EP4225692A1 - Stockage d'hydrogène au moyen de composés liquides organiques - Google Patents

Stockage d'hydrogène au moyen de composés liquides organiques

Info

Publication number
EP4225692A1
EP4225692A1 EP21802391.9A EP21802391A EP4225692A1 EP 4225692 A1 EP4225692 A1 EP 4225692A1 EP 21802391 A EP21802391 A EP 21802391A EP 4225692 A1 EP4225692 A1 EP 4225692A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
formulation
mixture
toluene
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21802391.9A
Other languages
German (de)
English (en)
Inventor
Bernard Monguillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4225692A1 publication Critical patent/EP4225692A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/063Refinery processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to the field of storage and transport of energy sources and more particularly that of the storage and transport of hydrogen as an energy source, and in particular that of organic compounds capable of storing and transporting hydrogen. 'hydrogen.
  • This hydrogen fixation is generally carried out in a stage of hydrogenation of the support molecule.
  • the hydrogenated support molecule “stores” the fixed hydrogen and this so-called “hydrogenated” molecule can be stored and/or transported.
  • the fixed hydrogen can then be released, most often near the place of consumption, in a stage of dehydrogenation of the hydrogenated support molecule.
  • Carrier molecules are now the subject of numerous studies and are now better known by the acronym LOHC for "Liquid Organic Hydrogen Carrier" in English, that is to say "Organic Liquid Carrier of Hydrogen”.
  • the traces of organic compounds can thus come both from toluene (molecule in hydrogenated form) and from methylcyclohexane (molecule in dehydrogenated form), but also from all their partially hydrogenated or dehydrogenated intermediates.
  • LOHCs known today are aromatic fluids with two or three rings, represented in particular by benzyltoluene (BT) and/or dibenzyltoluene (DBT) and which have already been the subject of numerous studies and patent applications, such as patent EP2925669, for example, which describes the technology and operations for the hydrogenation and dehydrogenation of these fluids for the storage and release of hydrogen.
  • Still other LOHC compounds are being studied and examples are presented in the article by Pàivi et al. (Journal of Power Sources, 396, (2016), 803-823). Such molecules are still today for the most part not commercially available or at prohibitive prices.
  • the hydrogen resulting from this LOHC technology finds uses in very many fields, such as for example in fuel cells, in industrial processes, or even as fuel for means of transport (train, boats , trucks, motor cars).
  • the LOHC technology today seems the most promising, but there remains a need for LOHC molecules that are easily available, inexpensive, or at least with very good yields in terms of hydrogenation/dehydrogenation cycles, with supply costs and operation as low as possible.
  • One of the objectives of the present invention therefore consists in developing LOHC molecules allowing the transport and storage of the greatest possible quantity of hydrogen with the lowest possible operating cost, in other words a molecule Most cost effective LOHC possible for transporting and storing hydrogen.
  • a first object of the present invention is the use of a liquid formulation at ambient temperature comprising a mixture of benzene, toluene and xylene for the fixation and release of hydrogen in at least one hydrogenation/dehydrogenation cycle of said wording.
  • BTX mixtures can be obtained from petroleum products, and in particular by extraction of the aromatic compounds from a crude oil, in particular using an aprotic polar solvent, using a liquid extraction -liquid. The solvent is then eliminated and the BTX mixture is separated by distillation in order to recover the benzene, toluene and xylene.
  • the xylene fraction includes the three isomers of xylene (ortho-, meta- and para-xylene), but may also include a more or less important fraction of ethylbenzene.
  • the BTX mixture used in the formulation of the present invention is free of compounds containing more than 8 carbon atoms.
  • the term "free from compounds with more than 8 carbon atoms" indicates that compounds with more than 8 carbon atoms may possibly be present, but in this case only in trace amounts, this is that is to say present in an amount which is not greater than 1000 ppm by weight, relative to the total weight of the formulation, and preferably not greater than 100 ppm by weight, relative to the total weight of the formulation.
  • BTX mixtures are mixtures of benzene, toluene and xylene (ortho- and/or meta- and/or para-xylene), and optionally of ethylbenzene, in all proportions.
  • the ratio of the benzene/toluene/xylene mixture can vary in any proportion ranging from 0% to 100%, limits excluded, by weight of each constituent, relative to the total weight of the BTX mixture.
  • the BTX mixture consists of at least 2 products: toluene+benzene or toluene+xylene or xylene+benzene.
  • the BTX mixture comprises the three components benzene, toluene and xylene, and most particularly preferably, in the proportions indicated above.
  • the BTX mixture comprises, and preferably consists of:
  • the BTX mixture comprises, and preferably consists of:
  • the BTX mixture comprises, and preferably consists of:
  • the mixture of benzene, toluene and xylene which can be used in the context of the present invention contains a benzene content greater than 1%, better still greater than 2%, preferably greater than 5% , more preferably still greater than 10%, and most preferably greater than 15% by weight, relative to the total weight of the BTX mixture.
  • a BTX mixture which can advantageously be used in the context of the present invention contains 40% benzene, 30% toluene and 30% xylene, by weight relative to the total weight of the BTX mix.
  • the BTX mixture contains 48% benzene, 33% toluene and 19% xylene, by weight relative to the total weight of the BTX mixture.
  • the BTX mixtures may also comprise one or more other compounds, for example isomers of xylenes, such as ethylbenzene, or even one or more other hydrocarbons containing more than 8 atoms, preferably in an amount which is not greater than 1000 ppm by weight, relative to the total weight of the formulation, and preferably not greater than 100 ppm by weight, relative to the total weight of the formulation.
  • xylenes such as ethylbenzene
  • hydrocarbons containing more than 8 atoms preferably in an amount which is not greater than 1000 ppm by weight, relative to the total weight of the formulation, and preferably not greater than 100 ppm by weight, relative to the total weight of the formulation.
  • composition of the BTX mixture can result directly from the preparation process, but can also be modified directly during the synthesis of said according to procedures well known to those skilled in the art, depending on the mixture that he wishes to obtain. .
  • BTX mixtures can be used as an organic liquid hydrogen carrier (LOHC) in the same way as each of the constituents of said mixtures, namely benzene, toluene and xylene. , that is to say that the mixtures can be subjected to hydrogenation/dehydrogenation cycles in the same way as the components of said BTX mixtures taken in isolation and independently. It follows that it is useless to carry out the separation of the said components of the BTX mixtures, to use only one or the other of them and thereby save costs and make the use of the present invention quite competitive and more generally more economical than the LOHCs known from the prior art. For the purposes of the present invention, it is of course possible to use a single BTX mixture or even mixtures of several BTX mixtures as they have just been defined, in all proportions.
  • LOHC organic liquid hydrogen carrier
  • LOHC molecules are generally and most often characterized by their Theoretical Gravimetric Storage Capacity (CSGT).
  • CSGT Theoretical Gravimetric Storage Capacity
  • methylcyclohexane can theoretically be dehydrogenated into toluene (one of the components of BTX) by releasing 6 hydrogen atoms, as illustrated below:
  • toluene when it is completely hydrogenated to methylcyclohexane and then theoretically completely dehydrogenated, can thus release 6 hydrogen atoms. It will therefore be indicated in the context of the present invention that toluene has a CSGT of 6.12%.
  • the mixtures of benzene, toluene and xylene that can be used in the context of the present invention have a CSGT strictly greater than 0, preferably greater than or equal to 1%, better even greater than or equal to 2%, more preferably greater than or equal to 3%, most preferably greater than or equal to 4%, advantageously greater than or equal to 5%, typically greater than or equal to 6%, and even better still greater than or equal to 6.5%.
