EP4221042A2 - Extension de canaux de commande de liaison descendante physique - Google Patents

Extension de canaux de commande de liaison descendante physique Download PDF

Info

Publication number
EP4221042A2
EP4221042A2 EP23152740.9A EP23152740A EP4221042A2 EP 4221042 A2 EP4221042 A2 EP 4221042A2 EP 23152740 A EP23152740 A EP 23152740A EP 4221042 A2 EP4221042 A2 EP 4221042A2
Authority
EP
European Patent Office
Prior art keywords
pdcch
cell
css
control channel
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23152740.9A
Other languages
German (de)
English (en)
Other versions
EP4221042A3 (fr
Inventor
Aris Papasakellariou
Joon Young Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43084468&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP4221042(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP4221042A2 publication Critical patent/EP4221042A2/fr
Publication of EP4221042A3 publication Critical patent/EP4221042A3/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present invention is directed to wireless communication systems and, more specifically, to extending a Physical Downlink Control CHannel (PDCCH) from supporting communication in a single cell to supporting communication in multiple cells.
  • PDCH Physical Downlink Control CHannel
  • a communication system includes a DownLink (DL) that supports the transmissions of signals from a Base Station (BS) (or Node B) to User Equipments (UEs), and an UpLink (UL) that supports transmissions of signals from UEs to the Node B.
  • DL DownLink
  • UE User Equipment
  • UL UpLink
  • a UE also commonly referred to as a terminal or a mobile station, may be fixed or mobile and may be a wireless device, a cellular phone, a personal computer device, etc.
  • a Node B is generally a fixed station and may also be referred to as a Base Transceiver System (BTS), an access point, or some other similar terminology.
  • BTS Base Transceiver System
  • the DL signals include data signals that carry information content, control signals, and Reference Signals (RS), which are also known as pilot signals.
  • the Node B transmits data information to a UE through a Physical Downlink Shared CHannel (PDSCH) and transmits control information to a UE through a PDCCH.
  • PDSCH Physical Downlink Shared CHannel
  • the UL signals also include data signals, control signals, and RSs.
  • a UE transmits data information to the Node B through a Physical Uplink Shared CHannel (PUSCH) and transmits control information through a Physical Uplink Control CHannel (PUCCH). It is also possible for UEs to transmit control information through the PUSCH.
  • PUSCH Physical Uplink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • DCI Downlink Control Information
  • DCI formats are used to provide DL Scheduling Assignments (SAs) for PDSCH receptions by the UEs, UL SAs for PUSCH transmissions by the UEs, or Transmission Power Control (TPC) commands for PUSCH receptions or PUCCH transmissions from the UEs.
  • DCI formats also provide scheduling information for a Paging CHannel (PCH), for a response by the Node B to Random Access CHannels (RACH) transmitted by the UEs, and for Secondary Information Blocks (SIBs) providing broadcast control information from the Node B.
  • PCH Paging CHannel
  • RACH Random Access CHannels
  • SIBs Secondary Information Blocks
  • the DCI format for transmitting the TPC commands will be referred to as DCI format 3 and the DCI format for transmitting the scheduling information for the transmission of either PCH, RACH response, or SIBs will be referred to as DCI format 1C.
  • the PDCCH is a major part of the total DL overhead and directly impacts the achievable DL cell throughput.
  • a conventional method for reducing PDCCH overhead is to scale its size according to the resources required to transmit the DCI formats during a DL Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • OFDMA Orthogonal Frequency Division Multiple Access
  • CCFI Control Channel Format Indicator
  • PCFICH Physical Control Format Indicator CHannel
  • FIG. 1 is a diagram illustrating a structure for the PDCCH transmission in the DL TTI, which for simplicity includes one sub-frame having M OFDM symbols.
  • the PDCCH occupies the first N symbols 110.
  • the remaining M-N symbols of the sub-frame are assumed to be primarily used for PDSCH transmission 120.
  • the PCFICH 130 is transmitted in some sub-carriers, also referred to as Resource Elements (REs), of the first symbol.
  • some sub-frame symbols include RS REs, 140 and 150, which are common to all UEs for each of the Node B transmitter antennas, which in FIG. 1 are assumed to be two.
  • the RSs enable a UE to obtain a channel estimate for its DL channel medium and to perform various other measurements and functions.
  • the PDSCH typically occupies the remaining REs 160.
  • Additional control channels may be transmitted in the PDCCH region but, for brevity, they are not illustrated in FIG. 1 .
  • a Physical Hybrid-HARQ Indicator CHannel (PHICH) may be transmitted by the Node B, in a similar manner as the PCFICH, to indicate to groups of UEs whether or not their previous PUSCH transmission was received by the Node B.
  • the Node B separately codes and transmits each DCI format through a PDCCH.
  • FIG. 2 is a block diagram illustrating a conventional processing chain for transmitting a DCI format.
  • the Medium Access Control (MAC) layer IDentity of the UE (or UE ID), for which a DCI format is intended, masks the Cyclic Redundancy Check (CRC) of the DCI format codeword in order to enable the reference UE to identify that the particular DCI format is intended for the reference UE.
  • CRC Cyclic Redundancy Check
  • the masked CRC is then appended to the DCI format bits 250, channel coding 260 is performed, for example, using a convolutional code, followed by rate matching 270 to the allocated PDCCH resources, and then interleaving and modulation 280. Thereafter, a control signal 290 is transmitted.
  • a UE receiver performs the reverse operations of the Node B transmitter to determine whether a DCI format in the PDCCH was intended for the UE.
  • FIG. 3 is a block diagram illustrating a conventional processing chain for receiving a DCI format.
  • a received control signal i.e., a PDCCH, 310 is demodulated and the resulting bits are de-interleaved 320. Rate matching applied in the Node B transmitter is restored 330, and the output is subsequently decoded 340.
  • the DCI format bits 360 are obtained, after extracting the CRC bits 350, which are then de-masked 370 by applying the XOR operation with the UE ID 380. Thereafter, the UE performs a CRC test 390. If the CRC test passes, the UE considers the DCI format as being valid and determines the parameters for PDSCH reception (DL DCI format) or PUSCH transmission (UL DCI format). If the CRC test does not pass, the UE disregards the DCI format.
  • the information bits of the DCI format correspond to several Information Elements (IEs) such as, for example, the Resource Allocation (RA) IE indicating the part of the operating BandWidth (BW) allocated to a UE for PDSCH reception or PUSCH transmission, the Modulation and Coding Scheme (MCS) IE, the IE related to the HARQ operation, etc.
  • IEs Information Elements
  • the BW unit for PDSCH or PUSCH transmissions is assumed to consist of several REs, e.g., 12 REs, and will be referred to as a Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • PDCCHs for a UE are not transmitted at fixed and predetermined locations and do not have predetermined coding rate. Consequently, a UE performs multiple PDCCH decoding operations in each sub-frame to determine whether any of the PDCCHs transmitted by the Node B is intended for the UE.
  • the PDCCH REs are grouped into Control Channel Elements (CCEs) in the logical domain. For a given number of DCI format bits as illustrated in FIG. 2 , the number of CCEs for the respective PDCCH transmission depends on the channel coding rate.
  • CCEs Control Channel Elements
  • the Node B may respectively use a low or high channel coding rate in order to achieve a desired PDCCH BLock Error Rate (BLER). Therefore, a PDCCH transmission to a UE experiencing low DL SINR typically requires more CCEs that a PDCCH transmission to a UE experiencing high DL SINR. Alternatively, different power boosting of CCE REs may also be used in order to achieve a target BLER. Typical CCE aggregation levels for PDCCH transmissions are assumed to follow a "tree-based" structure, for example, 1, 2, 4, and 8 CCEs.
  • a UE may determine a search space for a candidate PDCCH, after it restores the CCEs in the logical domain, according to a common set of CCEs for all UEs in a UE-Common Search Space (UE-CSS) and according to a UE-specific set of CCEs in a UE-Dedicated Search Space (UE-DSS).
  • UE-CSS includes the first C CCEs in the logical domain.
  • the UE-DSS may be determined according to a pseudorandom function having UE-common parameters as inputs, such as the sub-frame number or the total number of PDCCH CCEs in the sub-frame, and UE-specific parameters such as the identity assigned to a UE ( UE_ID ).
  • the CCEs corresponding to PDCCH candidate m can be given by Equation (1).
  • Exemplary values of M ( L ) for L e ⁇ 1,2,4,8 ⁇ are, respectively, ⁇ 6, 6, 2, 2 ⁇ .
  • Y k 0.
  • DCI formats conveying information to multiple UEs, such as DCI format 3 or DCI format 1C, are transmitted in the UE-CSS. If enough CCEs remain after transmitting DCI formats 3 and 1C, the UE-CSS may also convey some DCI formats for PDSCH receptions or PUSCH transmissions by UEs. The UE-DSS exclusively conveys DCI formats for PDSCH receptions or PUSCH transmissions.
  • the CCEs for the UE-CSS are placed first in the logical domain (prior to interleaving).
  • FIG. 4 illustrates a conventional PDCCH transmission process. After channel coding and rate matching, as illustrated in FIG. 2 , the encoded DCI format bits are mapped to CCEs in the logical domain.
  • the DCI format bits may be scrambled 440 using a binary scrambling code, which is typically cell-specific, and are subsequently modulated 450.
  • a binary scrambling code which is typically cell-specific
  • Each CCE is further divided into mini-CCEs. For example, a CCE including 36 REs can be divided into 9 mini-CCEs, each having 4 REs.
  • Interleaving 460 is applied among mini-CCEs (blocks of 4 QPSK symbols).
  • a block interleaver may be used where the interleaving is performed on symbol-quadruplets (4 Quadrature Phase Shift Keying (QPSK) symbols corresponding to the 4 REs of a mini-CCE) instead of on individual bits.
  • QPSK Quadrature Phase Shift Keying
  • the resulting series of QPSK symbols may be shifted by J symbols 470, and then each QPSK symbol is mapped to an RE 480 in the PDCCH region of the DL sub-frame.
  • the REs in the PDCCH include QPSK symbols corresponding to DCI format for UE1 494, UE2 495, UE3 496, and UE4 497.
  • aggregation of multiple carriers (or cells) can be used. For example, to support communication over 100 MHz, aggregation of five 20 MHz carriers (or cells) can be used.
  • L-UEs Legacy-UEs
  • A-UEs Advanced-UEs
  • FIG. 5 illustrates a principle of carrier aggregation.
  • An operating BW of 100 MHz includes the aggregation of 5 (contiguous, for simplicity) carriers, 521, 522, 523, 524, and 525, each having a BW of 20 MHz.
  • the sub-frame structure for communication over multiple carriers includes a PDCCH region, for example, 531 through 535, and a PDSCH region, for example, 541 and 545.
  • FIG. 6 is a diagram illustrating a conventional heterogeneous network deployment.
  • an area covered by a macro-Node B 610 encompasses areas covered by micro-Node Bs 620 and 630. Because the macro-Node B covers a larger area than a micro-Node B, its transmission power is substantially larger than the transmission power of a micro-Node B. Consequently, for topologies such as illustrated in FIG. 6 , the signals transmitted by a macro-Node B can cause severe interference to the signals transmitted by a micro-Node B. Interference coordination techniques can be applied to PDSCH transmissions to mitigate macro-to-micro interference using different PRBs between PDSCH signal transmissions from the macro-Node B and a micro-Node B. However, such interference coordination is not possible for the PDCCH because the CCEs are pseudo-randomly distributed over the entire operating BW, as was previously described.
  • CI Carrier Indicator
  • CI IE Cell Indicator
  • a CI IE of 2 bits can indicate whether the DCI format is for the macro-cell or for any of a maximum of three micro-cells.
