EP4178907A1 - Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène - Google Patents

Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène

Info

Publication number
EP4178907A1
EP4178907A1 EP21746777.8A EP21746777A EP4178907A1 EP 4178907 A1 EP4178907 A1 EP 4178907A1 EP 21746777 A EP21746777 A EP 21746777A EP 4178907 A1 EP4178907 A1 EP 4178907A1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
liquid
mixtures
hydrogen
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21746777.8A
Other languages
German (de)
English (en)
Inventor
Jérôme BLANC
Bernard Monguillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4178907A1 publication Critical patent/EP4178907A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to the field of aromatic molecules capable of transporting hydrogen, and more particularly the field of the purification of said aromatic molecules capable of transporting hydrogen. 'hydrogen.
  • the principle consists in fixing hydrogen on a support molecule, which is preferably and most often liquid at room temperature, in a hydrogenation step, then in releasing the fixed hydrogen, close to the place of consumption, in a dehydrogenation step.
  • aromatic fluids with two or three nuclei such as for example benzyltoluene (BT) and/or dibenzyltoluene (DBT) which have already been the subject of numerous studies and of patent applications, represent molecules particularly suitable for this use.
  • Patent EP2925669 thus shows the use of BT and DBT in LOHC technology, and describes the hydrogenation and dehydrogenation operations of these fluids for the storage and release of hydrogen.
  • the sequence of cycles and the maintenance of performance (yield of hydrogen fixation/release) as well as the quality of the hydrogen obtained during the dehydrogenation step are key points for the economic aspect of this technology.
  • the hydrogen resulting from this LOHC technology finds uses in very many fields, such as for example in fuel cells, in industrial processes, or even as fuel for means of transport (train, boats , trucks, motor cars). Any impurity present in the hydrogen, even in trace amounts, could have a negative impact both on the hydrogenation/dehydrogenation process in terms of yield, on the quality of the products manufactured or even on the yields in the end uses of the hydrogen. hydrogen produced by this technique.
  • impurities are of various kinds, and may be present in more or less significant quantities.
  • One class of impurities in particular consists of the oxygenated derivatives present in the fluid which undergoes the hydrogenation/dehydrogenation cycles (known as the "LOHC fluid" in the rest of this presentation), either inherently (due to the manufacturing process of the said fluid LOHC), or formed by the presence of dissolved oxygen mainly during the steps of handling the LOHC fluid, its transport, or even its transfer.
  • This dissolved oxygen under hydrogenation and dehydrogenation conditions, can, depending on the operating conditions (temperature, pressure, catalyst) react with the LOHC fluid to form oxygenated derivatives.
  • a group of impurities that may be present in the LOHC fluid, and which may be present and/or co-produced with hydrogen during the dehydrogenation step comprises gaseous species such as oxygen derivatives, mainly oxides, and more particularly carbon oxides (COx), nitrogen oxides (NOx) and sulfur oxides (SOx), and others, as well as mixtures thereof.
  • gaseous species such as oxygen derivatives, mainly oxides, and more particularly carbon oxides (COx), nitrogen oxides (NOx) and sulfur oxides (SOx), and others, as well as mixtures thereof.
  • these impurities mainly in the form of oxides as indicated above, can pollute the hydrogen produced from the dehydrogenation of the LOHC liquid, it is also possible that a more or less significant part of these impurities remain in the LOHC fluid, with a risk of accumulation of impurities in the LOHC fluid after numerous hydrogenation/dehydrogenation cycles.
  • a first objective of the present invention is the production of pure hydrogen by dehydrogenation of a fluid.
  • Another objective is the production of hydrogen comprising as low a level of impurities as possible, by dehydrogenation of a fluid.
  • Another objective is to provide a fluid capable of being dehydrogenated to supply hydrogen comprising a level of impurities that is as low as possible, said fluid being able to be reused in a large number of hydrogenation/dehydrogenation cycles.
  • Another Another objective is to improve the production of hydrogen by dehydrogenation of fluids, in terms of purity, yield, and manufacturing costs, among others.
  • the invention relates to a method for producing hydrogen from a liquid capable of being engaged in at least one hydrogenation/dehydrogenation cycle, said method comprising at least one step in which said liquid is brought into contact with a filtering agent.
  • an LOHC liquid for example an aromatic liquid, optionally at least partially or totally hydrogenated
  • an LOHC liquid for example an aromatic liquid, optionally at least partially or totally hydrogenated
  • the filtering agents which can be used in the context of the present invention can be of all types and are well known to those skilled in the art.
  • the filtering agents which have proved to be the most suitable are the adsorbent filtering agents, and more particularly the filtering agents comprising one or more compounds chosen from minerals based on silicates, carbonates, carbon, as well as mixtures of two or more of these minerals in all proportions.
  • adsorbent filtering agents and more particularly the filtering agents comprising one or more compounds chosen from minerals based on silicates, carbonates, carbon, as well as mixtures of two or more of these minerals in all proportions.
  • inorganic or organic filtering agents and in particular those chosen from clays, zeolites, diatomaceous earth, ceramics, carbonates, and carbon derivatives, as well as mixtures of two or more of them, in any proportion.
  • clays including silicates, and for example magnesium silicates, such as and without limitation, attapulgites, montmorillonites, selenites, bentonites, talcs, and others,
  • Silicates in particular clays and zeolites, have proved to be particularly effective for the purposes of the process according to the present invention. Silicates have in fact shown themselves to be very particularly suitable for the elimination, or at least for the significant reduction, of the impurities present in a liquid capable of being engaged in at least one hydrogenation/dehydrogenation cycle for the production of hydrogen.
  • Attapulgite Microsorb ® 16/30 LVM from BASF (example of alumino-magnesian clay with the chemical formula (Mg, Al ) 5 SÎ 8 0 22 (OH) 4 , S1O2)
  • Amcol Rafinol 900 FF from Minerals Technologies
  • Amcol Rafinol 920 FF from Minerals Technologies
  • Amcol Mineral Bent aluminum hydrosilicate
  • Siliporite ® in particular MK30B0 and MK30B2
  • ARKEMA preparations based on zeolite of the alumino silicate type
  • the liquid capable of being hydrogenated/dehydrogenated and which is brought into contact with a filtering agent can be any type of liquid, optionally at least partially hydrogenated, see totally hydrogenated, and preferably at least partially hydrogenated, see totally hydrogenated, and is most often an LOHC fluid, as previously defined.
  • LOHC fluids which are liquid at ambient temperature and pressure (25° C., 1 atmosphere) are preferred, for obvious reasons of ease of handling and transport.
  • the LOHC fluid in its completely dehydrogenated form, is a fluid comprising at least one aromatic nucleus
  • the LOHC fluid can be derived from petroleum products and/or products synthesized from petroleum products.
  • the LOHC fluid, and which comprises at least one aromatic nucleus, in its totally dehydrogenated form can come from renewable products and/or from products synthesized from renewable products.
  • the fluid of the present invention may comprise one or more fluids, in the form of mixtures and for example a mixture comprising one or several fluid(s) derived from petroleum products and one or more fluid(s) derived from renewable products.
  • fluids derived from petroleum products is meant, within the meaning of the present invention, the products resulting from the separation and/or purification of petroleum, but also the compounds resulting from the synthesis of compounds bearing the nucleus(x ) aromatic(s) of petroleum origin.
  • fluids from renewable products is meant, within the meaning of the present invention, products from biomass, and in particular from the extraction of wood (for example lignin) and resinous products, as well as compounds from syntheses of renewable products.
  • the fluid, called LOHC fluid which can be used in the method of the present invention corresponds to the general formula (1):
  • a and B identical or different, represent independently of each other, an aromatic ring, optionally totally or partially hydrogenated, optionally comprising at least, and preferably, one heteroatom, and optionally substituted by one or more hydrocarbon radicals , saturated or partially or totally unsaturated, comprising from 1 to 20 carbon atoms, preferably from 1 to 18 carbon atoms, more preferably from 1 to 12 carbon atoms, better still from 1 to 10 carbon atoms, even better still from 1 to 6 carbon atoms, typically 1 to 3 carbon atoms,