  • the CSGT of the LOHCs it may be advantageous to modify, for example further increase, the CSGT of the LOHCs. It is therefore possible to envisage subjecting the mixture of benzene, toluene and xylene to various chemical reactions with other molecules, for example molecules derived from petrochemicals, in particular aromatic compounds derived from petrochemicals, such as benzene, toluene, xylenes, polyethylbenzene residues better known under the name PEBR, as well as mixtures thereof in all proportions, to cite only the most common.
  • molecules derived from petrochemicals in particular aromatic compounds derived from petrochemicals, such as benzene, toluene, xylenes, polyethylbenzene residues better known under the name PEBR, as well as mixtures thereof in all proportions, to cite only the most common.
  • PEBR polyethylbenzene residues
  • BTX mixtures mixtures of benzene, toluene and xylene
  • BTX mixtures mixtures of benzene, toluene and xylene
  • reduction in LOHC access costs it may be useful, or even necessary in some cases, to carry out one or more purification operations on the BTX mixture, according to techniques well known to those skilled in the art, in order in particular to optimize the yields of the hydrogenation/dehydrogenation cycles during the use of LOHC formulations containing said BTX mixtures.
  • the invention thus relates to the use of a liquid formulation at room temperature, in its partially or totally dehydrogenated form, as well as in its partially or totally hydrogenated form, comprising one or more BTX mixtures as they come from be defined for the transport, fixation and release of hydrogen in at least one hydrogenation/dehydrogenation cycle, partial or total, of said formulation.
  • the formulation usable in the context of the present invention may also comprise one or more other LOHCs known to those skilled in the art, such as for example benzyltoluene (BT), dibenzyltoluene (DBT) and their mixtures in all proportions.
  • the formulation usable in the present invention may also comprise one or more additive(s) and/or filler(s) also well known to those skilled in the art, and for example, and in a non-limiting manner, chosen from antioxidants, passivators, pour point depressants, decomposition inhibitors, colorants, flavors, and the like, as well as mixtures of one or more of them in any proportions.
  • the formulation only comprises hydrogenatable/dehydrogenatable compounds (partially or totally), in particular the formulation consists of LOHC molecules , without other added products of additive or filler types.
  • the formulation may however contain impurities, preferably in trace form, in particular inherent in the origin of the LOHC molecule used and/or its preparation process.
  • the formulation has a boiling point above 80° C. at atmospheric pressure, preferably above 120° C., more preferably still above 150° C., advantageously greater than 180°C, and a melting point less than 40°C, preferably less than 30°C, more preferably less than 20°C, better still less than 15°C, and most preferably, a melting point below 10°C, and advantageously strictly below 0°C.
  • the formulation used in the present invention has a kinematic viscosity at 20° C. (measured according to standard DIN 51562) of between 0.1 mm 2 s′ 1 and 500 mm 2 s′ 1 , preferably between 0.5 mm 2 s′ 1 and 300 mm 2 s′ 1 and preferably between 1 mm 2 s′ 1 and 200 mm 2 s′ 1 .
  • the hydrogenation/dehydrogenation cycles are most often carried out according to methods that are now well known.
  • the dehydrogenation reaction can be carried out according to any known method, the operating conditions of which can include, by way of non-limiting examples:
  • reaction temperature generally between 200°C and 400°C, preferably between 250°C and 360°C, more preferably between 280°C and 340°C, more preferably between 280°C and 330°C and totally preferably between 280°C and 320°C,
  • reaction pressure generally between 0.01 MPa and 1.00 MPa, and preferably between 0.01 MPa and 0.50 MPa
  • the reaction is usually and advantageously carried out in the presence of at least one dehydrogenation catalyst well known to those skilled in the art.
  • dehydrogenation catalyst well known to those skilled in the art.
  • the catalysts that can be used for said partial dehydrogenation reaction mention may be made, by way of non-limiting examples, of heterogeneous catalysts containing at least one metal on a support.
  • Said metal is chosen from among the metals of columns 3 to 12 of the periodic table of the elements of ULCPA, that is to say from among the transition metals of said periodic table.
  • the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of UlCPA.
  • the metals of these catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum, palladium, rhodium, iridium, and ruthenium and their mixtures.
  • the metals are chosen from nickel, copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
  • the catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports.
  • supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof.
  • specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
  • the hydrogenation reaction can also be carried out according to any method well known to those skilled in the art on a formulation comprising at least one BTX mixture, as defined above.
  • the hydrogenation reaction is generally carried out at a temperature between 100° C. and 300° C., and preferably between 120° C. and 280° C. and even more preferably from 140° C. to 250° C.
  • the pressure used for this reaction is generally between 0.1 MPa and 5 MPa, preferably between 0.5 MPa and 4 MPa, and even more preferably between 1 MPa and 3 MPa.
  • the hydrogenation reaction is carried out in the presence of a catalyst, and more particularly of a hydrogenation catalyst well known to those skilled in the art, and advantageously chosen from, by way of examples non-limiting, heterogeneous catalysts containing supported metals.
  • Said metal is chosen from the metals of columns 3 to 12 of the periodic table of the elements of UlCPA, that is to say among the transition metals of said periodic table.
  • the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of UlCPA.
  • the metals of these hydrogenation catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum, palladium, rhodium, iridium, and ruthenium and their mixtures.
  • the metals are chosen from nickel, copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
  • the catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports.
  • supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof.
  • specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
  • the hydrogenation reaction is carried out on a totally or partially dehydrogenated formulation, for example at least partially dehydrogenated, in one or more hydrogenation/dehydrogenation cycles.
  • the hydrogenation reaction can be partial or total, and preferably the hydrogenation reaction is total in one or more hydrogenation/dehydrogenation cycles, that is to say that all of the double bonds present in the LOHC formulation capable of being hydrogenated are fully hydrogenated.
  • the invention relates to a process for upgrading BTX.
  • BTX are products considered toxic and eco-toxic and are very difficult to recover, even today little or not recovered, and simply destroyed, most often by combustion, thus generating, in addition to air pollution, significant emissions of carbon dioxide, which is known to be one of the causes of climate change and global warming.
  • the upgrading process of the invention comprises supplying a so-called BTX mixture, as defined more high in a system where it is hydrogenated, in whole or at least in part, optionally stored, and/or optionally transported, then subjected to a stage of total or at least partial dehydrogenation, so as to release the hydrogen bound on the BTX totally or at least partially hydrogenated.
  • the upgrading process of the invention can also comprise, and advantageously comprises, several hydrogenation/dehydrogenation cycles, for example from 2 to 200 cycles, preferably from 5 to 100 cycles.
  • the BTX thus upgraded is used in a cycle comprising several hydrogenation/dehydrogenation operations, and is not, or only in very small proportions, in contact with the air or the people who have to handle it.
  • the storage and/or transport of hydrogen in no way requires access to BTX itself, whether in dehydrogenated or totally or at least partially hydrogenated form.
  • the so-called BTX mixtures are valued as energy storage products, this energy being hydrogen.
  • the present invention relates to a hydrogenation/dehydrogenation cycle comprising a partial or total dehydrogenation reaction of an LOHC formulation as it has just been defined and at least one partial or total reaction of hydrogenating said organic liquid.
  • the formulations for transporting hydrogen are particularly well suited because of their stability, which allows reuse in a large number of hydrogenation cycles. / dehydrogenation for transport, but also the storage and handling of hydrogen from the steam cracking of petroleum products, fatal hydrogen from chemical reactions such as the electrolysis of salt or hydrogen from the electrolysis of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