  • PDCCH transmission in certain cells may be avoided for practical reasons. For example, it is desirable to avoid PDCCH transmissions in cells with small BW as they are inefficient and lead to large respective overhead. Also, PDSCH transmissions in a cell can be optimized to occur over all DL sub-frame symbols if transmissions of PDCCH and of other supporting signals such as UE-common RS, are avoided.
  • the CI functionality can accommodate:
  • FIG. 7 is a diagram illustrating a conventional PUSCH scheduling in the UL of multiple cells through PDCCH transmission in a single cell.
  • a PDCCH in a single cell 710 is associated with the UL of two cells, 720 and 730. Consequently, PDCCHs scheduling PUSCH transmissions from Cell 1 and Cell 2 are transmitted in a single cell and the cell of PUSCH transmission can be identified by a CI IE consisting of 1 bit.
  • FIG. 8 is a diagram illustrating a conventional PDSCH scheduling in a DL of multiple cells through PDCCH transmission in a single cell.
  • FIG. 9 is a diagram illustrating a conventional PDCCH transmission in a first cell (macro-cell) and in a second cell (micro-cell), which may occur to avoid interference in PDCCH transmissions between a macro-cell and a micro-cell.
  • both macro-cell and micro-cell may have PDSCH transmissions in Cell1 910 and Cell2 920, the macro-cell transmits PDCCH only in Cell1 and the micro-cell transmit PDCCH only in Cell2.
  • the PDCCH size In communication systems having a single cell, the PDCCH is assumed to be limited to a maximum number of M OFDM symbols. In communication systems having multiple cells and having PDCCH transmission in a single cell, this limitation of the PDCCH size may cause scheduling restrictions. In general, the PDCCH size may need to be increased if the PDCCH in one cell performs scheduling in multiple cells.
  • modification and expansion is needed in order to transmit multiple DCI formats to a UE in the PDCCH region of a single cell.
  • An aspect of the present invention is to provide methods and apparatus for expanding a control region in a single cell from supporting transmission of DCI to a UE for communication over the single cell to supporting transmission of DCI to the UE for communication over multiple cells.
  • a conventional control region in a single cell including a UE-CSS and a UE-DSS and supporting DCI transmission for the single cell, is expanded to support DCI transmission for multiple cells by including either multiple UE-CSS, each multiple UE-CSS corresponding to each of the multiple cells, or multiple UE-DSS, each multiple UE-DSS corresponding to each of the multiple cells, or both.
  • support of DCI transmission for multiple cells, each having a Cell Identity (Cell_ID), through a control region in a single cell is provided by informing the UE of the Cell_ID for each of the multiple cells and then defining a distinct UE-DSS for each of the multiple cells in the control region of the single cell, where each distinct UE-DSS has the same structure as the UE-DSS for DCI transmission over only the single cell and its location additionally depends only on the respective Cell_ID.
  • the DCI is conveyed through DCI formats and DCI formats in each UE-DSS may include a CI IE that is derived from the Cell_ID.
  • support of DCI transmission for multiple cells through a control region in a primary cell is provided by defining a first control region for DCI transmission corresponding to a first set of cells that includes the primary cell, and a second control region for DCI transmission corresponding to a second set of cells including the multiple cells that are not in the first set of cells.
  • the first control region includes the same resources as the control region for DCI transmission only in the primary cell.
  • the second control region includes resources that would otherwise be used for data transmission in the primary cell.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • FDMA Frequency Division Multiplexing
  • DFT Discrete Fourier Transform
  • an A-UE is semi-statically configured, for example, through Radio Resource Control (RRC) signaling, the cells over which it may have PDSCH reception or PUSCH transmission.
  • RRC Radio Resource Control
  • a link between the DL and the UL in those cells may also be configured.
  • the inclusion of the CI IE in DCI formats can be either UE-specific or cell-specific.
  • each A-UE is informed through higher layer signaling (MAC or RRC signaling) whether its assigned DCI formats in a cell include a CI IE.
  • MAC or RRC signaling When the CI IE in DCI formats is cell-specific, the Node B may broadcast whether a CI IE is included in the DCI formats.
  • the DCI formats having the CI IE may be all DCI formats or a predetermined subset of DCI formats.
  • DCI formats in the UE-CSS may not contain CI while DCI formats in the UE-DSS may contain CI.
  • FIG. 10 is a diagram illustrating a method of informing an A-UE whether a CI IE is included in DCI formats in a UE-specific manner, according to an embodiment of the present invention.
  • an A-UE is configured in the DL of Cell1 1010, Cell2 1020, and Cell3 1030 for PDSCH reception and in the UL of Cell1 1040 and Cell2 1050 for PUSCH transmission.
  • the cells of PDCCH transmission are also informed to the A-UE through higher layer signaling.
  • a PDCCH is transmitted only in Cell1 1060.
  • the DL and UL for Cell1 may correspond to a macro-cell, while the DL and UL of Cell2 may correspond to a first micro-cell and the DL of Cell3, and the UL of Cell2 can correspond to a second micro-cell.
  • DCI formats associated with PUSCH transmissions or with TPC for PUSCH or PUCCH transmissions (DCI format 3) will be referred to as UL DCI formats.
  • the remaining DCI formats are associated with PDSCH receptions and will be referred to as DL DCI formats.
  • DL DCI formats to the UE include a CI IE having 2 bits.
  • the CI values of ⁇ 00', '01", and “10” can correspond to Cell1, Cell2, and Cell3, respectively, while the CI value "11" is unused.
  • the CI values of '0' and “1" can correspond to Cell1 and Cell2, respectively.
  • the number of bits for the CI IE can be different between DL DCI formats and UL DCI formats (including, for example, not having any CI IE bits in UL DCI formats while having CI IE bits in DL DCI formats).
  • the association between CI values and Cells may also be implicitly determined. For example, ascending CI values of "00", “01", “10", and “11” can be mapped to Cells in order of increasing carrier frequency.
  • CI may not be necessary for cells with different BWs because the respective DCI formats may have different sizes. For example, for 2 cells, where the PDCCH is transmitted only in one cell, the CI inclusion in the DL DCI formats is not necessary if, for example, one cell has a BW of 20 MHz and the other cell has a BW of 5 MHz.
  • the primary reason for having a different DCI format size for different BWs is the Resource Allocation (RA) IE in the DCI formats, which should have a larger size for cells with larger BWs, as it addresses a larger number of PRBs.
  • RA Resource Allocation
  • the transmission of DCI formats to L-UEs is supported with the conventional PDCCH structure.
  • the PDCCH transmission to A-UEs having PDSCH reception or PUSCH transmission in the same cell is also supported with the conventional PDCCH structure.
  • such A-UEs will be referred to as Primary-UEs (P-UEs) and the cell with the PDCCH transmission as Primary-cell (Pcell).
  • P-UEs Primary-UEs
  • Pcell Primary-cell
  • A-UEs having PDSCH reception or PUSCH transmission in a cell other than the Pcell will be referred to as Secondary-UEs (S-UEs) and the corresponding cells as Secondary-cells (Scells).
  • UEs receiving PDSCH in Cell1 are P-UEs and Cell1 is the Pcell
  • UEs receiving PDSCH in Cell2 are S-UEs and Cell2 is a Scell
  • An A-UE can be both a P-UE and an S-UE depending on the cell (Pcell or Scell, respectively). Therefore, the classification of an A-UE as a P-UE or an S-UE is unique for each cell and may be different among cells as an A-UE can be a P-UE in the Pcell and the S-UE in an Scell.
  • the conventional PDCCH structure or a separate PDCCH structure may be used.
  • the capacity (first M OFDM symbols of the DL sub-frame) of the conventional PDCCH structure is not reached for scheduling P-UEs
  • Whether the conventional PDCCH structure or an Extended PDCCH (E-PDCCH) structure is used can be predetermined or be informed by the Node B through broadcast signaling or through UE-specific higher layer signaling.
  • the PDCCH CCEs for an A-UE can be either in the PDCCH or in the E-PDCCH, but not in both.
  • Whether an A-UE monitors the PDCCH or the E-PDCCH for scheduling a PDSCH or a PUSCH in a specific cell can be semi-statically configured either through higher layer signaling or through broadcast signaling.
  • E-PDCCH in the Pcell is used for scheduling a PDSCH or a PUSCH in Scells, the following is considered, in accordance with an embodiment of the present invention:
  • the E-PDCCH provides an extension to the PDCCH and therefore, conveys information of the same nature.
  • the E-PDCCH may include a respective PCFICH (referred to as an E-PCFICH) and a PHICH (referred to as an E-PHICH) for PUSCH transmissions in Scells served by the E-PDCCH.
  • E-PCFICH referred to as an E-PCFICH
  • E-PHICH PHICH
  • the DCI formats in the E-PDCCH are transmitted in CCEs, but the CCE allocation is in PRBs as the E-PDCCH is orthogonally multiplexed with the PDSCH.
  • the PRBs for the E-PDCCH can be semi-statically or dynamically configured. A semi-static configuration of E-PDCCH PRBs ensures adequate separation in the frequency domain in order to obtain frequency diversity or that the PRBs are selected according to an interference co-ordination technique minimizing interference from adjacent cells.
  • the first E-PDCCH symbol can be the first OFDM symbol after the last actual PDCCH OFDM symbol or the first symbol after the last PDCCH OFDM symbol, assuming the maximum number of PDCCH OFDM symbols.
  • S-UEs decode the PCFICH to determine the E-PDCCH start.
  • the first E-PDCCH symbol is the first symbol after the last PDCCH OFDM symbol assuming the maximum number of PDCCH OFDM symbols, maximum E-PDCCH decoding latency results, but errors from incorrect PCFICH detection, which will lead in PDCCH decoding failure, are avoided.
  • the last E-PDCCH symbol can be statically, semi-statically, or dynamically configured.
  • the last E-PDCCH symbol can be, for example, the seventh symbol of the DL sub-frame.
  • the last E-PDCCH symbol can be informed by the Node B through a broadcast channel.
  • the last E-PDCCH symbol can be informed through the E-PCFICH.
  • the range of OFDM symbols indicated by the E-PCFICH for the E-PDCCH can be different than the range of OFDM symbols indicated by the PCFICH for the PDCCH.
  • the E-PCFICH may also indicate 0 OFDM symbols for the E-PDCCH in which case the E-PCFICH and the E-PHICH may be transmitted in the PDCCH.
  • FIG. 11 illustrates an E-PDCCH multiplexing structure where A-UEs assume a maximum PDCCH size to determine a first E-PDCCH symbol, according to an embodiment of the present invention.
  • the PDCCH transmission 1110 has 2 OFDM symbols, out of a maximum of 3 PDCCH OFDM symbols.
  • the first E-PDCCH symbol is the first OFDM symbol after the PDCCH transmission, assuming the maximum of 3 OFDM symbols. Therefore, the first E-PDCCH symbol is the fourth OFDM symbol of the DL sub-frame.
  • the E-PCFICH transmission (not shown) is always in the first E-PDCCH symbol and, for the structure of FIG. 11 , it indicates that the E-PDCCH is transmitted in 2 OFDM symbols 1120.
  • the E-PDCCH transmission PRBs 1130 are semi-statically configured through broadcast signaling by the Node B (for example, in an SIB).
  • the E-PDCCH transmission is multiplexed with PDSCH transmissions to various UEs, 1140, 1150, and 1160.
  • PDSCH transmissions to L-UEs may or may not occur in PRBs used for E-PDCCH transmission.
  • PRBs used for E-PDCCH transmission.
  • A-UEs can be aware of the E-PDCCH PRBs and apply the appropriate rate matching for their respective PDSCH receptions.
  • FIG. 12 illustrates an E-PDCCH multiplexing structure where A-UEs decode a PCFICH to determine an actual PDCCH size and a first E-PDCCH symbol, according to an embodiment of the present invention.
  • a PDCCH transmission 1210 has 2 OFDM symbols.
  • the first E-PDCCH symbol is the third OFDM symbol, which is the first OFDM symbol after the PDCCH transmission.
