mécanique dans la solution finale. On sèche le film ensuite, par exemple à 60°C sous vide pendant 1 nuit. Dans le cas de l’acétone, on peut sécher en étuve ventilée. On obtient finalement un film auto-supporté parfaitement homogène et transparent.
Selon un mode de réalisation, ledit film est fabriqué par enduction. Ledit au moins un copolymère de VDF est solubilisé à température ambiante dans un solvant choisi parmi : la n- méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone. Ledit au moins un sel de lithium est dissout dans le mélange liquide ionique/plastifiant, pour obtenir une solution de sel de lithium. Les deux solutions sont mélangées.
Un renfort mécanique est enduit sur une face ou les deux faces, par le mélange ainsi obtenu, par exemple à l’aide d’une racle. On sèche le film ensuite, par exemple à 60°C sous vide pendant 1 nuit. Dans le cas de l’acétone, on peut sécher en étuve ventilée. On obtient finalement un film auto-supporté parfaitement homogène et transparent.
Un autre objet de l’invention est un séparateur pour batterie tout solide consistant, en tout ou partie, en ledit film.
L’invention concerne également un dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un séparateur tel que décrit.
Un autre objet de l’invention est une batterie tout solide, par exemple une batterie Li-ion, ou des batteries Li-S ou Li-air, comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur comprend un film tel que décrit ci-dessus.
Selon un mode de réalisation, ladite batterie comprend une anode en lithium métal.
L’invention concerne aussi une batterie tout solide comprenant une anode, une cathode et un séparateur, dans laquelle l’anode et/ou la cathode comprennent un tel film non poreux. EXEMPLES
Les exemples suivants illustrent de façon non limitative la portée de l’invention.
1. Préparation d’un électrolyte solide pour séparateur de batterie Li-ion par immersion
0,4 g de P(VDF-HFP) (poly(fluorure de vinylidene)-co-hexafluoropropylene) (contenant 11% d’HFP en poids) sont dissous dans 1,93g d’acétone à température ambiante. On dissout par ailleurs 0,056 g de LiFSI (lithium bis(fluorosulfonyl)amide) dans 0,276 g d’EMIM-FSI (l-éthyl-3- méthylimidazolium bis(fluorosulfonyl imide) et 0,281 g de tetraéthylène glycol diméthyle éther (EG4DME). Cette dernière solution est ajoutée à la solution de P(VDF-HFP) puis mélangée. On immerge alors un non-tissé polypropylène (épaisseur 40 pm, porosité environ 50%, grammage 18 g/m2) pendant 5 min dans la solution finale. On sèche ensuite à 60°C sous vide pendant 1 nuit. On obtient finalement un film auto- supporté transparent d’environ 60 pm.
Le solvant résiduel est mesuré par GC-MS. La quantité d’acétone est inférieure à la limite de détection de cette technique, soit 10 ppm.
2. Préparation d’un électrolyte solide pour séparateur de batterie Li-ion par enduction
On prépare un électrolyte solide de même composition que l’exemple 1 avec un procédé d’imbibition différent. 0,4 g de P(VDF-HFP) (contenant 11% d’HFP en poids) sont dissous dans 1,93g d’acétone à température ambiante. On dissout par ailleurs 0,056 g de LiFSI (lithium bis (fluoro sulfonyl) amide) dans 0,276 g d’EMIM-FSI (l-éthyl-3-méthylimidazolium bis (fluoro sulfonyl imide) et 0,281 g de tétraéthylène glycol diméthyle éther (EG4DME). Cette dernière solution est ajoutée à la solution de P(VDF-HFP) puis mélangée. La solution finale est alors enduite sur un non-tissé polypropylène (épaisseur 40 pm, porosité environ 50%, grammage 18 g/m2) à l’aide d’une racle. La hauteur de racle est supérieure à l’épaisseur du non-tissé. On sèche ensuite à 60°C sous vide pendant 1 nuit. On obtient finalement un film auto-supporté transparent d’environ 60 pm.
Le solvant résiduel est mesuré par GC-MS. La quantité d’acétone est inférieure à la limite de détection de cette technique, soit 10 ppm.
3. Mesure de la conductivité d’un séparateur tout solide
La conductivité est évaluée par spectroscopie d’impédance électrochimique en plaçant l’électrolyte solide (préparé sous atmosphère inerte) entre les deux électrodes en or d’une cellule de conductivité étanche et sous atmosphère inerte (CESH, Bilogic). On mesure 0,26 mS/cm à 25 °C sur l’électrolyte solide immergé et 0,21 mS/cm à 25 °C sur l’électrolyte solide enduit.
La Figure 1 montre le résultat d’un test de traction effectué sur deux films d’électrolyte solide, sous la forme d’un graphique présentant la force de traction appliquée sur chaque éprouvette en fonction de l’allongement. Le film (1) est composé uniquement d’une matrice polymère sans renfort mécanique, tandis que le film (2) est composé d’une matrice (la même matrice que le film 1) avec un renfort mécanique sous forme de non-tissé polypropylène.
Ces résultats montrent que, pour allonger le film de 10%, il faut appliquer une force environ 10 fois plus élevée dans le cas du film contenant un renfort mécanique.