La présente invention concerne l'utilisation d'une formulation liquide à température ambiante comprenant au moins un mélange de benzène, de toluène et de xylène, pour la fixation et la libération d'hydrogène dans au moins un cycle hydrogénation/déshydrogénation de ladite formulation. L'invention concerne également l'utilisation de ladite formulation pour le transport et la manipulation d'hydrogène issu du vapocraquage de produits pétroliers, d'hydrogène fatal issu de réaction chimique tel que l'électrolyse de sel ou d'hydrogène issu de l'électrolyse de l'eau.

Description

STOCKAGE D’HYDROGÈNE AU MOYEN DE COMPOSÉS LIQUIDES ORGANIQUES
[0001] La présente invention concerne le domaine du stockage et le transport de source d’énergie et plus particulièrement celui du stockage et du transport d’hydrogène comme source d’énergie, et notamment celui des composés organiques aptes à stocker et transporter de l’hydrogène.
[0002] Le stockage et le transport d’hydrogène au moyen de composés organiques est une technologie récente qui fait l’objet depuis quelques années de publications dans la littérature scientifique et de dépôts de demandes de brevets. Le principe consiste à fixer de l'hydrogène sur une molécule support, laquelle molécule support étant de préférence et le plus souvent liquide à température ambiante, à la fois lorsqu’elle a fixé l’hydrogène (forme hydrogénée) et lorsqu’elle a libéré l’hydrogène (forme déshydrogénée).
[0003] Cette fixation d’hydrogène est généralement réalisée dans une étape d'hydrogénation de la molécule support. La molécule support ainsi hydrogénée « stocke » l’hydrogène fixé et cette molécule dite « hydrogénée » peut être stockée et/ou transportée. L’hydrogène fixé peut ensuite être libéré, le plus souvent à proximité du lieu de consommation, dans une étape de déshydrogénation de la molécule support hydrogénée. [0004] Des molécules supports font aujourd’hui l’objet de nombreuses études et sont maintenant plus connus sous l’acronyme LOHC pour « Liquid Organic Hydrogen Carrier » en langue anglaise, c’est-à-dire « Liquide Organique Transporteur d’Hydrogène ».
[0005] À titre de molécules supports étudiées aujourd’hui, on peut citer les supports de type hydrure métallique, ou encore, parmi les LOHC, le méthanol, l’ammoniac ou des composés aromatiques. Toutes ces technologies présentent divers avantages et inconvénients, sachant qu’un des critères les plus importants dans ce nouveau type de technologie reste le coût global de l’accès à l’énergie, donc le coût global de l’hydrogène disponible par ces molécules supports.
[0006] Parmi les LOHC les plus étudiés aujourd’hui, on peut citer le toluène, qui peut être hydrogéné en méthylcyclohexane puis déshydrogéné. Un des problèmes rencontrés avec cette molécule est son point d’ébullition relativement bas (110,6°C à pression atmosphérique, certes plus élevé que celui de la forme hydrogénée, le méthylcyclohexane : 100,85°C), ce qui peut conduire à une production d’hydrogène contenant des traces de toluène et/ou de méthylcyclohexane, dont il peut être difficile de s’affranchir. [0007] Les traces de composés organiques dans l’hydrogène libéré lors de la réaction de déshydrogénation peuvent poser un réel problème selon les applications envisagées et les domaines d’application où l’hydrogène est utilisé. Dans le cas du couple toluène/méthylcyclohexane, les traces de composés organiques peuvent ainsi provenir aussi bien du toluène (molécule sous forme hydrogénée) que du méthylcyclohexane (molécule sous forme déshydrogénée), mais aussi de tous leurs intermédiaires partiellement hydrogénés ou déshydrogénés.
[0008] D’autres LOHC connus aujourd’hui sont les fluides aromatiques à deux ou trois noyaux, représentés notamment par le benzyltoluène (BT) et/ou le dibenzyltoluène (DBT) et qui ont déjà fait l'objet de nombreuses études et de demandes de brevets, comme par exemple le brevet EP2925669 qui décrit la technologie et les opérations d’hydrogénation et de déshydrogénation de ces fluides pour le stockage et la libération d’hydrogène. D’autres composés LOHC encore sont à l’étude et des exemples sont présentés dans l’article de Pàivi et coll. (Journal of Power Sources, 396, (2018), 803-823). De telles molécules sont encore aujourd’hui pour la plupart peu disponibles commercialement ou bien à des prix prohibitifs.
[0009] Par ailleurs, et au-delà de la performance instantanée des étapes d'hydrogénation et de déshydrogénation, la qualité de l’hydrogène obtenu lors de l’étape de déshydrogénation et surtout le maintien des performances (rendement de fixation/libération d'hydrogène) sont des points clés pour l'aspect économique de cette technologie. Il est donc nécessaire de développer, pour le transport et le stockage notamment de grandes quantités d’hydrogène, une solution qui soit économiquement rentable.
[0010] En effet, l’hydrogène issu de cette technologie LOHC trouve des utilisations dans de très nombreux domaines, comme par exemple dans des piles à combustibles, dans des procédés industriels, ou encore comme carburant pour les moyens de transport (train, bateaux, camions, voitures automobiles). La technologie LOHC semble aujourd’hui la plus prometteuse mais il reste un besoin pour des molécules LOHC aisément disponibles, peu onéreuses, ou tout au moins avec présentant de très bons rendements en terme de cycles hydrogénation/déshydrogénation, avec des coûts d’approvisionnement et de fonctionnement les plus réduits possible.
[0011] Un des objectifs de la présente invention consiste par conséquent à développer des molécules LOHC permettant le transport et stockage de la plus grande quantité d’hydrogène possible avec un coup d’exploitation le plus bas possible, en d’autres termes une molécule LOHC la plus rentable possible pour le transport et le stockage d’hydrogène. [0012] Il a maintenant été découvert que les objectifs précités sont résolus en totalité ou au moins en partie grâce à la présente invention. D’autres objectifs encore pourront apparaître dans la description de la présente invention qui suit.
[0013] En effet, les inventeurs ont maintenant découvert que des mélanges de benzène, toluène, et xylène peuvent être avantageusement utilisés comme LOHC. Ainsi, un premier objet de la présente invention est l’utilisation d’une formulation liquide à température ambiante comprenant un mélange de benzène, de toluène et de xylène pour la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation de ladite formulation.
[0014] Des mélanges de Benzène, Toluène et Xylène sont bien connus sous l’acronyme « BTX » et sont aisément accessibles, par exemple dans les raffineries de pétrole brut, où ils sont souvent considérés comme des sous-produits peu ou pas valorisables ou valorisés. Leurs coûts sont donc tout à fait compétitifs et adaptés pour l’utilisation selon la présente invention.
[0015] Plus particulièrement, les mélanges de BTX peuvent être obtenus à partir de produits pétroliers, et notamment par extraction des composés aromatiques d’un brut de pétrole, notamment à l’aide d’un solvant polaire aprotique, en utilisant une extraction liquide-liquide. Le solvant est ensuite éliminé est le mélange BTX est séparé par distillation afin de récupérer le benzène, toluène et xylène. La fraction xylène comprend les trois isomères du xylène (ortho-, méta- et para-xylène), mais peut également comprendre une fraction plus ou moins importante d’éthylbenzène.