  • R and R' are chosen independently of each other, from hydrogen and a hydrocarbon radical, saturated or partially or totally unsaturated, containing from 1 to 6 carbon atoms, preferably from 1 with 3 carbon atoms,
  • - R represents a hydrocarbon radical, saturated or partially or totally unsaturated, containing from 1 to 6 carbon atoms, preferably from 1 to 3 carbon atoms, - m represents an integer between 1 and 4 bounds inclusive, and
  • aromatic ring means aromatic hydrocarbon monocycles and aromatic hydrocarbon polycycles, comprising from 6 to 20 carbon atoms, among which one or more of them may be heteroatoms chosen from oxygen, sulfur and nitrogen, preferably from sulfur and nitrogen, and more preferably nitrogen.
  • polycycle is meant the rings defined above, fused or condensed, for example two, or more preferably two or three or four, more preferably two or three, for example two, fused or condensed rings.
  • the LOHC fluid of formula (1) defined above is part of the family of alkylbenzenes, optionally partially or totally hydrogenated.
  • the groups (AX) can be identical or different.
  • n is different from 0 and B is substituted by a hydrocarbon radical.
  • said hydrocarbon radical is an alkyl radical comprising from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms and preferably the alkyl radical is the methyl radical.
  • in the fluid is an alkyl radical comprising from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms and preferably the alkyl radical is the methyl radical.
  • n is equal to 0 and the organic liquid of formula (1) is generally chosen from linear alkylbenzenes, optionally totally or partially hydrogenated, and branched alkylbenzenes, optionally totally or partially hydrogenated, such as by example and in a nonlimiting manner alkylbenzenes, and optionally totally or partially hydrogenated homologs, in which the alkyl part comprises from 10 to 20 carbon atoms.
  • alkylbenzenes include, still without limitation, decylbenzene, dodecylbenzene, octadecylbenzene, as well as their optionally totally or partially hydrogenated homologs, to name only a few of them.
  • the LOHC fluids corresponding to the general formula (1) above can be used alone or in mixtures of two or more of them in all proportions.
  • the LOHC fluid used in the method of the present invention may contain a compound bearing at least one aromatic radical, optionally totally or partially hydrogenated, or a mixture of two or more compounds carrying at least one aromatic radical, optionally totally or partially hydrogenated.
  • the LOHC fluid used in the process of the invention is liquid at ambient temperature and ambient pressure.
  • the LOHC fluid is chosen from benzyltoluene (BT), dibenzyltoluene (DBT), their partially or totally hydrogenated homologs, as well as their mixtures in all proportions.
  • BT benzyltoluene
  • DBT dibenzyltoluene
  • the LOHC fluid is chosen from the organic fluids sold by Arkema under the trade names of the Jarytherm ® range.
  • LOHC fluids and partially or totally hydrogenated counterparts, suitable for the purposes of the present invention are, for example, those marketed by the company Eastman, and in particular under the trade name Marlotherm®.
  • Marlotherm® As still other examples of LOHC fluids suitable for the purposes of the present invention, mention may be made of:
  • DPE diphenylethane
  • 1,1-DPE CAS 612-00-0
  • 1,2-DPE CAS 103-29-7
  • their mixtures in particular CAS 38888-98 -1
  • organic liquids being commercially available or described in the literature, for example in the document EP0098677,
  • PXE - phenylxylylethane
  • PEPE - phenylethylphenylethane
  • CAS 6196-94-7 - phenylethylphenylethane
  • the present invention relates to a method for producing hydrogen from a liquid capable of being engaged in at least one hydrogenation/dehydrogenation cycle, said method comprising at least one step in which said liquid is freed impurities generated during said hydrogenation/dehydrogenation cycle by contacting with a filtering agent.
  • the process of the present invention is therefore not a process for purifying the hydrogen produced by dehydrogenation of the LOHC liquid, but a process for producing high purity hydrogen by bringing the LOHC liquid into contact with a filtering agent. entering the hydrogenation and dehydrogenation cycles.
  • this operation of bringing into contact with the filtering agent can be carried out one or more times, repetitively or not, preferably repetitively.
  • the operation of bringing the LOHC liquid into contact with the filtering agent can be carried out as much as necessary and after a number of dehydrogenation and/or hydrogenation operations ranging from 1 to 5000, preferably 2.
  • the external supply of a quantity of LOHC liquid may also comprise one or more steps, well known to those skilled in the art, of purification of the hydrogen produced by dehydrogenation of the LOHC liquid.
  • the bringing into contact of the LOHC liquid with the porous filtering agent can be carried out according to any method well known to those skilled in the art, continuously or in batch, and for example by passage, forced (pumps) or by gravity. , liquid through said filtering agent, such as in a packed column, or even by simple contact in a reactor, such as a reactor equipped or not with a stirring system, and the like.
  • the duration of contacting can vary in large proportions, in particular according to the nature and the quantity of the impurities to be eliminated, the nature and the quantity of the porous filtering agent used, the nature and the quantity of liquid to be purified, and the type of contacting system used. In addition, the duration of contacting varies according to the temperature and the pressure applied.
  • the temperature at which the liquid is brought into contact with the porous filtering agent is generally between 0° C. and 100° C., preferably between 5° C. and 80° C., more preferably between 10° C. and 50°C.
  • the contacting is advantageously carried out without external heating or cooling, for example in a range between 15° C. and 35° C.
  • the pressure at which the liquid is brought into contact with the porous filter medium is generally atmospheric pressure or even under slight overpressure or underpressure.
  • the bringing into contact is advantageously carried out under atmospheric pressure, or even slight overpressure, in particular overpressure resulting from the circulation of the liquid through the said filtering medium.
  • the contacting step can be carried out under air, or in the absence of air or under an inert atmosphere (for example nitrogen, argon, and the like).
  • the treatment of the liquid can be carried out either before the stage of hydrogenation of the liquid, or before the stage of dehydrogenation (stage of hydrogen production proper) or even before the stage hydrogenation of the liquid and before the dehydrogenation step.
  • the purification step by bringing it into contact with the filtering agent can advantageously be carried out by the supplier of the organic liquid LOHC.
  • the invention thus makes it possible not only to obtain hydrogen of improved purity but also the possibility of increasing the number of hydrogenation/dehydrogenation cycles that can be carried out with the same organic liquid LOHC, which liquid can thus be recycled. thanks to the purification steps according to the invention.
  • the step of purifying the organic liquid by bringing it into contact with the filtering agent is carried out before the dehydrogenation step.
  • the purification of the organic liquid LOHC is carried out before the hydrogenation step and before the dehydrogenation step to limit the presence of oxygenated derivatives in the partially to totally hydrogenated organic liquid.
  • the present invention relates to the use of a filtering agent as defined above for the purification of a liquid capable of being engaged in at least one hydrogenation/dehydrogenation cycle, as indicated previously.
  • a filtering agent as defined above for the purification of a liquid capable of being engaged in at least one hydrogenation/dehydrogenation cycle, as indicated previously.
  • Example 1 11 g of a filtering agent and 350 g of organic liquid LOHC are introduced into a vacuum flask. The contacting is carried out for a period of 16 hours with magnetic stirring, under nitrogen.
  • DBT DBT Jarytherm ® marketed by Arkema
  • organic liquid LOHC organic liquid LOHC.
  • DBT is added 0.1% by weight of dicyclohexylmethanol (Sigma-Aldrich supplier), and the whole and brought into contact with a filtering agent.
  • the test is performed with the following filter media: Attapulgite Microwave sorb® 16/30 LVM BASF and Siliporite ® molecular sieve MK30B0 (supplier ARKEMA) [0055] Following contacting with stirring for 16 hours, filtered under vacuum on Büchner to retain the solids. The filtered liquid is then analyzed (liquid chromatography).
  • the level of residual dicyclohexylmethanol impurity is of the order of 0.02% by weight or less, thus demonstrating the effectiveness of the filtering agent for the purification of a fluid capable of being engaged in at least one cycle. hydrogenation/dehydrogenation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé de production d'hydrogène à partir d'un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, comprenant au moins une étape dans laquelle ledit liquide est mis en contact avec un agent filtrant. L'invention concerne également l'utilisation d'un agent filtrant pour la purification d'un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, dans un procédé de production d'hydrogène.