Claims

REVENDICATIONS
1. Composition d’électrolyte solide consistant en une matrice constituée de composants a), b) et c) suivants : a) au moins un copolymère de fluorure de vinylidène (VDF) et d’au moins un comonomère compatible avec le VDF, b) au moins un plastifiant, c) au moins un sel de lithium, et d’au moins un renfort mécanique (composant d).
2. Composition selon la revendication 1, dans laquelle ledit comonomère est choisi parmi le fluorure de vinyle, le trifluoroéthylène, le chlorotrifluoroéthylène, le 1,2-difluoroéthylène, tétrafluoroéthylène, l’hexafluoropropylène, le perfhioro(méthylvinyl)éther, le perfluoro (éthylvinyl)éther, et le perfluoro(propylvinyl)éther.
3. Composition selon l’une des revendications 1 ou 2, dans laquelle ledit copolymère de VDF est un copolymère de fluorure de vinylidène et d’hexafluoropropylène (HFP) ayant un taux massique d’HFP supérieur ou égal à 5%, de préférence supérieur ou égal à 8%, avantageusement supérieur ou égal à 11%, et inférieur ou égal à 45%, de préférence inférieur ou égal à 30%.
4. Composition selon l’une quelconque des revendications 1 à 3, dans laquelle ledit plastifiant est un liquide ionique qui comprend un anion choisi parmi le tétrafluoroborate (BFF), le bis(oxalato)borate BOB’, l’hexafluorophosphate (PFÔ ), l’hexafluoroarsénate (ASFÔ ), le triflate ou trifhiorométhylsulfonate (CF3SO3 ), le bis(fhiorosulfonyl)imide (FSF), le bis- (trifhioromethanesulfonyl)imide (TFSF), le nitrate (NO3’) et le 4,5-dicyano-2- (trifhioromethyl)imidazole (TDF), et un cation choisi dans la liste : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs mélanges.
5. Composition selon l’une quelconque des revendications 1 à 3, dans laquelle ledit plastifiant est un mélange d’au moins un liquide ionique et d’au moins un solvant à point d’ébullition supérieur à 160°C choisi parmi : le carbonate de vinylène, le carbonate de fluoroéthylène, le trans-4,5-difluoro-l,3-dioxolan-2-one, le carbonate d’éthylène, le carbonate de propylène, le (2-cyanoéthyl)triéthoxysilane, le 3-methoxypropionitrile, le sulfolane, et les poly éthylène glycol diméthyle éthers.
6. Composition selon l’une quelconque des revendications 1 à 5, dans laquelle ledit sel de lithium est choisi parmi : LiPFô, LiFSI, LiTFSI, LiTDI, LiBF4, LiNCF et LiBOB.
7. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle ledit renfort est choisi dans la liste : film microporeux, substrat tissé, substrat non-tissé de type fondu soufflé ou filé-collé, séparateur cellulosique, agrafes fibres courtes, ou fibres filées à l’état fondu.
8. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle ledit renfort est choisi parmi : les polymères, les fibres de carbones, les nanotubes de carbone, les fibres inorganiques et les fibres végétales.
9. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle ledit renfort est choisi parmi : les polymères, par exemple polyoléfine, PVDF, PTFE, polyamide, polyimide, polyaramide, polybenzoaxoles, polybenzimidazoles, polybenzthiazoles, polyphosphazenes, PEKK, PEEK, PES ou PSU ; les fibres de carbones; les nanotubes de carbone ; les fibres inorganiques, par exemple fibres de verre ; et les fibres végétales, par exemple papier, lignine, cellulose, ou nanowhiskers de cellulose.
10. Composition selon l’une quelconque des revendications 1 à 9 consistant en : a) 8 à 66,5% de copolymère(s) de VDF, b) 4 à 76% de plastifiant(s), et c) 0,8 à 28,5% de sel(s) de lithium, d) 5 à 60% de renfort(s) mécanique(s), la somme de tous les constituants étant de 100%.
11. Film non-poreux consistant en la composition selon l’une des revendications 1 à 10.
12. Film selon la revendication 11, présentant une teneur en solvant(s) à point d’ébullition inférieur à 150°C, inférieure à 1% en poids, de préférence inférieure à 0,1%, de préférence inférieure à 10 ppm.
13. Film selon l’une des revendications 11 ou 12, présentant une conductivité ionique de 0,01 à 5 mS/cm, de préférence de 0,05 à 5 mS/cm, avantageusement de 0,5 à 5 mS/cm à 25°C, mesurée par spectroscopie d’impédance électrochimique.
14. Procédé de préparation du film selon l’une des revendications 11 à 13 par immersion, ledit procédé comprenant les étapes suivantes :
- solubiliser ledit au moins un copolymère de VDF à température ambiante dans un solvant choisi parmi : la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone ;
- dissoudre ledit au moins un sel de lithium dans un plastifiant, pour obtenir une solution de sel de lithium ;
- mélanger les solutions de copolymère de VDF et de sel de lithium, 18
- immerger un renfort fibreux dans le mélange obtenu,
- sécher le film ainsi obtenu.
15. Procédé de préparation du film selon l’une des revendications 11 à 13 par enduction, ledit procédé comprenant les étapes suivantes :
- solubiliser ledit au moins un copolymère de VDF à température ambiante dans un solvant choisi parmi : la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone ;
- dissoudre ledit au moins un sel de lithium dans un plastifiant, pour obtenir une solution de sel de lithium ;
- mélanger les solutions de copolymère de VDF et de sel de lithium,
- enduire un renfort fibreux avec le mélange ainsi obtenu,
- sécher le film ainsi obtenu.
16. Séparateur pour batterie rechargeable Li-ion, comprenant le film selon l’une des revendications 11 à 13.
17. Dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un film selon l’une des revendications 11 à 13.
18. Batterie tout solide comprenant une anode, une cathode et un séparateur, dans laquelle ledit séparateur comprend le film selon l’une des revendications 11 à 13.
19. Batterie tout solide comprenant une anode, une cathode et un séparateur, dans laquelle l’anode et/ou la cathode comprennent un film non-poreux selon l’une des revendications 11 à 13.
PCT/FR2023/050062 2022-01-21 2023-01-18 Electrolyte solide pour batterie tout solide WO2023139329A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2200536 2022-01-21
FR2200536A FR3132163A1 (fr) 2022-01-21 2022-01-21 Electrolyte solide pour batterie tout solide