[0016] D’autres sources possibles de mélanges dits BTX sont aujourd’hui connues, parmi lesquelles on peut citer la valorisation de la biomasse, comme décrit par exemple dans les demandes WO2011031320, US2014107036 et US2016002544.
[0017] Dans un mode de réalisation préféré, le mélange BTX utilisé dans la formulation de la présente invention est exempt de composés comportant plus de 8 atomes de carbone. Dans le présente exposé, le terme « exempt de composés comportant plus de 8 atomes de carbone » indique que les composés comportant plus de 8 atomes de carbone peuvent éventuellement être présents, mais dans ce cas seulement à l’état de traces, c’est-à-dire présents en une quantité qui n’est pas supérieure à 1000 ppm poids, par rapport au poids total de la formulation, et de manière préférée non supérieure à 100 ppm poids, par rapport au poids total de la formulation.
[0018] Les mélanges BTX (ou plus simplement « les BTX » dans la suite du présent exposé) sont des mélanges de benzène, toluène et xylène (ortho- et/ou méta- et/ou para- xylène), et éventuellement de l’éthylbenzène, en toutes proportions. Selon un mode de réalisation préféré de l’invention, le ratio du mélange benzène/toluène/xylène peut varier en toutes proportions allant de 0% à 100%, bornes exclues, en poids de chaque constituant, par rapport au poids total du mélange BTX.
[0019] Selon un autre mode de réalisation, le mélange BTX est constitué a minima de 2 produits : toluène + benzène ou toluène + xylène ou xylène + benzène. De manière préférée, le mélange BTX comprend les trois composants benzène, toluène et xylène, et de manière tout particulièrement préférée, dans les proportions indiquées ci-dessus.
[0020] Selon un aspect préféré de la présente invention, le mélange BTX comprend, et de préférence consiste en :
- de 0 à 99% en poids de benzène, bornes incluses,
- - de 0 à 99% en poids de toluène, bornes incluses, et
- - de 0 à 99% en poids de xylène, bornes incluses, par rapport au poids total de la composition, étant entendu qu’au moins deux des trois composants sont présents.
[0021] Selon un autre aspect de la présente invention, le mélange BTX comprend, et de préférence consiste en :
- de 1% à 99% en poids de benzène, bornes incluses,
- - de 1% à 99% en poids de toluène, bornes incluses, et
- - de 0,01% à 99% en poids de xylène, bornes incluses, par rapport au poids total de la composition.
[0022] Selon encore un autre aspect de la présente invention, le mélange BTX comprend, et de préférence consiste en :
- de 2% à 99% en poids de benzène, bornes incluses,
- - de 2% à 99% en poids de toluène, bornes incluses, et
- - de 1% à 99% en poids de xylène, bornes incluses, par rapport au poids total de la composition.
[0023] Selon un aspect tout particulièrement préféré, le mélange de benzène, de toluène et de xylène utilisable dans le cadre de la présente invention contient une teneur en benzène supérieure à 1%, mieux supérieure à 2%, de préférence supérieure à 5%, de préférence encore supérieure à 10%, et de manière tout à fait préférée supérieure à 15% en poids, par rapport au poids total du mélange BTX.
[0024] À titre d’exemple non limitatif, un mélange BTX qui peut avantageusement être utilisé dans le cadre de la présente invention contient 40% de benzène, 30% de toluène et 30% de xylène, en poids par rapport au poids total du mélange BTX. Selon un autre exemple, le mélange BTX contient 48% de benzène, 33% de toluène et 19% de xylène, en poids par rapport au poids total du mélange BTX.
[0025] Comme indiqué précédemment, les mélanges BTX peuvent en outre comprendre un ou plusieurs autres composés par exemple isomères des xylènes, tels que l’éthylbenzène, ou encore un ou plusieurs autres hydrocarbures contenant plus de 8 atomes, de préférence en une quantité qui n’est pas supérieure à 1000 ppm poids, par rapport au poids total de la formulation, et de manière préférée non supérieure à 100 ppm poids, par rapport au poids total de la formulation.
[0026] La composition du mélange BTX peut résulter directement du procédé de préparation, mais peut également être est modifiée directement lors de la synthèse dudit selon des modes opératoires bien connus de l’homme du métier, en fonction du mélange qu’il souhaite obtenir.
[0027] Il a été découvert de manière tout à fait surprenante que les mélanges BTX peuvent être utilisés comme liquide organique transporteur d’hydrogène (LOHC) au même titre que chacun des constituants desdits mélanges, à savoir le benzène, le toluène et le xylène, c’est-à-dire que les mélanges peuvent être soumis aux cycles hydrogénation/ déshydrogénation au même titre que les composants desdits mélanges BTX pris isolément et indépendamment. Il s’ensuit qu’il est inutile de procéder à la séparation des dits composants des mélanges BTX, pour n’utiliser que l’un ou l’autre d’entre eux et par là- même économiser des coûts et rendre l’utilisation de la présente invention tout à fait compétitive et plus généralement plus économique que les LOHC connus de l’art antérieur. [0028] Pour les besoins de la présente invention, il est bien entendu possible d’utiliser un seul mélange BTX ou encore des mélanges de plusieurs mélanges BTX tels qu’ils viennent d’être définis, en toutes proportions.
[0029] Dans un mode de réalisation de l’invention, il peut être avantageux de procéder à une ou plusieurs opérations de purifications du mélange BTX, selon toutes méthodes bien connues de l’homme du métier, notamment pour éviter une contamination de l’hydrogène qui sera produit lors de la déshydrogénation dudit mélange BTX, pour éviter la passivation des catalyseurs lors des opérations d’hydrogénations et de déshydrogénations, pour améliorer les rendements des réactions d’hydrogénations et de déshydrogénations, pour augmenter la durée de vie (nombre de cycles des réactions d’hydrogénations et de déshydrogénations) du mélange BTX ou des mélanges BTX utilisés comme LOHC.
[0030] Les molécules dites LOHC sont généralement et le plus souvent caractérisées par leur Capacité de Stockage Gravimétrique Théorique (CSGT). La capacité de stockage gravimétrique théorique d'un système d'absorption d'hydrogène (couple LOHC+/LOHC-) dans lequel l'hydrogène est stocké dans la masse de la matière, est calculé à partir du rapport entre la masse d'hydrogène stockée dans le composé, par rapport à la masse de l'hôte y compris l'hydrogène (LOHC+) de sorte que la capacité en % en poids, CSGT, est donnée par la formule suivante :
(masse molaire d’hydrogène libérable)
CSGT = - - - — — - — — - - - - - — - x 100
(masse molaire de 1 hôte sous sa forme totalement hydrogenee)
[0031] À titre d’exemple, le méthylcyclohexane peut-être théoriquement déshydrogéné en toluène (un des composants du BTX) en libérant 6 atomes d’hydrogène, comme illustré ci- dessous :
[0032] Ainsi la capacité de stockage gravimétrique théorique CGST du système méthyl- cyclohexane / toluène est égale à :
6 CSGT = — X 100 = 6,12% 98
