EP4256633A1 - Electrode for quasi-solid li-ion battery - Google Patents

Electrode for quasi-solid li-ion battery

Info

Publication number
EP4256633A1
EP4256633A1 EP21839603.4A EP21839603A EP4256633A1 EP 4256633 A1 EP4256633 A1 EP 4256633A1 EP 21839603 A EP21839603 A EP 21839603A EP 4256633 A1 EP4256633 A1 EP 4256633A1
Authority
EP
European Patent Office
Prior art keywords
cathode
hfp
polymer
catholyte
vdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21839603.4A
Other languages
German (de)
French (fr)
Inventor
Gregory Schmidt
Stéphane Bizet
Marie BICHON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4256633A1 publication Critical patent/EP4256633A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to the field of the storage of electrical energy in rechargeable secondary batteries of the Li-ion type. More specifically, the invention relates to a cathode composition comprising an intrinsically incorporated catholyte. The invention also relates to a quasi-solid Li-ion battery comprising said cathode, an anode and a separator, and a method of manufacturing said Li-ion battery.
  • a Li-ion battery includes at least a negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte.
  • the electrolyte consists of a lithium salt, generally lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
  • a high dielectric constant favors the dissociation of ions, and therefore the number of ions available in a given volume, while a low viscosity favors ionic diffusion which plays an essential role, among other parameters, in the velocities of charging and discharging of the electrochemical system.
  • Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated chemical reactions that take place at the positive and negative electrodes of the battery are reversible. Secondary cell electrodes can be regenerated multiple times by applying an electrical charge. Many advanced electrode systems have been developed to store electrical charge. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
  • Lithium-ion batteries conventionally use liquid electrolytes composed of solvent(s), lithium salt(s) and additive(s). These electrolytes have good ionic conductivity but are prone to leaking or igniting if the battery is damaged.
  • the use of solid or quasi-solid electrolytes overcomes these difficulties.
  • the advantage of solid or quasi-solid electrolytes is also to allow the use of lithium metal at the negative electrode, by preventing the formation of dendrites which can cause short circuits during cycling.
  • the use of lithium metal allows a gain in energy density compared to the negative electrodes of insertion or alloy.
  • solid or quasi-solid electrolytes are generally less conductive than liquid electrolytes, especially in the cathode and anode.
  • the solid or quasi-solid electrolyte incorporated in the cathode is called catholyte.
  • a recurring problem with all-solid or quasi-solid batteries is to obtain a catholyte that is chemically and electrochemically compatible with the cathode, while having sufficient conductivity and low resistivity at the interfaces with the cathode.
  • Document FR 3049114 describes an all-solid battery comprising a solid polymer electrolyte, a negative electrode comprising lithium metal or a lithium metal alloy, and a positive electrode comprising an ion-conductive polymer.
  • the disadvantage of this battery is that the ionic conductivity of the solid electrolyte incorporated in the cathode is low at room temperature, and the lithium-ion cell must be heated to 80°C to have good electrochemical performance.
  • PVDF Poly(vinylidene fluoride)
  • P(VDF-co-HFP) copolymer copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • a secondary battery cell 20 comprising a cathode 21, an anode 22, a separator 23 and an electrolyte 24.
  • the latter comprises a high molecular weight compound and a solution of electrolyte prepared by dissolving an electrolyte salt in a solvent, and the electrolyte solution is held in the high molecular weight compound to gel the electrolyte solution.
  • Said high molecular weight compound comprises a first compound having a weight average molecular weight of 550,000 or more; and a second compound having a weight average molecular weight of 1000 or more but not exceeding 300,000.
  • the first high molecular weight compound functions to improve the adhesion between the electrolyte 24, the cathode 21 and the anode 22.
  • the second high molecular weight compound is believed to improve the permeability of the electrolyte 24 in the cathode 21 and the anode 22.
  • a third high molecular weight compound can be incorporated into the electrolyte.
  • Each of these compounds is chosen from PVDF and P(VDF-co-HFP) copolymers.
  • the copolymers are block copolymers, and the mass content of HFP in the copolymer varies from 3% to 7.5%.
  • a cathode active material and a binder (copolymer of VDF-HFP), and, optionally, an electrical conductor are mixed to prepare a cathode mixture, and the cathode mixture is dispersed in a solvent such as methyl -2-pyrrolidone to form a cathode mixture slurry. Then, after applying the cathode mixing slurry to one side or both sides of the cathode current collector 21A and drying it, the cathode active material layer 21B is formed by compression molding so as to form the cathode 21.
  • an electrolyte solution obtained by mixing, on the one hand, a solution formed from said high molecular weight compounds dissolved in a solvent such as dimethyl carbonate, and on the other hand, a solvent comprising ethylene carbonate, propylene carbonate and LiPF6.
  • the active material layer 21B of the cathode was allowed to stand at room temperature for 8 hours to volatilize the dimethyl carbonate, leading to the formation of the electrolyte 24.
  • this preparatory method remains laborious, because it adds a step of coating the electrolyte solution, as well as a step of evaporating the dimethyl carbonate, which lengthen the time required to obtain the electrolyte and lead to additional costs. Manufacturing.
  • cathode compositions comprising a catholyte, having a good compromise between ionic conductivity within the cathode at room temperature and low resistivity at the interfaces with the solid or quasi-solid electrolyte, and which are suitable to a simplified implementation, without requiring prior transformation steps. Additionally, the amount of catholyte in the cathode should be minimized in order to maximize the energy density of the Li-ion cell.
  • the object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a cathode for a quasi-solid Li-ion battery comprising a catholyte infiltrated into the electrode material and which allows sufficient swelling polymer binder incorporated into said material without loss of cohesion within the cathode or adhesion to the current collector.
  • Sufficient swelling means that the ionic conductivity at room temperature of the cathode containing the catholyte is such that the capacity delivered in discharge at C/10 is greater than or equal to 80% of the theoretical reversible capacity.
  • the invention also relates to a rechargeable Li-ion secondary battery comprising such a cathode containing a catholyte, an anode and a separator.
  • the invention relates to a process for preparing a Li-ion battery comprising said cathode containing a catholyte, and which is compatible with the usual industrial processes.
  • the technical solution proposed by the present invention is a cathode comprising a catholyte intrinsically mixed with the electrode material.
  • the invention relates to a cathode for a lithium-ion battery comprising an electrode active material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte.
  • said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP from polymer A.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the catholyte includes at least one solvent and at least one lithium salt.
  • the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
  • the invention relates to a process for preparing a Li-ion battery comprising said cathode.
  • the present invention makes it possible to overcome the drawbacks of the state of the art. It is characterized by good conductivity at ambient temperature of the catholyte within the cathode. The cohesion and adhesion of the cathode as well as its flexibility are maintained with the catholyte.
  • the manufacture of the battery described by this invention does not require additional steps compared to the conventional manufacturing method used in the production of Li-ion cells: no catholyte coating step; no intense heat treatment, e.g. no sintering required in the case of solid oxide-based electrolytes, with temperatures above 500°C; no very high pressure compression step; does not require more humidity or atmosphere control than current processes.
  • the advantage of this technology is to offer a better guarantee of safety compared to liquid electrolytes: no electrolyte leakage and reduced flammability due to the gelation of the catholyte.
  • Figure 1 is a diagram representing the impedance spectra of cathodes in symmetrical stacks.
  • Figure 2 is a diagram showing the capacitance performance of a cathode according to the invention and a cathode according to a comparative example, at an IC discharge current.
  • the invention relates to a cathode for a lithium-ion battery comprising an active electrode material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte, in which:
  • said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP polymer A, and
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • - Said catholyte comprises at least one solvent and at least one lithium salt.
  • said cathode comprises the following characters, possibly combined. The contents indicated are expressed by weight, unless otherwise indicated.
  • Said active electrode material is chosen from compounds of the xLi2MnO3-(l-x)LiMO2 type where 0 ⁇ x ⁇ 1, of the LiMPCL type, of the Li2MPO3F type, of the Li2MSiO4 type, where M is Co, Ni, Mn, Fe or a combination of these, of the LiM Ch type, and of the Ss type.
  • Said conductive additive is chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, metal fibers and powders, conductive metal oxides, or mixtures thereof.
  • Said inorganic oxide is chosen from silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or mixtures thereof.
  • the fluorinated polymer A comprises at least one VDF-HFP copolymer having an HFP content greater than or equal to 3% by weight, preferably greater than or equal to 8%, advantageously greater than or equal to 13%.
  • Said VDF-HFP copolymer has a mass content of HFP less than or equal to 55%, preferably 50%.
  • This very poorly crystalline copolymer swells easily in electrolyte solvents such as carbonates, nitriles, glymes, which gives the binder good ionic conductivity.
  • the swelling can be quantified by the caking of the electrolyte binder.
  • the caking of this copolymer is at least greater than or equal to 5% by weight.
  • the fluorinated polymer A consists of a single VDF-HFP copolymer with an HFP content greater than or equal to 3%.
  • the level of HFP in this VDF-HFP copolymer is between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
  • the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP content of each copolymer being greater than or equal to 3%.
  • each of the copolymers has an HFP content of between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
  • Fluorinated polymer B comprises at least one VDF-HFP copolymer having a mass content of HFP lower by at least 3% compared to the mass content of HFP of polymer A. This makes it possible to provide sufficient mechanical strength to the cathode after swelling. Sufficient mechanical strength means that the adhesion of the cathode to the current collector is maintained after swelling, as well as the cohesion between the particles of active material.
  • the fluoropolymer B consists of a single VDF-HFP copolymer.
  • the level of HFP in this VDF-HFP copolymer is between 1% and 5%, limits included.
  • the level of HFP in this VDF-HFP copolymer is between 1% and 10%, limits included.
  • the fluorinated polymer B is a mixture of PVDF homopolymer with a VDF-HFP copolymer or else a mixture of two or more VDF-HFP copolymers.
  • the HFP content of the mixture of polymers A and B is greater than 7% by weight.
  • the mixture of fluorinated polymers A and B has a melting point above 150°C.
  • the molar composition of units in fluoropolymers can be determined by various means such as infrared spectroscopy or RAMAN spectroscopy. Conventional methods of elemental analysis in the elements carbon, fluorine and chlorine or bromine or iodine, such as X-ray fluorescence spectroscopy, make it possible to calculate without ambiguity the mass composition of the polymers, from which the molar composition is deduced.
  • At least one of the fluorinated polymers A and B comprises units bearing at least one of the following functionalities: carboxylic acid, carboxylic acid anhydride, carboxylic acid ester, epoxy group (such as glycidyl), amide, alcohol, carbonyl, mercapto, sulfide, oxazoline and phenol.
  • Said functionality is introduced onto the fluoropolymer by a chemical reaction which may be grafting, or a copolymerization reaction of the fluoropolymer with a compound bearing at least one of said functionalities, using techniques known to those skilled in the art.
  • said functionality is a terminal group located at the end of the fluoropolymer chain.
  • the monomer carrying a functional group is intercalated in the fluoropolymer chain.
  • the acrylic acid functionality is a hydrophilic group of (meth)acrylic type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and (meth)acrylate. )hydroxyethylhexyl acrylate.
  • the mass content of functional groups is at least 0.01%, and less than or equal to 5% based on the weight of the fluorinated polymers.
  • the mass ratio between polymer A and polymer B is greater than 1. catholyte
  • the catholyte includes at least one solvent and at least one lithium salt.
  • said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
  • ethers such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
  • DME dimethoxyethane
  • methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
  • esters mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
  • the glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
  • lactones mention may in particular be made of gamma-butyrolactone.
  • nitriles mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
  • cyclic carbonates such as, for example, propylene carbonate (PC) (CAS: 108-32-7), butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8), methyl ethyl carbonate (EMC) (CAS: 623-53-0 ), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) (CAS: 623-96-1), methyl and propyl carbonate (MPC) (CAS: 1333-41-1), ethyl and propyl carbonate (EPC), vinylene carbonate (VC) (CAS: 872-36-6), fluoroethylene carbonate ( FEC) (CAS: 114435-02-8), trifluoropropylene carbonate (CAS: 1679
  • PC propylene carbonate
  • BC butylene