Publications (1)

Publication Number Publication Date
WO2023139329A1 true WO2023139329A1 (fr) 2023-07-27

Family

ID=82100673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050062 WO2023139329A1 (fr) 2022-01-21 2023-01-18 Electrolyte solide pour batterie tout solide

Country Status (3)

Country Link
FR (1) FR3132163A1 (fr)
TW (1) TW202339339A (fr)
WO (1) WO2023139329A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US6187885B1 (en) 1990-05-10 2001-02-13 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
US10570230B2 (en) 2015-02-09 2020-02-25 Arkema Inc. Heterogeneous, co-continuous copolymers of vinylidene fluoride
WO2020126751A1 (fr) * 2018-12-21 2020-06-25 Solvay Sa Électrolyte composite solide
US20210075054A1 (en) * 2017-06-01 2021-03-11 Hitachi Chemical Company, Ltd. Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187885B1 (en) 1990-05-10 2001-02-13 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US10570230B2 (en) 2015-02-09 2020-02-25 Arkema Inc. Heterogeneous, co-continuous copolymers of vinylidene fluoride
US20210075054A1 (en) * 2017-06-01 2021-03-11 Hitachi Chemical Company, Ltd. Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
WO2020126751A1 (fr) * 2018-12-21 2020-06-25 Solvay Sa Électrolyte composite solide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUN SHI ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 638, 2021, pages 119713

Also Published As

Publication number Publication date
TW202339339A (zh) 2023-10-01
FR3132163A1 (fr) 2023-07-28

Similar Documents

Publication Publication Date Title
EP3341987B1 (fr) Batterie au lithium-ion gelifiee
EP2729978B1 (fr) Accumulateur lithium/soufre
US20150372274A1 (en) Separator coated with polymer and conductive salt and electrochemical device using the same
FR3054078A1 (fr) Materiau a conduction ionique pour generateur electrochimique et procedes de fabrication
US20190233599A1 (en) Fluoropolymer film
EP3830887A1 (fr) Anode pour batterie li-ion
FR2958190A1 (fr) Procede de formation d&#39;un film en polymere fluore de type polyfluorure de vinylidene utilisable comme separateur pour accumulateur au lithium
EP3648205A1 (fr) Générateur électrochimique au lithium et au fluorure de carbone comprenant un matériau d&#39;électrode négative spécifique
WO2023139329A1 (fr) Electrolyte solide pour batterie tout solide
WO2023052736A1 (fr) Électrolyte solide
EP4058508B1 (fr) Membrane polymere gelifiee pour batterie li-ion
WO2022214762A1 (fr) Electrolyte solide pour batterie li-ion
WO2023047065A1 (fr) Revetement d&#39;anode pour batterie li-ion tout solide
WO2023047064A1 (fr) Revetement de cathode pour batterie li-ion
TWI840969B (zh) 用於全固態鋰離子電池的陽極塗層
WO2022117953A1 (fr) Electrode pour batterie li-ion quasi solide
EP3535797B1 (fr) Électrolytes à base d&#39;un additif spécifique du type liquide ionique pour batteries au lithium
KR20240067957A (ko) 전-고체-상태 리튬-이온 배터리용 애노드 코팅
FR3136119A1 (fr) Dispositif électrochimique comprenant un séparateur contenant du PVDF et une composition électrolytique à viscosité élevée ou à haute polarité
WO2022122905A1 (fr) Element electrochimique lithium-soufre a electrolyte gelifie
CA2232107C (fr) Generateurs a electrolyte polymere possedant un sel de potassium permettant de stabiliser les performances et la vie utile de la batterie
KR20240069798A (ko) 리튬-이온 배터리를 위한 캐소드 코팅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23705620

Country of ref document: EP

Kind code of ref document: A1