Description

PROCÉDÉ D’AMÉLIORATION DE LA QUALITÉ DES LIQUIDES ORGANIQUES PORTEUR D’HYDROGÈNE [0001] La présente invention concerne le domaine des molécules aromatiques aptes à transporter de l’hydrogène, et plus particulièrement le domaine de la purification desdites molécules aromatiques aptes à transporter de l’hydrogène.
[0002] L'utilisation de molécules aromatiques fait l'objet depuis une dizaine d’années de nombreuses études dans le domaine du transport et du stockage d'hydrogène (technologie dite LOHC pour « Liquid Organic Hydrogen Carrier » en langue anglaise).
[0003] Le principe consiste à fixer de l'hydrogène sur une molécule support, laquelle est de préférence et le plus souvent liquide à température ambiante, dans une étape d'hydrogénation, puis à libérer l’hydrogène fixé, à proximité du lieu de consommation, dans une étape de déshydrogénation. [0004] Parmi les molécules les plus étudiées aujourd’hui, les fluides aromatiques à deux ou trois noyaux, telles que par exemple le benzyltoluène (BT) et/ou le dibenzyltoluène (DBT) qui ont déjà fait l'objet de nombreuses études et de demandes de brevets, représentent des molécules particulièrement adaptées à cette utilisation. Le brevet EP2925669 montre ainsi l’utilisation de BT et de DBT dans la technologie LOHC, et décrit les opérations d’hydrogénation et de déshydrogénation de ces fluides pour le stockage et la libération d’hydrogène.
[0005] Au-delà de la performance instantanée des étapes d'hydrogénation et de déshydrogénation, l'enchaînement des cycles et le maintien des performances (rendement de fixation/libération d'hydrogène) ainsi que la qualité de l’hydrogène obtenu lors de l’étape de déshydrogénation sont des points clés pour l'aspect économique de cette technologie. [0006] En effet, l’hydrogène issu de cette technologie LOHC trouve des utilisations dans de très nombreux domaines, comme par exemple dans des piles à combustibles, dans des procédés industriels, ou encore comme carburant pour les moyens de transport (train, bateaux, camions, voitures automobiles). Toute impureté présente dans l’hydrogène, même à l’état de traces, pourrait avoir un impact négatif tant sur le procédé hydrogénation/déshydrogénation en termes de rendement, sur la qualité des produits fabriqués ou encore sur les rendements dans les utilisations finales de l’hydrogène produit par cette technique.
[0007] Afin de pallier ces éventuels problèmes, une des solutions est que l’hydrogène récupéré lors de l’étape de déshydrogénation soit le plus pur possible. Or l’hydrogène produit lors de l’étape de déshydrogénation entraîne inévitablement avec lui des impuretés issues de composés organiques souvent présents dans le liquide organique à déshydrogéner.
[0008] Ces impuretés sont de natures diverses, et peuvent être présentes en quantités plus ou moins importantes. Une classe d’impuretés en particulier est constituée des dérivés oxygénés présents dans le fluide qui subit les cycles hydrogénation / déshydrogénation (dit « fluide LOHC » dans la suite du présent exposé), soit de manière inhérente (de par le procédé de fabrication dudit fluide LOHC), soit formés par la présence d’oxygène dissous principalement lors des étapes de manipulation du fluide LOHC, de son transport, ou encore son transfert. Cet oxygène dissous, dans les conditions d’hydrogénation et de déshydrogénation, peut, en fonction des conditions opératoires (température, pression, catalyseur) réagir avec le fluide LOHC pour former des dérivés oxygénés.
[0009] Ainsi, un groupe d’impuretés pouvant être présentes dans le fluide LOHC, et qui peut être présent et/ou coproduit avec l’hydrogène lors de l’étape de déshydrogénation comprend des espèces gazeuses tel que les dérivés d’oxygène, principalement des oxydes, et plus particulièrement des oxydes de carbone (COx), des oxydes d’azote (NOx) et des oxydes de soufre (SOx), et autres, ainsi que leurs mélanges.
[0010] Outre le fait que ces impuretés, principalement sous forme d’oxydes comme indiqué ci-dessus, peuvent polluer l’hydrogène produit à partir de la déshydrogénation du liquide LOHC, il est également possible qu’une partie plus ou moins importante de ces impuretés reste dans le fluide LOHC, avec un risque d’accumulation des impuretés dans le fluide LOHC après de nombreux cycles hydrogénation/déshydrogénation.
[0011] Il apparaît donc nécessaire d’éliminer les impuretés présentes dans les fluides LOHC qui sont soumis à de nombreux cycles hydrogénation/déshydrogénation. L’élimination des impuretés devrait avantageusement être effectuée une ou plusieurs fois avant les étapes de déshydrogénation/hydrogénation afin d’éviter la pollution de l’hydrogène produit et l’accumulation des impuretés dans le fluide LOHC après plusieurs cycles de déshydrogénation/hydrogénation.
[0012] Ainsi un premier objectif de la présente invention est la production d’hydrogène pur par déshydrogénation d’un fluide. Un autre objectif est la production d’hydrogène comprenant un taux d’impuretés aussi faible que possible, par déshydrogénation d’un fluide. Un autre objectif est de proposer un fluide apte à être déshydrogéné pour fournir de l’hydrogène comprenant un taux d’impuretés aussi faible que possible, ledit fluide pouvant être réutilisé dans un grand nombre de cycles hydrogénations/déshydrogénations. Un autre objectif encore est d’améliorer la production d’hydrogène par déshydrogénation de fluides, en termes de pureté, de rendement, et de coûts de fabrication, entre autres.
[0013] Il a été découvert de manière étonnante que les objectifs précités sont résolus en totalité ou au moins en partie grâce à la présente invention. D’autres objectifs encore pourront apparaître dans la description de la présente invention qui suit.
[0014] En effet, les inventeurs ont maintenant découvert que la production d’hydrogène de pureté améliorée peut notamment être réalisée en améliorant la qualité du fluide apte à être déshydrogéné, puis à nouveau hydrogéné, c’est-à-dire en améliorant la qualité d’un fluide entrant dans de nombreux cycles déshydrogénation / hydrogénation. [0015] Ainsi, et selon un premier aspect, l’invention concerne un procédé de production d’hydrogène à partir d’un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, ledit procédé comprenant au moins une étape dans laquelle ledit liquide est mis en contact avec un agent filtrant.
[0016] Il a en effet été découvert de manière tout à fait surprenante que le traitement d’un liquide LOHC, par exemple un liquide aromatique, éventuellement au moins partiellement ou totalement hydrogéné, peut être purifié, et en particulier la teneur en impuretés organiques oxygénées peut être diminuée de manière importante, en mettant en contact ledit liquide LOHC avec un agent filtrant.