  • said lithium salt is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTFSI (lithium bis(trifluoromethane)sulfonimide), LiTDI (2 lithium -trifluoromethyl-4,5-dicyano-imidazolate), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiCICL and mixtures thereof.
  • the catholyte further comprises salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
  • organic cations By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
  • anions By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide (abbreviated as NTf2-) or bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4-); phosphates, in particular hexafluorophosphate (abbreviated PF6-); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA-); aluminates, in particular tetrachloroaluminate (A1C14-), halides (such as bromide, chloride and iodide anions), cyanates, acetates (CH3COO-), in particular trifluoroacetate; sulphonates, in particular methanesulphonate (CH3SO3-), trifluoromethanesul
  • the catholyte consists of a mixture of solvent and lithium salt and is devoid of polymer binder.
  • the catholyte also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Hello.
  • solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Hello.
  • the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
  • the catholyte also comprises a conductive organic polymer such as polymers based on PEO, PAN, PMMA, PVA.
  • the catholyte has a lithium salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent.
  • said cathode has the following mass composition:
  • - 1% to 11% conductive additive preferably from 1.5% to 7.5%
  • inorganic oxide preferably 0% to 1%
  • catholyte preferably from 5% to 20%, the sum of all these percentages being 100%.
  • the catholyte/polymer binder mass ratio is from 0.05 to 20, preferably from 0.1 to 10.
  • said cathode has a ratio between the mass contents of the electronic conductive additive and of the polymer binder, greater than 0.7. Indeed, it was found that the contact resistance of the cathode increases when the rate of conductive additive decreases with respect to the rate of polymer binder.
  • the cathode described above is manufactured by a method comprising the following steps: mixing an active electrode material, a conductive additive, an inorganic oxide and a polymer binder in a solvent, to obtain an ink.
  • the mixture can be prepared using a planetary mixer or a dispersing disc.
  • a solution of polymer binder in a solvent is prepared, having a solids content between 2% and 20%.
  • the inorganic oxide is then dispersed in this solution.
  • the conductive additive is then dispersed in this solution.
  • the active material is then dispersed in this solution and the dry extract of the ink is adjusted by adding solvent, to reach a value of between 30% and 80%. coating said ink on a current collector support.
  • This collector can be an aluminum sheet, coated or not with a layer of electronic conductor and/or of polymer, with a thickness of between 5 ⁇ m and 30 ⁇ m.
  • the ink can be applied to one side or to both sides of the current collector. drying said ink to form a coating. The drying can be carried out on a heating plate or in an oven at a temperature varying in a range between 20°C and 150°C, with or without air flow. calendering the assembly formed by the coating and the collector so as to obtain a temperature of between 50° C. and 130° C.; impregnating said coating with an electrolyte comprising at least one solvent and at least one lithium salt.
  • the cathode is impregnated in the Li-ion cell at the time of filling and before sealing the cell. Li-ion battery
  • the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
  • the anode is a sheet of lithium metal.
  • the anode comprises a lithium insertion material such as graphite, metal oxides, non-graphitizable carbon, pyrolytic carbon, coke, carbon fibers, activated carbon, a material of alloy such as based on the elements Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, or a mixture of said anode materials.
  • a lithium insertion material such as graphite, metal oxides, non-graphitizable carbon, pyrolytic carbon, coke, carbon fibers, activated carbon
  • a material of alloy such as based on the elements Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, or a mixture of said anode materials.
  • said is a “conventional” separator comprising one or more porous layers of polypropylene and/or polyethylene, and optionally comprising a coating on one or both sides of the separator.
  • Said coating comprises a polymeric binder and inorganic particles.
  • said separator is a gelled polymer membrane comprising a fluorinated polymer film and an electrolyte comprising at least one solvent and at least one lithium salt, said fluorinated film comprising at least one layer, said layer consisting of a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluorinated polymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluorinated polymer B having a mass content of HFP lower by at least 3% by weight compared to the mass content of HFP of polymer A.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • said film consists of a single layer.
  • said mixture comprises: i. a mass content of polymer A greater than or equal to 10% and less than or equal to 99%, preferably greater than or equal to 50% and less than or equal to 95%, advantageously greater than or equal to 25% and less than or equal to 95%, and ii. a mass content of polymer B less than or equal to 90% and greater than 1%, preferably less than 50% and greater than 5%.
  • said monolayer fluoropolymer film has a thickness of 1 to 1000 ⁇ m, preferably from 1 ⁇ m to 500 ⁇ m, and even more preferably between 5 ⁇ m and 100 ⁇ m.
  • said fluoropolymer film can be manufactured by a solvent process.
  • Polymers A and B are dissolved in a solvent known for polyvinylidene fluoride or its copolymers.
  • solvent known for polyvinylidene fluoride or its copolymers.
  • solvent of n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetone.
  • the film is obtained after deposition of the solution on a flat substrate and evaporation of the solvent.
  • said fluoropolymer film is a multilayer film of which at least one of the layers is composed of a mixture of polymers A and B according to the invention.
  • the overall thickness of the multilayer film is between 2 ⁇ m and 1000 ⁇ m, the thickness of the fluoropolymer layer according to the invention being between 1 ⁇ m and 999 ⁇ m.
  • the additional layer or layers are chosen from the following polymer compositions: a composition consisting of a fluorinated polymer chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 90% by weight of VDF; a composition consisting of a mixture of a fluorinated polymer, chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 85% by weight of VDF, with a methyl methacrylate (MM A) homopolymer and the copolymers containing at least 50% by mass of MMA and at least one other monomer copolymerizable with the MMA.
  • MM A methyl methacrylate
  • the polymer (homopolymer or copolymer) of MMA comprises by mass from 0 to 20% and preferably 5 to 15% of a C1-C8 alkyl (meth)acrylate, which is preferably methyl acrylate and/or ethyl acrylate.
  • the polymer (homopolymer or copolymer) of MMA can be functionalised, i.e. it contains, for example, acid, acid chloride, alcohol and anhydride functions.
  • the functionality is in particular the acid function provided by the acrylic acid comonomer. It is also possible to use a monomer with two neighboring acrylic acid functions which can dehydrate to form an anhydride.
  • the proportion of functionality can be from 0 to 15% by weight of the MMA polymer, for example from 0 to 10% by weight.
  • said fluoropolymer film is manufactured by a process for transforming polymers in the molten state such as flat extrusion, extrusion by sheath blowing, calendering, thermocompression.
  • the membrane forming the separator further comprises inorganic fillers such as silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or their mixture.
  • the membrane also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures.
  • solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures.
  • the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
  • said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
  • ethers such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
  • DME dimethoxyethane
  • methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof.
  • esters mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
  • the glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
  • lactones mention may in particular be made of gamma-butyrolactone.
  • nitriles mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
  • cyclic carbonates such as for example ethylene carbonate (EC) (CAS: 96-49-1), propylene carbonate (PC) (CAS: 108-32-7) , butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8 ), methyl carbonate (EMC) (CAS: 623-53-0), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) ( CAS: 623-96-1), methyl propyl carbonate (MPC) (CAS: 1333-41-1), ethyl propyl carbonate (EPC), vinylene carbonate (VC) (CAS : 872-36-6), fluoroethylene carbonate (FEC) (CAS: 114435-02-8), trifluor
  • said lithium salt present in the separator is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTDI (2-trifluoromethyl-4,5-dicyano -lithium imidazolate), LiTFSI (lithium bis(trifluoromethane)sulphonimide), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiClO4 or their mixture.
  • the electrolyte present in the separator comprises, in addition to the solvent and the lithium salt, at least one additive.
  • the additive can be selected from the group consisting of fluoroethylene carbonate (FEC), vinylene carbonate, 4-vinyl-1,3-dioxolan-2-one, pyridazine, vinyl pyridazine, quinoline , vinyl quinoline, butadiene, sebaconitrile, alkyl disulphide, fluorotoluene, 1,4-dimethoxytetrafluorotoluene, t-butylphenol, di-t-butylphenol, tris(pentafluorophenyl)borane, oximes, aliphatic epoxides , halogenated biphenyls, metacrylic acids, allyl ethyl carbonate, vinyl acetate, divinyl adipate, propanesultone, acrylonitrile, 2-vinylpyr
  • the additive can also be chosen from salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
  • organic cations By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
  • anions By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4); phosphates, in particular hexafluorophosphate (abbreviated PF ⁇ ); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA); aluminates, in particular tetrachloroaluminate (AICI4), halides (such as bromide, chloride or iodide anions), cyanates, acetates (CEECOO- ), in particular trifluoroacetate; sulfonates, in particular methanesulfonate (CH3SO3), trifluoromethanesulfonate; and sulphates, especially hydrogen sulph
  • said electrolyte has a salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent.
  • the electrolyte/fluorinated polymers ratio is from 0.05 to 20, preferably from 0.1 to 10.
  • said film has a caking at least greater than or equal to 5% by weight, preferably ranging from 10% to 1000%.
  • the separator in the form of a gelled polymer membrane is non-porous, which means that the gas permeability of the separator is 0 ml/min, as detected by the gas permeability test (when the surface of the separator is of 10 cm 2 , the gas pressure difference between the two sides is 1 atm, and the time is 10 minutes).
  • said separator contains a single gelled polymer membrane.
  • said separator consists of a multilayer film, each layer of which has the composition of the film described above.
  • the membrane is not supported by a support.
  • the invention relates to a process for preparing a Li-ion battery comprising said cathode.
  • the Li-ion cell is prepared by assembling the anode, separator and cathode.
  • a liquid electrolyte comprising at least one solvent and at least one lithium salt is introduced into the cell before sealing the cell in order to form the catholyte by swelling the binder in the cathode.
  • the cell can be heated between 30°C and 90°C, and preferentially between 40°C and 70°C for 5 min to 24 h, and preferentially for 30 min to 12 h to promote the swelling of the binder of the cathode impregnated with the catholyte, and polymer gel in the separator (if applicable).
  • the Li-ion cell can also be pressurized by 0.01 MPa to 3 MPa to promote the impregnation of the catholyte in the cathode.
  • the cathode containing the catholyte is assembled with a separator and an anode, the separator possibly being a solid or quasi-solid electrolyte such as a polymer gel electrolyte.
  • PVDF 1 Copolymer of vinylidene fluoride (VDF) and vinylidene hexafluoride (HFP) with 25% by weight of HFP, characterized by a viscosity in the molten state of 1000 Pa.s at 100 s 1 and 230 °C.
  • PVDF 2 Homopolymer of vinylidene fluoride characterized by a melt viscosity of 1000 Pa.s at 100 s 1 and 230°C.
  • PVDF 3 Acid functionalized vinylidene fluoride homopolymer with a functionality rate of approximately 1% by mass, characterized by a viscosity of 547 cP at 5 s -1 and 25°C in a 10% NMP solution of dry extract.
  • LiFSI Lithium bis(fluorosulfonyl)imide
  • quasi-solid cathodes are prepared by mixing the active material, the carbon black electronic conductor, and the binder, which can be a mixture of a copolymer and a homopolymer of PVDF, in the solvent N-methyl pyrrolidone.
  • the ink is smeared onto an aluminum current collector, which is then dried to evaporate the solvent.
  • the electrode is then calendered to reduce the porosity.
  • Impedance measurements are carried out in a button cell containing two similar cathodes, separated by a three-layer PP/PE/PP separator.
  • the appended figure 1 presents the impedance spectra obtained with the cathodes of table 1.
  • the diameter of the semi-circle is proportional to the contact resistance at the interface between the cathode and the aluminum current collector.
  • the cathodes of Examples 1 and 2 have a relatively low contact resistance close to that of Comparative Example 1.
  • the contact resistance increases when the carbon black content relative to the binder decreases, as shown by the NC/PVDE ratio values in Table 1.
  • the cathode of example 2 is assembled as a button cell facing a lithium metal anode.
  • the separator is a membrane made up of PVDE 1 and PVDE 2. 20 ⁇ L of liquid electrolyte containing 0.75M LiESI in the dimethoxyethane solvent is injected into the button cell before it is sealed. The battery is then placed in an oven at 45°C for 2 hours so that the electrolyte swells the polymer and forms a gel in the separator and the catholyte.
  • the cathode of comparative example 1 is assembled as a button cell facing a lithium metal anode.
  • the separator is a tri-layer PP/PE/PP and the electrolyte contains IM LiPE6 in EC/EMC (3:7, vol).
  • FIG. 2 shows the capacitance delivered by the cathodes E2 and EC1 at a discharge current of IC.
  • the quasi-solid cathode of Example 2 assembled with a polymer gel electrolyte has similar IC performance to the cathode of Comparative Example 1 operating with a liquid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Cell Separators (AREA)
  • Conductive Materials (AREA)