  • the E-PCFICH transmission (not shown) is always in the first E-PDCCH symbol and, in the structure illustrated in FIG. 12 , it indicates that the E-PDCCH is transmitted in 2 OFDM symbols 1220.
  • the E-PDCCH transmission PRBs 1230 are predetermined.
  • E-PDCCH E-PDCCH CCEs
  • all E-PDCCH CCEs are jointly considered for all Scells, instead of having a separate set of CCEs for each Scell. Therefore, there is only a single set of CCEs in the E-PDCCH, where each S-UE may have its UE-CSS and its UE-DSS. This also enables the transmission of a single E-PCFICH, instead of multiple E-PCFICH with each one corresponding to a different Scell in the E-PDCCH.
  • the UE-CSS for S-UEs is separately configured and its size, in number of CCEs, may be broadcasted by the Node B.
  • the UE-CSS size may take one of four predetermined values and the Node B broadcasts 2 bits to indicate that value (for example, through an SIB in the Pcell) or to indicate that the UE-CSS size is either 1, 2, 3, or 4 times a basic size of K CCEs.
  • the CCEs for the UE-CSS in the E-PDCCH are placed first, i.e., before the CCEs for the UE-DSS. Once an S-UE is informed of the UE-CSS size, it needs to determine the CCEs corresponding to each Scell.
  • the S-UE is informed of the order of Scells either through higher layer signaling, for UE-specific CI configuration, or as part of the system information for cell-specific CI configuration. This is equivalent to an S-UE being informed of the CI value for its DCI formats.
  • the order may be in terms of decreasing BWs, e.g., the larger BWs are ordered first.
  • FIG. 13 is a diagram illustrating an assignment of different CI values to different cells, according to an embodiment of the present invention.
  • the CCEs for the UE-CSS of the macro-cell 1310 are placed in the PDCCH.
  • the CCEs of the UE-CSS of S-UEs are placed in the same order in the logical domain.
  • FIG. 14 is a diagram illustrating placement of CCEs for multiple UE-CSS, according to an embodiment of the present invention.
  • the placement of the CCEs for the UE-DSS 1430 occurs after the placement of the CCEs for the UE-CSS in the logical domain.
  • the CCEs for the UE-CSS of S-UEs are ordered as illustrated in FIG. 14 to reduce the associated number of Blind Decoding Operations (BDOs) because, for each UE-CSS, an S-UE searches a sub-set of the total set of CCEs allocated to the total UE-CSS. Moreover, by ordering the UE-CSSs for S-UEs, it is not necessary to include the CI IE in DCI formats transmitted in each UE-CSS.
  • BDOs Blind Decoding Operations
  • the ordering of individual UE-CSS for S-UEs is not applied and the respective CCEs may be distributed over the entire set of CCEs for the total UE-CSS. Thereafter, CI inclusion in the DCI formats is performed and the UE search process for DCI formats can be performed for the UE-DSS of S-UEs as will be described below.
  • the UE-CSS remains unchanged, the S-UEs are treated as P-UEs with respect to the transmission of DCI format 3 and DCI format 1C in Scells, and there is no differentiation of UEs into different categories with respect to the UE-CSS.
  • the PCH can be transmitted to all S-UEs in the cell with the PDCCH transmission (Pcell).
  • S-UEs acquire the synchronization signal of the cell (such as a macro-cell) with PDCCH transmission (Pcell). Thereafter, the RACH process is completed through the Pcell and no additional RACH response signaling, corresponding to cells without PDCCH transmission (Scells), is necessary.
  • the SIBs for cells (such as micro-cells) without PDCCH transmission (Scells) can also be transmitted from the cell (such as macro-cell) with PDCCH transmission (Pcell) using different CRC masks in DCI format 1C to indicate the cell corresponding to the SIB transmission.
  • DCI format 3 multiplexes TPC commands corresponding to UEs in the cell (such as a macro-cell) with PDCCH transmission (Pcell) and to UEs in the cells (such as micro-cells) without PDCCH transmission (Scells).
  • P-UEs have their UE-CSS for DCI format transmission in the PDCCH as in a backward compatible system including a single cell.
  • UE-CSS For S-UEs, either a new UE-CSS is defined in the E-PDCCH, as described above in the first alternative, or no additional UE-CSS is defined and all UEs (P-UEs and S-UEs) use the same UE-CSS in the PDCCH, as described above in the second alternative.
  • Equation (2) For the UE-DSS and single-cell operation, using the previously defined notation, the CCEs corresponding to a PDCCH candidate m are given by Equation (2).
  • S k L L ⁇ Y k + m mod ⁇ N CCE , k / L ⁇ + i
  • the above UE-DSS structure leads to identical UE-DSSs for different cells (Pcell or Scells) as they are assumed to share the same UE-DSS in the E-PDCCH (or in the PDCCH when it supports the transmission of DCI formats for multiple cells).
  • the UE-DSS also depends on the Cell_ID. This can substantially decrease the probability that a DCI format transmission is blocked due to the unavailability of CCEs in the UE-DSS. Reducing this blocking probability increases the probability that a PDSCH or PUSCH scheduling occurs and therefore, improves the respective DL or UL system throughput and enhances operating quality and reliability.
  • the Cell_ID may be the CI value allocated to each cell.
  • the UE may be informed of the Cell_ID through higher layer signaling. At least when the cells have equal BWs (and a respective CI is defined), the Cell_ID may be the same as the respective CI.
  • the UE may obtain the Cell_ID during initial synchronization with the respective cell, or if the cell does not transmit synchronization signals, the UE may obtain the respective Cell_ID through higher layer signaling from the cell transmitting synchronization signals after synchronization. Additionally, the Cell_ID may be UE-specific and informed to each UE through higher layer signaling.
  • the Cell_ID for each UE can depend on the number of cells the UE is configured for. If UE1 is configured for Cell1 and Cell2, the respective Cell_IDs can be Cell_ID1 and Cell_ID2. If UE2 is configured for Cell2 and Cell3, the respective Cell_IDs can also be Cell_ID1 and Cell_ID2.
  • the following example further demonstrates the occurrence of transmission blocking for a DCI format.
  • DCI formats to a UE are transmitted with 4 CCEs, then, as there are only 2 candidates in the UE-DSS for this CCE aggregation level, transmission of DCI formats for at most 2 cells can be supported (or one cell, for both PDSCH reception and PUSCH transmission).
  • the UE-DSSs for different UEs may have overlapping CCEs, and for this reason it will often be likely that the transmission of a DCI format for only a single cell can be supported.
  • An embodiment of the invention to construct separate UE-DSS for each cell considers that the initialization of the variable Y k includes the Cell_ID.
  • Y k includes the Cell_ID.
  • denotes the binary modulo add operation
  • an A-UE receives multiple PDSCH or transmits multiple PUSCH in multiple cells while the respective DCI formats are transmitted in a single cell
  • Y -1 ( UE _ ID ) ⁇ ( Cell_ID ) ⁇ 0 for the UE-DSS of the respective cell.
  • FIG. 15 illustrates an initialization of a variable Y k with a Cell_ID according to an embodiment of the present invention.
  • the binary UE_ID 1510 and the binary Cell_ID 1520 are added by a binary adder 1530 to provide the initial value Y -1 1540 of the variable Yk, randomizing the CCEs in the UE-DSS in sub-frame k for DCI formats corresponding to the respective cell.
  • each UE-DSS can be obtained by Equation (3).
  • S k , c L L ⁇ Y k + m + ⁇ c mod ⁇ N CCE , k / L ⁇ + i
  • the transmission of DCI formats for scheduling in multiple Scells increases the number of BDOs an A-UE performs. Without any restrictions in the locations of these possible DCI formats, this increase in the number of BDOs is linear with the number of Scells. This increases the UE receiver complexity and also increases the probability of a false CRC test (resulting to a UE incorrectly considering a DCI format as intended for it).
  • the UE After the UE identifies a PDCCH for cell c 1 , it performs a number additional BDOs equal to the number of possible aggregation levels to determine if it also has a PDCCH for cell c 2 .
  • this number of additional BDOs is 4, as the possible aggregation levels are ⁇ 1,2,4,8 ⁇ . This process can directly extend to additional cells.
  • a third design is a combination of the first and second designs, where the aggregation level used for the PDCCH in a reference cell (Pcell) affects the possible aggregation levels for the PDCCH for the remaining cells (Scells) for which a UE is configured.
  • the position of the PDCCH for the reference cell affects the possible PDCCH positions for the remaining cells.
  • PDCCH extension was compatible with existing single-cell communications.
  • PDCCH extension may also be supported in a non-compatible manner.
  • a different interpretation of the PCFICH values and a different configuration of the UE-CSS and UE-DSS may apply.
  • the PCFICH for non-compatible PDCCH extension can convey more values, which are not predetermined but can semi-statically vary.
  • the Node B may broadcast a configuration of PDCCH sizes, from a set of possible configurations, and the PCFICH may then simply indicate one size from the broadcasted configuration of PDCCH sizes.
  • the Node B may indicate one of the ⁇ 1, 2, 3, 4 ⁇ , ⁇ 2, 3, 4, 5 ⁇ , ⁇ 3, 4, 5, 6 ⁇ and ⁇ 4, 5, 6, 7 ⁇ , in number of OFDM symbols, for the PDCCH size configuration.
  • the 2 bits in the PCFICH can then be used to inform the UEs of the PDCCH size within the configuration broadcasted by the Node B.
  • FIG. 16 illustrates a PDCCH size extension by configuring a set of possible values and using a PCFICH to indicate one value in the set, according to an embodiment of the present invention.
  • the Node B broadcasts 2 bits, for example, "10", to indicate the PDCCH size configuration of ⁇ 3, 4, 5, 6 ⁇ symbols 1610.
  • the PCFICH transmitted in each sub-frame indicates an element from the PDCCH size configuration set, such as, for example, the third element 1620.
  • the UE determines the PDCCH size based on both the broadcasted PDCCH size configuration and the PCFICH value 1630.
  • an individual size of the UE-CSS or UE-DSS can also be configured.
  • the Node B may broadcast the UE-CSS size. Consequently, A-UEs can know that the UE-CSS size may have one of four predetermined values and the Node B simply broadcasts 2 bits to indicate that value or to indicate that the UE-CSS size is 1, 2, 3, or 4 times the basic UE-CSS size of 16 CCEs.
  • the indication of the UE-CSS size may also be implicit based on the PDCCH configuration size. For example, if the Node B broadcasts the third PDCCH configuration size in FIG.
  • A-UEs can identify that the UE-CSS is 3 times the basic UE-CSS size of 16-CCEs, i.e., the UE-CSS size is 48 CCEs or it is determined by the third element in a configured set of UE-CSS sizes such as, for example, a set of ⁇ 16, 28, 36, 44 ⁇ CCEs.
  • FIG. 17 illustrates explicit and implicit indication by the Node B of a UE-CSS size to A-UEs, according to an embodiment of the present invention.
  • the Node B informs A-UEs of the UE-CSS size through a broadcast channel, e.g., an SIB transmission.
  • a broadcast channel e.g., an SIB transmission.
  • the Node B transmits 2 bits with a value "10" to indicate 36 CCEs, which is the third element in a set of 4 possible UE-CSS sizes 1710.
  • A-UEs upon reception of that broadcast information, determine the UE-CSS for each cell 1720, as described above, for PDCCH extension compatible with legacy systems.
  • the Node B broadcasts the PDCCH size configuration (for example, in an SIB), as described in FIG.
  • A-UEs determine the UE-CSS size and the UE-CSS for each cell.
  • the Node B may broadcast the third PDCCH size configuration 1730 and the then A-UEs determine the UE-CSS size to be 36 CCEs 1740.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
EP23152740.9A 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique Pending EP4221042A3 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24638709P 2009-09-28 2009-09-28
US24638009P 2009-09-28 2009-09-28
EP20180344.2A EP3731451B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique
EP10075539.6A EP2302830B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP20180344.2A Division EP3731451B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique
EP10075539.6A Division EP2302830B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique

Publications (2)

Publication Number Publication Date
EP4221042A2 true EP4221042A2 (fr) 2023-08-02
EP4221042A3 EP4221042A3 (fr) 2023-08-16

Family

ID=43084468

Family Applications (5)

Application Number Title Priority Date Filing Date
EP23152740.9A Pending EP4221042A3 (fr) 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique
EP10075539.6A Active EP2302830B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique
EP23152743.3A Pending EP4221044A3 (fr) 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique
EP23152742.5A Pending EP4221043A3 (fr) 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique
EP20180344.2A Active EP3731451B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP10075539.6A Active EP2302830B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique
EP23152743.3A Pending EP4221044A3 (fr) 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique
EP23152742.5A Pending EP4221043A3 (fr) 2009-09-28 2010-09-28 Extension de canaux de commande de liaison descendante physique
EP20180344.2A Active EP3731451B1 (fr) 2009-09-28 2010-09-28 Extension des canaux de commande de liaison descendante physique

Country Status (10)

Country Link
US (10) US9295043B2 (fr)
EP (5) EP4221042A3 (fr)
JP (2) JP5511105B2 (fr)
KR (6) KR101783064B1 (fr)
CN (2) CN102549944B (fr)
AU (1) AU2010298857B2 (fr)
BR (1) BR112012006948B1 (fr)
CA (2) CA2881659C (fr)
RU (2) RU2502192C1 (fr)
WO (1) WO2011037439A2 (fr)