[0033] De manière similaire, on calcule la CSGT du benzène qui est de 7,69% et la CSGT du xylène qui est de 5,3%.
[0034] Dans l’exemple ci-dessus, le toluène, lorsqu’il est totalement hydrogéné en méthylcyclohexane puis théoriquement totalement déshydrogéné peut ainsi libérer 6 atomes d’hydrogène. On indiquera donc dans le cadre de la présente invention que le toluène présente une CSGT de 6,12%.
[0035] Selon un mode de réalisation préféré de l’invention, les mélanges de benzène, de toluène et de xylène utilisables dans le cadre de la présente invention présentent une CSGT strictement supérieure à 0, de préférence supérieure ou égale à 1%, mieux encore supérieure ou égale à 2%, de manière encore préférée supérieure ou égale à 3%, de manière tout à fait préférée supérieure ou égale à 4%, avantageusement supérieure ou égale à 5%, typiquement supérieure ou égale à 6%, et mieux encore supérieure ou égale à 6,5%.
[0036] Par exemple un mélange BTX contenant 48% de benzène (CSGT = 7,69%), 33% de toluène (CSGT = 6,12%) et 19% de xylène (CSGT = 5,3%), en poids par rapport au poids total du mélange BTX, présentera donc une CSGT moyenne de 6,72%. On voit ainsi un des grands avantages à utiliser les mélanges BTX selon l’invention en ce qu’ils présentent le plus souvent une CSGT au moins comparable, voire supérieure à celle du toluène qui est aujourd’hui un des LOHC préconisés pour le stockage et le transport d’hydrogène à l’état liquide à température ambiante. [0037] Les BTX trouvent ainsi, dans cette utilisation pour le stockage et le transport d’hydrogène à l’état liquide à température ambiante, une valorisation tout à fait inattendue et tout à fait rentable, eu égard au rapport coût / CSGT des mélanges BTX.
[0038] Dans certains cas, et selon un mode de réalisation de la présente invention, il peut être avantageux de modifier, par exemple augmenter encore, la CSGT des LOHC. On peut dès lors envisager de soumettre le mélange de benzène, de toluène et de xylène à diverses réactions chimiques avec d’autres molécules, par exemple des molécules issues de la pétrochimie, notamment des composés aromatiques issus de la pétrochimie, tels que le benzène, le toluène, les xylènes, les résidus de polyéthylbenzène plus connus sous la dénomination PEBR, ainsi que leurs mélanges en toutes proportions, pour ne citer que les plus courants.
[0039] À titre d’exemple, il est ainsi possible de réaliser des couplages à partir de dérivés halogénés, en particulier chlorés ou hydroxylés, selon les modes opératoires bien connus de l’homme du métier et notamment ceux décrits dans le brevet DE2840272 A1 , dans la publication de Maria Sol Marques da Silva et coll., « Reactive Polymers », 25, (1995), 55- 61 , ou encore plus récemment dans l’article par Taiga Yurino et coll., « European Journal of Organic Chemistry », (2020), 2020(15), 2225-2232.
[0040] Dans un mode de réalisation de la présente invention, on préfère utiliser les mélanges de benzène, de toluène et de xylène (mélanges BTX) en tant que tels, sans autre modification chimique, notamment de couplage, et ceci pour des raisons évidentes de réduction des coûts d’accès aux LOHC. Il peut être cependant utile, voire nécessaire dans certains d’opérer une ou plusieurs opérations de purification du mélange BTX, selon des techniques bien connues de l’homme du métier, afin notamment d’optimiser les rendements des cycles hydrogénation/déshydrogénation lors de l’utilisation des formulations LOHC contenant lesdits mélanges BTX.
[0041] L’ invention concerne ainsi l’utilisation d’une formulation liquide à température ambiante, dans sa forme partiellement ou totalement déshydrogénée, comme dans sa forme partiellement ou totalement hydrogénée, comprenant un ou plusieurs mélanges BTX tels qu’ils viennent d’être définis pour le transport, la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation, partielle ou totale, de ladite formulation.
[0042] La formulation utilisable dans le cadre de la présente invention peut en outre comprendre un ou plusieurs autres LOHC connus de l’homme du métier, tels que par exemple le benzyltoluène (BT), le dibenzyltoluène (DBT) et leurs mélanges en toutes proportions. [0043] La formulation utilisable dans la présente invention peut en outre comprendre un ou plusieurs additif(s) et/ou charge(s) également bien connus de l’homme du métier, et par exemple, et de manière non limitative, choisis parmi les antioxydants, les passivateurs, les abaisseurs de point d’écoulement, les inhibiteurs de décomposition, les colorants, arômes, et autre, ainsi que les mélanges de un ou plusieurs d’entre eux en toutes proportions.
[0044] Selon un autre mode de réalisation, et selon les besoins notamment en termes de pureté d’hydrogène à libérer, la formulation ne comprend que des composés hydrogénables/déshydrogénables (partiellement ou totalement), en particulier la formulation est constituée de molécules LOHC, sans autres produits ajoutés de types additifs ou charges. La formulation peut cependant contenir des impuretés, de préférence à l’état de trace, notamment inhérentes à l’origine de la molécule LOHC utilisée et/ou de son procédé de préparation.
[0045] Selon un autre mode de réalisation préféré de la présente invention, la formulation présente une température d’ébullition supérieure à 80°C à pression atmosphérique, de préférence supérieure à 120°C, de préférence encore supérieure à 150°C, avantageusement supérieure à 180°C, et un point de fusion inférieur à 40°C, de préférence inférieur à 30°C, de préférence encore inférieur à 20°C, mieux encore inférieur à 15°C, et de manière tout à fait préférée, un point de fusion inférieur à 10°C, et avantageusement strictement inférieur à 0°C.
[0046] Selon un autre mode de réalisation, la formulation utilisée dans la présente invention présente une viscosité cinématique à 20°C (mesurée selon la norme DI N 51562) comprise entre 0,1 mm2 s'1 et 500 mm2 s’1, de préférence entre 0,5 mm2 s'1 et 300 mm2 s'1 et de préférence entre 1 mm2 s'1 et 200 mm2 s’1.
[0047] Les cycles hydrogénation/déshydrogénation sont réalisés le plus souvent selon les méthodes maintenant bien connues. En particulier, la réaction de déshydrogénation peut être effectuée selon toute méthode connue, dont les conditions opératoires peuvent comprendre, à titre d’exemples non limitatifs :
- la température de réaction généralement comprise entre 200°C et 400°C, de préférence entre 250°C et 360°C, de préférence encore entre 280°C et 340°C, plus préférentiellement entre 280°C et 330°C et de manière totalement préférée entre 280°C et 320°C,
- la pression de réaction généralement comprise entre 0,01 MPa et 1 ,00 MPa, et de manière préférée entre 0,01 MPa et 0,50 MPa,
- alimentation du réacteur de déshydrogénation avec une pression partielle d’hydrogène,
- arrêt de la réaction avant déshydrogénation totale du ou des composés à déshydrogéner. [0048] La réaction est le plus souvent et avantageusement conduite en présence d’au moins un catalyseur de déshydrogénation bien connu de l’homme du métier. Parmi les catalyseurs utilisables pour ladite réaction de déshydrogénation partielle, on peut citer, à titre d’exemples non limitatifs, les catalyseurs hétérogènes contenant au moins un métal sur support. Ledit métal est choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de l'UlCPA, c'est-à-dire parmi les métaux de transition dudit tableau périodique. Dans un mode de réalisation préféré, le métal est choisi parmi les métaux des colonnes 5 à 11 , plus préférentiellement des colonnes 5 à 10 du tableau périodique des éléments de l'UlCPA.