Abstract

The invention relates to a cathode composition comprising an intrinsically incorporated catholyte. The invention also relates to a quasi-solid Li-ion battery comprising said cathode, an anode and a separator, and to a method of producing said Li-ion battery.

Description

ELECTRODE POUR BATTERIE LI-ION QUASI SOLIDE ELECTRODE FOR QUASI SOLID LI-ION BATTERY
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention a trait de manière générale au domaine du stockage d’énergie électrique dans des batteries secondaires rechargeables de type Li-ion. Plus précisément, l’invention concerne une composition de cathode comprenant un catholyte intrinsèquement incorporé. L’invention concerne également une batterie Li-ion quasi-solide comprenant ladite cathode, une anode et un séparateur, et un procédé de fabrication de ladite batterie Li-ion. The present invention generally relates to the field of the storage of electrical energy in rechargeable secondary batteries of the Li-ion type. More specifically, the invention relates to a cathode composition comprising an intrinsically incorporated catholyte. The invention also relates to a quasi-solid Li-ion battery comprising said cathode, an anode and a separator, and a method of manufacturing said Li-ion battery.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
Une batterie Li-ion comprend au moins une électrode négative ou anode couplée à un collecteur de courant en cuivre, une électrode positive ou cathode couplée avec un collecteur de courant en aluminium, un séparateur, et un électrolyte. L’électrolyte est constitué d’un sel de lithium, généralement l’hexafluorophosphate de lithium, mélangé à un solvant qui est un mélange de carbonates organiques, choisis pour optimiser le transport et la dissociation des ions. Une constante diélectrique élevée favorise la dissociation des ions, et donc, le nombre d’ions disponibles dans un volume donné, alors qu’une faible viscosité est favorable à la diffusion ionique qui joue un rôle essentiel, entre autres paramètres, dans les vitesses de charge et décharge du système électrochimique. A Li-ion battery includes at least a negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte. The electrolyte consists of a lithium salt, generally lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions. A high dielectric constant favors the dissociation of ions, and therefore the number of ions available in a given volume, while a low viscosity favors ionic diffusion which plays an essential role, among other parameters, in the velocities of charging and discharging of the electrochemical system.
Les piles rechargeables ou secondaires sont plus avantageuses que les piles primaires (non rechargeables) car les réactions chimiques associées qui ont lieu aux électrodes positive et négative de la batterie sont réversibles. Les électrodes des cellules secondaires peuvent être régénérées plusieurs fois par l'application d'une charge électrique. De nombreux systèmes d'électrodes avancés ont été développés pour stocker la charge électrique. Parallèlement, de nombreux efforts ont été consacrés au développement d'électrolytes capables d'améliorer les capacités des cellules électrochimiques. Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated chemical reactions that take place at the positive and negative electrodes of the battery are reversible. Secondary cell electrodes can be regenerated multiple times by applying an electrical charge. Many advanced electrode systems have been developed to store electrical charge. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
Les batteries lithium-ion utilisent classiquement des électrolytes liquides composés de solvant(s), sel(s) de lithium et additif(s). Ces électrolytes ont une bonne conductivité ionique mais sont susceptibles de fuir ou de s’enflammer si la batterie est endommagée. L’utilisation d’électrolytes solides ou quasi-solides permet de pallier à ces difficultés. L’avantage des électrolytes solides ou quasi-solides est également de permettre l’utilisation de lithium métal à l’électrode négative, en empêchant la formation de dendrites pouvant causer des court-circuits au cours du cyclage. L’utilisation de lithium métal permet un gain en densité d’énergie par rapport aux électrodes négatives d’insertion ou d’alliage. Lithium-ion batteries conventionally use liquid electrolytes composed of solvent(s), lithium salt(s) and additive(s). These electrolytes have good ionic conductivity but are prone to leaking or igniting if the battery is damaged. The use of solid or quasi-solid electrolytes overcomes these difficulties. The advantage of solid or quasi-solid electrolytes is also to allow the use of lithium metal at the negative electrode, by preventing the formation of dendrites which can cause short circuits during cycling. The use of lithium metal allows a gain in energy density compared to the negative electrodes of insertion or alloy.
Cependant, les électrolytes solides ou quasi-solides sont généralement moins conducteurs que les électrolytes liquides, en particulier dans la cathode et l’anode. L’électrolyte solide ou quasi- solide incorporé dans la cathode est appelé catholyte. Un problème récurrent des batteries tout solide ou quasi-solide est d’obtenir un catholyte compatible chimiquement et électrochimiquement avec la cathode, tout en ayant une conductivité suffisante, et une faible résistivité aux interfaces avec la cathode. Afin d’améliorer les interfaces entre la cathode et le catholyte, il est souvent nécessaire d’appliquer de fortes pressions, ou d’enduire le catholyte directement sur la cathode, ce qui rajoute une étape dans le procédé de fabrication. However, solid or quasi-solid electrolytes are generally less conductive than liquid electrolytes, especially in the cathode and anode. The solid or quasi-solid electrolyte incorporated in the cathode is called catholyte. A recurring problem with all-solid or quasi-solid batteries is to obtain a catholyte that is chemically and electrochemically compatible with the cathode, while having sufficient conductivity and low resistivity at the interfaces with the cathode. In order to improve the interfaces between the cathode and the catholyte, it is often necessary to apply strong pressures, or to coat the catholyte directly on the cathode, which adds a step in the manufacturing process.
Le document FR 3049114 décrit une batterie tout solide comprenant un électrolyte polymère solide, une électrode négative comprenant du lithium métal ou un alliage de lithium métal, et une électrode positive comprenant un polymère conducteur ionique. L’inconvénient de cette batterie est que la conductivité ionique de l’électrolyte solide incorporé dans la cathode est faible à température ambiante, et la cellule lithium-ion doit être chauffée à 80°C pour avoir de bonnes performances électrochimiques. Document FR 3049114 describes an all-solid battery comprising a solid polymer electrolyte, a negative electrode comprising lithium metal or a lithium metal alloy, and a positive electrode comprising an ion-conductive polymer. The disadvantage of this battery is that the ionic conductivity of the solid electrolyte incorporated in the cathode is low at room temperature, and the lithium-ion cell must be heated to 80°C to have good electrochemical performance.
Le poly(fluorure de vinylidène) (PVDF) et ses dérivés présentent un intérêt comme matériau constitutif principal du liant utilisé dans les électrodes pour leur stabilité électrochimique, et pour leur constante diélectrique élevée qui favorise la dissociation des ions et donc la conductivité. Le copolymère P(VDF-co-HFP) (copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP)) présente une cristallinité inférieure au PVDF. De ce fait, l’intérêt de ces copolymères de P(VDF-co-HFP) est qu’ils permettent d’atteindre des gonflements plus importants dans les solvants d’électrolyte et favoriser ainsi la conductivité ionique dans une cathode de batterie Li-ion quasi-solide. Poly(vinylidene fluoride) (PVDF) and its derivatives are of interest as the main constituent material of the binder used in electrodes for their electrochemical stability, and for their high dielectric constant which promotes the dissociation of ions and therefore conductivity. P(VDF-co-HFP) copolymer (copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)) has lower crystallinity than PVDF. Therefore, the advantage of these P(VDF-co-HFP) copolymers is that they make it possible to achieve greater swelling in electrolyte solvents and thus promote ionic conductivity in a Li-battery cathode. quasi-solid ion.
Le document US 9,997,803 décrit, en référence à la Figure 2, une cellule 20 de batterie secondaire comprenant une cathode 21, une anode 22, un séparateur 23 et un électrolyte 24. Ce dernier comprend un composé de poids moléculaire élevé et une solution d'électrolyte préparée en dissolvant un sel d'électrolyte dans un solvant, et la solution d'électrolyte est maintenue dans le composé de poids moléculaire élevé pour gélifier la solution d'électrolyte. Ledit composé de poids moléculaire élevé comprend un premier composé ayant un poids moléculaire moyen en poids de 550 000 ou plus ; et un deuxième composé ayant un poids moléculaire moyen en poids de 1 000 ou plus mais n'excédant pas 300 000. Le premier composé à haut poids moléculaire a pour rôle d’améliorer l’adhérence entre l’électrolyte 24, la cathode 21 et l’anode 22. Le deuxième composé à haut poids moléculaire est censé améliorer la perméabilité de l’électrolyte 24 dans la cathode 21 et l’anode 22. Un troisième composé de haut poids moléculaire peut être incorporé dans l’électrolyte. Chacun de ces composés est choisi parmi le PVDF et les copolymères P(VDF-co-HFP). Les copolymères sont des copolymères à blocs, et la teneur massique en HFP dans le copolymère varie de 3 % à 7,5 %. Document US Pat. No. 9,997,803 describes, with reference to FIG. 2, a secondary battery cell 20 comprising a cathode 21, an anode 22, a separator 23 and an electrolyte 24. The latter comprises a high molecular weight compound and a solution of electrolyte prepared by dissolving an electrolyte salt in a solvent, and the electrolyte solution is held in the high molecular weight compound to gel the electrolyte solution. Said high molecular weight compound comprises a first compound having a weight average molecular weight of 550,000 or more; and a second compound having a weight average molecular weight of 1000 or more but not exceeding 300,000. The first high molecular weight compound functions to improve the adhesion between the electrolyte 24, the cathode 21 and the anode 22. The second high molecular weight compound is believed to improve the permeability of the electrolyte 24 in the cathode 21 and the anode 22. A third high molecular weight compound can be incorporated into the electrolyte. Each of these compounds is chosen from PVDF and P(VDF-co-HFP) copolymers. The copolymers are block copolymers, and the mass content of HFP in the copolymer varies from 3% to 7.5%.
Dans ce document, une matière active de cathode et un liant (copolymère de VDF-HFP), et, optionnellement, un conducteur électrique sont mélangés pour préparer un mélange de cathode, et le mélange de cathode est dispersé dans un solvant tel que la méthyl-2 -pyrrolidone pour former une bouillie de mélange de cathode. Ensuite, après avoir appliqué la boue de mélange de cathode sur un côté ou sur les deux côtés du collecteur de courant de cathode 21 A et l'avoir séchée, la couche de matière active de cathode 21B est formée par moulage par compression de manière à former la cathode 21. Sur cette cathode est appliquée une solution d’électrolyte obtenue en mélangeant, d’une part, une solution formée à partir desdits composés de haut poids moléculaire dissous dans un solvant tel que le carbonate de diméthyle, et d’autre part, un solvant comprenant du carbonate d’éthylène, du carbonate de propylène et LiPFô. La couche 21B de matière active de la cathode a été laissée au repos à température ambiante pendant 8 heures pour volatiliser le carbonate de diméthyle, conduisant à la formation de l’électrolyte 24. In this document, a cathode active material and a binder (copolymer of VDF-HFP), and, optionally, an electrical conductor are mixed to prepare a cathode mixture, and the cathode mixture is dispersed in a solvent such as methyl -2-pyrrolidone to form a cathode mixture slurry. Then, after applying the cathode mixing slurry to one side or both sides of the cathode current collector 21A and drying it, the cathode active material layer 21B is formed by compression molding so as to form the cathode 21. On this cathode is applied an electrolyte solution obtained by mixing, on the one hand, a solution formed from said high molecular weight compounds dissolved in a solvent such as dimethyl carbonate, and on the other hand, a solvent comprising ethylene carbonate, propylene carbonate and LiPF6. The active material layer 21B of the cathode was allowed to stand at room temperature for 8 hours to volatilize the dimethyl carbonate, leading to the formation of the electrolyte 24.
Ce mode préparatoire reste cependant laborieux, car cela rajoute une étape d’enduction de la solution d’électrolyte, ainsi qu’une étape d’évaporation du carbonate de diméthyle, qui rallongent le délai d’obtention de l’électrolyte et entraînent des surcoûts de fabrication. However, this preparatory method remains laborious, because it adds a step of coating the electrolyte solution, as well as a step of evaporating the dimethyl carbonate, which lengthen the time required to obtain the electrolyte and lead to additional costs. Manufacturing.
Il existe toujours un besoin de développer de nouvelles compositions de cathode comprenant un catholyte, présentant un bon compromis entre conductivité ionique au sein de la cathode à température ambiante et faible résistivité aux interfaces avec l’électrolyte solide ou quasi-solide, et qui sont adaptées à une mise en œuvre simplifiée, sans nécessiter d’étapes de transformation préalable. De plus, la quantité de catholyte dans la cathode doit être minimisée afin de maximiser la densité d’énergie de la cellule Li-ion. There is still a need to develop new cathode compositions comprising a catholyte, having a good compromise between ionic conductivity within the cathode at room temperature and low resistivity at the interfaces with the solid or quasi-solid electrolyte, and which are suitable to a simplified implementation, without requiring prior transformation steps. Additionally, the amount of catholyte in the cathode should be minimized in order to maximize the energy density of the Li-ion cell.
L’invention a donc pour but de remédier à au moins un des inconvénients de l’art antérieur, à savoir proposer une cathode pour batterie Li-ion quasi-solide comprenant un catholyte infiltré dans le matériau d’électrode et qui permet un gonflement suffisant du liant polymère incorporé dans ledit matériau sans perte de la cohésion au sein de la cathode ni de l’adhésion au collecteur de courant. Un gonflement suffisant signifie que la conductivité ionique à température ambiante de la cathode contenant le catholyte est telle que la capacité délivrée en décharge à C/10 est supérieure ou égale à 80% de la capacité réversible théorique. The object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a cathode for a quasi-solid Li-ion battery comprising a catholyte infiltrated into the electrode material and which allows sufficient swelling polymer binder incorporated into said material without loss of cohesion within the cathode or adhesion to the current collector. Sufficient swelling means that the ionic conductivity at room temperature of the cathode containing the catholyte is such that the capacity delivered in discharge at C/10 is greater than or equal to 80% of the theoretical reversible capacity.