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2449809A1 (fr) * 2009-07-03 2012-05-09 Nokia Siemens Networks Oy Extension de couverture de canal de commande de liaison descendante physique
CN102036305B (zh) 2009-09-30 2014-05-07 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
US8902828B2 (en) * 2009-10-05 2014-12-02 Qualcomm Incorporated Carrier indicator field for cross carrier assignments
CN102056198B (zh) * 2009-10-31 2015-06-03 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123479B (zh) 2010-01-08 2015-09-16 索尼公司 支持载波汇聚的通信系统及其系统信息更新方法和设备
KR20130006603A (ko) * 2010-02-12 2013-01-17 인터디지탈 패튼 홀딩스, 인크 셀-에지 사용자 성능을 향상시키고 하향링크 협력 컴포넌트 캐리어를 통해 무선 링크 실패 조건을 시그널링하는 방법 및 장치
KR101785656B1 (ko) * 2010-03-04 2017-10-16 엘지전자 주식회사 Ack/nack 신호를 전송하는 방법 및 이를 위한 장치
CA2794472C (fr) * 2010-03-31 2017-04-25 Fujitsu Limited Systeme de communication sans fil, appareil de communication sans fil et procede de communication sans fil
JP5499216B2 (ja) * 2010-04-02 2014-05-21 ゼットティーイー コーポレーション ダウンリンク制御情報の検出方法及び装置
CN105610562B (zh) * 2010-07-21 2019-05-21 太阳专利信托公司 通信设备、终端设备、通信方法、解码方法以及集成电路
WO2012011239A1 (fr) * 2010-07-21 2012-01-26 パナソニック株式会社 Dispositif de station de base, dispositif de terminal, procédé de transmission et procédé de réception
CN102036411B (zh) * 2010-12-02 2013-06-26 大唐移动通信设备有限公司 一种进行随机接入的方法及装置
KR101771257B1 (ko) 2010-12-03 2017-08-25 엘지전자 주식회사 다중 노드 시스템에서 협력 전송 방법 및 장치
US9559884B2 (en) * 2011-02-07 2017-01-31 Intel Corporation Co-phasing of transmissions from multiple infrastructure nodes
US9137796B2 (en) * 2011-02-10 2015-09-15 Lg Electronics Inc. Method and apparatus for monitoring scheduling information
JP2014505447A (ja) 2011-02-11 2014-02-27 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート 多重送受信ポイントを使用する無線通信システム
US9544108B2 (en) 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US8995400B2 (en) 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
EP2919545B1 (fr) * 2011-02-11 2016-09-28 Interdigital Patent Holdings, Inc. Dispositif et procédé pour canal de commande enrichi (e-pdcch)
US9426703B2 (en) * 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9054842B2 (en) 2011-02-14 2015-06-09 Qualcomm Incorporated CRS (common reference signal) and CSI-RS (channel state information reference signal) transmission for remote radio heads (RRHs)
US9282556B2 (en) * 2011-02-15 2016-03-08 Kyocera Corporation Base station and communication method thereof
US9432138B2 (en) * 2011-03-01 2016-08-30 Lg Electronics Inc. Method and apparatus for searching control information by terminal in multi-node system
KR101530801B1 (ko) * 2011-03-01 2015-06-22 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 수행 방법 및 장치
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
WO2012134535A1 (fr) * 2011-04-01 2012-10-04 Intel Corporation Nœud b amélioré (enb) et procédé de transmission de canaux physiques de commande de liaison descendante (pdcch) dans un système lte-a
US10638464B2 (en) * 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
JP5801093B2 (ja) 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5961853B2 (ja) * 2011-04-27 2016-08-02 シャープ株式会社 端末、基地局、通信システムおよび通信方法
JP5810399B2 (ja) * 2011-04-27 2015-11-11 シャープ株式会社 基地局、端末および無線通信方法
JP5895356B2 (ja) * 2011-04-27 2016-03-30 シャープ株式会社 基地局、端末および無線通信方法
BR112013026094A2 (pt) * 2011-04-29 2016-12-27 Ericsson Telefon Ab L M controle descentralizado de redução de interferência em um sistema de comunicação sem fio
WO2012148076A1 (fr) * 2011-04-29 2012-11-01 Lg Electronics Inc. Procédé de transmission et de réception d'informations de commande de liaison descendante dans un système de communication sans fil et appareil correspondant
JP5432210B2 (ja) * 2011-05-02 2014-03-05 株式会社Nttドコモ ユーザ端末、無線基地局、下り制御チャネル受信方法及び移動通信システム
JP5285117B2 (ja) * 2011-05-02 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
JP5396427B2 (ja) * 2011-05-02 2014-01-22 株式会社Nttドコモ 無線基地局装置、ユーザ端末装置、無線通信システム、及び無線通信方法
JP5616284B2 (ja) * 2011-05-02 2014-10-29 株式会社Nttドコモ 基地局装置、移動端末装置、通信システム及び通信方法
JP5587824B2 (ja) * 2011-05-02 2014-09-10 株式会社Nttドコモ 無線基地局装置、移動端末装置、無線通信システムおよび無線通信方法
EP2706687B1 (fr) * 2011-05-03 2018-12-19 LG Electronics Inc. Procédé et appareil pour recevoir d'informations de contrôle dans un système de communication sans fil
EP3048753B1 (fr) * 2011-05-03 2019-02-13 Telefonaktiebolaget LM Ericsson (publ) Surveillance de canal de commande basee sur la zone de recherce
PT2892174T (pt) * 2011-05-03 2018-10-16 Ericsson Telefon Ab L M Transmissão e receção de dados de controlo num sistema de comunicações
US9398578B2 (en) * 2011-05-03 2016-07-19 Lg Electronics Inc. Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2012150841A2 (fr) * 2011-05-04 2012-11-08 엘지전자 주식회사 Procédé de recherche de zone pdcch améliorée
US8873489B2 (en) * 2011-05-05 2014-10-28 Mediatek Inc. Signaling methods for UE-specific dynamic downlink scheduler in OFDMA systems
CN102202415B (zh) * 2011-05-18 2019-01-22 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统
CN102202324B (zh) * 2011-05-19 2013-07-10 电信科学技术研究院 资源位置指示及信道盲检的方法、系统和装置
US9455809B2 (en) * 2011-05-25 2016-09-27 Lg Electronics Inc. Method for transceiving downlink control information in a wireless access system and apparatus therefor
WO2012165877A2 (fr) * 2011-05-31 2012-12-06 엘지전자 주식회사 Procédé permettant de rechercher une région d'un canal de commande de liaison descendante physique amélioré
US9706536B2 (en) * 2011-06-07 2017-07-11 Lg Electronics Inc. Method for transmitting/receiving control information and apparatus for transmitting/receiving
JP5722503B2 (ja) * 2011-06-07 2015-05-20 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute 移動通信システムの制御情報伝送及び受信方法
WO2012173419A2 (fr) * 2011-06-15 2012-12-20 엘지전자 주식회사 Procédé et appareil d'attribution de canal de commande de liaison descendante dans un système de communication sans fil
US8923201B2 (en) 2011-06-15 2014-12-30 Samsung Electronics Co., Ltd. Extension of physical downlink control signaling in a communication system
US9450729B2 (en) * 2011-06-15 2016-09-20 Lg Electronics Inc. Method and device for allocating a downlink control channel in a wireless communication system
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
WO2012177073A2 (fr) 2011-06-24 2012-12-27 엘지전자 주식회사 Procédé de transmission d'informations de commande de liaison montante, équipement utilisateur, procédé de réception d'informations de commande de liaison montante, et station de base
WO2013002583A2 (fr) 2011-06-28 2013-01-03 엘지전자 주식회사 Procédé et appareil de transmission d'un accusé de réception dans un système de communication sans fil
KR20200008016A (ko) 2011-06-29 2020-01-22 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US8537862B2 (en) 2011-06-30 2013-09-17 Blackberry Limited Transmit downlink control information with higher order modulation
CN103636151B (zh) * 2011-06-30 2017-02-15 Lg电子株式会社 在无线通信系统中分配下行链路控制信道的方法和设备
KR20130007250A (ko) * 2011-06-30 2013-01-18 주식회사 팬택 무선통신 시스템에서 제어채널의 전송 장치 및 방법
US20130003604A1 (en) * 2011-06-30 2013-01-03 Research In Motion Limited Method and Apparatus for Enhancing Downlink Control Information Transmission
WO2013006379A1 (fr) * 2011-07-01 2013-01-10 Dinan Esmael Hejazi Signal de synchronisation et messages de commande en ofdm à porteuse multiple
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US8879667B2 (en) 2011-07-01 2014-11-04 Intel Corporation Layer shifting in open loop multiple-input, multiple-output communications
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US9246652B2 (en) 2011-07-03 2016-01-26 Lg Electronics Inc. Control channel monitoring method and device
US9853781B2 (en) * 2011-07-05 2017-12-26 Nokia Solutions And Networks Oy Method and apparatus for resource aggregation in wireless communications
CN102256358B (zh) * 2011-07-08 2013-11-20 电信科学技术研究院 一种数据传输和接收方法、装置及系统
WO2013009088A2 (fr) * 2011-07-12 2013-01-17 Lg Electronics Inc. Procédé permettant à un équipement utilisateur de rechercher des informations de commande dans un système multinœud et appareil l'utilisant
US9755804B2 (en) * 2011-07-12 2017-09-05 Lg Electronics Inc. Method of user equipment monitoring control information in a multiple node system and user equipment using the method
KR102040616B1 (ko) 2011-07-14 2019-11-05 엘지전자 주식회사 무선 통신 시스템에서 자원을 할당하는 방법 및 이를 위한 장치
JP5898874B2 (ja) * 2011-07-15 2016-04-06 株式会社Nttドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
US9439135B2 (en) 2011-07-18 2016-09-06 Lg Electronics Inc. Method and wireless device for monitoring control channel
US9515798B2 (en) 2011-07-20 2016-12-06 Lg Electronics Inc. Method and apparatus for allocating enhanced physical downlink control channel in wireless access system
JP5895388B2 (ja) 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
JP5811443B2 (ja) 2011-07-22 2015-11-11 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
WO2013015558A2 (fr) 2011-07-24 2013-01-31 엘지전자 주식회사 Procédé et appareil de mappage de bit pour canal de commande de liaison descendante dans un système de communication sans fil
US9144070B2 (en) * 2011-07-26 2015-09-22 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
US9319192B2 (en) 2011-07-26 2016-04-19 Lg Electronics Inc. Method for transmitting control information by a base station in a wireless communication system, and device therefor
KR20140034281A (ko) * 2011-07-27 2014-03-19 후지쯔 가부시끼가이샤 다운링크 제어 정보의 송수신 방법, 기지국, 및 이동 단말기
KR101578012B1 (ko) 2011-07-28 2015-12-28 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어정보 송수신 방법 및 이를 위한 단말
JP5884152B2 (ja) * 2011-07-29 2016-03-15 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN102271031B (zh) * 2011-08-09 2018-02-06 中兴通讯股份有限公司 一种信道信息反馈的方法和系统
US20130201926A1 (en) * 2011-08-11 2013-08-08 Samsung Electronics Co., Ltd. System and method for physical downlink control and hybrid-arq indicator channels in lte-a systems
CN105554895B (zh) 2011-08-11 2019-09-13 华为技术有限公司 一种获取同步的处理方法以及设备
CN102355338B (zh) * 2011-08-11 2014-04-02 电信科学技术研究院 一种信道信息发送方法及装置
JP5927661B2 (ja) * 2011-08-12 2016-06-01 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN102263616B (zh) * 2011-08-15 2018-07-20 中兴通讯股份有限公司 指示控制信道的方法及装置
CN106877988B (zh) 2011-08-19 2020-04-21 Lg电子株式会社 无线通信系统中基站发射下行链路控制信道的方法及设备
CN102263584B (zh) * 2011-08-19 2014-05-07 电信科学技术研究院 一种信道状态信息非周期性反馈方法及装置
CN102958184B (zh) * 2011-08-25 2017-02-22 华为技术有限公司 下行控制信道传输方法、装置和系统
JP2013055393A (ja) 2011-09-01 2013-03-21 Sony Corp 通信装置、通信方法、通信システムおよび基地局
US9084238B2 (en) 2011-09-12 2015-07-14 Blackberry Limited Searching space and operation for enhanced PDCCH in LTE systems
CN102316522B (zh) * 2011-09-21 2017-02-08 中兴通讯股份有限公司 一种控制信令传输资源位置的通知方法及一种终端
CN106793141B (zh) * 2011-09-29 2020-03-31 华为技术有限公司 增强的物理下行控制信道e-pdcch的传输方法及设备
US20130083746A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Method and apparatus for allocating resources for an enhanced physical hybrid automatic repeat request indicator channel
EP2765723B1 (fr) * 2011-10-04 2016-05-18 LG Electronics Inc. Procédé pour programmer un groupage dans un système d'accès sans fil, et appareil associé
US8774848B2 (en) 2011-10-11 2014-07-08 Fujitsu Limited System and method for enhancing cell-edge performance in a wireless communication network
MX2013010114A (es) 2011-10-18 2013-10-03 Lg Electronics Inc Metodo y aparato de indicacion de celda primaria para desmodulacion de canal de control mejorada.
JP5885854B2 (ja) * 2011-11-04 2016-03-16 インテル・コーポレーション サーチスペース決定