[0049] Les métaux de ces catalyseurs sont le plus souvent choisis parmi fer, cobalt, cuivre, titane, molybdène, manganèse, nickel, platine, palladium, rhodium, iridium, et ruthénium et leurs mélanges. De manière préférée, les métaux sont choisis parmi nickel, cuivre, molybdène, platine, palladium, et les mélanges de deux ou plusieurs d’entre eux en toutes proportions.
[0050] Le support du catalyseur peut être de tout type bien connu de l’homme du métier et est avantageusement choisi parmi les supports poreux, plus avantageusement parmi les supports poreux réfractaires. Des exemples non limitatifs de supports comprennent l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, la céramique, le carbone tel que le noir de carbone, le graphite et le charbon activé, ainsi que leurs combinaisons. Parmi les exemples spécifiques et préférés de support utilisable dans le procédé de la présente invention, on peut citer les silico-aluminates amorphes, les silico-aluminates cristallins (zéolithes) et les supports à base d'oxyde de silice-titane.
[0051] La réaction d’hydrogénation peut également être effectuée quant à elle selon toute méthode bien connue de l’homme du métier sur une formulation comprenant au moins un mélange BTX, tel que défini précédemment.
[0052] La réaction d’hydrogénation est généralement conduite à une température comprise entre 100°C et 300°C, et de préférence entre 120°C et 280°C et de manière encore préférée de 140°C à 250°C. La pression mise en oeuvre pour cette réaction est généralement comprise entre 0,1 MPa et 5 MPa, de manière préférée entre 0,5 MPa et 4 MPa, et de manière encore préférée entre 1 MPa et 3 MPa.
[0053] Le plus souvent, la réaction d’hydrogénation est conduite en présence d’un catalyseur, et plus particulièrement d’un catalyseur d’hydrogénation bien connu de l’homme du métier, et avantageusement choisi parmi, à titre d’exemples non limitatifs, les catalyseurs hétérogènes contenant des métaux sur support. Ledit métal est choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de l'UlCPA, c'est-à- dire parmi les métaux de transition dudit tableau périodique. Dans un mode de réalisation préféré, le métal est choisi parmi les métaux des colonnes 5 à 11 , plus préférentiellement des colonnes 5 à 10 du tableau périodique des éléments de l'UlCPA.
[0054] Les métaux de ces catalyseurs d’hydrogénation sont le plus souvent choisis parmi fer, cobalt, cuivre, titane, molybdène, manganèse, nickel, platine, palladium, rhodium, iridium, et ruthénium et leurs mélanges. De manière préférée, les métaux sont choisis parmi nickel, cuivre, molybdène, platine, palladium, et les mélanges de deux ou plusieurs d’entre eux en toutes proportions.
[0055] Le support du catalyseur peut être de tout type bien connu de l’homme du métier et est avantageusement choisi parmi les supports poreux, plus avantageusement parmi les supports poreux réfractaires. Des exemples non limitatifs de supports comprennent l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, la céramique, le carbone tel que le noir de carbone, le graphite et le charbon activé, ainsi que leurs combinaisons. Parmi les exemples spécifiques et préférés de support utilisable dans le procédé de la présente invention, on peut citer les silico-aluminates amorphes, les silico-aluminates cristallins (zéolithes) et les supports à base d'oxyde de silice-titane.
[0056] Selon un mode de réalisation préféré, la réaction d’hydrogénation est mise en oeuvre sur une formulation totalement ou partiellement déshydrogénée, par exemple au moins partiellement déshydrogénée, dans un ou plusieurs cycles hydrogénation / déshydrogénation.
[0057] De manière similaire, la réaction d’hydrogénation peut être partielle ou totale, et de préférence la réaction d’hydrogénation est totale dans un ou plusieurs cycles hydrogénation/déshydrogénation, c’est-à-dire que la totalité des doubles liaisons présentes dans la formulation LOHC susceptibles d’être hydrogénées sont totalement hydrogénées. [0058] Selon un autre aspect, l’invention concerne un procédé de valorisation des BTX. En effet les BTX sont des produits considérés comme toxiques et écotoxiques et sont très difficilement valorisables, voire aujourd’hui peu ou pas valorisés, et simplement détruits, le plus souvent par combustion, générant ainsi outre de la pollution aérienne, des émissions non négligeables de dioxyde de carbone, dont on sait qu’il est un des responsables du dérèglement climatique et du réchauffement de la planète.
[0059] Ainsi, la présente invention offre une possibilité tout particulièrement intéressante d’utiliser les BTX, le plus souvent générés par l’industrie pétrochimique. Le procédé de valorisation de l’invention comprend la fourniture d’un mélange dit BTX, comme défini plus haut dans un système où il est hydrogéné, en totalité ou au moins en partie, éventuellement stocké, et/ou éventuellement transporté, puis soumis à une étape de déshydrogénation totale ou au moins partielle, de manière à libérer l’hydrogène lié sur le BTX totalement ou au moins partiellement hydrogéné. Le procédé de valorisation de l’invention peut en outre comprendre, et avantageusement comprend, plusieurs cycles d’hydrogénation/ déshydrogénation, par exemple de 2 à 200 cycles, de préférence de 5 à 100 cycles.
[0060] Un des avantages du procédé de la présente invention est que le BTX ainsi valorisé est utilisé dans un cycle comportant plusieurs opérations d’hydrogénation/ déshydrogénation, et n’est pas, ou uniquement que dans de très faibles proportions, au contact de l’air ou des personnes qui sont amenées à le manipuler. En effet, le stockage et/ou le transport d’hydrogène ne nécessite en aucune façon d’avoir accès au BTX lui- même, qu’il soit sous forme déshydrogénée ou totalement ou au moins partiellement hydrogénée. Ainsi, dans le procédé de l’invention, les mélanges dits BTX se trouvent valorisés en tant que produits de stockage d’énergie, cette énergie étant l’hydrogène.
[0061] Selon encore un autre aspect, la présente invention concerne un cycle hydrogénation/déshydrogénation comprenant une réaction de déshydrogénation partielle ou totale d’une formulation LOHC telle qu’elle vient d’être définie et au moins une réaction partielle ou totale d’hydrogénation dudit liquide organique.
[0062] Dans l’application LOHC, les formulations pour le transport d’hydrogène dont l’utilisation sont l’objet de la présente invention sont tout particulièrement bien adaptées en raison de leur stabilité qui permet une réutilisation dans une grand nombre de cycles hydrogénation / déshydrogénation pour le transport, mais aussi le stockage et la manipulation d’hydrogène issu du vapocraquage de produits pétroliers, d’hydrogène fatal issu de réaction chimique tel que l’électrolyse de sel ou d’hydrogène issu de l’électrolyse de l’eau.

Claims

REVENDICATIONS
1. Utilisation d’une formulation liquide à température ambiante comprenant un mélange de benzène, de toluène et de xylène, pour la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation de ladite formulation.
2. Utilisation selon la revendication 1 , dans laquelle le mélange de benzène, de toluène et de xylène est un mélange BTX issu de l’extraction des composés aromatiques d’un brut de pétrole, ou de la valorisation de biomasse.
3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le mélange de benzène, de toluène et de xylène peut en outre comprendre des composés comportant plus de 8 atomes en une quantité qui n’est pas supérieure à 1000 ppm poids, par rapport au poids total de la formulation, et de manière préférée non supérieure à 100 ppm poids, par rapport au poids total de la formulation.
4. Utilisation selon l’une quelconque des revendications précédentes dans laquelle le ratio du mélange de benzène, de toluène et de xylène peut varier en toutes proportions allant de 0% à 100%, bornes exclues, en poids de chaque constituant, par rapport au poids total du mélange.
5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le mélange de benzène, de toluène et de xylène utilisable dans le cadre de la présente invention contient une teneur en benzène supérieure à 1%, mieux supérieure à 2%, de préférence supérieure à 5%, de préférence encore supérieure à 10%, et de manière tout à fait préférée supérieure à 15% en poids, par rapport au poids total du mélange BTX.
6. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation comprend en outre un ou plusieurs autres Liquide(s) Organique(s) Transporteur(s) d’Hydrogène (LOHC).
7. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation comprend en outre un ou plusieurs autres Liquide(s) Organique(s) Transporteur(s) d’Hydrogène (LOHC), choisis parmi le benzyltoluène (BT), le dibenzyltoluène (DBT) et leurs mélanges en toutes proportions.
8. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation présente une température d’ébullition supérieure à 80°C à pression atmosphérique, de préférence supérieure à 120°C, de préférence encore supérieure à 150°C, avantageusement supérieure à 180°C, et un point de fusion inférieur à 40°C, de préférence inférieur à 30°C, de préférence encore inférieur à 20°C, mieux encore inférieur à 15°C, et de manière tout à fait préférée, un point de fusion inférieur à 10°C, et avantageusement strictement inférieur à 0°C.
9. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation présente une viscosité cinématique à 20°C (mesurée selon la norme DIN 51562) comprise entre 0,1 mm2 s'1 et 500 mm2 s’1, de préférence entre 0,5 mm2 s'1 et 300 mm2 s'1 et de préférence entre 1 mm2 s'1 et 200 mm2 s’1.
10. Utilisation selon l’une quelconque des revendications précédentes, pour le transport et la manipulation d’hydrogène issu du vapocraquage de produits pétroliers, d’hydrogène fatal issu de réaction chimique tel que l’électrolyse de sel ou d’hydrogène issu de l’électrolyse de l’eau.
EP21802391.9A 2020-10-08 2021-10-07 Stockage d'hydrogène au moyen de composés liquides organiques Pending EP4225692A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010289A FR3115031B1 (fr) 2020-10-08 2020-10-08 Stockage d’hydrogène au moyen de composés liquides organiques
PCT/FR2021/051738 WO2022074336A1 (fr) 2020-10-08 2021-10-07 Stockage d'hydrogène au moyen de composés liquides organiques

Publications (1)

Publication Number Publication Date
EP4225692A1 true EP4225692A1 (fr) 2023-08-16

Family

ID=74045728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21802391.9A Pending EP4225692A1 (fr) 2020-10-08 2021-10-07 Stockage d'hydrogène au moyen de composés liquides organiques

Country Status (5)

Country Link
US (1) US20240166501A1 (fr)
EP (1) EP4225692A1 (fr)
JP (1) JP2023544666A (fr)
FR (1) FR3115031B1 (fr)
WO (1) WO2022074336A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874800A (zh) * 2022-05-10 2022-08-09 东南大学 一种生物质基有机液体储氢系统及方法
WO2023242427A2 (fr) 2022-06-17 2023-12-21 Itrec B.V. Grue et procédé d'assemblage et d'installation d'éoliennes en mer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197417A (en) 1977-09-28 1980-04-08 Imperial Chemical Industries Limited Process for the manufacture of o-benzyl toluenes
JP5011747B2 (ja) * 2006-02-23 2012-08-29 株式会社日立製作所 燃料充填・廃液回収装置及び燃料容器
JP5272320B2 (ja) * 2007-03-29 2013-08-28 株式会社日立製作所 水素供給装置とその製造方法、及びそれを用いた分散電源と自動車
NZ598858A (en) 2009-09-09 2014-01-31 Univ Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
US9040484B2 (en) 2011-04-26 2015-05-26 The Board Of Trustees Of The Leland Stanford Junior University Production and delivery of a stable collagen
DE102012221809A1 (de) 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Flüssige Verbindungen und Verfahren zu deren Verwendung als Wasserstoffspeicher
US10370601B2 (en) 2014-07-01 2019-08-06 Anellotech, Inc. Processes for converting biomass to BTX with low sulfur, nitrogen and olefin content via a catalytic fast pyrolysis process

Also Published As

Publication number Publication date
US20240166501A1 (en) 2024-05-23
FR3115031B1 (fr) 2023-12-22
FR3115031A1 (fr) 2022-04-15
WO2022074336A1 (fr) 2022-04-14
JP2023544666A (ja) 2023-10-25

Similar Documents

Publication Publication Date Title
EP4225692A1 (fr) Stockage d'hydrogène au moyen de composés liquides organiques
Bulushev et al. Vapour phase hydrogenation of olefins by formic acid over a Pd/C catalyst
WO1998002244A1 (fr) Procede de metathese d'alcanes et son catalyseur
EP0516507B1 (fr) Procédé de production d'hydrocarbures liquides à partir du gaz naturel, en présence d'un catalyseur à base de zéolithe et de gallium
TW503258B (en) Process for naphtha reforming
JP2012509955A (ja) 作物油からの環状有機化合物の生産方法
EP4237371A1 (fr) Dispositif pour la preparation d'un fluide par reaction catalytique comprenant un recuperateur
WO2010046607A1 (fr) Catalyseur d'hydrogénation, notamment de sulfure de carbone
FR2796066A1 (fr) Procede de fabrication d'alcanes a partir de methane
BE1006675A3 (fr) Procede de production d'essences a haut indice d'octane.
FR3095203A1 (fr) Nouveaux liquides organiques hydrogénés utiles pour le transport et le stockage d’hydrogène
WO2021176170A1 (fr) Déshydrogénation partielle de liquides organiques
FR2875507A1 (fr) Procede ameliore d'isomerisation d'une coupe c7 avec coproduction d'une coupe riche en molecules cycliques
EP4419477A1 (fr) Melanges de liquides organiques porteurs d'hydrogene, leurs utilisations pour le transport et le stockage d'hydrogene, et les procedes de generation d'hydrogene les utilisant
EP2895448B1 (fr) Procédé de production de kérosène à partir de butanols
JP2003160515A (ja) ナフタレンから2段水素化反応によりデカリンを製造する方法
FR2777275A1 (fr) Procede d'isomerisation des composes aromatiques a huit atomes de carbone utilisant un catalyseur contenant une zeolithe de type structural euo
EP0278851A2 (fr) Catalyseur à base de zéolithe, sa préparation et son utilisation dans des procédés de conversion d'hydrocarbures
WO2022074337A1 (fr) Stockage d'hydrogène au moyen de dérivés de composés d'origine renouvelable
JP2553392B2 (ja) 2,6―ジメチルナフタレンの分離方法
FR2777276A1 (fr) Procede d'isomerisation des composes aromatiques a huit atomes de carbone en deux etapes successives
WO2024218386A1 (fr) Compositions de liquides organiques, leurs utilisations pour le transport et le stockage d'hydrogène, et les procedes de generation d'hydrogène les utilisant
JP2004277250A (ja) 水素の分離・精製、ならびに供給方法
EP4178907A1 (fr) Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène
FR3125813A1 (fr) Nouveaux liquides organiques porteurs d'hydrogene azotes, leurs utilisations pour le transport et le stockage d’hydrogene, et les procedes de generation d’hydrogene les utilisant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20221103

Extension state: MA

Effective date: 20221103