[0017] Les agents filtrants qui peuvent être utilisés dans le cadre de la présente invention peuvent être de tous types et sont bien connus de l’homme du métier. Les agents filtrants qui se sont montrés les plus appropriés sont les agents filtrants adsorbants, et plus particulièrement les agents filtrants comprenant un ou plusieurs composés choisis parmi les minéraux à base de silicates, de carbonates, de charbon, ainsi que les mélanges de deux ou plusieurs de ces minéraux en toutes proportions. [0018] À titre d’exemples non imitatifs, on peut citer les agents filtrants minéraux ou organiques, et en particulier ceux choisis parmi les argiles, les zéolithes, les terres de diatomée, les céramiques, les carbonates, et les dérivés de charbon, ainsi que les mélanges de deux ou plusieurs d’entre eux, en toutes proportions.
[0019] On peut citer plus particulièrement comme agents filtrants : · les argiles, dont les silicates, et par exemple les silicates de magnésium, tels que et de manière non limitative, attapulgites, montmorillonites, sélénites, bentonites, talcs, et autres,
• les silicates d’aluminium naturels ou synthétiques, en particulier kaolins, kaolinites, zéolithes, • les carbonates, par exemple de calcium et/ou de magnésium, et plus particulièrement ceux connus sous les noms de calcaire ou craies,
• les dérivés de charbon, de bois, de coques par exemple de coques de noix de coco, noyaux ou grignons d’olives, et plus généralement ceux connus sous la dénomination de charbons actifs,
• et autres et leurs mélanges.
[0020] Les silicates, en particulier les argiles et les zéolithes, se sont montrés tout particu lièrement efficaces pour les besoins du procédé selon la présente invention. Les silicates se sont en effet montrés tout particulièrement adaptés pour l’élimination, ou tout au moins pour la réduction importante, des impuretés présentes dans un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation pour la production d’hydrogène. [0021] Selon un mode de réalisation tout particulièrement préféré de la présente invention, à titre d’exemples d’agents filtrants susceptibles d’être utilisés dans le cadre du procédé de production d’hydrogène selon l’invention, on peut citer l’Attapulgite Microsorb® 16/30 LVM de BASF (exemple d’argile alumino-magnésienne de formule chimique (Mg, AI)58022(0H)4, S1O2), l’Amcol Rafinol 900 FF de Minerais Technologies, l’Amcol Rafinol 920 FF de Minerais Technologies, l’Amcol Minerai Bent (hydrosilicate d'aluminium) de Minerais Technologies), et les Siliporite®, notamment MK30B0 et MK30B2, de ARKEMA (préparations à base de zéolithe de type alumino silicate). [0022] Le liquide apte à être hydrogéné/déshydrogéné et qui est mis en contact avec un agent filtrant peut être tout type de liquide, éventuellement au moins partiellement hydrogéné, voir totalement hydrogéné, et de préférence au moins partiellement hydrogéné, voir totalement hydrogéné, et est le plus souvent un fluide LOHC, comme défini précédemment. On préfère les fluides LOHC qui sont liquides à température et pression ambiantes (25°C, 1 atmosphère), pour des raisons évidentes de facilité de manutention et de transport.
[0023] De préférence, le fluide LOHC, dans sa forme totalement déshydrogénée, est un fluide comportant au moins un noyau aromatique, et par exemple le fluide LOHC peut être issu de produits pétroliers et/ou de produits synthétisés à partir de produits pétroliers. En variante, le fluide LOHC, et qui comporte au moins un noyau aromatique, dans sa forme totalement déshydrogénée, peut être issu de produits renouvelables et/ou de produits synthétisés à partir de produits renouvelables.
[0024] Il doit être compris que le fluide de la présente invention peut comprendre un ou plusieurs fluides, sous forme de mélanges et par exemple un mélange comprenant un ou plusieurs fluide(s) issu(s) de produits pétroliers et un ou plusieurs fluides(s) issus de produits renouvelables.
[0025] Par fluides issus de produits pétroliers, on entend, au sens de la présente invention, les produits issus de la séparation et/ou de la purification du pétrole, mais aussi les composés issus de la synthèse de composés porteurs de noyau(x) aromatique(s) d’origine pétrolière. Par fluides issus de produits renouvelables, on entend, au sens de la présente invention, les produits issus de la biomasse, et en particulier issus de l’extraction du bois (par exemple lignine) et de produits résineux, ainsi que les composés issus de synthèses de produits renouvelables.
[0026] Selon un mode de réalisation préféré, le fluide, dit fluide LOHC, utilisable dans le procédé de la présente invention répond à la formule générale (1 ) :
(A-X)n-B (1 ) dans laquelle :
- A et B, identiques ou différents, représentent indépendamment l’un de l’autre, un cycle aromatique, éventuellement totalement ou partiellement hydrogéné, comportant éventuellement au moins, et de préférence, un hétéroatome, et éventuellement substitué par un ou plusieurs radicaux hydrocarbonés, saturés ou partiellement ou totalement insaturés, comportant de 1 à 20 atomes de carbone, de préférence de 1 à 18 atomes de carbone, de préférence encore de 1 à 12 atomes de carbone, mieux de 1 à 10 atomes de carbone, mieux encore de 1 à 6 atomes de carbone, typiquement de 1 à 3 atomes de carbone,
- X représente un groupement espaceur, choisi parmi une liaison simple, un atome d’oxygène, un atome de soufre, le radical bivalent (CRR-’)m-, le radical bivalent >C=CRR’, et le radical bivalent -NR”-, ou bien lorsque n est différent de 0 (zéro), X forme, avec les noyaux aromatiques auxquels il est rattaché, un cycle saturé ou insaturé comprenant de 4 à 10 sommets, parmi lesquels un ou plusieurs d'entre eux peut être un hétéroatome choisi parmi oxygène, azote, soufre, ledit cycle saturé ou insaturé pouvant en outre être substitué par une ou plusieurs chaînes hydrocarbonées comportant de 1 à 30 atomes de carbone, de préférence de 1 à 10 atomes de carbone,
- R et R’, identiques ou différents, sont choisis indépendamment l’un de l’autre, parmi l’hydrogène et un radical hydrocarboné, saturé ou partiellement ou totalement insaturé, comportant de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone,
- R” représente un radical hydrocarboné, saturé ou partiellement ou totalement insaturé, comportant de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone, - m représente un entier compris entre 1 et 4 bornes incluses, et
- n peut être égal à 0 ou représente un entier égal à 1 , 2 ou 3, de préférence égal à 1 ou 2, avec la restriction que lorsque n est égal à 0, B est substitué par un ou plusieurs radicaux hydrocarbonés, comme défini précédemment. [0027] Par « cycle aromatique », on entend les mono-cycles hydrocarbonés aromatiques et les polycycles hydrocarbonés aromatiques, comprenant de 6 à 20 atomes de carbone, parmi lesquels un ou plusieurs d’entre eux peuvent être des hétéroatomes choisis parmi oxygène, soufre et azote, de préférence parmi soufre et azote, et de préférence encore azote. Par « polycycle », on entend les cycles définis ci-dessus, fusionnés ou condensés, par exemples deux, ou plus de préférence deux ou trois ou quatre, de préférence encore deux ou trois, par exemple deux, cycles fusionnés ou condensés.