L’invention concerne aussi une batterie secondaire Li-ion rechargeable comprenant une telle cathode contenant un catholyte, une anode et un séparateur. The invention also relates to a rechargeable Li-ion secondary battery comprising such a cathode containing a catholyte, an anode and a separator.
Enfin, l’invention concerne un procédé de préparation d’une batterie Li-ion comprenant ladite cathode contenant un catholyte, et qui est compatible avec les procédés industriels usuels. Finally, the invention relates to a process for preparing a Li-ion battery comprising said cathode containing a catholyte, and which is compatible with the usual industrial processes.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
La solution technique proposée par la présente invention est une cathode comprenant un catholyte mélangé intrinsèquement au matériau d’électrode. The technical solution proposed by the present invention is a cathode comprising a catholyte intrinsically mixed with the electrode material.
Selon un premier aspect, l’invention concerne une cathode pour batterie lithium-ion comprenant un matériau actif d’électrode, un additif conducteur, un oxyde inorganique, un liant polymère et un catholyte. According to a first aspect, the invention relates to a cathode for a lithium-ion battery comprising an electrode active material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte.
De manière caractéristique, ledit liant est un mélange de deux polymères fluorés : un polymère fluoré A qui comprend au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP) ayant un taux d’HFP supérieur ou égal à 3% en poids, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF- HFP, ledit polymère fluoré B ayant un taux massique d’HFP inférieur d’au moins 3% en poids par rapport au taux massique d’HFP du polymère A. Characteristically, said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP from polymer A.
Le catholyte comprend au moins un solvant et au moins un sel de lithium. The catholyte includes at least one solvent and at least one lithium salt.
Selon un autre aspect, l’invention a pour objet une batterie secondaire Li-ion rechargeable comprenant une cathode, une anode et un séparateur, dans laquelle ladite cathode est telle que décrite ci-dessus. According to another aspect, the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
Enfin, l’invention concerne un procédé de préparation d’une batterie Li-ion comprenant ladite cathode. Finally, the invention relates to a process for preparing a Li-ion battery comprising said cathode.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle se caractérise par une bonne conductivité à température ambiante du catholyte au sein de la cathode. La cohésion et adhésion de la cathode ainsi que sa souplesse sont maintenues avec le catholyte. The present invention makes it possible to overcome the drawbacks of the state of the art. It is characterized by good conductivity at ambient temperature of the catholyte within the cathode. The cohesion and adhesion of the cathode as well as its flexibility are maintained with the catholyte.
La fabrication de la batterie décrite par cette invention ne nécessite pas d’étapes supplémentaires par rapport au procédé de fabrication classique utilisé dans la production de cellules Li-ion: pas d’étape d’enduction du catholyte ; pas de traitement thermique intense, par exemple pas de frittage requis dans le cas des électrolytes solides à base d’oxydes, avec des températures supérieures à 500°C ; pas d’étape de compression à très haute pression ; ne nécessite pas de contrôler davantage l’humidité ou l’atmosphère par rapport aux procédés actuels. The manufacture of the battery described by this invention does not require additional steps compared to the conventional manufacturing method used in the production of Li-ion cells: no catholyte coating step; no intense heat treatment, e.g. no sintering required in the case of solid oxide-based electrolytes, with temperatures above 500°C; no very high pressure compression step; does not require more humidity or atmosphere control than current processes.
L’avantage de cette technologie est d’offrir un meilleur gage de sécurité par rapport aux électrolytes liquides : pas de fuite d’électrolyte et inflammabilité réduite du fait de la gélification du catholyte. The advantage of this technology is to offer a better guarantee of safety compared to liquid electrolytes: no electrolyte leakage and reduced flammability due to the gelation of the catholyte.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
La Figure 1 est un diagramme représentant les spectres d’impédance de cathodes en piles symétriques. Figure 1 is a diagram representing the impedance spectra of cathodes in symmetrical stacks.
La Figure 2 est un diagramme représentant les performances de capacité d’une cathode selon l’invention et d’une cathode selon un exemple comparatif, à un courant de décharge de IC. Figure 2 is a diagram showing the capacitance performance of a cathode according to the invention and a cathode according to a comparative example, at an IC discharge current.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. The invention is now described in more detail and in a non-limiting manner in the description which follows.
Selon un premier aspect, l’invention concerne une cathode pour batterie lithium-ion comprenant un matériau actif d’électrode, un additif conducteur, un oxyde inorganique, un liant polymère et un catholyte, dans laquelle : According to a first aspect, the invention relates to a cathode for a lithium-ion battery comprising an active electrode material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte, in which:
- ledit liant est un mélange de deux polymères fluorés : un polymère fluoré A qui comprend au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP) ayant un taux d’HFP supérieur ou égal à 3% en poids, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant un taux massique d’HFP inférieur d’au moins 3% en poids par rapport au taux massique d’HFP du polymère A, et - said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP polymer A, and
- ledit catholyte comprend au moins un solvant et au moins un sel de lithium. - Said catholyte comprises at least one solvent and at least one lithium salt.
Selon diverses réalisations, ladite cathode comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. According to various embodiments, said cathode comprises the following characters, possibly combined. The contents indicated are expressed by weight, unless otherwise indicated.
Ledit matériau actif d’électrode est choisi parmi les composés du type xLi2MnO3-(l- x)Li MO2 où 0<x<l , du type LiMPCL, du type Li2MPO3F, du type Li2MSiO4, où M est Co, Ni, Mn, Fe ou une combinaison de ces derniers, du type LiM Ch, et du type Ss. Said active electrode material is chosen from compounds of the xLi2MnO3-(l-x)LiMO2 type where 0<x<1, of the LiMPCL type, of the Li2MPO3F type, of the Li2MSiO4 type, where M is Co, Ni, Mn, Fe or a combination of these, of the LiM Ch type, and of the Ss type.
Ledit additif conducteur est choisi parmi les noirs de carbones, les graphites, naturel ou de synthèse, les fibres de carbone, les nanotubes de carbone, les fibres et poudres métalliques, les oxydes métalliques conducteurs, ou leurs mélanges. Ledit oxyde inorganique est choisi parmi les oxydes de silicium, le dioxyde de titane, les oxydes d’aluminium, la zircone, les zéolithes ou leurs mélanges. Said conductive additive is chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, metal fibers and powders, conductive metal oxides, or mixtures thereof. Said inorganic oxide is chosen from silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or mixtures thereof.
Liant polymère Polymer binder
Le polymère fluoré A comprend au moins un copolymère VDF-HFP ayant un taux d’HFP supérieur ou égal à 3% en poids, de préférence supérieur ou égal à 8%, avantageusement supérieur ou égal à 13%. Ledit copolymère VDF-HFP a un taux massique d’HFP inférieur ou égal à 55%, de préférence à 50%. The fluorinated polymer A comprises at least one VDF-HFP copolymer having an HFP content greater than or equal to 3% by weight, preferably greater than or equal to 8%, advantageously greater than or equal to 13%. Said VDF-HFP copolymer has a mass content of HFP less than or equal to 55%, preferably 50%.
Ce copolymère très peu cristallin gonfle facilement dans les solvants des électrolytes tels que les carbonates, nitriles, glymes, ce qui permet d’apporter au liant une bonne conductivité ionique. Le gonflement peut être quantifié par la prise en masse du liant en électrolyte. Avantageusement, la prise en masse de ce copolymère est au moins supérieure ou égale à 5% en poids. This very poorly crystalline copolymer swells easily in electrolyte solvents such as carbonates, nitriles, glymes, which gives the binder good ionic conductivity. The swelling can be quantified by the caking of the electrolyte binder. Advantageously, the caking of this copolymer is at least greater than or equal to 5% by weight.
Selon un mode de réalisation, le polymère fluoré A est constitué d’un seul copolymère VDF-HFP à taux d’HFP supérieur ou égal à 3%. Selon un mode de réalisation, le taux d’HFP dans ce copolymère VDF-HFP est compris entre 13% et 55% bornes comprises, préférentiellement entre 15% et 50% bornes comprises. According to one embodiment, the fluorinated polymer A consists of a single VDF-HFP copolymer with an HFP content greater than or equal to 3%. According to one embodiment, the level of HFP in this VDF-HFP copolymer is between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
Selon un mode de réalisation, le polymère fluoré A est constitué d’un mélange de deux ou plusieurs copolymères VDF-HFP, le taux d’HFP de chaque copolymère étant supérieur ou égal à 3%. Selon un mode de réalisation, chacun des copolymères a un taux d’HFP compris entre 13% et 55% bornes comprises, préférentiellement entre 15% et 50% bornes comprises. According to one embodiment, the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP content of each copolymer being greater than or equal to 3%. According to one embodiment, each of the copolymers has an HFP content of between 13% and 55%, limits included, preferably between 15% and 50%, limits included.
Le polymère fluoré B comprend au moins un copolymère VDF-HFP ayant un taux massique d’HFP inférieur d’au moins 3% par rapport au taux massique d’HFP du polymère A. Ceci permet d’apporter une tenue mécanique à la cathode suffisante après gonflement. Une tenue mécanique suffisante signifie que l’adhésion de la cathode au collecteur de courant est maintenue après gonflement, de même que la cohésion entre les particules de matière active. Fluorinated polymer B comprises at least one VDF-HFP copolymer having a mass content of HFP lower by at least 3% compared to the mass content of HFP of polymer A. This makes it possible to provide sufficient mechanical strength to the cathode after swelling. Sufficient mechanical strength means that the adhesion of the cathode to the current collector is maintained after swelling, as well as the cohesion between the particles of active material.
Selon un mode de réalisation, le polymère fluoré B est constitué d’un seul copolymère VDF-HFP. Selon un mode de réalisation, le taux d’HFP dans ce copolymère VDF-HFP est compris entre 1% et 5% bornes comprises. Selon un autre mode de réalisation, le taux d’HFP dans ce copolymère VDF-HFP est compris entre 1% et 10% bornes comprises. According to one embodiment, the fluoropolymer B consists of a single VDF-HFP copolymer. According to one embodiment, the level of HFP in this VDF-HFP copolymer is between 1% and 5%, limits included. According to another embodiment, the level of HFP in this VDF-HFP copolymer is between 1% and 10%, limits included.
Selon un mode de réalisation, le polymère fluoré B est un mélange de PVDF homopolymère avec un copolymère VDF-HFP ou bien un mélange de deux ou plusieurs copolymères VDF-HFP. Selon un mode de réalisation, le taux d’HFP du mélange des polymères A et B est supérieur à 7% en poids. According to one embodiment, the fluorinated polymer B is a mixture of PVDF homopolymer with a VDF-HFP copolymer or else a mixture of two or more VDF-HFP copolymers. According to one embodiment, the HFP content of the mixture of polymers A and B is greater than 7% by weight.
Selon un mode de réalisation, le mélange des polymères fluorés A et B a une température de fusion supérieure à 150°C. According to one embodiment, the mixture of fluorinated polymers A and B has a melting point above 150°C.
La composition molaire des motifs dans les polymères fluorés peut être déterminée par divers moyens tels que la spectroscopic infrarouge ou la spectroscopic RAMAN. Les méthodes classiques d'analyse élémentaire en éléments carbone, fluor et chlore ou brome ou iode, telle que la spectroscopic à fluorescence X, permettent de calculer sans ambiguïté la composition massique des polymères, d’où l’on déduit la composition molaire. The molar composition of units in fluoropolymers can be determined by various means such as infrared spectroscopy or RAMAN spectroscopy. Conventional methods of elemental analysis in the elements carbon, fluorine and chlorine or bromine or iodine, such as X-ray fluorescence spectroscopy, make it possible to calculate without ambiguity the mass composition of the polymers, from which the molar composition is deduced.
On peut également mettre en œuvre les techniques de RMN multi-noyaux, notamment proton (1H) et fluor (19F), par analyse d’une solution du polymère dans un solvant deutéré approprié. Le spectre RMN est enregistré sur un spectromètre RMN-FT équipé d’une sonde multi- nucléaire. On repère alors les signaux spécifiques donnés par les différents monomères dans les spectres réalisés selon l’un ou l’autre noyau. It is also possible to implement multi-nucleus NMR techniques, in particular proton (1H) and fluorine (19F), by analysis of a solution of the polymer in an appropriate deuterated solvent. The NMR spectrum is recorded on an NMR-FT spectrometer equipped with a multi-nuclear probe. The specific signals given by the different monomers are then identified in the spectra produced according to one or the other nucleus.
Selon un mode de réalisation, au moins un des polymères fluorés A et B comprend des unités portant au moins une des fonctionnalités suivantes : acide carboxylique, anhydride d’acide carboxylique, ester d’acide carboxylique, groupe époxy (tel que le glycidyle), amide, alcool, carbonyle, mercapto, sulfure, oxazoline et phénole. According to one embodiment, at least one of the fluorinated polymers A and B comprises units bearing at least one of the following functionalities: carboxylic acid, carboxylic acid anhydride, carboxylic acid ester, epoxy group (such as glycidyl), amide, alcohol, carbonyl, mercapto, sulfide, oxazoline and phenol.