US9338774B2 (en) 2011-11-04 2016-05-10 Lg Electronics Inc. Method and apparatus for user equipment searching control channel in wireless communication system
EP2590350A1 (fr) 2011-11-07 2013-05-08 Panasonic Corporation Chevauchement PDCCH amélioré dans la région PDCCH
JP2013098946A (ja) * 2011-11-07 2013-05-20 Sharp Corp 端末、基地局、通信システムおよび通信方法
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
WO2013069956A1 (fr) * 2011-11-11 2013-05-16 엘지전자 주식회사 Procédé et dispositif d'obtention et de réception d'informations de commande dans système de communication sans fil
KR20130054896A (ko) * 2011-11-17 2013-05-27 삼성전자주식회사 시분할 이중화 통신 시스템에서 물리채널 송수신의 제어 방법 및 장치
WO2013077657A1 (fr) * 2011-11-23 2013-05-30 엘지전자 주식회사 Procédé et appareil d'émission/réception d'un canal de contrôle de liaison descendante dans un système de communication sans fil
KR20130058565A (ko) * 2011-11-25 2013-06-04 주식회사 팬택 송수신 포인트, 송수신 포인트의 제어 정보 전송 방법, 단말, 및 단말의 제어 정보 수신 방법
US9877313B2 (en) * 2011-11-25 2018-01-23 Lg Electronics Inc. Method for transmitting downlink control channel by base station in wireless communication system, and device therefor
EP2790367A4 (fr) * 2011-12-02 2015-08-05 Lg Electronics Inc Procédé de réception de canal de commande de liaison descendante au moyen d'un terminal dans un système de canaux sans fil et appareil correspondant
US8446844B1 (en) 2011-12-04 2013-05-21 Ofinno Technologies, Llc Handover in multicarrier wireless networks
US9516636B2 (en) 2011-12-07 2016-12-06 Lg Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system
US9572148B2 (en) 2011-12-07 2017-02-14 Lg Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system
EP2793518B1 (fr) * 2011-12-12 2018-02-07 Sharp Kabushiki Kaisha Canal de contrôle pour communication sans fil
CN102611524B (zh) * 2011-12-19 2015-02-04 电信科学技术研究院 一种传输信息的方法、系统及设备
US9084252B2 (en) * 2011-12-29 2015-07-14 Qualcomm Incorporated Processing enhanced PDCCH (ePDCCH) in LTE
CN105490796B (zh) * 2012-01-09 2018-11-09 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
US8606286B2 (en) * 2012-01-16 2013-12-10 Blackberry Limited E-PDCCH design for reducing blind decoding
US8995347B2 (en) * 2012-01-19 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for pilot scrambling for enhanced physical downlink control channels
EP2807860A4 (fr) * 2012-01-23 2016-04-13 Intel Corp Association d'utilisateur assistée par réseau et techniques et de délestage de réseaux hétérogènes intégrés à technologie de multiples accès radio
US20130195019A1 (en) * 2012-01-27 2013-08-01 Nokia Corporation Initial access in cells without common reference signals
JP5832914B2 (ja) * 2012-01-27 2015-12-16 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
JP6097766B2 (ja) 2012-01-27 2017-03-15 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアベースおよび/または疑似照合ネットワークにおいてepdcchを提供するためのシステムおよび/または方法
BR112014018550A8 (pt) 2012-01-30 2017-07-11 Alcatel Lucent Aparelhos, métodos e programas de computador para um transmissor móvel e para um transmissor de estação base
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
US9635658B2 (en) 2012-02-27 2017-04-25 Samsung Electronics Co., Ltd. Adaptation of control signaling transmissions to variations in respective resources
US9271271B2 (en) * 2012-03-05 2016-02-23 Samsung Electronics Co., Ltd HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types
US9215058B2 (en) 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
US9924498B2 (en) * 2012-03-12 2018-03-20 Qualcomm Incorporated Selecting a cell identifier based on a downlink control information
WO2013137582A1 (fr) * 2012-03-15 2013-09-19 엘지전자 주식회사 Procédé pour la définition d'un symbole de départ d'un canal de liaison descendante dans un système de communication sans fil et appareil à cet effet
CN108183773A (zh) 2012-03-16 2018-06-19 联发科技股份有限公司 解码下行链路控制信息的方法和用户设备
SG11201405622XA (en) * 2012-03-16 2014-10-30 Nokia Solutions & Networks Oy Blind decoding
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN103326841B (zh) * 2012-03-19 2019-08-09 北京三星通信技术研究有限公司 一种配置下行控制信道的搜索空间的方法及设备
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
CN103327617B (zh) * 2012-03-20 2016-08-17 上海贝尔股份有限公司 一种资源调度方法和设备
CN103327521B (zh) 2012-03-20 2016-12-14 上海贝尔股份有限公司 用于分配和检测下行链路控制信道资源的方法以及设备
US9445409B2 (en) 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
KR102047698B1 (ko) 2012-04-13 2019-12-04 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 검색 영역을 설정하는 방법 및 이를 위한 장치
US9538502B2 (en) * 2012-05-01 2017-01-03 Qualcomm Incorporated Methods and apparatus for managing control and data transmissions for low cost user equipments
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
JP5726819B2 (ja) * 2012-05-11 2015-06-03 株式会社Nttドコモ 復号方法、無線基地局、ユーザ端末及び無線通信システム
DK2847917T3 (en) * 2012-05-11 2019-02-18 Ericsson Telefon Ab L M FITTING AND PROCEDURE FOR DOWNLINK SCHEDULING
JP2013243460A (ja) * 2012-05-18 2013-12-05 Sharp Corp 端末、基地局、通信システムおよび通信方法
WO2014000309A1 (fr) 2012-06-30 2014-01-03 华为技术有限公司 Procédé de transmission d'informations de commande en liaison descendante, station de base et terminal
CN103580772B (zh) * 2012-07-18 2017-06-06 华为技术有限公司 数据传输方法、系统及设备,终端获取数据的方法及终端
CN104322121B (zh) * 2012-07-24 2018-05-04 华为技术有限公司 下行控制信息的发送、接收方法、服务节点及用户设备
US9723602B2 (en) * 2012-08-03 2017-08-01 Qualcomm Incorporated Interaction between EPCFICH and EPDCCH in LTE
KR101584751B1 (ko) * 2012-08-16 2016-01-12 주식회사 케이티 송수신 포인트의 상향링크 제어채널 자원 설정 방법, 그 송수신 포인트, 단말의 상향링크 제어채널 자원 매핑방법 및 그 단말
WO2014026335A1 (fr) * 2012-08-15 2014-02-20 华为技术有限公司 Procédé d'émission et de réception de signaux de détection, station de base et équipement d'utilisateur
CN103686858B (zh) * 2012-08-31 2018-02-06 华为技术有限公司 上行控制信息的反馈方法、基站及用户设备
WO2014038813A1 (fr) * 2012-09-04 2014-03-13 Samsung Electronics Co., Ltd. Adaptation d'un nombre de niveaux d'agrégation pour des éléments de canal de contrôle
EP3713144B1 (fr) 2012-09-27 2021-11-03 Huawei Technologies Co., Ltd. Procédé et appareil d'attribution de candidats de canal de commande
US9622235B2 (en) * 2012-10-23 2017-04-11 Lg Electronics Inc. Method and apparatus for receiving control information in wireless communication system
CN104704903A (zh) * 2012-11-09 2015-06-10 富士通株式会社 信息配置方法、信息发送方法、检测方法及其装置、系统
CN103812602B (zh) * 2012-11-09 2019-05-28 北京三星通信技术研究有限公司 盲检公共搜索空间和ue特定搜索空间的方法及设备
CN104838613B (zh) * 2012-12-03 2018-11-09 索尼公司 到减小的带宽的终端的控制信息的传输
US9832717B2 (en) 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
US9036578B2 (en) * 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
GB201300186D0 (en) * 2013-01-07 2013-02-20 Renesas Mobile Corp Method and apparatus for extending control signalling in an LTE network
KR20150097680A (ko) * 2013-01-16 2015-08-26 후지쯔 가부시끼가이샤 기지국 장치, 통신 방법 및 단말 장치
CN104956612B (zh) * 2013-01-17 2018-10-09 Lg 电子株式会社 在无线通信系统中接收控制信息的方法及其设备
WO2014146251A1 (fr) 2013-03-19 2014-09-25 华为技术有限公司 Procédé et dispositif d'indication d'informations de commande
US10448351B2 (en) * 2013-04-02 2019-10-15 Qualcomm Incorporated Employing neighboring cell assistance information for interference mitigation
CN104104636B (zh) * 2013-04-02 2017-08-25 上海贝尔股份有限公司 为基于dm‑rs解调的pbch配置物理资源的方法
EP3509240B1 (fr) * 2013-04-03 2022-03-23 InterDigital Patent Holdings, Inc. Conception d'un espace de recherche commun de canal de contrôle physique enrichi en liaison descendante (epdcch) pour un ou plusieurs types de porteuses
US20160119940A1 (en) * 2013-05-15 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Method and bs for identifying ue transmits sr, and method and ue for transmitting sr to bs
US9414384B2 (en) * 2013-09-17 2016-08-09 Telefonaktiebolaget Lm Ericsson (Publ) State-driven secondary cell activation and deactivation
CN110635885B (zh) * 2014-01-29 2024-01-26 北京璟石知识产权管理有限公司 数据传输方法和装置
US10278178B2 (en) 2014-05-19 2019-04-30 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching
US11432305B2 (en) 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
EP3180954B1 (fr) * 2014-08-11 2017-11-08 Telefonaktiebolaget LM Ericsson (publ) Dispositif sans fil, premier noeud de réseau et procédés associés
US10785790B2 (en) 2014-09-10 2020-09-22 Telefonaktiebolaget L M Ericsson (Publ) Radio access node, communication terminal and methods performed therein
US10264564B2 (en) * 2015-01-30 2019-04-16 Futurewei Technologies, Inc. System and method for resource allocation for massive carrier aggregation
US11362759B2 (en) * 2015-04-06 2022-06-14 Samsung Electronics Co., Ltd. Transmission power control for an uplink control channel
RU2694586C1 (ru) 2015-08-25 2019-07-16 Идак Холдингз, Инк. Кадрирование, диспетчеризация и синхронизация в системах беспроводной связи
US10491328B2 (en) * 2015-08-28 2019-11-26 Intel IP Corporation Beamformed physical downlink control channels (BPDCCHs) for narrow beam based wireless communication
JP6757323B2 (ja) * 2015-09-01 2020-09-16 株式会社Nttドコモ 端末及び無線通信方法
MX2018009197A (es) * 2016-02-03 2018-11-09 Sony Corp Dispositivo terminal, dispositivo de estacion base y metodo de comunicacion.
KR20170093068A (ko) * 2016-02-04 2017-08-14 한국전자통신연구원 통신 네트워크에서 상향링크 전송의 스케쥴링 방법
GB201602150D0 (en) * 2016-02-05 2016-03-23 Nec Corp Communication system
WO2018031111A1 (fr) * 2016-08-09 2018-02-15 Intel IP Corporation Transmission de canal de commande dans de nouvelles technologies d'accès radio à l'aide d'un espace de recherche commun
US10231228B2 (en) * 2016-09-23 2019-03-12 Mediatek Inc. Methods of two-stage scheduling in downlink control channel
WO2018058453A1 (fr) * 2016-09-29 2018-04-05 华为技术有限公司 Procédé de communication, dispositif terminal et station de base
BR112019006067A2 (pt) * 2016-09-29 2019-06-18 Ntt Docomo Inc terminal de usuário e método de radiocomunicação
CN108271259B (zh) * 2016-12-30 2023-10-24 华为技术有限公司 控制信道的资源指示方法、用户设备和网络设备
WO2018141091A1 (fr) * 2017-02-04 2018-08-09 华为技术有限公司 Procédé d'émission d'informations, procédé de réception d'informations, et dispositif
GB2560770A (en) 2017-03-24 2018-09-26 Nec Corp Communication system
US10903964B2 (en) * 2017-03-24 2021-01-26 Apple Inc. Techniques to enable physical downlink control channel communications
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
KR102630998B1 (ko) 2017-05-04 2024-01-30 삼성전자 주식회사 단일 반송파 광대역 동작을 위한 대역폭 부분 구성
US10757685B2 (en) * 2017-07-09 2020-08-25 Htc Corporation Device and method of performing data transmission in bandwidth parts
WO2019047102A1 (fr) * 2017-09-07 2019-03-14 Oppo广东移动通信有限公司 Procédé, dispositif et système de transmission d'informations
CN110351739B (zh) * 2018-04-04 2022-03-25 展讯通信(上海)有限公司 监测pdcch的方法、装置、基站及用户设备
US10966231B2 (en) * 2018-09-28 2021-03-30 Qualcomm Incorporated Configuring aggregation level and physical downlink control channel candidates at a user equipment
CN113115593B (zh) * 2018-11-12 2023-05-09 Oppo广东移动通信有限公司 装置及用于装置的非连续接收的方法
US10797832B2 (en) * 2019-02-14 2020-10-06 Qualcomm Incorporated Dynamic hybrid automatic repeat request (HARQ) codebook for multi-transmit receive point (TRP) communication
US11800518B2 (en) 2020-01-22 2023-10-24 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
EP4106463A4 (fr) * 2020-02-10 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. Procédé et appareil de programmation de transmission, dispositif de communication et support de stockage
US11523377B2 (en) 2020-02-14 2022-12-06 T-Mobile Usa, Inc. LTE resource allocation controller
US11627470B1 (en) * 2020-03-06 2023-04-11 T-Mobile Usa, Inc. Asymmetric dynamic spectrum sharing
CN115119212A (zh) * 2021-03-17 2022-09-27 中兴通讯股份有限公司 一种频谱共享信道资源分配方法、系统和电子设备