[0028] Lorsque n est égal à 0, le fluide LOHC de formule (1 ) défini ci-dessus fait partie de la famille des alkylbenzènes, éventuellement partiellement ou totalement hydrogénés. Lorsque n est égal à 2 ou 3, les groupements (AX) peuvent être identiques ou différents. [0029] Selon un mode de réalisation préféré de la présente invention, dans le fluide LOHC de formule générale (1 ), n est différent de 0 et B est substitué par un radical hydrocarboné. De préférence encore ledit radical hydrocarboné est un radical alkyle comprenant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone et de préférence le radical alkyle est le radical méthyle. [0030] Selon un autre mode de réalisation préféré de la présente invention, dans le fluide
LOHC de formule générale (1), n est égal à 0 et le liquide organique de formule (1) est généralement choisi parmi les alkylbenzènes linéaires, éventuellement totalement ou partiellement hydrogénés, et les alkylbenzènes ramifiés, éventuellement totalement ou partiellement hydrogénés, tels que par exemple et de manière non limitative les alkylbenzènes, et homologues éventuellement totalement ou partiellement hydrogénés, dans lesquels la partie alkyle comprend de 10 à 20 atomes de carbone.
[0031] De tels alkylbenzènes comprennent, toujours de manière non limitative, le décylbenzène, le dodécylbenzène, l’octadécylbenzène, ainsi que leurs homologues éventuellement totalement ou partiellement hydrogénés, pour ne citer que quelques-uns d’entre eux.
[0032] Comme indiqué précédemment, les fluides LOHC répondant à la formule générale (1) ci-dessus peuvent être utilisés seuls ou en mélanges de deux ou plusieurs d’entre eux en toutes proportions. Selon un mode de réalisation préféré de l’invention, le fluide LOHC mis en oeuvre dans le procédé de la présente invention peut contenir un composé porteur d’au moins un radical aromatique, éventuellement totalement ou partiellement hydrogéné, ou un mélange de deux ou plusieurs composés porteurs d’au moins un radical aromatique, éventuellement totalement ou partiellement hydrogéné. Selon un mode réalisation tout particulièrement préféré, et comme indiqué précédemment, le fluide LOHC mis en oeuvre dans le précédé de l’invention est liquide à température ambiante et pression ambiante. [0033] Selon encore un mode de réalisation préféré de la présente invention, le fluide LOHC est choisi parmi le benzyltoluène (BT), le dibenzyltoluène (DBT), leurs homologues partiellement ou totalement hydrogénés, ainsi que leurs mélanges en toutes proportions. [0034] Dans un mode de réalisation tout particulièrement préféré, le fluide LOHC est choisi parmi les fluide organiques vendus par la société Arkema sous les dénominations commerciales de la gamme Jarytherm®.
[0035] D’autres fluides LOHC, et homologues partiellement ou totalement hydrogénés, adaptés pour les besoins de la présente invention sont par exemple ceux commercialisés par la société Eastman, et notamment sous la dénomination commerciale Marlotherm®. [0036] Comme autres exemples encore de fluides LOHC adaptés pour les besoins de la présente invention, on peut citer :
- le diphényléthane (DPE) et ses isomères, en particulier le 1 ,1-DPE (CAS 612-00-0), le 1 ,2-DPE (CAS 103-29-7) et leurs mélanges (notamment CAS 38888-98-1 ), de tels liquides organiques étant disponibles commercialement ou décrits dans la littérature, par exemple dans le document EP0098677,
- le ditolyléther (DT) et ses isomères, en particulier ceux répondant aux numéros CAS 4731-34-4, CAS 28299-41-4 et leurs mélanges, ceux-ci étant notamment disponibles dans le commerce auprès de la société Lanxess, sous la dénomination commerciale Diphyl DT,
- le phénylxylyléthane (PXE) et ses isomères, en particulier ceux répondant aux numéros CAS 6196-95-8, CAS 76090-67-0 et leurs mélanges, notamment disponibles commercialement auprès de la société Changzhou Winschem, sous la dénomination commerciale PXE oil,
- les mono- et bi-xylylxylènes, leurs isomères et leurs mélanges (CAS 186466-85-3),
- le 1 ,2,3,4-tétrahydro-(1-phényléthyl)naphtalène (CAS 63674-30-6), ce produit étant commercialement disponible notamment chez Dow sous la référence Dowtherm™ RP,
- le di-isopropylnaphtalène (CAS 38640-62-9), notamment disponible auprès de la société Indus Chemie Ltd, sous la dénomination commerciale KMC 113,
- le mono-isopropylbiphényle et ses isomères (CAS 25640-78-2), notamment disponible sous la dénomination commerciale Wemcol,
- le phényléthylphényléthane (PEPE) et ses isomères (CAS 6196-94-7), notamment disponible auprès de la société Changzhou Winschem ou de la société Yantaï Jinzheng,
- le N-éthylcarbazole, notamment disponible auprès de Allessa GmbH,
- les phénylpyridines, les tolylpyridines, les diphénylpyridines, les dipyridylbenzènes, les dipyridinetoluènes, - ainsi que leurs homologues totalement ou partiellement hydrogénés,
- et les mélanges de deux ou plusieurs d’entre eux, en toutes proportions, pour ne citer que les principaux liquides organiques connus et utilisables dans le cadre de la présente invention.
[0037] Comme indiqué précédemment, la présente invention concerne un procédé de production d’hydrogène à partir d’un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, ledit procédé comprenant au moins une étape dans laquelle ledit liquide est débarrassé des impuretés générées au cours dudit cycle hydrogénation/déshydrogénation par mise en contact avec un agent filtrant.
[0038] Il a pu en effet être constaté que les cycles successifs d’hydrogénations et de déshydrogénations des liquides LOHC mis en oeuvre pour la production d’hydrogène entraînent souvent une dégradation plus ou moins importante desdits liquides LOHC, cette dégradation se manifestant par exemple par la formation de sous-produits indésirables, parmi lesquels certains d’entre eux peuvent migrer dans la phase gaz de l’hydrogène formé. [0039] L’art antérieur propose ainsi de purifier l’hydrogène formé lors de la déshydrogénation des liquides LOHC. Ces opérations de purification d’hydrogène ne sont pas sans engendrer des contraintes de sécurité supplémentaires, qui certes peuvent être maîtrisées, mais imposent des installations supplémentaires. En outre tous les sous- produits résultant de la décomposition des liquides LOHC peuvent ne pas migrer dans la phase gazeuse (hydrogène) mais rester dans la phase liquide (liquides LOHC) et ainsi réduire de manière significative la quantité de liquide LOHC efficace pour les cycles successifs d’hydrogénations et de déshydrogénations, et par là-même le rendement de production d’hydrogène à partir du liquide LOHC.