Ladite fonctionnalité est introduite sur le polymère fluoré par une réaction chimique qui peut être un greffage, ou une réaction de copolymérisation du polymère fluoré avec un composé portant au moins une desdites fonctionnalités, au moyen de techniques connues par l’homme du métier. Said functionality is introduced onto the fluoropolymer by a chemical reaction which may be grafting, or a copolymerization reaction of the fluoropolymer with a compound bearing at least one of said functionalities, using techniques known to those skilled in the art.
Selon un mode de réalisation, ladite fonctionnalité est une groupe terminal situé en bout de la chaîne de polymère fluoré. According to one embodiment, said functionality is a terminal group located at the end of the fluoropolymer chain.
Selon un mode de réalisation, le monomère portant un groupe fonctionnel est intercalé dans la chaîne de polymère fluoré. According to one embodiment, the monomer carrying a functional group is intercalated in the fluoropolymer chain.
Selon un mode de réalisation, la fonctionnalité acide acrylique est un groupe hydrophile de type (méth)acrylique choisi parmi l’acide acrylique, l’acide méthacrylique, (méth)acrylate d’hydroxyéthyl, (méth)acrylate d’ hydroxypropyl et (méth)acrylate d’hydroxyéthylhexyl. According to one embodiment, the acrylic acid functionality is a hydrophilic group of (meth)acrylic type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and (meth)acrylate. )hydroxyethylhexyl acrylate.
Lorsque le polymère fluoré A ou B est fonctionnalisé, la teneur massique en groupes fonctionnels est d’au moins 0,01%, et inférieure ou égale à 5% basé sur le poids des polymères fluorés. When fluorinated polymer A or B is functionalized, the mass content of functional groups is at least 0.01%, and less than or equal to 5% based on the weight of the fluorinated polymers.
Selon un mode de réalisation, le ratio massique entre le polymère A et le polymère B es supérieur à 1. Catholyte According to one embodiment, the mass ratio between polymer A and polymer B is greater than 1. catholyte
Le catholyte comprend au moins un solvant et au moins un sel de lithium. The catholyte includes at least one solvent and at least one lithium salt.
Selon un mode de réalisation, ledit solvant est choisi parmi les carbonates d'alkyles cycliques et acycliques, les éthers, les glymes, les formates, les esters, les nitriles et les lactones. According to one embodiment, said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
Parmi les éthers, on peut citer les éthers linéaires ou cycliques, tels que le diméthoxyéthane (DME), les éthers méthyliques des oligoéthylène glycols de 2 à 100 unités oxyéthylènes, le dioxolane, le dioxane, le dibutyle éther, le tétrahydrofurane, et leurs mélanges. Among the ethers, mention may be made of linear or cyclic ethers, such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof. .
Parmi les esters, on peut citer les esters d’acide phosphorique et les esters de sulfite. On peut par exemple citer le formate de méthyle, l’acétate de méthyle, le propionate de méthyle, l’acétate d’éthyle, l’acétate de butyle ou leurs mélanges. Among the esters, mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
Les glymes utilisés sont de formule générale R1-O-R2-O-R3 où Ri et R3 sont des alkyles linéaires de 1 à 5 carbones et R2 une chaine alkyle linéaire ou ramifiée de 3 à 10 carbones. The glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
Parmi les lactones, on peut notamment citer la gamma-butyrolactone. Among the lactones, mention may in particular be made of gamma-butyrolactone.
Parmi les nitriles, on peut citer par exemple l’acétonitrile, le pyruvonitrile, le propionitrile, le méthoxypropionitrile, le diméthylaminopropionitrile, le butyronitrile, le succinonitrile, l’isobutyronitrile, le valéronitrile, le pivalonitrile, l’isovaléronitrile, le glutaronitrile, le méthoxyglutaronitrile, le 2-méthylglutaronitrile, le 3-méthylglutaronitrile, 1’ adiponitrile, le malononitrile, et leurs mélanges. Among the nitriles, mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
Parmi les carbonates, on peut citer par exemple les carbonates cycliques tels que par exemple le carbonate de propylène (PC) (CAS : 108-32-7), le carbonate de butylène (BC) (CAS : 4437-85-8), le carbonate de diméthyle (DMC) (CAS : 616-38-6), le carbonate de diéthyle (DEC) (CAS : 105-58-8), le carbonate de méthyle éthyle (EMC) (CAS : 623-53-0), le carbonate de diphényle(CAS 102-09-0), le carbonate de méthyle phényle (CAS : 13509-27-8), le carbonate de dipropyle (DPC) (CAS : 623-96-1), le carbonate de méthyle et de propyle (MPC) (CAS : 1333- 41-1), le carbonate d’éthyle et de propyle (EPC), le carbonate de vinylène (VC) (CAS : 872-36- 6), le fluoroethylène carbonate (FEC) (CAS : 114435-02-8), le trifluoropropylène carbonate (CAS : 167951-80-6) ou leurs mélanges. Among the carbonates, mention may be made, for example, of cyclic carbonates such as, for example, propylene carbonate (PC) (CAS: 108-32-7), butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8), methyl ethyl carbonate (EMC) (CAS: 623-53-0 ), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) (CAS: 623-96-1), methyl and propyl carbonate (MPC) (CAS: 1333-41-1), ethyl and propyl carbonate (EPC), vinylene carbonate (VC) (CAS: 872-36-6), fluoroethylene carbonate ( FEC) (CAS: 114435-02-8), trifluoropropylene carbonate (CAS: 167951-80-6) or mixtures thereof.
Selon un mode de réalisation, ledit sel de lithium est choisi parmi : le LiPFô (hexafluorophosphate de lithium), le LiFSI (bis(fluorosulfonyl)imidure de lithium), le LiTFSI (bis(trifluorométhane)sulfonimide de lithium), le LiTDI (2-trifluorométhyl-4,5-dicyano- imidazolate de lithium), le LiPO2F2, le LiB(C2O4)2, le LiF2B(C2O4)2, le LiBF4, le LiNCh, le LiCICL et leurs mélanges. Selon un mode de réalisation, le catholyte comprend en outre des sels possédant une température de fusion inférieure à 100°C tels que les liquides ioniques, qui forment des liquides seulement constitués de cations et d’ anions. According to one embodiment, said lithium salt is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTFSI (lithium bis(trifluoromethane)sulfonimide), LiTDI (2 lithium -trifluoromethyl-4,5-dicyano-imidazolate), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiCICL and mixtures thereof. According to one embodiment, the catholyte further comprises salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
A titre d’exemples de cations organiques, on peut citer en particulier les cations : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs leurs mélanges. By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
A titre d’exemple d’ anions, on peut citer notamment les imides, notamment bis(trifluorométhanesulfonyl)imide (abrégé NTf2-) ou bis(fluorosulfonyl)imide; les borates, notamment tétrafluoroborate (abrégé BF4-) ; les phosphates, notamment hexafluorophosphate (abrégé PF6-) ; les phosphinates et les phosphonates, notamment les alkyl-phosphonates ; les amides, notamment dicyanamide (abrégé DCA-) ; les aluminates, notamment tetrachloroaluminate (A1C14-), les halogénures (tels que les anions bromure, chlorure et iodure), les cyanates, les acétates (CH3COO-), notamment trifluoroacétate ; les sulfonates, notamment méthanesulfonate (CH3SO3-), trifluorométhanesulfonate ; et les sulfates, notamment hydrogène sulfate. By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide (abbreviated as NTf2-) or bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4-); phosphates, in particular hexafluorophosphate (abbreviated PF6-); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA-); aluminates, in particular tetrachloroaluminate (A1C14-), halides (such as bromide, chloride and iodide anions), cyanates, acetates (CH3COO-), in particular trifluoroacetate; sulphonates, in particular methanesulphonate (CH3SO3-), trifluoromethanesulphonate; and sulphates, especially hydrogen sulphate.
Selon un mode de réalisation, le catholyte consiste en un mélange de solvant et de sel de lithium et est dépourvu de liant polymère. According to one embodiment, the catholyte consists of a mixture of solvent and lithium salt and is devoid of polymer binder.
Selon un mode de réalisation, le catholyte comprend en outre des électrolytes solides tels que les super conducteurs ioniques de lithium [Lithium superionic conductor (LISICON)] et dérivés, les thio-LISICON, les structures de type Li4SiO4-Li3PO4, les super conducteurs ioniques de sodium et dérivés [Sodium superionic conductor (NASICON)], les structures de type Lii.3Alo.3Tii.7(P04)3 (LATP), les structures grenats (garnet) LivLasZnO (LLZO) et dérivés, les structures perovskite Li3xLa2/3-2xni/3-2xTiO3 (0<x<0,16) (LLTO), les sulfures amorphes, cristallins ou semi-cristallins tels que par exemple les sulfures de type LSS, LTS, LXPS, LXPSO, LATS où X est l’élément Si, Ge, Sn, As, Al ou une combinaison de ces éléments, S est l’élément S, Si, ou une combinaison de ces éléments et T est l’élément Sn, et les sulfures de type LiPSX, LiBSX, LiSnSX, LiSiSX, où X est l’élément F, Cl, Br ou I. Selon un mode de réalisation, l’électrolyte solide compris dans le catholyte peut être une combinaison desdits électrolytes solides. According to one embodiment, the catholyte also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Hello. 3 Tii.7(P04) 3 (LATP), garnet structures (garnet) LivLasZnO (LLZO) and derivatives, perovskite structures Li 3 xLa2/3-2xni/ 3 -2xTiO 3 (0<x<0.16) ( LLTO), amorphous, crystalline or semi-crystalline sulphides such as for example sulphides of the LSS, LTS, LXPS, LXPSO, LATS type where X is the element Si, Ge, Sn, As, Al or a combination of these elements , S is the element S, Si, or a combination of these elements and T is the element Sn, and the sulphides of type LiPSX, LiBSX, LiSnSX, LiSiSX, where X is the element F, Cl, Br or I According to one embodiment, the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
Selon un mode de réalisation, le catholyte comprend en outre un polymère organique conducteur tel que les polymères à base de PEO, PAN, PMMA, PVA. According to one embodiment, the catholyte also comprises a conductive organic polymer such as polymers based on PEO, PAN, PMMA, PVA.
Selon un mode de réalisation, le catholyte présente une concentration de sel de lithium de 0,05 moles/litre à 5 moles/litre dans le solvant. Selon un mode de réalisation, ladite cathode a la composition massique suivante: According to one embodiment, the catholyte has a lithium salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent. According to one embodiment, said cathode has the following mass composition:
- 52% à 95,5% de matériau actif, de préférence de 65% à 92%, - 52% to 95.5% of active material, preferably from 65% to 92%,
- 1% à 11% d’additif conducteur, de préférence de 1,5% à 7,5%, - 1% to 11% conductive additive, preferably from 1.5% to 7.5%,
- 1% à 11% de liant polymère, de préférence de 1,5% à 7,5%, - 1% to 11% of polymer binder, preferably from 1.5% to 7.5%,
- 0% à 2% d’oxyde inorganique, de préférence de 0% à 1%, - 0% to 2% inorganic oxide, preferably 0% to 1%,
- 2,5% à 28% de catholyte, de préférence de 5% à 20%, la somme de tous ces pourcentages étant de 100%. - 2.5% to 28% of catholyte, preferably from 5% to 20%, the sum of all these percentages being 100%.
Selon un mode de réalisation, dans la cathode le rapport massique catholyte/liant polymère est de 0,05 à 20, préférentiellement de 0,1 à 10. According to one embodiment, in the cathode the catholyte/polymer binder mass ratio is from 0.05 to 20, preferably from 0.1 to 10.
Selon un mode de réalisation, ladite cathode présente un rapport entre les teneurs massiques de l’additif conducteur électronique et du liant polymère, supérieur à 0,7. En effet, il a été trouvé que la résistance de contact de la cathode augmente lorsque le taux d’additif conducteur diminue par rapport au taux de liant polymère. According to one embodiment, said cathode has a ratio between the mass contents of the electronic conductive additive and of the polymer binder, greater than 0.7. Indeed, it was found that the contact resistance of the cathode increases when the rate of conductive additive decreases with respect to the rate of polymer binder.
La cathode décrite ci-dessus est fabriqué par un procédé comprenant les étapes suivantes : mélanger un matériau actif d’électrode, un additif conducteur, un oxyde inorganique et un liant polymère dans un solvant, pour obtenir une encre. Le mélange peut être préparé en utilisant un mélangeur planétaire ou un disque de dispersion. Une solution de liant polymère dans un solvant est préparée, ayant un extrait sec compris entre 2% et 20%. L’oxyde inorganique est ensuite dispersé dans cette solution. L’additif conducteur est ensuite dispersé dans cette solution. La matière active est ensuite dispersée dans cette solution et l’extrait sec de l’encre est ajusté par ajout de solvant, pour atteindre une valeur comprise entre 30% et 80%. enduire ladite encre sur un support collecteur de courant. Ce collecteur peut être une feuille d’aluminium, revêtue ou non par une couche de conducteur électronique et/ou de polymère, d’épaisseur comprise entre 5 iim et 30 iim. L’encre peut être appliquée sur une face ou sur les deux faces du collecteur de courant. sécher ladite encre pour former un revêtement. Le séchage peut être effectué sur une plaque chauffante ou dans un four à une température variant dans une gamme comprise entre 20°C et 150°C, avec ou sans flux d’air. calandrer l’ensemble formé par le revêtement et le collecteur de sorte à obtenir une température comprise entre 50°C et 130°C ; imprégner ledit revêtement avec un électrolyte comprenant au moins un solvant et au moins un sel de lithium. Avantageusement, la cathode est imprégnée dans la cellule Li- ion au moment du remplissage et avant de sceller la cellule. Batterie Li-ion The cathode described above is manufactured by a method comprising the following steps: mixing an active electrode material, a conductive additive, an inorganic oxide and a polymer binder in a solvent, to obtain an ink. The mixture can be prepared using a planetary mixer or a dispersing disc. A solution of polymer binder in a solvent is prepared, having a solids content between 2% and 20%. The inorganic oxide is then dispersed in this solution. The conductive additive is then dispersed in this solution. The active material is then dispersed in this solution and the dry extract of the ink is adjusted by adding solvent, to reach a value of between 30% and 80%. coating said ink on a current collector support. This collector can be an aluminum sheet, coated or not with a layer of electronic conductor and/or of polymer, with a thickness of between 5 μm and 30 μm. The ink can be applied to one side or to both sides of the current collector. drying said ink to form a coating. The drying can be carried out on a heating plate or in an oven at a temperature varying in a range between 20°C and 150°C, with or without air flow. calendering the assembly formed by the coating and the collector so as to obtain a temperature of between 50° C. and 130° C.; impregnating said coating with an electrolyte comprising at least one solvent and at least one lithium salt. Advantageously, the cathode is impregnated in the Li-ion cell at the time of filling and before sealing the cell. Li-ion battery
Selon un autre aspect, l’invention a pour objet une batterie secondaire Li-ion rechargeable comprenant une cathode, une anode et un séparateur, dans laquelle ladite cathode est telle que décrite ci-dessus. According to another aspect, the subject of the invention is a rechargeable Li-ion secondary battery comprising a cathode, an anode and a separator, in which said cathode is as described above.
Selon un mode de réalisation, l’anode est une feuille de lithium métal. According to one embodiment, the anode is a sheet of lithium metal.
Selon un mode de réalisation, l’anode comprend un matériau d’insertion du lithium tel que le graphite, les oxydes métalliques, le carbone non graphitisable, le carbone pyrolytique, le coke, les fibres de carbone, le charbon actif, un matériau d’alliage tel qu’à base des éléments Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, ou un mélange desdits matériaux d’anode. According to one embodiment, the anode comprises a lithium insertion material such as graphite, metal oxides, non-graphitizable carbon, pyrolytic carbon, coke, carbon fibers, activated carbon, a material of alloy such as based on the elements Si, Sn, Mg, B, As, Ga, In, Ge, Pb, Sb, Bi, Cd, Ag, Zn, Zr, or a mixture of said anode materials.
Selon un mode de réalisation, ledit est un séparateur « classique » comprenant une ou plusieurs couches poreuses de polypropylène et/ou polyéthylène, et comprenant ou non un revêtement sur une ou sur les deux faces du séparateur. Ledit revêtement comprend un liant polymère et des particules inorganiques. According to one embodiment, said is a “conventional” separator comprising one or more porous layers of polypropylene and/or polyethylene, and optionally comprising a coating on one or both sides of the separator. Said coating comprises a polymeric binder and inorganic particles.
Selon un mode de réalisation, ledit séparateur est une membrane polymère gélifiée comprenant un film de polymère fluoré et un électrolyte comprenant au moins un solvant et au moins un sel de lithium, ledit film fluoré comprenant au moins une couche, ladite couche consistant en un mélange de deux polymères fluorés : un polymère fluoré A qui comprend au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP) ayant un taux d’HFP supérieur ou égal à 3% en poids, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant un taux massique d’HFP inférieur d’au moins 3% en poids par rapport au taux massique d’HFP du polymère A. According to one embodiment, said separator is a gelled polymer membrane comprising a fluorinated polymer film and an electrolyte comprising at least one solvent and at least one lithium salt, said fluorinated film comprising at least one layer, said layer consisting of a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluorinated polymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluorinated polymer B having a mass content of HFP lower by at least 3% by weight compared to the mass content of HFP of polymer A.
Selon un premier mode de réalisation, ledit film est constitué d’une seule couche. According to a first embodiment, said film consists of a single layer.
Selon un mode de réalisation ledit mélange comprend : i. un taux massique de polymère A supérieur ou égal à 10% et inférieur ou égal à 99%, préférentiellement supérieur ou égal à 50% et inférieur ou égal à 95%, avantageusement supérieur ou égal à 25 % et inférieur ou égal à 95%, et ii. un taux massique de polymère B inférieur ou égal à 90% et supérieur à 1%, de préférence inférieur à 50% et supérieur à 5%. According to one embodiment, said mixture comprises: i. a mass content of polymer A greater than or equal to 10% and less than or equal to 99%, preferably greater than or equal to 50% and less than or equal to 95%, advantageously greater than or equal to 25% and less than or equal to 95%, and ii. a mass content of polymer B less than or equal to 90% and greater than 1%, preferably less than 50% and greater than 5%.
Selon un mode de réalisation, ledit film de polymère fluoré monocouche présente une épaisseur de 1 à 1000 pm, de préférence de 1 pm à 500 pm, et encore plus préférentiellement entre 5 pm et 100 pm. According to one embodiment, said monolayer fluoropolymer film has a thickness of 1 to 1000 μm, preferably from 1 μm to 500 μm, and even more preferably between 5 μm and 100 μm.
Selon un mode de réalisation, lorsque le film est monocouche, ledit film de polymère fluoré peut-être fabriqué par un procédé en voie solvant. Les polymères A et B sont solubilisés dans un solvant connu du polyfluorure de vinylidène ou de ses copolymères. A titre d’exemples non exhaustifs, on peut citer comme solvant la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétone. Le film est obtenu après dépôt de la solution sur un substrat plan et évaporation du solvant. According to one embodiment, when the film is single-layer, said fluoropolymer film can be manufactured by a solvent process. Polymers A and B are dissolved in a solvent known for polyvinylidene fluoride or its copolymers. As examples no exhaustive, mention may be made, as solvent, of n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetone. The film is obtained after deposition of the solution on a flat substrate and evaporation of the solvent.
Selon un mode de réalisation, ledit film de polymère fluoré est un film multicouche dont l’une au moins des couches est composée d’un mélange de polymères A et B selon l’invention. L’épaisseur globale du film multicouche est comprise entre 2 um et l OOOum, l’épaisseur de la couche de polymère fluoré selon l’invention étant comprise entre 1 um et 999um. According to one embodiment, said fluoropolymer film is a multilayer film of which at least one of the layers is composed of a mixture of polymers A and B according to the invention. The overall thickness of the multilayer film is between 2 μm and 1000 μm, the thickness of the fluoropolymer layer according to the invention being between 1 μm and 999 μm.
La ou les couches additionnelles sont choisies parmi les compositions polymériques suivantes : une composition consistant en un polymère fluoré choisi parmi les homopolymères du fluorure de vinylidène et les copolymères VDF-HFP contenant de préférence au moins 90 % en masse de VDF ; une composition consistant en un mélange de polymère fluoré, choisi parmi les homopolymères du fluorure de vinylidène et les copolymères VDF-HFP contenant de préférence au moins 85 % en masse de VDF, avec un homopolymères du méthacrylate de méthyle (MM A) et les copolymères contenant au moins 50% en masse de MMA et au moins un autre monomère copolymérisable avec le MMA. A titre d'exemple de comonomère copolymérisable avec le MMA, on peut citer les (méth)acrylates d'alkyle, l'acrylonitrile, le butadiène, le styrène, l'isoprène. Avantageusement, le polymère (homopolymère ou copolymère) de MMA comprend en masse de 0 à 20% et de préférence 5 à 15% d’un (méth)acrylate d’alkyle en C1-C8, qui est de préférence l'acrylate de méthyle et/ou l'acrylate d'éthyle. Le polymère (homopolymère ou copolymère) de MMA peut être fonctionnalisé, c'est-à-dire qu'il contient par exemple des fonctions acide, chlorure d’acide, alcool, anhydride. Ces fonctions peuvent être introduites par greffage ou par copolymérisation. Avantageusement, la fonctionnalité est en particulier la fonction acide apportée par le comonomère acide acrylique. On peut aussi utiliser un monomère à deux fonctions acide acrylique voisines qui peuvent se déshydrater pour former un anhydride. La proportion de fonctionnalité peut être de 0 à 15% en masse du polymère de MMA par exemple de 0 à 10% en masse.The additional layer or layers are chosen from the following polymer compositions: a composition consisting of a fluorinated polymer chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 90% by weight of VDF; a composition consisting of a mixture of a fluorinated polymer, chosen from vinylidene fluoride homopolymers and VDF-HFP copolymers preferably containing at least 85% by weight of VDF, with a methyl methacrylate (MM A) homopolymer and the copolymers containing at least 50% by mass of MMA and at least one other monomer copolymerizable with the MMA. By way of example of a comonomer which can be copolymerized with MMA, mention may be made of alkyl (meth)acrylates, acrylonitrile, butadiene, styrene, isoprene. Advantageously, the polymer (homopolymer or copolymer) of MMA comprises by mass from 0 to 20% and preferably 5 to 15% of a C1-C8 alkyl (meth)acrylate, which is preferably methyl acrylate and/or ethyl acrylate. The polymer (homopolymer or copolymer) of MMA can be functionalised, i.e. it contains, for example, acid, acid chloride, alcohol and anhydride functions. These functions can be introduced by grafting or by copolymerization. Advantageously, the functionality is in particular the acid function provided by the acrylic acid comonomer. It is also possible to use a monomer with two neighboring acrylic acid functions which can dehydrate to form an anhydride. The proportion of functionality can be from 0 to 15% by weight of the MMA polymer, for example from 0 to 10% by weight.
Selon un mode de réalisation, ledit film de polymère fluoré est fabriqué par un procédé de transformation des polymères à l’état fondu tel que l’extrusion à plat, l’extrusion par soufflage de gaine, le calandrage, la thermocompression. Selon un mode de réalisation, la membrane formant le séparateur comprend en outre des charges inorganiques telles que les oxydes de silicium, le dioxyde de titane, les oxydes d’aluminium, la zircone, les zéolithes ou leur mélange. According to one embodiment, said fluoropolymer film is manufactured by a process for transforming polymers in the molten state such as flat extrusion, extrusion by sheath blowing, calendering, thermocompression. According to one embodiment, the membrane forming the separator further comprises inorganic fillers such as silicon oxides, titanium dioxide, aluminum oxides, zirconia, zeolites or their mixture.
Selon un mode de réalisation, la membrane comprend en outre des électrolytes solides tels que les super conducteurs ioniques de lithium [Lithium superionic conductor (LISICON)] et dérivés, les thio-LISICON, les structures de type Li4SiO4-Li3PO4, les super conducteurs ioniques de sodium et dérivés [Sodium superionic conductor (NASICON)], les structures de type Lii.3Alo.3Tii.7(P04)3 (LATP), les structures grenats (garnet) Li7La3Zr20i2 (LLZO) et dérivés, les structures perovskite Li3xLa2/3-xai/3-2xTiO3 (0<x<0,16) (LLTO) et les sulfures amorphes, cristallins ou semi-cristallins tels que par exemple les sulfures de type LSS, LTS, LXPS, LXPSO, LATS où X est l’élément Si, Ge, Sn, As, Al ou une combinaison de ces éléments, S est l’élément S, Si, ou une combinaison de ces éléments et T est l’élément Sn, et les sulfures de type LiPSX, LiBSX, LiSnSX, LiSiSX, où X est l’élément F, Cl, Br ou I. Selon un mode de réalisation, l’électrolyte solide compris dans le catholyte peut être une combinaison desdits électrolytes solides. According to one embodiment, the membrane also comprises solid electrolytes such as lithium ionic superconductors [Lithium superionic conductor (LISICON)] and derivatives, thio-LISICON, structures of the Li4SiO4-Li3PO4 type, ionic superconductors of sodium and derivatives [Sodium superionic conductor (NASICON)], Lii type structures. 3 Alo.3Tii.7(P04)3 (LATP), garnet structures (garnet) Li7La 3 Zr20i2 (LLZO) and derivatives, perovskite structures Li3xLa2/3-xai/3-2xTiO3 (0<x<0.16) (LLTO) and amorphous, crystalline or semi-crystalline sulphides such as for example sulphides of the LSS, LTS, LXPS, LXPSO, LATS type where X is the element Si, Ge, Sn, As, Al or a combination of these elements, S is the element S, Si, or a combination of these elements and T is the element Sn, and the sulphides of type LiPSX, LiBSX, LiSnSX, LiSiSX, where X is the element F, Cl, Br or I. According to one embodiment, the solid electrolyte included in the catholyte can be a combination of said solid electrolytes.
Selon un mode de réalisation, ledit solvant est choisi parmi les carbonates d'alkyles cycliques et acycliques, les éthers, les glymes, les formates, les esters, les nitriles et les lactones. According to one embodiment, said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones.
Parmi les éthers, on peut citer les éthers linéaires ou cycliques, tels que le diméthoxyéthane (DME), les éthers méthyliques des oligoéthylène glycols de 2 à 100 unités oxyéthylènes, le dioxolane, le dioxane, le dibutyle éther, le tétrahydrofurane, et leurs mélanges. Among the ethers, mention may be made of linear or cyclic ethers, such as dimethoxyethane (DME), methyl ethers of oligoethylene glycols with 2 to 100 oxyethylene units, dioxolane, dioxane, dibutyl ether, tetrahydrofuran, and mixtures thereof. .
Parmi les esters, on peut citer les esters d’acide phosphorique et les esters de sulfite. On peut par exemple citer le formate de méthyle, l’acétate de méthyle, le propionate de méthyle, l’acétate d’éthyle, l’acétate de butyle ou leurs mélanges. Among the esters, mention may be made of phosphoric acid esters and sulfite esters. Mention may be made, for example, of methyl formate, methyl acetate, methyl propionate, ethyl acetate, butyl acetate or mixtures thereof.
Les glymes utilisés sont de formule générale R1-O-R2-O-R3 où Ri et R3 sont des alkyles linéaires de 1 à 5 carbones et R2 une chaine alkyle linéaire ou ramifiée de 3 à 10 carbones. The glymes used are of general formula R1-O-R2-O-R3 where R1 and R3 are linear alkyls of 1 to 5 carbons and R2 a linear or branched alkyl chain of 3 to 10 carbons.
Parmi les lactones, on peut notamment citer la gamma-butyrolactone. Among the lactones, mention may in particular be made of gamma-butyrolactone.
Parmi les nitriles, on peut citer par exemple l’acétonitrile, le pyruvonitrile, le propionitrile, le méthoxypropionitrile, le diméthylaminopropionitrile, le butyronitrile, le succinonitrile, l’isobutyronitrile, le valéronitrile, le pivalonitrile, l’isovaléronitrile, le glutaronitrile, le méthoxyglutaronitrile, le 2-méthylglutaronitrile, le 3-méthylglutaronitrile, 1’ adiponitrile, le malononitrile, et leurs mélanges. Among the nitriles, mention may be made, for example, of acetonitrile, pyruvonitrile, propionitrile, methoxypropionitrile, dimethylaminopropionitrile, butyronitrile, succinonitrile, isobutyronitrile, valeronitrile, pivalonitrile, isovaleronitrile, glutaronitrile, methoxyglutaronitrile , 2-methylglutaronitrile, 3-methylglutaronitrile, adiponitrile, malononitrile, and mixtures thereof.
Parmi les carbonates, on peut citer par exemple les carbonates cycliques tels que par exemple le carbonate d’éthylène (EC) (CAS : 96-49-1), le carbonate de propylène (PC) (CAS : 108-32-7), le carbonate de butylène (BC) (CAS : 4437-85-8), le carbonate de diméthyle (DMC) (CAS : 616-38-6), le carbonate de diéthyle (DEC) (CAS : 105-58-8), le carbonate de méthyle éthyle (EMC) (CAS : 623-53-0), le carbonate de diphényle(CAS 102-09-0), le carbonate de méthyle phényle (CAS : 13509-27-8), le carbonate de dipropyle (DPC) (CAS : 623-96-1), le carbonate de méthyle et de propyle (MPC) (CAS : 1333-41-1), le carbonate d’éthyle et de propyle (EPC), le carbonate de vinylène (VC) (CAS : 872-36-6), le fluoroethylène carbonate (FEC) (CAS : 114435-02-8), le trifluoropropylène carbonate (CAS : 167951-80-6) ou leurs mélanges. Among the carbonates, mention may be made, for example, of cyclic carbonates such as for example ethylene carbonate (EC) (CAS: 96-49-1), propylene carbonate (PC) (CAS: 108-32-7) , butylene carbonate (BC) (CAS: 4437-85-8), dimethyl carbonate (DMC) (CAS: 616-38-6), diethyl carbonate (DEC) (CAS: 105-58-8 ), methyl carbonate (EMC) (CAS: 623-53-0), diphenyl carbonate (CAS 102-09-0), methyl phenyl carbonate (CAS: 13509-27-8), dipropyl carbonate (DPC) ( CAS: 623-96-1), methyl propyl carbonate (MPC) (CAS: 1333-41-1), ethyl propyl carbonate (EPC), vinylene carbonate (VC) (CAS : 872-36-6), fluoroethylene carbonate (FEC) (CAS: 114435-02-8), trifluoropropylene carbonate (CAS: 167951-80-6) or mixtures thereof.
Selon un mode de réalisation, ledit sel de lithium présent dans le séparateur est choisi parmi: le LiPFô (hexafluorophosphate de lithium), le LiFSI (bis(fluorosulfonyl)imidure de lithium), le LiTDI (2-trifluorométhyl-4,5-dicyano-imidazolate de lithium), le LiTFSI (bis(trifluorométhane)sulfonimide de lithium), le LiPO2F2, le LiB(C2O4)2, le LiF2B(C2O4)2, le LiBF4, le LiNCh, le LiClO4 ou leur mélange. According to one embodiment, said lithium salt present in the separator is chosen from: LiPF6 (lithium hexafluorophosphate), LiFSI (lithium bis(fluorosulfonyl)imide), LiTDI (2-trifluoromethyl-4,5-dicyano -lithium imidazolate), LiTFSI (lithium bis(trifluoromethane)sulphonimide), LiPO2F2, LiB(C2O4)2, LiF2B(C2O4)2, LiBF4, LiNCh, LiClO4 or their mixture.
Selon un mode de réalisation, l’électrolyte présent dans le séparateur comprend, en plus du solvant et du sel de lithium, au moins un additif. L’additif peut être choisi parmi le groupe constitué du carbonate de fluoroéthylène (FEC), du carbonate de vinylène, du 4-vinyl-l,3-dioxolan-2-one, de la pyridazine, de la vinyl pyridazine, de la quinoline, de la vinyl quinoline, du butadiène, du sébaconitrile, des alkyldisulfure, du fluorotoluène, du 1,4-diméthoxytétrafluorotoluène, du t- butylphenol, du di-t-butylphenol, du tris(pentafluorophenyl)borane, des oximes, des époxydes aliphatiques, des biphényls halogénés, des acides métacryliques, du carbonate d’allyle éthyle, de l’acétate de vinyle, de l’adipate de divinyle, du propanesultone, de 1’ acrylonitrile, du 2- vinylpyridine, de l’anhydride maléique, du cinnamate de méthyle, des phosphonates, des composés silane contenant un vinyle, du 2-cyanofurane. According to one embodiment, the electrolyte present in the separator comprises, in addition to the solvent and the lithium salt, at least one additive. The additive can be selected from the group consisting of fluoroethylene carbonate (FEC), vinylene carbonate, 4-vinyl-1,3-dioxolan-2-one, pyridazine, vinyl pyridazine, quinoline , vinyl quinoline, butadiene, sebaconitrile, alkyl disulphide, fluorotoluene, 1,4-dimethoxytetrafluorotoluene, t-butylphenol, di-t-butylphenol, tris(pentafluorophenyl)borane, oximes, aliphatic epoxides , halogenated biphenyls, metacrylic acids, allyl ethyl carbonate, vinyl acetate, divinyl adipate, propanesultone, acrylonitrile, 2-vinylpyridine, maleic anhydride, methyl cinnamate, phosphonates, vinyl-containing silane compounds, 2-cyanofuran.
L’additif peut également être choisi parmi les sels possédant une température de fusion inférieure à 100 °C tels que les liquides ioniques, qui forment des liquides seulement constitués de cations et d’ anions. The additive can also be chosen from salts having a melting point below 100° C. such as ionic liquids, which form liquids consisting solely of cations and anions.
A titre d’exemples de cations organiques, on peut citer en particulier les cations : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs leurs mélanges. By way of examples of organic cations, mention may be made in particular of the cations: ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, lithium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, and mixtures thereof.
A titre d’exemple d’ anions, on peut citer notamment les imides, notamment bis(trifluorométhanesulfonyl)imide et bis(fluorosulfonyl)imide; les borates, notamment tétrafluoroborate (abrégé BF4 ) ; les phosphates, notamment hexafluorophosphate (abrégé PFÔ ) ; les phosphinates et les phosphonates, notamment les alkyl-phosphonates ; les amides, notamment dicyanamide (abrégé DCA ) ; les aluminates, notamment tetrachloroaluminate (AICI4 ), les halogénures (tels que les anions bromure, chlorure ou iodure), les cyanates, les acétates (CEECOO- ), notamment trifluoroacétate ; les sulfonates, notamment méthanesulfonate (CH3SO3 ), trifluorométhanesulfonate ; et les sulfates, notamment hydrogène sulfate. By way of example of anions, mention may in particular be made of imides, in particular bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)imide; borates, in particular tetrafluoroborate (abbreviated BF4); phosphates, in particular hexafluorophosphate (abbreviated PFÔ); phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide (abbreviated DCA); aluminates, in particular tetrachloroaluminate (AICI4), halides (such as bromide, chloride or iodide anions), cyanates, acetates (CEECOO- ), in particular trifluoroacetate; sulfonates, in particular methanesulfonate (CH3SO3), trifluoromethanesulfonate; and sulphates, especially hydrogen sulphate.
Selon un mode de réalisation, dans le séparateur ledit électrolyte présente une concentration de sel de 0,05 moles/litre à 5 moles/litre dans le solvant. According to one embodiment, in the separator, said electrolyte has a salt concentration of 0.05 moles/liter to 5 moles/liter in the solvent.
Selon un mode de réalisation, dans le séparateur le rapport électrolyte/ polymères fluorés est de 0,05 à 20, préférentiellement de 0,1 à 10. According to one embodiment, in the separator, the electrolyte/fluorinated polymers ratio is from 0.05 to 20, preferably from 0.1 to 10.
Selon un mode de réalisation, dans le séparateur ledit film présente une prise en masse au moins supérieure ou égale à 5% en poids, de préférence allant de 10% à 1000%. According to one embodiment, in the separator said film has a caking at least greater than or equal to 5% by weight, preferably ranging from 10% to 1000%.
Avantageusement, le séparateur sous forme de membrane polymère gélifiée est non- poreux, ce qui signifie que la perméabilité aux gaz du séparateur est de 0 ml/min, telle que détectée par l'essai de perméabilité aux gaz (lorsque la surface du séparateur est de 10 cm2, la différence de pression de gaz entre les deux côtés est de 1 atm, et le temps est de 10 minutes). Advantageously, the separator in the form of a gelled polymer membrane is non-porous, which means that the gas permeability of the separator is 0 ml/min, as detected by the gas permeability test (when the surface of the separator is of 10 cm 2 , the gas pressure difference between the two sides is 1 atm, and the time is 10 minutes).
Selon un mode de réalisation, ledit séparateur contient une seule membrane polymère gélifiée. Selon un autre mode de réalisation, ledit séparateur consiste en un film multicouche dont chaque couche a la composition du film décrit ci-dessus. Avantageusement, dans le séparateur la membrane n’est pas supportée par un support. According to one embodiment, said separator contains a single gelled polymer membrane. According to another embodiment, said separator consists of a multilayer film, each layer of which has the composition of the film described above. Advantageously, in the separator the membrane is not supported by a support.
Enfin, l’invention concerne un procédé de préparation d’une batterie Li-ion comprenant ladite cathode. Finally, the invention relates to a process for preparing a Li-ion battery comprising said cathode.
La cellule Li-ion est préparée en assemblant l’anode, le séparateur et la cathode. The Li-ion cell is prepared by assembling the anode, separator and cathode.
Selon un mode de réalisation, un électrolyte liquide comprenant au moins un solvant et au moins un sel de lithium est introduit dans la cellule avant de sceller la cellule afin de former le catholyte par gonflement du liant dans la cathode. According to one embodiment, a liquid electrolyte comprising at least one solvent and at least one lithium salt is introduced into the cell before sealing the cell in order to form the catholyte by swelling the binder in the cathode.
La cellule peut être chauffée entre 30°C et 90°C, et préférentiellement entre 40°C et 70°C pendant 5min à 24h, et préférentiellement pendant 30min à 12h pour favoriser le gonflement du liant de la cathode imprégnée par le catholyte, et du gel polymère dans le séparateur (le cas échéant). La cellule Li-ion peut également être mise en surpression de 0,01 MPa à 3 MPa pour favoriser l’imprégnation du catholyte dans la cathode. The cell can be heated between 30°C and 90°C, and preferentially between 40°C and 70°C for 5 min to 24 h, and preferentially for 30 min to 12 h to promote the swelling of the binder of the cathode impregnated with the catholyte, and polymer gel in the separator (if applicable). The Li-ion cell can also be pressurized by 0.01 MPa to 3 MPa to promote the impregnation of the catholyte in the cathode.
Selon un mode de réalisation, la cathode contenant le catholyte est assemblée avec un séparateur et une anode, le séparateur pouvant être un électrolyte solide ou quasi-solide tel qu’un électrolyte gel polymère. According to one embodiment, the cathode containing the catholyte is assembled with a separator and an anode, the separator possibly being a solid or quasi-solid electrolyte such as a polymer gel electrolyte.
EXEMPLES EXAMPLES
Les exemples suivants illustrent de façon non limitative la portée de l’invention. Fabrication d’une cathode The following examples illustrate the scope of the invention in a non-limiting manner. Manufacture of a cathode
Produits : Products:
Matière active (MA) : NMC622 Active ingredient (AM): NMC622
Noir de carbone (NC) : Super C65 Carbon Black (NC): Super C65
- PVDF 1 : Copolymère de fluorure de vinylidène (VDF) et d’hexafluorure de vinylidène (HFP) à 25% en poids d’HFP, caractérisé par une viscosité à l’état fondu de 1000 Pa.s à 100 s 1 et 230°C. - PVDF 1: Copolymer of vinylidene fluoride (VDF) and vinylidene hexafluoride (HFP) with 25% by weight of HFP, characterized by a viscosity in the molten state of 1000 Pa.s at 100 s 1 and 230 °C.
- PVDF 2: Homopolymère de fluorure de vinylidène caractérisé par une viscosité à l’état fondu de 1000 Pa.s à 100 s 1 et 230°C. - PVDF 2: Homopolymer of vinylidene fluoride characterized by a melt viscosity of 1000 Pa.s at 100 s 1 and 230°C.
PVDF 3 : - Homopolymère de fluorure de vinylidène fonctionnalisé acide avec un taux de fonctionnalité d’environ 1% en masse, caractérisé par une viscosité de 547 cP à 5 s-1 et 25°C dans une solution de NMP à 10% d’extrait sec. PVDF 3: - Acid functionalized vinylidene fluoride homopolymer with a functionality rate of approximately 1% by mass, characterized by a viscosity of 547 cP at 5 s -1 and 25°C in a 10% NMP solution of dry extract.
Catholyte : 0,75M Lithium bis(fluorosulfonyl)imide (LiFSI) commercialisé par Arkema dans DME. Catholyte: 0.75M Lithium bis(fluorosulfonyl)imide (LiFSI) marketed by Arkema in DME.
Plusieurs cathodes quasi-solides sont préparées en mélangeant la matière active, le conducteur électronique noir de carbone, et le liant, qui peut être un mélange d’un copolymère et d’un homopolymère de PVDF, dans le solvant N-méthyl pyrrolidone. L’encre est enduite sur un collecteur de courant en aluminium, qui est ensuite séché pour évaporer le solvant. L’électrode est ensuite calandrée pour diminuer la porosité. Several quasi-solid cathodes are prepared by mixing the active material, the carbon black electronic conductor, and the binder, which can be a mixture of a copolymer and a homopolymer of PVDF, in the solvent N-methyl pyrrolidone. The ink is smeared onto an aluminum current collector, which is then dried to evaporate the solvent. The electrode is then calendered to reduce the porosity.
La composition massique des différentes cathodes est récapitulée dans le tableau 1 : The mass composition of the different cathodes is summarized in Table 1:
Tableau 1 Mesure de la résistance de contact de cathodes par spectroscopic d’impédance : Table 1 Measurement of cathode contact resistance by impedance spectroscopy:
Des mesures d’impédance sont réalisées en pile bouton contenant deux cathodes similaires, séparées par un séparateur tri-couches PP/PE/PP. La figure 1 annexée présente les spectres d’impédances obtenus avec les cathodes du tableau 1. Le diamètre du demi-cercle est proportionnel à la résistance de contact à l’interface entre la cathode et le collecteur de courant d’aluminium. Malgré leur taux de liant élevé, les cathodes des exemples 1 et 2 ont une résistance de contact relativement faible et proche de celle de l’exemple comparatif 1. La résistance de contact augmente lorsque le taux de noir de carbone par rapport au liant diminue, comme montré par les valeurs du rapport NC/PVDE dans le tableau 1. Impedance measurements are carried out in a button cell containing two similar cathodes, separated by a three-layer PP/PE/PP separator. The appended figure 1 presents the impedance spectra obtained with the cathodes of table 1. The diameter of the semi-circle is proportional to the contact resistance at the interface between the cathode and the aluminum current collector. Despite their high binder content, the cathodes of Examples 1 and 2 have a relatively low contact resistance close to that of Comparative Example 1. The contact resistance increases when the carbon black content relative to the binder decreases, as shown by the NC/PVDE ratio values in Table 1.
Evaluation de la performance de cathodes à IC : Evaluation of the performance of IC cathodes:
La cathode de l’exemple 2 est assemblée en pile bouton face à une anode de lithium métal. Le séparateur est une membrane constituée du PVDE 1 et PVDE 2. 20 uL d’électrolyte liquide contenant 0,75M LiESI dans le solvant diméthoxyéthane est injecté dans la pile bouton avant que celle-ci ne soit scellée. La pile est ensuite mise à l’étuve à 45°C pendant 2h pour que l’électrolyte gonfle le polymère et forme un gel dans le séparateur et le catholyte. The cathode of example 2 is assembled as a button cell facing a lithium metal anode. The separator is a membrane made up of PVDE 1 and PVDE 2. 20 μL of liquid electrolyte containing 0.75M LiESI in the dimethoxyethane solvent is injected into the button cell before it is sealed. The battery is then placed in an oven at 45°C for 2 hours so that the electrolyte swells the polymer and forms a gel in the separator and the catholyte.
La cathode de l’exemple comparatif 1 est assemblée en pile bouton face à une anode de lithium métal. Le séparateur est un tri-couches PP/PE/PP et l’électrolyte contient IM LiPEô dans EC/EMC (3 :7, vol). The cathode of comparative example 1 is assembled as a button cell facing a lithium metal anode. The separator is a tri-layer PP/PE/PP and the electrolyte contains IM LiPE6 in EC/EMC (3:7, vol).
La figure 2 annexée présente la capacité délivrée par les cathodes E2 et EC1 à un courant de décharge de IC. The appended FIG. 2 shows the capacitance delivered by the cathodes E2 and EC1 at a discharge current of IC.
La cathode quasi-solide de l’exemple 2 assemblée avec un électrolyte gel polymère a des performances similaires à IC à la cathode de l’exemple comparatif 1 fonctionnant avec un électrolyte liquide. The quasi-solid cathode of Example 2 assembled with a polymer gel electrolyte has similar IC performance to the cathode of Comparative Example 1 operating with a liquid electrolyte.

Claims

REVENDICATIONS
1. Cathode pour batterie lithium-ion comprenant un matériau actif d’électrode, un additif conducteur, un oxyde inorganique, un liant polymère et un catholyte, dans laquelle : 1. Cathode for a lithium-ion battery comprising an electrode active material, a conductive additive, an inorganic oxide, a polymer binder and a catholyte, in which:
- ledit liant est un mélange de deux polymères fluorés : un polymère fluoré A qui comprend au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP) ayant un taux d’HFP supérieur ou égal à 3% en poids, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant un taux massique d’HFP inférieur d’au moins 3% en poids par rapport au taux massique d’HFP du polymère A, et- said binder is a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluoropolymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluoropolymer B having a mass content of HFP lower by at least 3% by weight relative to the mass content of HFP polymer A, and
- ledit catholyte comprend au moins un solvant et au moins un sel de lithium. - Said catholyte comprises at least one solvent and at least one lithium salt.
2. Cathode selon la revendication 1, dans laquelle le taux massique d’HFP dans ledit au moins un copolymère de VDF-HFP entrant dans la composition dudit polymère fluoré A est supérieur ou égal à 8% et inférieur ou égal à 55%. 2. Cathode according to claim 1, in which the mass content of HFP in said at least one VDF-HFP copolymer forming part of the composition of said fluoropolymer A is greater than or equal to 8% and less than or equal to 55%.
3. Cathode selon l’une des revendications 1 et 2, dans laquelle le taux d’HFP du mélange des polymères A et B est supérieur à 7% en poids. 3. Cathode according to one of claims 1 and 2, wherein the HFP content of the mixture of polymers A and B is greater than 7% by weight.
4. Cathode selon l’une des revendications 1 à 3, dans laquelle le ratio massique entre le polymère A et le polymère B es supérieur à 1. 4. Cathode according to one of claims 1 to 3, in which the mass ratio between polymer A and polymer B is greater than 1.
5. Cathode selon l’une des revendications 1 à 4, dans laquelle ledit matériau actif est choisi parmi les composés du type xLi2MnO3-(l-x)LiMO2 où 0<x<l, du type LiMPO4, du type I^MPChF, du type Li2MSiO4 où M est Co, Ni, Mn, Fe ou une combinaison de ces derniers, du type LiMmCh, ou du type Ss. 5. Cathode according to one of claims 1 to 4, in which said active material is chosen from compounds of the xLi2MnO3-(l-x)LiMO2 type where 0<x<l, of the LiMPO4 type, of the I^MPChF type, of the Li2MSiO4 where M is Co, Ni, Mn, Fe or a combination of these, of the LiMmCh type, or of the Ss type.
6. Cathode selon l’une des revendications 1 à 5, dans laquelle ledit additif conducteur est choisi parmi les noirs de carbones, les graphites, naturel ou de synthèse, les fibres de carbone, les nanotubes de carbone, les fibres et poudres métalliques, les oxydes métalliques conducteurs, ou leurs mélanges. 6. Cathode according to one of claims 1 to 5, wherein said conductive additive is chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, fibers and metal powders, conductive metal oxides, or mixtures thereof.
7. Cathode selon l’une des revendications 1 à 6, dans laquelle le solvant présent dans ledit catholyte est choisi parmi les carbonates d'alkyles cycliques et acycliques, les éthers, les glymes, les formates, les esters, les nitriles et les lactones. 7. Cathode according to one of claims 1 to 6, wherein the solvent present in said catholyte is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones .
8. Cathode selon l’une des revendications 1 à 7, dans laquelle le sel de lithium présent dans ledit catholyte est choisi parmi le LiPFô, le LiFSI, le LiTFSI, le LiTDI, le LiPO2F2, le LiB(C2O4)2, le LiF2B(C2O4)2, le LiBF4, le LiNCh, et le LiC104 et leurs mélanges. 8. Cathode according to one of claims 1 to 7, in which the lithium salt present in said catholyte is chosen from LiPF6, LiFSI, LiTFSI, LiTDI, LiPO2F2, LiB(C2O4)2, LiF2B (C2O4)2, LiBF4, LiNCH, and LiC104 and mixtures thereof.
9. Cathode selon l’une des revendications 1 à 8, dans laquelle le catholyte présente une concentration de sel de lithium de 0,05 à 5 moles /litre dans le solvant. 9. Cathode according to one of claims 1 to 8, wherein the catholyte has a lithium salt concentration of 0.05 to 5 moles / liter in the solvent.
10. Cathode selon l’une des revendications 1 à 9, dans laquelle le rapport catholyte/liant polymère est de 0,05 à 20 et préférentiellement de 0,1 à 10. 10. Cathode according to one of claims 1 to 9, in which the catholyte/polymer binder ratio is from 0.05 to 20 and preferably from 0.1 to 10.
11. Cathode selon l’une des revendications 1 à 10, dans laquelle le rapport des teneurs massiques de l’additif conducteur électronique et du liant polymère est supérieur à 0,7. 11. Cathode according to one of claims 1 to 10, in which the ratio of the mass contents of the electronic conductor additive and of the polymer binder is greater than 0.7.
12. Cathode selon l’une des revendications 1 à 11, ladite cathode ayant la composition massique suivante: 12. Cathode according to one of claims 1 to 11, said cathode having the following mass composition:
- 52% à 95,5% de matériau actif, de préférence de 65% à 92%, - 52% to 95.5% of active material, preferably from 65% to 92%,
- 1% à 11% d’additif conducteur, de préférence de 1,5% à 7,5%, - 1% to 11% conductive additive, preferably from 1.5% to 7.5%,
- 1% à 11% de liant polymère, de préférence de 1,5% à 7,5%, - 1% to 11% of polymer binder, preferably from 1.5% to 7.5%,
- 0% à 2% d’oxyde inorganique, de préférence de 0% à 1% - 0% to 2% inorganic oxide, preferably 0% to 1%
- 2,5% à 28% de catholyte, de préférence de 5% à 20%, la somme de tous ces pourcentages étant de 100%. - 2.5% to 28% of catholyte, preferably from 5% to 20%, the sum of all these percentages being 100%.
13. Batterie secondaire Li-ion comprenant une anode, une cathode et un séparateur, dans laquelle la cathode a la composition selon l’une des revendications 1 à 12. 13. Li-ion secondary battery comprising an anode, a cathode and a separator, in which the cathode has the composition according to one of claims 1 to 12.
14. Batterie selon la revendication 13, dans laquelle ledit séparateur comprend une ou plusieurs couches poreuses de polypropylène et/ou polyéthylène, et comprend ou non un revêtement sur une ou sur les deux faces du séparateur, ledit revêtement comprenant un liant polymère et des particules inorganiques. Batterie selon la revendication 13, dans laquelle ledit séparateur est une membrane polymère gélifiée comprenant un film de polymère fluoré et un électrolyte comprenant au moins un solvant et au moins un sel de lithium, ledit film fluoré comprenant au moins une couche, ladite couche consistant en un mélange de deux polymères fluorés : un polymère fluoré A qui comprend au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP) ayant un taux d’HFP supérieur ou égal à 3% en poids, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant un taux massique d’HFP inférieur d’au moins 3% en poids par rapport au taux massique d’HFP du polymère A. Batterie selon la revendication 15, dans laquelle ledit solvant est choisi parmi les carbonates d'alkyles cycliques et acycliques, les éthers, les glymes, les formates, les esters, les nitriles et les lactones. Batterie selon l’une des revendications 15 ou 16, dans laquelle ledit sel de lithium est choisi parmi : le LiPFô, le LiFSI, le LiTFSI, le LiTDI, le LiPO2F2, le LiB(C2O4)2, le LiF2B(C2O4)2, le LiBF4, le LiNCh, le LiClO4. Procédé de fabrication d’une batterie Li-ion selon l’une des revendications 13 à 17, ledit procédé comprenant l’assemblage de l’anode, du séparateur et de la cathode dans une cellule. Procédé selon la revendication 18, ledit procédé comprenant une étape d’introduction d’un électrolyte comprenant au moins un solvant et au moins un sel de lithium avant de sceller la cellule. Procédé de fabrication d’une batterie Li-ion selon la revendication 19, ledit procédé comprenant en outre une étape de chauffage de la cellule entre 30°C et 90°C pendant 5 min à 24 h. 14. Battery according to claim 13, in which said separator comprises one or more porous layers of polypropylene and/or polyethylene, and may or may not include a coating on one or both sides of the separator, said coating comprising a polymer binder and particles inorganic. Battery according to claim 13, wherein said separator is a gelled polymer membrane comprising a film of fluorinated polymer and an electrolyte comprising at least one solvent and at least one lithium salt, said fluorinated film comprising at least one layer, said layer consisting of a mixture of two fluorinated polymers: a fluorinated polymer A which comprises at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) having an HFP content greater than or equal to 3% by weight, and a fluorinated polymer B which comprises a VDF homopolymer and/or at least one VDF-HFP copolymer, said fluorinated polymer B having a mass content of HFP lower by at least 3% by weight compared to the mass content of HFP of polymer A. Battery according to Claim 15, in which the said solvent is chosen from cyclic and acyclic alkyl carbonates, ethers, glymes, formates, esters, nitriles and lactones. Battery according to one of Claims 15 or 16, in which the said lithium salt is chosen from: LiPF6, LiFSI, LiTFSI, LiTDI, LiPO 2 F 2 , LiB(C 2 O 4 ) 2 , LiF 2 B(C 2 O 4 ) 2 , LiBF 4 , LiNCH, LiClO 4 . Method of manufacturing a Li-ion battery according to one of claims 13 to 17, said method comprising assembling the anode, the separator and the cathode in a cell. Method according to claim 18, said method comprising a step of introducing an electrolyte comprising at least one solvent and at least one lithium salt before sealing the cell. A method of manufacturing a Li-ion battery according to claim 19, said method further comprising a step of heating the cell between 30°C and 90°C for 5 min to 24 h.
EP21839603.4A 2020-12-01 2021-12-01 Electrode for quasi-solid li-ion battery Pending EP4256633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012476A FR3116950B1 (en) 2020-12-01 2020-12-01 ELECTRODE FOR QUASI SOLID LI-ION BATTERY
PCT/FR2021/052162 WO2022117953A1 (en) 2020-12-01 2021-12-01 Electrode for quasi-solid li-ion battery

Publications (1)

Publication Number Publication Date
EP4256633A1 true EP4256633A1 (en) 2023-10-11

Family

ID=75539395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21839603.4A Pending EP4256633A1 (en) 2020-12-01 2021-12-01 Electrode for quasi-solid li-ion battery

Country Status (8)

Country Link
US (1) US20240021872A1 (en)
EP (1) EP4256633A1 (en)
JP (1) JP2024501146A (en)
KR (1) KR20230117185A (en)
CN (1) CN116636033A (en)
FR (1) FR3116950B1 (en)
TW (1) TW202232812A (en)
WO (1) WO2022117953A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466007B2 (en) 2003-07-18 2010-05-26 ソニー株式会社 battery
KR100965125B1 (en) * 2009-07-27 2010-06-23 배트로닉스(주) Li/mno2 cell manufacturing method
FR2987624B1 (en) * 2012-03-01 2015-02-20 Arkema France FLUORINATED POLYMERIC COMPOSITION
FR3049114B1 (en) 2016-03-18 2018-03-09 Blue Solutions POLYMER LITHIUM METAL BATTERY WITH HIGH ENERGY DENSITY
EP3809500A4 (en) * 2018-06-12 2021-07-28 Kureha Corporation Binder composition, electrode mixture, electrode structure, method for manufacturing electrode structure, and secondary cell

Also Published As

Publication number Publication date
FR3116950A1 (en) 2022-06-03
WO2022117953A1 (en) 2022-06-09
FR3116950B1 (en) 2023-04-14
CN116636033A (en) 2023-08-22
JP2024501146A (en) 2024-01-11
TW202232812A (en) 2022-08-16
US20240021872A1 (en) 2024-01-18
KR20230117185A (en) 2023-08-07

Similar Documents

Publication Publication Date Title
EP3341987B1 (en) Lithium-ion gel battery
EP2729978B1 (en) Lithium/sulphur accumulator
WO2020102907A1 (en) Polymeric compositions comprising at least two lithium salts and the use of same in electrochemical cells
WO2021237335A1 (en) Electrochemical cells in the solid state, methods for preparing same and uses thereof
EP3648205A1 (en) Lithium and carbon fluoride electrochemical generator comprising a specific negative electrode material
EP4008031B1 (en) Method for manufacturing an electrode comprising a polymer matrix trapping an electrolyte
EP4320668A1 (en) Solid electrolyte for li-ion battery
EP4256633A1 (en) Electrode for quasi-solid li-ion battery
EP3327832B1 (en) Method of manufacturing a positive electrode for a lithium-sulfur battery
EP4058508B1 (en) Gelled polymer membrane for li-ion battery
EP3647443A1 (en) Specific negative electrode made of lithium and lithium electrochemical generator including such a negative electrode
WO2024105128A1 (en) (2-cyanoethyl) phosphonium salt-based electrolyte composition, and battery comprising same
WO2023047064A1 (en) Cathode coating for li-ion battery
EP3327831B1 (en) Method of preparing a porous positive electrode for a lithium-sulfur battery
EP3472882B1 (en) Process for manufacturing a structure acting as a positive electrode and as a current collector for a lithium-sulfur electrochemical accumulator
EP3659201B1 (en) Lithium-sulphur battery cell comprising a specific separator
WO2023047065A1 (en) Anode coating for all-solid-state li-ion battery
WO2024156965A1 (en) Method for manufacturing an all-solid-state electrolyte for secondary batteries
FR3112029A1 (en) SURFACE TREATED ELECTRODE, THE ELEMENTS, MODULES AND BATTERIES INCLUDING IT
WO2023139329A1 (en) Solid electrolyte for an all-solid-state battery
CA2232107C (en) Polymer electrolyte batteries containing a potassium salt to stabilize performance and prolong operating life
CA2249630C (en) Electrolytic composition with polymer base for electrochemical generator
FR3145236A1 (en) Electrochemical cell manufacturing process
FR3127331A1 (en) Formulation of a cathode composition comprising an active material operating at high potential

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)