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040023874A1 (en) * 2002-03-15 2004-02-05 Burgess Catherine E. Therapeutic polypeptides, nucleic acids encoding same, and methods of use
RU2205512C1 (ru) * 2002-04-25 2003-05-27 Приходько Виктор Владимирович Система подвижной радиосвязи
CA2525572A1 (fr) 2003-05-12 2004-11-25 Qualcomm Incorporated Procedes et dispositif s'utilisant dans un systeme de communication
JP4577505B2 (ja) 2005-03-31 2010-11-10 日本電気株式会社 移動体通信システムにおけるダウンリンクrrcメッセージと移動機のセル間移動との競合救済方法
KR100949969B1 (ko) 2005-08-24 2010-03-29 엘지전자 주식회사 스케쥴링을 위한 제어 정보 전송방법
KR100866225B1 (ko) * 2005-10-05 2008-10-30 삼성전자주식회사 고속 순방향 패킷 접속 시스템을 위한 셀 선택 방법 및 장치
US7672667B2 (en) * 2006-01-17 2010-03-02 Telefonaktiebolaget L M Ericsson (Publ) Broadcast-centric cellular communication system
KR100965723B1 (ko) * 2007-03-21 2010-06-24 삼성전자주식회사 무선통신시스템의 물리하향제어채널의 자원 매핑 방법 및매핑된 물리하향제어채널의 송/수신 장치
WO2008115020A1 (fr) 2007-03-21 2008-09-25 Samsung Electronics Co., Ltd. Procédé pour mapper un canal de commande en liaison descendante physique sur des ressources et appareil pour transmettre/recevoir le canal de commande en liaison descendante physique mappé dans un système de communication sans fil
CN101296140B (zh) * 2007-04-26 2011-08-24 华为技术有限公司 消息传输方法及装置、消息处理方法及装置
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
KR100976383B1 (ko) 2007-07-05 2010-08-18 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중계국이 구성한 브로드캐스트 메시지의 전송정보를 처리하기 위한 장치 및 방법
KR101407136B1 (ko) * 2007-08-06 2014-06-13 엘지전자 주식회사 Tdd 무선 통신 시스템에서의 데이터 전송 방법
EP2180629B1 (fr) * 2007-08-14 2017-11-29 LG Electronics Inc. Procédé d'acquisition d'informations sur des régions de ressources pour PHICH et procédé pour la réception de PDCCH
KR101448309B1 (ko) 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
CN103747533B (zh) 2007-10-29 2018-06-01 交互数字专利控股公司 一种无线网络设备
US8787181B2 (en) * 2008-01-14 2014-07-22 Qualcomm Incorporated Resource allocation randomization
CN101494892B (zh) * 2008-01-23 2010-09-22 大唐移动通信设备有限公司 高速下行共享物理信道调制方式的指示、确定方法与装置
US8094701B2 (en) * 2008-01-31 2012-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation for high data rate transmission using multiple control channels
WO2009116751A2 (fr) * 2008-03-16 2009-09-24 Lg Electronics Inc. Procédé et appareil pour acquérir une attribution de ressource de canal de commande
KR101487553B1 (ko) * 2008-03-20 2015-01-30 엘지전자 주식회사 무선 통신 시스템에서 제어채널 모니터링 방법
US8503460B2 (en) * 2008-03-24 2013-08-06 Qualcomm Incorporated Dynamic home network assignment
CN101252783B (zh) * 2008-03-27 2012-09-05 中兴通讯股份有限公司 一种资源分配方法
US8326292B2 (en) 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
KR101089838B1 (ko) 2008-08-13 2011-12-05 한국전자통신연구원 캐리어 집성을 사용하는 통신 시스템 및 상기 통신 시스템에 속하는 기지국 및 단말
CN101404526B (zh) 2008-11-03 2013-05-01 中兴通讯股份有限公司 下行控制信息处理方法
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
KR101513042B1 (ko) 2008-12-02 2015-04-17 엘지전자 주식회사 신호 전송 방법 및 전송 장치
CN101478808B (zh) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
CN101505498B (zh) 2009-03-17 2014-02-05 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
US8995358B2 (en) 2009-04-30 2015-03-31 Qualcomm Incorporated False detection reduction during multi-carrier operation
US8340676B2 (en) * 2009-06-25 2012-12-25 Motorola Mobility Llc Control and data signaling in heterogeneous wireless communication networks
CN102594537B (zh) 2009-08-28 2013-08-14 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
CN103139819B (zh) 2009-08-28 2016-03-30 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
US9351293B2 (en) * 2009-09-11 2016-05-24 Qualcomm Incorporated Multiple carrier indication and downlink control information interaction
US9763197B2 (en) 2009-10-05 2017-09-12 Qualcomm Incorporated Component carrier power control in multi-carrier wireless network
US20120113827A1 (en) 2010-11-08 2012-05-10 Sharp Laboratories Of America, Inc. Dynamic simultaneous pucch and pusch switching for lte-a