[0040] Il est donc important de procéder à la purification du liquide LOHC. Le procédé de la présente invention n’est donc pas un procédé de purification de l’hydrogène produit par déshydrogénation du liquide LOHC, mais un procédé de production d’hydrogène de haute pureté par mise en contact, avec un agent filtrant, du liquide LOHC entrant dans les cycles d’hydrogénations et déshydrogénations. Selon l’invention, cette opération de mise en contact avec l’agent filtrant peut être effectuée une ou plusieurs fois, de manière répétitive ou non, de préférence répétitive. [0041] L’opération de mise en contact du liquide LOHC avec l’agent filtrant peut être opérée autant que nécessaire et après un nombre de d’opérations de déshydrogénations et/ou d’hydrogénations allant de 1 à 5000, de préférence de 2 à 5000, de préférence de 3 à 5000, de préférence encore de 4 à 5000, de préférence de 5 à 5000, avantageusement de 10 à 5000, de préférence de 10 à 4000, de préférence de 10 à 3000, de préférence encre de 10 à 2000, de préférence de 10 à 1000, et tout particulièrement de 10 à 100. [0042] Il peut être également envisagé, en variante du procédé de la présente invention, l’apport externe d’une quantité de liquide LOHC, selon la quantité de liquide LOHC dégradé dans les opérations d’hydrogénations/déshydrogénations et/ou de purifications mentionnées plus haut. Le procédé de production d’hydrogène selon la présente invention peut également comprendre une ou plusieurs étapes, bien connues de l’homme du métier, de purification de l’hydrogène produit par déshydrogénation du liquide LOHC.
[0043] La mise en contact du liquide LOHC avec l’agent filtrant poreux peut être effectuée selon toute méthode bien connue de l’homme du métier, en continu ou en batch, et par exemple par passage, forcé (pompes) ou par gravité, du liquide au travers dudit agent filtrant, tel que dans une colonne à remplissage, ou bien encore par simple contact dans un réacteur, tel qu’un réacteur muni ou non d’un système d’agitation, et autre.
[0044] La durée de mise en contact peut varier dans de grandes proportions, notamment en fonction de la nature et de la quantité des impuretés à éliminer, de la nature et de la quantité de l’agent filtrant poreux utilisé, de la nature et de la quantité du liquide à purifier, et du type de système de mise en contact utilisé. En outre la durée de mise en contact varie en fonction de la température et de la pression appliquées.
[0045] La température à laquelle le liquide est mis en contact avec l’agent filtrant poreux est généralement comprise entre 0°C et 100°C, de préférence entre 5°C et 80°C, de préférence encore entre 10°C et 50°C. Pour des raisons évidentes de simplicité de mise en oeuvre et d’économie du procédé, la mise en contact est avantageusement réalisée sans apport extérieur de chauffage ou de refroidissement, par exemple dans une plage comprise entre 15°C et 35°C.
[0046] La pression à laquelle le liquide est mis en contact avec l’agent filtrant poreux est généralement la pression atmosphérique voire sous légère surpression ou dépression. Pour des raisons évidentes de simplicité de mise en oeuvre et d’économie du procédé, la mise en contact est avantageusement réalisée sous pression atmosphérique, voire légère surpression, notamment surpression résultant de la circulation du liquide au travers dudit agent filtrant. L’étape de mise en contact peut être réalisée sous l’air, ou à l’abri de l’air ou sous atmosphère inerte (par exemples azote, argon, et autres). [0047] Selon l’invention, le traitement du liquide peut être réalisé soit avant l’étape d’hydrogénation du liquide, soit avant l’étape de déshydrogénation (étape de production d’hydrogène proprement dite) ou bien encore avant l’étape d’hydrogénation du liquide et avant l’étape de déshydrogénation. [0048] Il peut être avantageux d’effectuer une mise en contact du liquide organique LOHC avec l’agent filtrant avant la première utilisation dudit liquide organique. Dans ce cas, l’étape de purification par mise en contact avec l’agent filtrant peut avantageusement être réalisée par le fournisseur du liquide organique LOHC. En outre il peut être envisagé de réaliser plusieurs cycles hydrogénation/déshydrogénation (et donc plusieurs cycles de production d’hydrogène à partir du liquide LOHC) et réaliser une opération de purification à l’aide de l’agent filtrant dudit liquide LOHC après cette série de cycles, par exemple tous les 10, 20, 30, 40 ou 50 cycles hydrogénation/déshydrogénation.
[0049] L’invention permet ainsi, non seulement l’obtention d’hydrogène à pureté améliorée mais aussi la possibilité d’augmenter le nombre de cycles hydrogénation/déshydrogénation pouvant être réalisés avec un même liquide organique LOHC, lequel liquide pouvant ainsi être recyclé grâce aux étapes de purification selon l’invention.
[0050] De manière préférée l’étape de purification du liquide organique par mise en contact avec l’agent filtrant est effectuée avant l’étape de déshydrogénation. De manière encore préférée, la purification du liquide organique LOHC s’effectue avant l’étape d’hydrogénation et avant l’étape de déshydrogénation pour limiter la présence de dérivés oxygénés dans le liquide organique partiellement à totalement hydrogéné.
[0051] Enfin, et selon un autre aspect, la présente invention concerne l’utilisation d’un agent filtrant tel que défini plus haut pour la purification d’un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, comme indiqué précédemment. [0052] L’invention est maintenant illustrée au moyen des exemples qui suivent.
EXEMPLES Exemple 1 [0053] On introduit dans une fiole à vide 11 g d’un agent filtrant et 350 g de liquide organique LOHC. La mise en contact est réalisée pendant une durée de 16 heures sous agitation magnétique, sous azote.
[0054] Des tests sont réalisés avec du DBT (Jarytherm® DBT commercialisé par la société ARKEMA) en tant que liquide organique LOHC. Le DBT est additionné de 0,1% en poids de dicyclohexylméthanol (fournisseur Sigma-Aldrich), et l’ensemble et mis en contact avec un agent filtrant. Le test est réalisé avec les agents filtrants suivants : Attapulgite Micro-sorb® 16/30 LVM de BASF, et Tamis moléculaire Siliporite® MK30B0 (fournisseur ARKEMA) [0055] À l’issue de la mise en contact sous agitation pendant 16 heures, on filtre sous vide sur Büchner pour retenir les solides. Le liquide filtré est alors analysé (chromatographie liquide). On constate que le taux d’impureté dicyclohexylméthanol résiduel est de l’ordre de 0,02% poids ou moins, démontrant ainsi l’efficacité de l’agent filtrant pour la purification d’un fluide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation.

Claims

REVENDICATIONS
1. Procédé de production d’hydrogène à partir d’un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, ledit procédé comprenant au moins une étape dans laquelle ledit liquide est mis en contact avec un agent filtrant.
2. Procédé selon la revendication 1 , dans lequel ledit liquide est un liquide aromatique, éventuellement au moins partiellement ou totalement hydrogéné.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel l’agent filtrant est choisi parmi les agents filtrants comprenant un ou plusieurs composés choisis parmi les minéraux à base de silicates, de carbonates, de charbon, ainsi que les mélanges de deux ou plusieurs de ces minéraux en toutes proportions.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’agent filtrant est choisi parmi les argiles, les zéolithes, les terres de diatomée, les céramiques, les carbonates, et les dérivés de charbon, ainsi que les mélanges de deux ou plusieurs d’entre eux, en toutes proportions.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le fluide utilisable dans le procédé de la présente invention répond à la formule générale (1) :
(A-X)n-B (1 ) dans laquelle :
- A et B, identiques ou différents, représentent indépendamment l’un de l’autre, un cycle aromatique, éventuellement totalement ou partiellement hydrogéné, comportant éventuellement au moins, et de préférence, un hétéroatome, et éventuellement substitué par un ou plusieurs radicaux hydrocarbonés, saturés ou partiellement ou totalement insaturés, comportant de 1 à 20 atomes de carbone, de préférence de 1 à 18 atomes de carbone, de préférence encore de 1 à 12 atomes de carbone, mieux de 1 à 10 atomes de carbone, mieux encore de 1 à 6 atomes de carbone, typiquement de 1 à 3 atomes de carbone,
- X représente un groupement espaceur, choisi parmi une liaison simple, un atome d’oxygène, un atome de soufre, le radical bivalent (CRR-’)m-, le radical bivalent >C=CRR’, et le radical bivalent -NR”-, ou bien lorsque n est différent de 0 (zéro), X forme, avec les noyaux aromatiques auxquels il est rattaché, un cycle saturé ou insaturé comprenant de 4 à 10 sommets, parmi lesquels un ou plusieurs d'entre eux peut être un hétéroatome choisi parmi oxygène, azote, soufre, ledit cycle saturé ou insaturé pouvant en outre être substitué par une ou plusieurs chaînes hydrocarbonées comportant de 1 à 30 atomes de carbone, de préférence de 1 à 10 atomes de carbone,
- R et R’, identiques ou différents, sont choisis indépendamment l’un de l’autre, parmi l’hydrogène et un radical hydrocarboné, saturé ou partiellement ou totalement insaturé, comportant de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone,
- R” représente un radical hydrocarboné, saturé ou partiellement ou totalement insaturé, comportant de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone,
- m représente un entier compris entre 1 et 4 bornes incluses, et
- n peut être égal à 0 ou représente un entier égal à 1 , 2 ou 3, de préférence égal à 1 ou 2, avec la restriction que lorsque n est égal à 0, B est substitué par un ou plusieurs radicaux hydrocarbonés, définis ci-dessus.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le fluide utilisable dans le procédé de la présente invention est choisi parmi :
- le benzyltoluène (BT), le dibenzyltoluène (DBT), leurs homologues partiellement ou totalement hydrogénés, ainsi que leurs mélanges en toutes proportions,
- le diphényléthane (DPE) et ses isomères, en particulier le 1 ,1-DPE, le 1 ,2-DPEet leurs mélanges,
- le ditolyléther (DT), ses isomères, et leurs mélanges,
- le phénylxylyléthane (PXE), ses isomères et leurs mélanges,
- les mono- et bi-xylylxylènes, leurs isomères et leurs mélanges,
- le 1 ,2,3,4-tétrahydro-(1-phényléthyl)naphtalène,
- le di-isopropylnaphtalène,
- le mono-isopropylbiphényle et ses isomères,
- le phényléthylphényléthane (PEPE) et ses isomères,
- le N-éthylcarbazole,
- les phénylpyridines, les tolylpyridines, les diphénylpyridines, les dipyridylbenzènes, les dipyridinetoluènes,
- ainsi que leurs homologues totalement ou partiellement hydrogénés,
- et les mélanges de deux ou plusieurs d’entre eux, en toutes proportions.
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape de purification du liquide organique par mise en contact avec l’agent filtrant est effectuée avant l’étape de déshydrogénation.
8. Utilisation d’un agent filtrant pour la purification d’un liquide apte à être engagé dans au moins un cycle hydrogénation/déshydrogénation, dans un procédé de production d’hydrogène tel que défini selon l’une quelconque des revendications précédentes.
EP21746777.8A 2020-07-10 2021-07-08 Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène Pending EP4178907A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007313A FR3112339B1 (fr) 2020-07-10 2020-07-10 Procédé d’amélioration de la qualité des liquides organiques porteur d’hydrogène
PCT/FR2021/051268 WO2022008847A1 (fr) 2020-07-10 2021-07-08 Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène

Publications (1)

Publication Number Publication Date
EP4178907A1 true EP4178907A1 (fr) 2023-05-17

Family

ID=72801703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21746777.8A Pending EP4178907A1 (fr) 2020-07-10 2021-07-08 Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène

Country Status (8)

Country Link
US (1) US20230174374A1 (fr)
EP (1) EP4178907A1 (fr)
JP (1) JP2023533130A (fr)
CN (1) CN115768717A (fr)
AU (1) AU2021303604A1 (fr)
CA (1) CA3180033A1 (fr)
FR (1) FR3112339B1 (fr)
WO (1) WO2022008847A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474989A (en) 1982-07-01 1984-10-02 Gulf Research & Development Company Process for preparing dinitrobenzophenones
FR2743060B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede de synthese d'hydrogene par utilisation d'une zone de distillation reactive
US7485161B2 (en) * 2005-01-04 2009-02-03 Air Products And Chemicals, Inc. Dehydrogenation of liquid fuel in microchannel catalytic reactor
JP4907210B2 (ja) * 2006-03-30 2012-03-28 千代田化工建設株式会社 水素の貯蔵輸送システム
DE102012221809A1 (de) 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Flüssige Verbindungen und Verfahren zu deren Verwendung als Wasserstoffspeicher
JP5945521B2 (ja) * 2013-05-29 2016-07-05 Jxエネルギー株式会社 水素の製造方法及び水素の製造システム
PL3140039T3 (pl) * 2014-05-09 2021-01-25 Basf Se Ulepszony katalizator do odwodorniania węglowodorów
DE102016222596A1 (de) * 2016-11-16 2018-05-17 Hydrogenious Technologies Gmbh Verfahren zum Bereitstellen von Wasserstoffgas, Dehydrier-Reaktor und Transport-Container
DE102017000634A1 (de) * 2017-01-24 2018-07-26 Linde Aktiengesellschaft Bereitstellung von gasförmigem Wasserstoff
DE102017217748A1 (de) * 2017-10-05 2019-04-11 Hydrogenious Technologies Gmbh Anlage und Verfahren zur Bereitstellung und weiteren Nutzung von Wasserstoffgas

Also Published As

Publication number Publication date
FR3112339B1 (fr) 2022-07-22
WO2022008847A1 (fr) 2022-01-13
FR3112339A1 (fr) 2022-01-14
CA3180033A1 (fr) 2022-01-13
US20230174374A1 (en) 2023-06-08
CN115768717A (zh) 2023-03-07
AU2021303604A1 (en) 2022-12-08
JP2023533130A (ja) 2023-08-02

Similar Documents

Publication Publication Date Title
EP0922027B1 (fr) Procede de purification de lactames
EP2175985B1 (fr) Purification d'une coupe oléfinique par adsorption sur des cogranules alumine-faujasite
FR2971248A1 (fr) Preparation de diamine via la preparation d'aminonitrile
EP4168386A1 (fr) Procede de fabrication d'acide aminoundecanoique et d'acide aminodecanoique
EP0217695B1 (fr) Procédé de dismutation et transalkylation d'hydrocarbures aromatiques en présence d'un catalyseur zéolithique
WO2021176170A1 (fr) Déshydrogénation partielle de liquides organiques
BE1006675A3 (fr) Procede de production d'essences a haut indice d'octane.
EP4178907A1 (fr) Procédé d'amélioration de la qualité des liquides organiques porteur d'hydrogène
WO2022074336A1 (fr) Stockage d'hydrogène au moyen de composés liquides organiques
EP2556133B1 (fr) Procede de purification des extraits aromatiques contenant des composes polycycliques aromatiques
WO2020126872A1 (fr) Couplage unité d'extraction d'aromatiques substitués en méthyles et unité d'hydrogénolyse d'alkyle-aromatiques
BE1020261A5 (fr) Procede de fabrication de cyclohexanone oxime.
EP2432591B1 (fr) Catalyseur pour le réformage de goudrons utilisables dans la vapogazéification de la biomasse
FR2701269A1 (fr) Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
EP4259572A1 (fr) Formulation liquide pour stockage d'hydrogène
EP4178702A1 (fr) Purification de liquides aromatiques
FR2856399A1 (fr) Procede de preparation d'une ethanolamine d'une qualite de couleur amelioree
FR2619822A1 (fr) Procede d'adoucissement en continu de coupes petrolieres en phase liquide
WO2024089347A1 (fr) Procede de production de peroxyde d'hydrogene
FR2993559A1 (fr) Procede de preparation de composes diacides
FR2772753A1 (fr) Procede de synthese d'acetals
WO1998007512A1 (fr) Procede de traitement d'une solution ou suspension de composes organiques par oxydation en voie humide
FR2808532A1 (fr) Procede de captation de mercure et d'arsenic comprenant une evaporation puis une condensation de la charge hydrocarbonnee
FR2635111A1 (fr) Procede d'adoucissement en continu de coupes petrolieres
CH428757A (fr) Procédé de préparation d'éthers p-nitrosophényliques et utilisation de ceux-ci pour leur conversion en anilines N-substituées

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20221103

Extension state: MA

Effective date: 20221103