Also Published As

Publication number Publication date
JP5722977B2 (ja) 2015-05-27
US20180014287A1 (en) 2018-01-11
US20190387513A1 (en) 2019-12-19
RU2617999C2 (ru) 2017-05-02
US20140036828A1 (en) 2014-02-06
US9883495B2 (en) 2018-01-30
EP4221043A3 (fr) 2023-08-16
JP2013506376A (ja) 2013-02-21
US20190387510A1 (en) 2019-12-19
EP4221044A2 (fr) 2023-08-02
US20200015207A1 (en) 2020-01-09
KR102095721B1 (ko) 2020-04-02
US11076395B2 (en) 2021-07-27
RU2502192C1 (ru) 2013-12-20
BR112012006948A2 (pt) 2016-12-06
AU2010298857A1 (en) 2012-03-08
US20200322934A1 (en) 2020-10-08
KR20190103485A (ko) 2019-09-04
EP4221042A3 (fr) 2023-08-16
CA2771150A1 (fr) 2011-03-31
CN104270237B (zh) 2019-09-27
CA2881659C (fr) 2017-01-03
JP5511105B2 (ja) 2014-06-04
AU2010298857B2 (en) 2013-11-28
RU2013137464A (ru) 2015-02-20
EP3731451B1 (fr) 2023-01-25
CA2771150C (fr) 2017-02-14
WO2011037439A3 (fr) 2011-09-15
EP4221044A3 (fr) 2023-08-16
KR102113066B1 (ko) 2020-05-21
US11206649B2 (en) 2021-12-21
KR20170110735A (ko) 2017-10-11
US11147050B2 (en) 2021-10-12
US20190387511A1 (en) 2019-12-19
US20190387512A1 (en) 2019-12-19
KR20180098693A (ko) 2018-09-04
KR101783064B1 (ko) 2017-09-28
EP3731451A1 (fr) 2020-10-28
CA2881659A1 (fr) 2011-03-31
CN102549944B (zh) 2014-11-26
KR101893460B1 (ko) 2018-08-31
US20220386344A1 (en) 2022-12-01
US11191067B2 (en) 2021-11-30
KR20190104239A (ko) 2019-09-06
KR102095724B1 (ko) 2020-04-02
KR102017735B1 (ko) 2019-09-03
KR20190103484A (ko) 2019-09-04
US11412493B2 (en) 2022-08-09
US20110075624A1 (en) 2011-03-31
CN102549944A (zh) 2012-07-04
WO2011037439A2 (fr) 2011-03-31
CN104270237A (zh) 2015-01-07
KR20120085273A (ko) 2012-07-31
RU2012117748A (ru) 2013-11-10
EP2302830A2 (fr) 2011-03-30
US10952205B2 (en) 2021-03-16
EP2302830A3 (fr) 2014-08-06
BR112012006948B1 (pt) 2021-04-27
EP4221043A2 (fr) 2023-08-02
US10973017B2 (en) 2021-04-06
US9295043B2 (en) 2016-03-22
EP2302830B1 (fr) 2020-06-17
JP2014003724A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
US11191067B2 (en) Extending Physical Downlink Control CHannels
AU2013251187C1 (en) Extending physical downlink control channels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 2302830

Country of ref document: EP

Kind code of ref document: P

Ref document number: 3731451

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 5/00 20060101AFI20230713BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR