RU2502192C1 - Расширение физических каналов управления нисходящей линии связи - Google Patents

Расширение физических каналов управления нисходящей линии связи Download PDF

Info

Publication number
RU2502192C1
RU2502192C1 RU2012117748/07A RU2012117748A RU2502192C1 RU 2502192 C1 RU2502192 C1 RU 2502192C1 RU 2012117748/07 A RU2012117748/07 A RU 2012117748/07A RU 2012117748 A RU2012117748 A RU 2012117748A RU 2502192 C1 RU2502192 C1 RU 2502192C1
Authority
RU
Russia
Prior art keywords
cell
pdcch
dci
dss
cells
Prior art date
Application number
RU2012117748/07A
Other languages
English (en)
Other versions
RU2012117748A (ru
Inventor
Арис ПАПАСАКЕЛЛАРИОУ
Дзоон-Йоунг ЧО
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43084468&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2502192(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2012117748A publication Critical patent/RU2012117748A/ru
Application granted granted Critical
Publication of RU2502192C1 publication Critical patent/RU2502192C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к системам беспроводной связи и, в частности, к расширению физического канала управления нисходящей линии связи (PDCCH) с поддержки связи в одной соте до поддержки связи во множестве сот. Изобретение раскрывает способы и устройство для передачи и приема управляющей информации нисходящей линии связи (DCI) в одной соте для осуществления поддержки связи во множестве сот. DCI передается с помощью форматов DCI, передаваемых через физические каналы управления нисходящей линии связи в общем для UE пространстве поиска (UE-CSS) и в выделенном для UE пространстве поиска (UE-DSS). Различное UE-DSS определяется в одной соте для каждой из множества сот. Каждое различное UE-DSS имеет такую же структуру, что и обычное UE-DSS, и местоположение, которое определяется теми же параметрами, что и местоположение обычного UE-DSS, и соответствующим идентификатором соты (Cell_ID). 4 н. и 11 з.п. ф-лы, 17 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к системам беспроводной связи и, в частности, к расширению физического канала управления нисходящей линии связи (PDCCH) с поддержки связи в одной соте до поддержки связи во множестве сот.
УРОВЕНЬ ТЕХНИКИ
Система связи включает в себя нисходящую линию связи (DL), которая поддерживает передачу сигналов от базовой станции (BS) (или узла B) к пользовательскому оборудованию (UE), и восходящую линию связи (UL), которая поддерживает передачу сигналов от UE к узлу B. UE, также часто называемое терминалом или мобильной станцией, может быть фиксированным или мобильным и может быть беспроводным устройством, сотовым телефоном, персональным компьютером и т.д. Узел B является, как правило, стационарной радиостанцией и может также упоминаться как базовая приемопередающая система (BTS), точка доступа или под некоторой другой подобной терминологией.
Сигналы DL включают в себя сигналы данных, которые несут информационное содержание, управляющие сигналы и опорные сигналы (RS), которые также известны как пилот-сигналы. Узел B передает информацию в виде данных к UE через физический общий канал нисходящей линии связи (PDSCH) и передает управляющую информацию к UE через PDCCH.
Сигналы UL также включают в себя сигналы данных, управляющие сигналы и сигналы RS. UE передает информацию в виде данных к узлу B через физический общий канал восходящей линии связи (PUSCH) и передает управляющую информацию через физический канал управления восходящей линии связи (PUCCH). UE также может передавать управляющую информацию через PUSCH.
Управляющая информация нисходящей линии связи (DCI) служит нескольким целям и передается в форматах DCI через PDCCH. Например, форматы DCI используются для обеспечения назначений планирования (SA) DL для приемов PDSCH пользовательским оборудованием (UE), SA UL для передач PUSCH пользовательским оборудованием (UE) или команд управления мощностью передачи (TPC) для приемов PUSCH или передач PUCCH пользовательским оборудованием (UE). Форматы DCI также предоставляют информацию планирования для канала поискового вызова (PCH), для ответа узла B на канал случайного доступа (RACH), переданный UE, и для блоков вторичной информации (SIB), обеспечивающих широковещательную управляющую информацию от узла B. Формат DCI для передачи команд TPC будет называться форматом 3 DCI, а формат DCI для передачи информации о планировании для передачи PCH, ответа RACH или блоков SIB будет называться форматом 1C DCI.
Как правило, PDCCH является основной частью от всех издержек DL и непосредственно воздействует на достижимую пропускную способность соты по нисходящей линии связи (DL). Обычный метод уменьшения издержек PDCCH состоит в масштабировании их размеров в соответствии с ресурсами, требуемыми для передачи форматов DCI во время временного интервала передачи (TTI) DL. Предполагая множественный доступ с ортогональным частотным разделением (OFDMA) в качестве метода передачи DL, для указания числа символов OFDM, занятых PDCCH, может использоваться параметр индикатора формата канала управления (CCFI), передаваемый через физический управляющий канал индикатора формата (PCFICH).
Фиг.1 является схемой, изображающей структуру передачи PDCCH в TTI DL, который для простоты включает в себя один подкадр, имеющий М символов OFDM.
На фиг.1 PDCCH занимает первые N символов 110. Оставшиеся M-N символов подкадра, как предполагается, используются, прежде всего, для передачи 120 PDSCH. PCFICH 130 передается в некоторых поднесущих, также называемых ресурсными элементами (RE) первого символа. PCFICH включает в себя 2 бита, указывающие размер PDCCH, равный M=1, M=2 или M=3 символов OFDM. Кроме того, некоторые символы подкадра включают в себя ресурсные элементы (RE) RS 140 и 150, которые являются общими для всех UE для каждой передающей антенны узла B, которых на фиг.1 предполагается две. RS позволяют UE получать оценку канала для своей среды DL канала и выполнять различные другие измерения и функции. PDSCH обычно занимает оставшиеся RE 160.
Дополнительные каналы управления могут передаваться в области PDCCH, но для краткости они не изображены на фиг.1. Например, для поддержания гибридного автоматического запроса повторной передачи (HARQ) для передач PUSCH узлом B может передаваться физический канал индикатора гибридного HARQ (PHICH), подобно PCFICH, для указания группам UE, была ли их предыдущая передача PUSCH принята узлом B.
Узел B отдельно кодирует и передает каждый формат DCI через PDCCH.
Фиг.2 является блок-схемой, изображающей обычную последовательность обработки для передачи формата DCI.
На фиг.2 идентификатор UE (или ID UE) уровня управления доступом к среде (MAC), для которого предназначен формат DCI, накладывается в виде маски на циклический контроль по избыточности (CRC) кодового слова формата DCI, чтобы позволить опорному UE определить, что определенный формат DCI предназначен для опорного UE. Вычисляется CRC 220 (некодированных) битов 210 формата DCI, и впоследствии на них накладывается 230 маска с использованием операции исключающего ИЛИ (XOR) между битами CRC и ID 240 UE, то есть XOR(0,0)=0, XOR(0,1)=1, XOR(1,0)=1 и XOR(1,1)=0.
CRC с наложенной маской затем добавляется к битам 250 формата DCI, выполняется кодирование 260 канала, например, используя сверточный код, сопровождаемое приведение 270 в соответствие скорости передачи с выделенными ресурсами PDCCH, а затем перемежение и модуляция 280. После этого передается управляющий сигнал 290.
Приемник UE выполняет операции, противоположные тем, что выполняет передатчик узла B, для определения, был ли формат DCI в PDCCH предназначен для UE.
Фиг.3 является блок-схемой, изображающей обычную последовательность обработки при приеме формата DCI.
На фиг.3 принятый управляющий сигнал 310, то есть PDCCH, демодулируется, и полученные биты подвергаются операции обратного перемежения 320. Подгонка скорости, примененная в передатчике узла B, восстанавливается 330, а выход затем декодируется 340. После декодирования получаются биты 360 формата DCI после извлечения битов 350 CRC, с которых затем снимается 370 маска путем применения операции "исключающего ИЛИ" (XOR) с ID 380 UE. После этого UE выполняет тест 390 CRC. Если тест CRC проходит успешно, UE рассматривает формат DCI как достоверный и определяет параметры для приема PDSCH (формат DCI DL) или передачи PUSCH (формат DCI UL). Если тест CRC не проходит, UE игнорирует формат DCI.
Информационные биты формата DCI соответствуют нескольким информационным элементам (IE), таким как, например, IE распределения ресурсов (RA), указывающие часть рабочего диапазона частот (BW), выделенного для UE для приема PDSCH или передачи PUSCH, IE модуляции и кодирующей схемы (MCS), IE, связанный с работой HARQ, и т.д. Предполагается, что блок BW для передач PDSCH или PUSCH состоит из нескольких RE, например, 12 RE, и он будет называться физическим ресурсным блоком (PRB).
Каналы PDCCH для UE не передаются в фиксированных и заранее заданных местах и не имеют заранее заданной скорости кодирования. Следовательно, UE выполняет множество операций декодирования PDCCH в каждом подкадре для определения, предназначен ли какой-либо из PDCCH, переданных узлом B, для UE. Чтобы помочь UE с множеством операций декодирования PDCCH, RE PDCCH группируются в элементы канала управления (CCE) в логической области. Для данного числа битов формата DCI, как изображено на фиг.2, число CCE для соответствующей передачи PDCCH зависит от скорости кодирования канала. Для UE, имеющего низкое или высокое отношение сигнала к помехам и шуму (SINR) в DL, узел B может соответственно использовать низкую или высокую скорость кодирования канала для достижения требуемой частоты блоков с ошибками (BLER) PDCCH. Поэтому передача PDCCH к UE, имеющему низкое SINR DL, обычно требует большее количество CCE, чем передача PDCCH к UE, имеющему высокое SINR DL. Альтернативно, может использоваться различное повышение мощности элементов RE CCE для достижения целевой BLER. Предполагается, что типичные уровни агрегации CCE для передач PDCCH следуют "древовидной" структуре, например, 1, 2, 4 и 8 CCE.
Для процесса декодирования PDCCH, UE может определить пространство поиска для потенциального PDCCH после того, как оно восстановит элементы CCE в логической области, согласно общему набору элементов CCE для всего UE в общем для UE пространстве поиска (UE-CSS) и согласно специфичному для UE набору элементов CCE в выделенном для UE пространстве поиска (UE-DSS). UE-CSS включает в себя первые C CCE в логической области. UE-DSS может быть определено согласно псевдослучайной функции, имеющей общие для UE параметры в качестве входа, такие как число подкадров или общее число CCE PDCCH в подкадре, и специфичные для UE параметры, такие как идентификатор, присвоенный UE (UE_ID).
Например, для уровней агрегации CCE L
Figure 00000001
{1, 2, 4, 8}, CCE, соответствующие претенденту m PDCCH, могут быть даны уравнением (1).
Figure 00000002
(1)
В уравнении (1) NCCE,k является общим количеством CCE в подкадре k, i=1,…,L-1, m=0,…,М(L)-1, и М(L) является числом претендентов PDCCH для соответствующих уровней агрегации CCE. Пример значений М(L) для L
Figure 00000001
{1, 2, 4, 8}, соответственно, {6, 6, 2, 2}. Для UE-CSS Yk=0. Для UE-DSS Yk=(A·Yk-1) mod D, где, например, Y-1=UE_ID≠0, A=39827 и D=65537.
Форматы DCI, передающие информацию множеству UE, такие как формат 3 DCI или формат 1C DCI, передаются в UE-CSS. Если после передачи форматов 3 и 1C DCI остается достаточно много CCE, UE-CSS может также передавать некоторые форматы DCI для приемов PDSCH или передач PUSCH оборудованием UE. UE-DSS передают исключительно форматы DCI для приемов PDSCH или передач PUSCH. В иллюстративной компоновке UE-CSS включает в себя 16 элементов CCE и поддерживает 2 PDCCH с элементами CCE, или 4 PDCCH с элементами CCE, или 1 PDCCH с элементами CCE и 2 PDCCH с элементами CCE. Элементы CCE для UE-CSS размещаются в начале в логической области (до перемежения).
Фиг.4 изображает обычный процесс передачи PDCCH. После кодирования канала и подгонки скорости, как изображено на фиг.2, закодированные биты формата DCI отображаются на элементы CCE в логической области.
На фиг.4 первые 4 CCE (L=4), CCE1 401, CCE2 402, CCE3 403 и CCE4 404, используются для передачи формата DCI к UE1. Следующие 2 CCE (L=2), CCE5 411 и CCE6 412, используются для передачи формата DCI к UE2. Следующие 2 CCE (L=2), CCE7 421 и CCE8 422, используются для передачи формата DCI к UE3. Последний элемент CCE (L=1), CCE9 431, используется для передачи формата DCI к UE4.
Биты формата DCI могут скремблироваться 440 с использованием двоичного кода скремблирования, который обычно специфичен для соты, и впоследствии модулироваться 450. Каждый CCE дополнительно разделен на мини-CCE. Например, элемент CCE, включающий в себя 36 RE, может быть разделен на 9 мини-CCE, каждый имеющий 4 RE.
Перемежение 460 применяется среди мини-CCE (блоки по 4 символа QPSK). Например, перемежитель блоков может использоваться там, где перемежение выполняется на квадруплетах символов (4 символа квадратурных манипуляций фазовым сдвигом (QPSK), соответствующие 4 RE мини-CCE) вместо отдельных битов. После перемежения мини-элементов CCE полученные последовательности символов QPSK могут быть смещены на J символов 470, и затем каждый символ QPSK отображен на RE 480 в области PDCCH подкадра DL. Поэтому, в дополнение к RS от антенн 491 и 492 передатчика узла B и другим каналам управления, таким как PCFICH 493 и канал PHICH (не показан), элементы RE в PDCCH включают в себя символы QPSK, соответствующие формату DCI для UE1 494, UE2 495, UE3 496 и UE4 497.
Для поддержки более высоких скоростей передачи данных и передачи сигналов в BW, больших, чем BW отдельных несущих (или сот), поддерживающих устаревшую связь, может использоваться агрегация множества несущих (или сот). Например, для поддержки связи более чем на 100 МГц может использоваться агрегация пяти несущих по 20 МГц (или сот). Для простоты описания UE, которое может работать только на одной несущей (или соте), будет называться здесь устаревшим UE (L-UE), в то время как UE, которое может работать на множестве несущих (или сот), будет называться здесь усовершенствованным UE (A-UE).
Фиг.5 изображает принцип агрегации несущих. Рабочий BW в 100 МГц включает в себя агрегацию из 5 (для простоты непрерывных) несущих, 521, 522, 523, 524 и 525, каждая имеющая BW в 20 МГц. Аналогично структуре подкадра для связи на одной несущей на фиг.1, структура подкадра для связи на множестве несущих включает в себя область PDCCH, например, 531-535, и область PDSCH, например, 541 и 545.
Фиг.6 является схемой, изображающей размещение обычной неоднородной сети.
На фиг.6 площадь, покрываемая макроузлом B 610, охватывает площади, покрываемые микроузлами B 620 и 630. Поскольку макроузел B покрывает большую площадь, чем микроузел B, его мощность передачи в значительной степени больше, чем мощность передачи микроузла B. Следовательно, для топологии, такой как изображенная на фиг.6, сигналы, передаваемые макроузлом B, могут оказывать сильные помехи на сигналы, передаваемые микроузлом B. К передачам PDSCH могут применяться технические приемы координации помех для смягчения помех макро на микро, используя различные PRB между передачами сигналов PDSCH от макроузла B и микроузла B. Однако такая координация помех не возможна для PDCCH, потому что элементы CCE псевдослучайно распределены по всему рабочему BW, как было описано ранее.
Чтобы избежать помехи передачам PDCCH в микросоте, все передачи PDCCH могут иметь место в макросоте, а в форматах DCI могут быть введены IE индикатора несущей или индикатора соты (CI) для указания, предназначен ли формат DCI для макросоты или для микросоты. Например, IE CI из 2 битов может указывать, предназначен ли формат DCI для макросоты или для какой-либо из максимум трех микросот.
В дополнение к обеспечению предотвращения помех PDCCH, передачи PDCCH в некоторых сотах могут избегаться по практическим причинам. Например, желательно избежать передач PDCCH в сотах с малым BW, поскольку они неэффективны и приводят к большим соответствующим издержкам. Кроме того, передачи PDSCH в соте могут быть оптимизированы так, чтобы происходить по всем символам подкадра DL, если избегаются передачи PDCCH и другие вспомогательные сигналы, такие как общий для UE RS.
Функциональность CI может обеспечивать:
планирование PUSCH в UL множества сот через передачу PDCCH в одной соте;
планирование PDSCH в DL множества сот через передачу PDCCH в одной соте; и
передачу PDCCH в первой соте (макросоте) и во второй соте (микросоте).
Фиг.7 является схемой, изображающей обычное планирование PUSCH в UL множества сот через передачу PDCCH в одной соте.
На фиг.7 PDCCH в одной соте 710 ассоциирован с UL двух сот, 720 и 730. Следовательно, каналы PDCCH, планирующие передачи PUSCH из соты 1 и соты 2, передаются в одной соте, и сота передачи PUSCH может быть идентифицирована IE CI, состоящим из 1 бита.
Фиг.8 является схемой, изображающей обычное планирование PDSCH в DL множества сот через передачу PDCCH в одной соте.
На фиг.8 только сота1 810 и сота3 830 передают PDCCH. Планирование для соты2 820 осуществляется через передачу PDCCH в соте1, а планирование для соты4 840 и соты5 850 осуществляется через передачи PDCCH в соте3.
Фиг.9 является схемой, изображающей обычную передачу PDCCH в первой соте (макросоте) и во второй соте (микросоте), которая может иметь место для того, чтобы избежать интерференции в передачах PDCCH между макросотой и микросотой.
На фиг.9, хотя макросота и микросота могут иметь передачи PDSCH в соте1 910 и соте2 920, макросота передает PDCCH только в соте1, а микросота передает PDCCH только в соте2.
Одной проблемой поддержки передачи PDCCH с использованием CI является размер PDCCH. В системах связи, имеющих одну соту, предполагается, что PDCCH ограничен максимальным числом М символов OFDM. В системах связи, имеющих множество сот и имеющих передачу PDCCH в одной соте, это ограничение размера PDCCH может стать причиной ограничений планирования. В общем, может существовать необходимость увеличить размер PDCCH, если PDCCH в одной соте выполняет планирование во множестве сот.
Для UE-CSS, которое, как предполагается, включает в себя фиксированное число элементов CCE, может не иметься возможности передавать дополнительный PDCCH, соответствующий дополнительным сотам.
Для UE-DSS необходимы модификации и расширения для передачи множества форматов DCI к UE в области PDCCH одной соты.
Число слепых операций по декодированию, которые должно выполнять UE, может масштабироваться линейно числу сот, для которых PDCCH передается в одной соте. Было бы желательно избежать такого увеличения, чтобы избежать соответствующего воздействия на сложность приемника UE.
Поэтому существует потребность расширить область PDCCH в одной соте для поддержки передач PDCCH для планирования во множестве сот.
Есть дополнительная потребность расширить UE-CSS в одной соте для обеспечения передачи PDCCH, передающей общую для UE информацию для множества сот.
Есть еще одна потребность расширить емкость UE-DSS в одной соте для планирования во множестве сот.
Кроме того, есть еще одна потребность сократить количество слепых операций по декодированию, которые должно выполнять UE.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ПРОБЛЕМА
Соответственно, настоящее изобретение предназначено для решения по меньшей мере вышеупомянутых ограничений и проблем в предшествующем уровне техники и обеспечения следующих преимуществ. Аспект настоящего изобретения состоит в обеспечении способа и устройства расширения области управления в одной соте с поддержки передачи DCI к UE для связи в одной соте до поддержки передачи DCI к UE для связи во множестве сот.
РЕШЕНИЕ ПРОБЛЕМЫ
В соответствии с аспектом настоящего изобретения обычная область управления в одной соте, включающая UE-CSS и UE-DSS и вспомогательную передачу DCI для одной соты, расширяется для поддержки передачи DCI для множества сот путем включения или множества UE-CSS, причем каждое UE-CSS из множества UE-CSS соответствует каждой соте из множества сот, или множества UE-DSS, причем каждое UE-DSS из множества UE-DSS соответствует каждой соте из множества сот, или обоих этих множеств.
В соответствии с другим аспектом настоящего изобретения, поддержка передачи DCI для множества сот, каждая из которых имеет идентификатор соты (Cell_ID), через область управления в одной соте обеспечена путем информирования UE об Cell_ID для каждой соты из множества сот и затем определения различного UE-DSS для каждой соты из множества сот в области управления одной соты, при этом каждое различное UE-DSS имеет ту же структуру, что и UE-DSS для передачи DCI только в одной соте, и, кроме того, его местоположение зависит только от соответствующего Cell_ID. DCI передается через форматы DCI, и форматы DCI в каждом UE-DSS могут включать в себя IE CI, который получен из Cell_ID.
В соответствии с другим аспектом настоящего изобретения, поддержка передачи DCI для множества сот через область управления в первичной соте обеспечивается путем определения первой области управления для передачи DCI, соответствующей первому набору сот, который включает в себя первичную соту, и второй области управления для передачи DCI, соответствующей второму набору сот, включающему в себя множество сот, которые не входят в первый набор сот. Первая область управления включает в себя те же ресурсы, что и область управления для передачи DCI только в первичной соте. Вторая область управления включает в себя ресурсы, которые иначе использовались бы для передачи данных в первичной соте.
ПОЛЕЗНЫЕ ЭФФЕКТЫ ИЗОБРЕТЕНИЯ
Как описано выше, примеры вариантов осуществления настоящего изобретения обеспечивают способы и устройство расширения области управления в одной соте с вспомогательной передачи DCI к UE для связи в одной соте до вспомогательной передачи DCI к UE для связи во множестве сот.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Вышеупомянутые и другие аспекты, особенности и преимущества настоящего изобретения будут более очевидны из следующего подробного описания в сочетании с прилагаемыми чертежами, на которых:
Фиг.1 является схемой, изображающей обычную структуру для передачи PDCCH;
Фиг.2 является блок-схемой, изображающей обычную последовательность обработки для передачи формата DCI;
Фиг.3 является блок-схемой, изображающей обычную последовательность обработки для приема формата DCI;
Фиг.4 является схемой, изображающей обычный процесс передачи PDCCH;
Фиг.5 является схемой, изображающей принцип агрегации несущих;
Фиг.6 является схемой, изображающей размещение обычной неоднородной сети;
Фиг.7 является схемой, изображающей обычное планирование PUSCH в UL для множества сот через передачу PDCCH в одной соте;
Фиг.8 является схемой, изображающей обычное планирование PDSCH в DL для множества сот через передачу PDCCH в одной соте;
Фиг.9 является схемой, изображающей обычную передачу PDCCH в первой соте (макросота) и во второй соте (микросота);
Фиг.10 является схемой, изображающей способ информирования A-UE, включен ли IE CI в форматы DCI специфичным для UE образом согласно варианту осуществления настоящего изобретения;
Фиг.11 является схемой, изображающей структуру мультиплексирования E-PDCCH, где A-UE предполагает максимальный размер PDCCH для определения первого символа E-PDCCH согласно варианту осуществления настоящего изобретения;
Фиг.12 является схемой, изображающей структуру мультиплексирования E-PDCCH, где A-UE декодирует PCFICH для определения фактического размера PDCCH и первого символа E-PDCCH согласно варианту осуществления настоящего изобретения;
Фиг.13 является схемой, изображающей присвоение различных значений CI различным сотам согласно варианту осуществления настоящего изобретения;
Фиг.14 является схемой, изображающей размещение элементов CCE для множества UE-CSS согласно варианту осуществления настоящего изобретения;
Фиг.15 является схемой, изображающей операцию по генерированию различных UE-DSS для каждой соты посредством соответствующей различной инициализации переменной, определяющей местоположение UE-DSS, согласно варианту осуществления настоящего изобретения;
Фиг.16 является схемой, изображающей расширение размера PDCCH путем конфигурирования набора возможных значений и использования PCFICH для указания одного значения в наборе согласно варианту осуществления настоящего изобретения и
Фиг.17 является схемой, изображающей комбинацию явного и неявного указания узлом B размера UE-CSS согласно варианту осуществления настоящего изобретения.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Далее будут подробно описаны различные варианты осуществления настоящего изобретения со ссылкой на прилагаемые чертежи. Это изобретение, однако, может быть воплощено во многих различных формах, и оно не должно рассматриваться как ограниченное вариантами осуществления, изложенными здесь. Скорее эти варианты осуществления предоставлены для того, чтобы это раскрытие было полным и завершенным и в полной мере передавало объем изобретения для специалистов в данной области техники.
Кроме того, хотя настоящее изобретение описано в отношении системы связи множественного доступа с ортогональным частотным разделением (OFDMA), оно также применимо к системам мультиплексирования с частотным разделением (FDM) и к системам с ортогональным частотным разделением с мультиплексированием на одной несущей (SC-FDMA), OFDM, FDMA, распределенным OFDM с дискретным преобразованием Фурье (DFT), распределенным OFDMA с DFT, SC-OFDMA и SC-OFDM.
В соответствии с вариантом осуществления настоящего изобретения, A-UE полустатически конфигурируется, например, посредством передачи сигналов управления радиоресурсами (RRC) сот, в которых оно может иметь прием PDSCH или передачу PUSCH. Связь между DL и UL в этих сотах также может конфигурироваться. Включение IE CI в форматы DCI может быть специфичным для UE или специфичным для соты. Когда IE CI в форматах DCI специфичен для UE, каждому A-UE сообщается посредством передачи сигналов более высокого уровня (MAC или передача сигналов RRC), включают ли в себя предназначенные ему форматы DCI в соте элементы IE CI. Когда IE CI в форматах DCI специфичен для соты, узел B может транслировать, включен ли IE CI в форматы DCI. В обоих случаях значения CI, которые будет отслеживать A-UE, также включены. Форматами DCI, имеющими IE CI, могут быть все форматы DCI или заранее заданное подмножество форматов DCI. Например, форматы DCI в UE-CSS могут не содержать CI, в то время как форматы DCI в UE-DSS могут содержать CI.
Фиг.10 является схемой, изображающей способ информирования A-UE о том, включен ли IE CI в форматы DCI специфичным для UE способом, согласно варианту осуществления настоящего изобретения.
На фиг.10 A-UE сконфигурировано в DL соты1 1010, соты2 1020, и соты3 1030 для приема PDSCH и в UL соты1 1040 и соты2 1050 для передачи PUSCH. Соты передачи PDCCH также сообщаются A-UE посредством передачи сигналов более высокого уровня.
На фиг.10 PDCCH передается только в соте1 1060. Например, DL и UL для соты1 могут соответствовать макросоте, в то время как DL и UL соты2 могут соответствовать первой микросоте, а DL соты3 и UL соты2 могут соответствовать второй микросоте. Форматы DCI, связанные с передачами PUSCH или с TPC для передач PUSCH или PUCCH (формат 3 DCI), будут называться форматами DCI UL. Оставшиеся форматы DCI соответствуют приемам PDSCH и будут называться форматами DCI DL.
Для компоновки на фиг.10 форматы DCI DL к UE включают в себя IE CI, имеющий 2 бита. Например, для DL значения CI '00', '01' и '10' могут соответствовать соте1, соте2 и соте3, соответственно, в то время как значение CI '11' не используется. Аналогично для UL значения CI '0' и '1' могут соответствовать соте1 и соте2 соответственно. В общем, число битов для IE CI может отличаться между форматами DCI DL и форматами DCI UL (в том числе, например, какие-либо биты IE CI в форматах DCI UL могут отсутствовать при наличии битов IE CI в форматах DCI DL). Соответствие между значениями CI и сотами может также быть определено неявно. Например, возрастающие значения CI “00”, “01”, “10” и “11” могут быть отображены на соты в порядке увеличения несущей частоты.
Необходимость использования CI для указания соты, для которой предназначен формат DCI, может отсутствовать для сот с различными BW, потому что соответствующие форматы DCI могут иметь различные размеры. Например, для 2 сот, где PDCCH передается только в одной соте, нет необходимости во включении CI в форматах DCI DL, если, например, одна сота имеет BW 20 МГц, а другая сота имеет BW 5 МГц. В общем, основной причиной наличия различного размера формата DCI для различных BW является IE распределения ресурсов (RA) в форматах DCI, которые должны иметь больший размер для сот с большими BW, поскольку они адресуют большее число PRB.
Передача форматов DCI к L-UE поддерживается с обычной структурой PDCCH. Передача PDCCH к A-UE, имеющему прием PDSCH или передачу PUSCH в одной и той же соте, также поддерживается с обычной структурой PDCCH. Нет никакой дифференциации между этими A-UE и L-UE относительно передачи PDCCH, хотя могут использоваться различные форматы DCI. Для простоты ссылки такое A-UE будет называться основным UE (P-UE), а сота с передачей PDCCH основной сотой (Pcell). С другой стороны, A-UE, имеющее прием PDSCH или передачу PUSCH в соте помимо Pcell, будет называться вторичным UE (S-UE), а соответствующие соты вторичными сотами (Scell).
Например, на фиг.10 UE, принимающее PDSCH в соте1, является P-UE, а сота1 является Pcell, в то время как UE, принимающее PDSCH в соте2, является S-UE, а сота2 является Scell. A-UE может быть и P-UE и S-UE в зависимости от соты (Pcell или Scell соответственно). Поэтому классификация A-UE как P-UE или S-UE является уникальной для каждой соты и может отличаться среди сот, поскольку A-UE может быть P-UE в Pcell и S-UE в Scell.
Для передачи PDCCH к S-UE в сотах Scell может использоваться обычная структура PDCCH или отдельная структура PDCCH. Например, не сильно загруженные системы, для которых емкость (первые М символов OFDM подкадра DL) обычной структуры PDCCH не достигнута для планирования P-UE, также могут поддерживать передачу форматов DCI к S-UE, в то время как для сильно загруженных систем может быть необходима дополнительная структура PDCCH для поддержки передачи PDCCH к S-UE.
Используется ли обычная структура PDCCH или расширенная структура PDCCH (E-PDCCH), может быть определено заранее или сообщаться узлом B посредством широковещательной передачи сигналов или посредством специфичной для UE передачи сигналов более высокого уровня. Элементы CCE PDCCH для A-UE могут быть в PDCCH или в E-PDCCH, но не в обоих. Отслеживает ли A-UE PDCCH или E-PDCCH для планирования PDSCH или PUSCH в заданной соте, может полустатически конфигурироваться или посредством передачи сигналов более высокого уровня или посредством широковещательной передачи сигналов.
Если E-PDCCH в Pcell используется для планирования PDSCH или PUSCH в сотах Scell, то рассматривается следующее в соответствии с вариантом осуществления настоящего изобретения:
СОДЕРЖАНИЕ E-PDCCH
E-PDCCH обеспечивает расширение к PDCCH и поэтому передает информацию аналогичного характера. В дополнение к форматам DCI для S-UE E-PDCCH может включать в себя соответствующий PCFICH (называемый E-PCFICH) и PHICH (называемый E-PHICH) для передач PUSCH в сотах Scell, обслуживаемых E-PDCCH. E-PCFICH и E-PHICH имеют такую же структуру, что и PCFICH и PHICH соответственно.
ЧАСТОТНЫЕ РЕСУРСЫ ДЛЯ E-PDCCH
Форматы DCI в E-PDCCH передаются в элементах CCE, но выделение CCE происходит в блоках PRB, поскольку E-PDCCH ортогонально мультиплексирован с PDSCH. Блоки PRB для E-PDCCH могут конфигурироваться полустатически или динамически. Полустатическая конфигурация блоков PRB E-PDCCH обеспечивает достаточное разделение в частотной области для получения частотного разнесения или выбор блоков PRB согласно техническому приему координации помех, минимизирующему помехи от смежных сот.
ВРЕМЕННЫЕ РЕСУРСЫ ДЛЯ E-PDCCH
Первый символ E-PDCCH может быть первым символом OFDM после последнего фактического символа OFDM PDCCH или первым символом после последнего символа OFDM PDCCH, предполагая максимальное число символов OFDM PDCCH. Когда первый символ E-PDCCH является первым символом OFDM после последнего фактического символа OFDM PDCCH, S-UE декодирует PCFICH, чтобы определить начало E-PDCCH. Если первый символ E-PDCCH является первым символом после последнего символа OFDM PDCCH, предполагая максимальное число символов OFDM PDCCH, то в результате получается максимальная латентность декодирования E-PDCCH, но избегаются ошибки из-за неправильного обнаружения PCFICH, которое ведет к сбою декодирования PDCCH.
Последний символ E-PDCCH может конфигурироваться статически, полустатически или динамически. Со статической конфигурацией последний символ E-PDCCH может быть, например, седьмым символом подкадра DL. С полустатической конфигурацией последний символ E-PDCCH может сообщаться узлом B через широковещательный канал. С динамической конфигурацией последний символ E-PDCCH может сообщаться через E-PCFICH.
Диапазон символов OFDM, обозначенный E-PCFICH для E-PDCCH, может отличаться от диапазона символов OFDM, обозначенных PCFICH для PDCCH. Например, E-PCFICH может также указать 0 символов OFDM для E-PDCCH, в этом случае E-PCFICH и E-PHICH могут быть переданы в PDCCH.
Фиг.11 изображает структуру мультиплексирования E-PDCCH, где A-UE предполагает максимальный размер PDCCH для определения первого символа E-PDCCH согласно варианту осуществления настоящего изобретения.
На фиг.11 передача 1110 PDCCH имеет 2 символа OFDM из максимум 3 символов OFDM PDCCH. Первый символ E-PDCCH является первым символом OFDM после передачи PDCCH, полагая максимум в 3 символа OFDM. Поэтому первый символ E-PDCCH является четвертым символом OFDM подкадра DL. Передача E-PCFICH (не показана) происходит всегда в первом символе E-PDCCH и, для структуры фиг.11, она указывает, что E-PDCCH передается в 2 символах 1120 OFDM. Блоки PRB 1130 передачи E-PDCCH полустатически конфигурируются посредством широковещательной передачи сигналов узлом B (например, в SIB). Передача E-PDCCH мультиплексируется с передачами PDSCH к различному UE, 1140, 1150 и 1160. Передачи PDSCH к L-UE могут иметь место или не иметь в блоках PRB, используемых для передачи E-PDCCH. Поскольку L-UE не может знать о существовании E-PDCCH, если в блоках PRB E-PDCCH назначен прием PDSCH, то оно будет обрабатывать такие PRB как PRB, которые включают в себя PDSCH. Хотя это ухудшит качество приема PDSCH для L-UE, выполнять ли такое планирование определяет узел B. A-UE может знать о блоках PRB E-PDCCH и применить соответствующую подгонку скорости для его соответствующих приемов PDSCH.
Фиг.12 изображает структуру мультиплексирования E-PDCCH, где A-UE декодирует PCFICH для определения фактического размера PDCCH и первого символа E-PDCCH согласно варианту осуществления настоящего изобретения.
На фиг.12 передача 1210 PDCCH имеет 2 символа OFDM. Первый символ E-PDCCH является третьим символом OFDM, который является первым символом OFDM после передачи PDCCH. Передача E-PCFICH (не показана) всегда происходит в первом символе E-PDCCH, и в структуре, изображенной на фиг.12, она указывает, что E-PDCCH передается в 2 символах 1220 OFDM. Блоки PRB 1230 передачи E-PDCCH заранее определены.
Если передача форматов DCI для множества Scell осуществляется через E-PDCCH в соответствии с вариантом осуществления настоящего изобретения, все элементы CCE E-PDCCH совместно рассматривают для всех Scell, вместо того, чтобы иметь отдельный набор элементов CCE для каждой Scell. Поэтому есть только один набор элементов CCE в E-PDCCH, где у каждого S-UE может быть свое UE-CSS и свое UE-DSS. Это также дает возможность передачи одного E-PCFICH вместо множества E-PCFICH, где каждый из них соответствует различной Scell в E-PDCCH.
UE-CSS
В первом варианте UE-CSS для S-UE конфигурируется отдельно, а его размер в наборе элементов CCE может транслироваться узлом B. Например, размер UE-CSS может принять одно из четырех заранее заданных значений, и узел B транслирует 2 бита для указания этого значения (например, через SIB в Pcell) или для указания, что размер UE-CSS равен 1, 2, 3 или 4-кратному базовому размеру в K элементов CCE. Элементы CCE для UE-CSS в E-PDCCH размещены первыми, то есть перед элементами CCE для UE-DSS. После того как S-UE сообщено о размере UE-CSS, оно должно определить элементы CCE, соответствующие каждой Scell.
В первой опции для первого варианта S-UE сообщается о порядке сот Scell или посредством передачи сигналов более высокого уровня, для специфичной для UE конфигурации CI, или как части системной информации для специфичной для соты конфигурации CI. Это эквивалентно информированию S-UE о значении CI для его форматов DCI. В случае если CI, возможно, не существует, таком как, например, когда соты имеют неравные BW, порядок может быть с точки зрения уменьшения BW, например, большие BW расположены первыми.
Фиг.13 является схемой, изображающей присвоение различных значений CI различным сотам согласно варианту осуществления настоящего изобретения.
На фиг.13 элементы CCE для UE-CSS макросоты 1310 размещены в PDCCH. Элементы CCE для UE-CSS для микросоты 1 1320 идут первыми по порядку в E-PDCCH (CI=1), а элементы CCE для UE-CSS для микросоты 2 1330 идут вторыми по порядку в E-PDCCH (CI=2). Как только значения CI были присвоены сотам Scell, элементы CCE UE-CSS S-UE размещаются в том же порядке в логической области.
Фиг.14 является схемой, изображающей размещение элементов CCE для множества UE-CSS согласно варианту осуществления настоящего изобретения.
На фиг.14 L1 CCE для первого UE-CSS S-UE (микросота 1 или для первого набора S-UE, CI=1) размещаются первыми 1410, за ними следуют L2 CCE для второго UE-CSS S-UE (микросота 2 или для второго набора S-UE, CI=2) 1420. Размещение элементов CCE для UE-DSS 1430 происходит после размещения элементов CCE для UE-CSS в логической области. Число элементов CCE UE-CSS для S-UE для различных значений CI, обозначенное как L1 и L2 на фиг.14, может быть неявно определено из полного размера UE-CSS или может сообщаться узлом B посредством широковещательной передачи сигналов. Альтернативно, число элементов CCE для UE-CSS S-UE может быть одинаковым для всех значений CI, независимо от рабочего BW DL или UL в каждой Scell (то есть L1=L2 на фиг.14).
Элементы CCE для UE-CSS S-UE упорядочены, как изображено на фиг.14 для уменьшения соответствующего количества операций декодирования вслепую (BDO), потому что для каждого UE-CSS S-UE ищет подмножество полного набора элементов CCE, выделенного всему UE-CSS. Кроме того, при упорядочивании пространств UE-CSS для S-UE нет необходимости добавлять IE CI в форматы DCI, переданные в каждом UE-CSS.
Во второй опции для первого варианта упорядочивание отдельных UE-CSS для S-UE не применяется, и соответствующие элементы CCE могут быть распределены по всему набору элементов CCE для всего UE-CSS. После этого осуществляется включение CI в форматы DCI, и процесс поиска UE форматов DCI может быть выполнен для UE-DSS оборудования S-UE, как будет описано ниже.
Во втором варианте UE-CSS остается неизменным, S-UE рассматривается как P-UE относительно передачи формата 3 DCI и формата 1C DCI в сотах Scell, и нет никакой дифференциации UE в различные категории относительно UE-CSS.
PCH может передаваться на все S-UE в соте с передачей PDCCH (Pcell).
При отсутствии передачи синхросигналов от сот (таких как микросоты) без передачи PDCCH (соты Scell), S-UE получает синхросигнал соты (такой как макросота) с передачей PDCCH (Pcell). После этого процесс RACH завершается через Pcell, и нет необходимости ни в какой дополнительной передаче сигналов ответа RACH, соответствующего сотам без передачи PDCCH (соты Scell).
Блоки SIB для сот (таких как микросоты) без передачи PDCCH (соты Scell) могут также передаваться из соты (такой как макросота) с передачей PDCCH (Pcell), используя различные маски CRC в формате 1C DCI для указания соты, соответствующей передаче блоков SIB.
Формат 3 DCI мультиплексирует команды TPC, соответствующие UE в соте (такой как макросота) с передачей PDCCH (Pcell) и UE в сотах (таких как микросоты) без передачи PDCCH (соты Scell).
Соответственно, P-UE имеет свое UE-CSS для передачи формата DCI в PDCCH как в обратно совместимой системе, включающей одну соту. Для S-UE или новое UE-CSS определено в E-PDCCH, как описано выше в первом варианте, или не определено никакое дополнительное UE-CSS, и все UE (P-UE и S-UE) используют одно и то же UE-CSS в PDCCH, как описано выше во втором варианте.
UE-DSS
Для UE-DSS и односотового режима работы, используя ранее определенные обозначения, элементы CCE, соответствующие претенденту m PDCCH, заданы уравнением (2).
Figure 00000003
(2)
В уравнении (2) NCCE,k представляет собой общее число элементов CCE в подкадре k, i=0,…,L-1, m=0,…,М(L)-1 и М(L) представляет собой число претендентов в UE-DSS.
Вышеупомянутая структура UE-DSS приводит к идентичным UE-DSS для различных сот (Pcell или сот Scell), поскольку они, как предполагается, совместно используют одно и то же UE-DSS в E-PDCCH (или в PDCCH, когда он поддерживает передачу форматов DCI для множества сот).
Для обеспечения отличающегося UE-DSS в дополнение к UE_ID, в соответствии с вариантом осуществления настоящего изобретения, UE-DSS также зависит от Cell_ID. Это может существенно уменьшить вероятность того, что передача формата DCI будет заблокирована из-за отсутствия элементов CCE в UE-DSS. Уменьшение этой вероятности блокировки увеличивает вероятность, что планирование PDSCH или PUSCH имеет место, и поэтому улучшает соответствующую пропускную способность DL или UL системы и улучшает операционные качества и надежность.
Cell_ID может быть значением CI, присваиваемым каждой соте. Например, UE может информироваться о Cell_ID посредством передачи сигналов более высокой уровня. По меньшей мере, когда соты имеют равные BW (и определен соответствующий CI), Cell_ID может быть таким же, как соответствующий CI. UE может получить Cell_ID во время начальной синхронизации с соответствующей сотой, или, если сота не передает синхросигналы, UE может получить соответствующий Cell_ID посредством передачи сигналов более высокого уровня от соты, передающей синхросигналы после синхронизации. Кроме того, Cell_ID может быть специфичным для UE и сообщаться каждому UE посредством передачи сигналов более высокого уровня. Например, для 3 сот, вместо того, чтобы иметь три различных соответствующих Cell_ID, Cell_ID для каждого UE может зависеть от числа сот, для которых конфигурируется UE. Если UE1 конфигурируется для соты1 и соты2, соответствующие Cell_ID могут быть Cell_ID1 и Cell_ID2. Если UE2 конфигурируется для соты2 и соты3, соответствующие Cell_ID также могут быть Cell_ID1 и Cell_ID2.
Следующий пример дополнительно демонстрирует случай блокировки передачи для формата DCI. Если предположить, что форматы DCI к UE передаются с 4 элементами CCE, то, так как есть только 2 претендента в UE-DSS для этого уровня агрегации CCE, может поддерживаться передача форматов DCI для самое большее 2 сот (или одной соты и для приема PDSCH и для передачи PUSCH). Кроме того, из-за рандомизации посредством перемежения пространства UE-DSS для различного UE могут иметь совмещенные элементы CCE, и по этой причине будет часто велика вероятность того, что может быть поддержана передача формата DCI только для одной соты.
Вариант осуществления изобретения с созданием отдельного UE-DSS для каждой соты предполагает, что инициализация переменной Yk включает в себя Cell_ID. Когда 0
Figure 00000004
0=0, 0
Figure 00000005
1=1, 1
Figure 00000005
0=1, 1
Figure 00000005
1=0, где
Figure 00000005
обозначает двоичную операцию сложения по модулю, A-UE принимает множество PDSCH или передает множество PUSCH во множестве сот, в то время как соответствующие форматы DCI передаются в одной соте, и Y-1=(UE_ID)
Figure 00000005
(Cell_ID)≠0 для UE-DSS соответствующей соты.
Фиг.15 изображает инициализацию переменной Yk с Cell_ID согласно варианту осуществления настоящего изобретения.
На фиг.15 двоичный UE_ID 1510 и двоичный Cell_ID 1520 складываются с помощью двоичного сумматора 1530 для обеспечения начального значения Yk-1 1540 переменной Yk, рандомизируя элементы CCE в UE-DSS в подкадре k для форматов DCI, соответствующих соответствующей соте. Полагая ID UE 16-разрядным, требование Y-1≠0 не позволяет использовать небольшое число UE_ID, что имеет лишь незначительное воздействие на общее количество 216=65536 доступных ID UE, учитывая, что общее количество сот, для которых форматы DCI передаются в одной соте, меньше 10. Кроме того, поскольку переменная Yk зависит от Cell_ID, она должна быть обозначена как Ykc, где c=0, 1, …, Nc-1, где Nc является числом сот, для которых соответствующие форматы DCI передаются в одной соте (Pcell).
В другом варианте осуществления изобретения для создания отдельного UE-DSS для каждой соты, обозначая как f(c) функцию от CI или Cell_ID для соты c, каждое UE-DSS может быть получено с помощью уравнения (3).
Figure 00000006
(3)
Одно условие для
Figure 00000007
может состоять в том, что UE-DSS, соответствующее планированию PDSCH/PUSCH в Pcell, должно быть определено как для L-UE. Это полезно для сохранения устаревшего режима работы, когда все соты, кроме Pcell, деактивированы. Поэтому, если cP является CI или Cell_ID для Pcell, то f(cP)=0.
Для значений c CI или Cell_ID, отличных от cP, f(c) может быть определено как f(c)=1, 2, …, 7 (при 3-разрядном CI), которые могут быть упорядочены в порядке возрастания на основании присвоенных значений CI. Для уменьшения вероятности самоблокирования для UE-DSS A-UE рассматриваются только активные соты. Точные значения для сот Scell (за исключением Pcell) не являются существенными при условии, что они последовательны, и условие f(cP)=0 удовлетворено для Pcell. Например, для значений c CI или Cell_ID, отличных от cP, функция f(c) может быть определена как f(c)=-3, -2, -1, 1, 2, 3, или в общем путем попеременного присвоения положительных и отрицательных целочисленных значений последовательным образом вокруг f(cP)=0 (начиная с 1 и продолжая с -1, 2, -2 и так далее).
Передача форматов DCI для планирования во множестве Scell увеличивает число BDO, которые выполняет A-UE. Без каких-либо ограничений местоположений этих возможных форматов DCI, это увеличение числа BDO происходит линейно с числом сот Scell. Это увеличивает сложность приемника UE, а также увеличивает вероятность ложного теста CRC (что приводит к тому, что UE неверно рассматривает формат DCI как предназначенный для него).
Существует несколько альтернативных конструкций для уменьшения числа BDO. Все они полагают, что возможные местоположения форматов DCI во множестве UE-DSS для опорного UE взаимозависимы. В дополнение к уменьшению числа BDO и тестов CRC, эти конструкции поддерживают одну и ту же архитектуру приемника (банк декодеров) для базового процесса декодирования UE-DSS одной соты, независимо от числа сот, для которых UE конфигурируется.
Первая конструкция использует один и тот же уровень L агрегации для всех форматов DCI к опорному UE. Если для опорной соты c1 претендент m идентифицирован UE в положении
Figure 00000008
, m=0,…,M(L)-1, i=0,…,L-1, то дополнительная сота c2 может иметь потенциального претендента n в положении
Figure 00000009
, n=0,…,M(L)-1. Поэтому после того, как UE идентифицирует формат DCI для соты c1, оно выполняет дополнительные BDO (для n=0,…,М(L)-1) для определения того, имеет ли оно его также для соты c2.
Вторая конструкция позволяет использование различных уровней агрегации для PDCCH, но налагает ограничение возможных претендентов для каждого уровня агрегации. Если для соты c1 PDCCH идентифицирован для претендента m в положении
Figure 00000010
, m=0,…,M(L)-1, i=0,…,L1-1, дополнительная сота c2 может иметь потенциального претендента PDCCH в положении
Figure 00000011
, j=0,…,L2-1. Поэтому после того, как UE идентифицирует PDCCH для соты c1, оно выполняет дополнительные BDO числом, равным числу возможных уровней агрегации для определения того, имеет ли оно также PDCCH для соты c2. В соответствии с вариантом осуществления настоящего изобретения это число дополнительных BDO равно 4, так как возможные уровни агрегации равны {1, 2, 4, 8}. Этот процесс может быть непосредственно распространен на дополнительные соты.
Третья конструкция представляет собой комбинацию первой и второй конструкций, где уровень агрегации, используемый для PDCCH в опорной соте (Pcell), влияет на возможные уровни агрегации для PDCCH для оставшихся сот (соты Scell), для которых конфигурируется UE. Например, уровни агрегации, используемые для PDCCH для оставшихся сот, могут иметь только то же самое или следующее большее значение относительно используемого для PDCCH для опорной соты (если в опорной соте используется L=8, то L=8 также используется в оставшихся сотах). Кроме того, положение PDCCH для опорной соты влияет на возможные положения PDCCH для оставшихся сот. Например, если положение PDCCH для опорной соты пронумеровано нечетным или четным числом, то положение потенциального PDCCH для оставшихся сот также пронумеровано нечетными или четными числами соответственно. Поэтому для третьей конструкции, если для соты c1 PDCCH идентифицирован для претендента m в положении
Figure 00000010
, с
Figure 00000012
, m=0,…,M(L1)-1, i=0,…,L1-1, то дополнительная сота c2 может иметь потенциального претендента PDCCH в положении
Figure 00000013
, L2
Figure 00000014
{L1, 2L1}, если L1<8, L2=L1, если L1=8, n=0,…,М(L2)/2-1, j=0,…,L2-1. Этот процесс может быть непосредственно распространен на дополнительные соты.
Дополнительные ограничения для третьей конструкции возможны, например, при требовании, чтобы один и тот же уровень агрегации CCE использовался во всех сотах. Возможные комбинации охватываются комбинациями принципов для первой и второй конструкций, как описано в третьей конструкции.
Ранее описанное расширение PDCCH было совместимо с существующей односотовой связью. Однако расширение PDCCH может также поддерживаться несовместимым образом. Для этого случая, в соответствии с вариантом осуществления настоящего изобретения, может применяться другая интерпретация значений PCFICH и другая конфигурация UE-CSS и UE-DSS. В отличие от устаревших систем, для которых PCFICH передает 3 заранее заданных значения для размера PDCCH, такие как, например, 1, 2 или 3 символа OFDM, PCFICH для несовместимого расширения PDCCH может передавать больше значений, которые заранее не определены, но могут полустатически изменяться. Узел B может транслировать конфигурацию размеров PDCCH из ряда возможных конфигураций, и PCFICH может тогда просто указать один размер из транслируемой конфигурации размеров PDCCH. Например, узел B может указать один из {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6} и {4, 5, 6, 7} в числе символов OFDM для конфигурации размера PDCCH. Тогда 2 бита в PCFICH могут использоваться для сообщения UE размера PDCCH в конфигурации, транслируемой узлом B.
Фиг.16 изображает расширение размера PDCCH путем конфигурирования набора возможных значений и использования PCFICH для указания одного значения в наборе согласно варианту осуществления настоящего изобретения.
На фиг.16 узел B транслирует 2 бита, например “10”, для указания конфигурации размера PDCCH в {3, 4, 5, 6} символов 1610. Конфигурация размера PDCCH может вступить в силу в заранее заданном подкадре после того, как узел B транслирует ее, например, в первом подкадре S, таком, что модуль(S,40)=0 (modulo(S,40)=0). PCFICH, переданный в каждом подкадре, указывает элемент из набора конфигураций размера PDCCH, такой как, например, третий элемент 1620. UE определяет размер PDCCH на основании переданной конфигурации размера PDCCH и значения 1630 PCFICH.
В дополнение к конфигурированию полного размера PDCCH может также конфигурироваться индивидуальный размер UE-CSS или UE-DSS. Например, узел B может транслировать размер UE-CSS. Следовательно, A-UE может знать, что размер UE-CSS может иметь одно из четырех заранее заданных значений, и узел B просто транслирует 2 бита для указания этого значения или указания того, что размер UE-CSS равен 1, 2, 3 или 4-кратному базовому размеру UE-CSS в 16 элементов CCE. Указание размера UE-CSS может также быть неявным на основании размера конфигурации PDCCH. Например, если узел B транслирует третий размер конфигурации PDCCH на фиг.16, A-UE может определить, что UE-CSS имеет базовый размер UE-CSS в 16 элементов CCE, умноженный на 3, то есть размер UE-CSS равен 48 элементами CCE, или что он определяется третьим элементом в сконфигурированном наборе размеров UE-CSS, таком как, например, набор {16, 28, 36, 44} элементов CCE.
Фиг.17 изображает явное и неявное указание узлом B размера UE-CSS оборудованию A-UE согласно варианту осуществления настоящего изобретения.
На фиг.17 для явного указания узел B сообщает A-UE размер UE-CSS через канал широковещания, например, передачу SIB. Например, узел B передает 2 бита со значением “10” для указания 36 элементов CCE, что является третьим элементом в наборе из 4 возможных размеров 1710 UE-CSS. A-UE, после приема этой широковещательной информации, определяет UE-CSS для каждой соты 1720, как описано выше, для расширения PDCCH, совместимого с устаревшими системами. Для неявного указания узел B транслирует конфигурацию размера PDCCH (например, в SIB), как описано на фиг.17, и на основании этой конфигурации A-UE определяет размер UE-CSS и UE-CSS для каждой соты. Например, узел B может транслировать третью конфигурацию 1730 размера PDCCH, и тогда A-UE определяет, что размер UE-CSS равен 36 элементами CCE 1740.
Хотя настоящее изобретение было показано и описано со ссылкой на некоторые его варианты осуществления, специалистам в данной области техники должно быть понятно, что в нем могут быть произведены различные изменения в форме и деталях, не отступая от сущности и объема настоящего изобретения, как это определено прилагаемой формулой изобретения и любыми ее эквивалентами.

Claims (15)

1. Способ расширения области физического канала управления нисходящей линии связи (PDCCH) в одной соте для предоставления управляющей информации нисходящей линии связи (DCI) пользовательскому оборудованию (UE) для того, чтобы обеспечить возможность связи во множестве сот в системе связи, при этом UE принимает каждую DCI от узла В посредством формата DCI, передаваемого по PDCCH, и при этом PDCCH передается через элементы канала управления (ССЕ) в общем для UE пространстве поиска (UE-CSS) или в выделенном для UE пространстве поиска (UE-DSS), причем способ содержит этапы:
передачи узлом В каналов PDCCH в одном UE-CSS; и
передачи узлом В каналов PDCCH во множестве UE-DSS,
при этом одно UE-CSS является общим для множества сот, и при этом множество UE-DSS соответствует множеству сот соответственно.
2. Способ расширения области физического канала управления нисходящей линии связи (PDCCH) в одной соте для предоставления управляющей информации нисходящей линии связи (DCI) пользовательскому оборудованию (UE) для того, чтобы обеспечить возможность связи во множестве сот в системе связи, при этом UE принимает каждую DCI от узла В посредством формата DCI, передаваемого по PDCCH, и при этом PDCCH передается через элементы канала управления (ССЕ) в общем для UE пространстве поиска (UE-CSS) или в выделенном для UE пространстве поиска (UE-DSS), причем способ содержит этапы:
информирования UE узлом В об идентификаторе соты (Cell_ID) для каждой из множества сот;
определения множества UE-DSS, соответствующих множеству сот, соответственно, при этом каждое UE-DSS из множества UE-DSS идентифицируется параметрами UE-DSS для одной соты и Cell_ID соответствующей соты; и
передачи множества PDCCH во множестве UE-DSS.
3. Способ по п.2, в котором UE-DSS для соты, в которой передается PDCCH, одинаково для связи в одной соте и связи во множестве сот.
4. Способ по п.2, в котором предварительно заданное подмножество форматов DCI включает в себя информационный элемент (IE) индикатора соты (CI), а оставшиеся форматы DCI в наборе форматов DCI не включают в себя IE CI.
5. Способ по п.4, в котором число битов для IE CI в форматах DCI, обеспечивающих DCI для нисходящей линии связи системы связи, отличается от числа битов для IE CI в форматах DCI, обеспечивающих DCI для восходящей линии связи системы связи.
6. Способ по п.4, в котором IE CI включен в форматы DCI, когда соты имеют одинаковый диапазон рабочих частот, и не включен в форматы DCI, когда соты имеют различные диапазоны рабочих частот.
7. Устройство пользовательского оборудования (UE) для приема управляющей информации нисходящей линии связи (DCI) в форматах DCI, передаваемых из узла В по физическим каналам управления нисходящей линии связи (PDCCH) в одной соте, причем DCI позволяет осуществлять связь во множестве сот, при этом PDCCH передается через элементы канала управления (ССЕ) в общем для UE пространстве поиска (UE-CSS) или в выделенном для UE пространстве поиска (UE-DSS), причем устройство UE содержит:
блок идентификации ССЕ для идентификации элементов ССЕ в UE-CSS и UE-DSS; и
приемник для приема каналов PDCCH в UE-CSS одной соты и во множестве UE-DSS, при этом множество UE-DSS соответствует множеству сот соответственно.
8. Способ по п.1 или устройство UE по п.7, в которых каждое UE-DSS из множества UE-DSS имеет ту же самую структуру, что и UE-DSS для связи в одной соте.
9. Способ по п.1 или устройство UE по п.7, в которых форматы DCI включают в себя биты циклического контроля по избыточности (CRC), и заданная сота для формата DCI, переданного в UE-CSS, идентифицируется путем применения специфичной для соты маски к CRC формата DCI.
10. Способ по п.1 или устройство UE по п.7, в которых каждая сота из множества сот имеет идентификатор соты, который специфичен для UE и сообщается UE посредством передачи сигналов более высокого уровня от узла В.
11. Устройство пользовательского оборудования (UE) для приема управляющей информации нисходящей линии связи (DCI) в форматах DCI, передаваемых из узла В по физическим каналам управления нисходящей линии связи (PDCCH) в одной соте, причем DCI позволяет осуществлять связь во множестве сот, при этом PDCCH передается через элементы канала управления (ССЕ) в общем для UE пространстве поиска (UE-CSS) или в выделенном для UE пространстве поиска (UE-DSS), причем устройство UE содержит:
приемник для приема идентификатора соты (Cell_ID) для каждой соты из множества сот, переданного узлом В; и
блок идентификации ССЕ для идентификации элементов ССЕ в UE-CSS и UE-DSS; и
приемник для приема каналов PDCCH в UE-CSS одной соты и во множестве UE-DSS, соответствующих множеству сот, соответственно, при этом каждое UE-DSS из множества UE-DSS идентифицируется параметрами UE-DSS для одной соты и Cell_ID соответствующей соты.
12. Способ по п.2 или устройство UE по п.11, в которых DCI для соты, в которой передается PDCCH, предоставляется только каналом PDCCH в этой соте.
13. Устройство UE по п.11, в котором по меньшей мере один из форматов DCI включает в себя информационный элемент (IE) индикатора соты (CI), а оставшиеся форматы DCI не включают в себя IE CI.
14. Способ по п.4 или устройство UE по п.13, в которых значение IE CI определяется по соответствующему значению Cell_ID.
15. Способ или устройство UE по п.14, в которых значение CI является соответствующим значением Cell_ID.
RU2012117748/07A 2009-09-28 2010-09-28 Расширение физических каналов управления нисходящей линии связи RU2502192C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24638009P 2009-09-28 2009-09-28
US24638709P 2009-09-28 2009-09-28
US61/246,387 2009-09-28
US61/246,380 2009-09-28
PCT/KR2010/006597 WO2011037439A2 (en) 2009-09-28 2010-09-28 Extending physical downlink control channels

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2013137464A Division RU2617999C2 (ru) 2009-09-28 2013-08-09 Расширение физических каналов управления нисходящей линии связи

Publications (2)

Publication Number Publication Date
RU2012117748A RU2012117748A (ru) 2013-11-10
RU2502192C1 true RU2502192C1 (ru) 2013-12-20

Family

ID=43084468

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012117748/07A RU2502192C1 (ru) 2009-09-28 2010-09-28 Расширение физических каналов управления нисходящей линии связи
RU2013137464A RU2617999C2 (ru) 2009-09-28 2013-08-09 Расширение физических каналов управления нисходящей линии связи

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2013137464A RU2617999C2 (ru) 2009-09-28 2013-08-09 Расширение физических каналов управления нисходящей линии связи

Country Status (10)

Country Link
US (10) US9295043B2 (ru)
EP (5) EP4221044A3 (ru)
JP (2) JP5511105B2 (ru)
KR (6) KR101783064B1 (ru)
CN (2) CN102549944B (ru)
AU (1) AU2010298857B2 (ru)
BR (1) BR112012006948B1 (ru)
CA (2) CA2771150C (ru)
RU (2) RU2502192C1 (ru)
WO (1) WO2011037439A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015820B2 (en) 2014-08-11 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for cell configuration
RU2694586C1 (ru) * 2015-08-25 2019-07-16 Идак Холдингз, Инк. Кадрирование, диспетчеризация и синхронизация в системах беспроводной связи

Families Citing this family (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000440A1 (en) * 2009-07-03 2011-01-06 Nokia Siemens Networks Oy Extension of physical downlink control channel coverage
CN102036305B (zh) * 2009-09-30 2014-05-07 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
US8902828B2 (en) * 2009-10-05 2014-12-02 Qualcomm Incorporated Carrier indicator field for cross carrier assignments
CN102056198B (zh) * 2009-10-31 2015-06-03 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123479B (zh) 2010-01-08 2015-09-16 索尼公司 支持载波汇聚的通信系统及其系统信息更新方法和设备
JP2013520108A (ja) * 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド ダウンリンク協調コンポーネントキャリアを介してセルエッジユーザパフォーマンスを向上させるため、および無線リンク障害条件をシグナリングするための方法および装置
KR101785656B1 (ko) * 2010-03-04 2017-10-16 엘지전자 주식회사 Ack/nack 신호를 전송하는 방법 및 이를 위한 장치
ES2674141T3 (es) * 2010-03-31 2018-06-27 Fujitsu Limited Sistema de comunicación inalámbrico, aparato de comunicación inalámbrica y método de comunicación inalámbrica
JP5499216B2 (ja) * 2010-04-02 2014-05-21 ゼットティーイー コーポレーション ダウンリンク制御情報の検出方法及び装置
US9031025B2 (en) 2010-07-21 2015-05-12 Panasonic Intellectual Property Corporation Of America Base station, terminal, search space setting method and decoding method
CN105024792B (zh) * 2010-07-21 2018-09-11 太阳专利信托公司 通信装置和通信方法
CN102036411B (zh) * 2010-12-02 2013-06-26 大唐移动通信设备有限公司 一种进行随机接入的方法及装置
KR101771257B1 (ko) 2010-12-03 2017-08-25 엘지전자 주식회사 다중 노드 시스템에서 협력 전송 방법 및 장치
US9559884B2 (en) * 2011-02-07 2017-01-31 Intel Corporation Co-phasing of transmissions from multiple infrastructure nodes
WO2012108688A2 (ko) * 2011-02-10 2012-08-16 엘지전자 주식회사 스케줄링 정보 모니터링 방법 및 장치
US8995400B2 (en) 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US9426703B2 (en) 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9544108B2 (en) 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
EP2675078A4 (en) 2011-02-11 2018-02-28 Electronics and Telecommunications Research Institute Wireless communication system using multiple transmission and reception points
EP2919545B1 (en) * 2011-02-11 2016-09-28 Interdigital Patent Holdings, Inc. Device and method for an enhanced control channel (e-pdcch)
US9054842B2 (en) 2011-02-14 2015-06-09 Qualcomm Incorporated CRS (common reference signal) and CSI-RS (channel state information reference signal) transmission for remote radio heads (RRHs)
US9282556B2 (en) * 2011-02-15 2016-03-08 Kyocera Corporation Base station and communication method thereof
KR101530801B1 (ko) * 2011-03-01 2015-06-22 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 수행 방법 및 장치
KR101555112B1 (ko) * 2011-03-01 2015-10-01 엘지전자 주식회사 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
KR101919780B1 (ko) 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
WO2012134535A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Enhanced node b and method of transmitting physical-downlink control channels (pdcchs) in a lte-a system
US10638464B2 (en) * 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
JP5801093B2 (ja) 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5810399B2 (ja) * 2011-04-27 2015-11-11 シャープ株式会社 基地局、端末および無線通信方法
JP5895356B2 (ja) * 2011-04-27 2016-03-30 シャープ株式会社 基地局、端末および無線通信方法
JP5961853B2 (ja) * 2011-04-27 2016-08-02 シャープ株式会社 端末、基地局、通信システムおよび通信方法
BR112013026094A2 (pt) * 2011-04-29 2016-12-27 Ericsson Telefon Ab L M controle descentralizado de redução de interferência em um sistema de comunicação sem fio
WO2012148076A1 (en) * 2011-04-29 2012-11-01 Lg Electronics Inc. Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
JP5285117B2 (ja) 2011-05-02 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
JP5616284B2 (ja) * 2011-05-02 2014-10-29 株式会社Nttドコモ 基地局装置、移動端末装置、通信システム及び通信方法
JP5587824B2 (ja) * 2011-05-02 2014-09-10 株式会社Nttドコモ 無線基地局装置、移動端末装置、無線通信システムおよび無線通信方法
JP5396427B2 (ja) * 2011-05-02 2014-01-22 株式会社Nttドコモ 無線基地局装置、ユーザ端末装置、無線通信システム、及び無線通信方法
JP5432210B2 (ja) 2011-05-02 2014-03-05 株式会社Nttドコモ ユーザ端末、無線基地局、下り制御チャネル受信方法及び移動通信システム
EP2705626B3 (en) * 2011-05-03 2018-02-14 Telefonaktiebolaget LM Ericsson (publ) Transmission and reception of control data in a communication system
WO2012150836A2 (ko) * 2011-05-03 2012-11-08 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
US9398578B2 (en) * 2011-05-03 2016-07-19 Lg Electronics Inc. Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
EP3972182A1 (en) * 2011-05-03 2022-03-23 Telefonaktiebolaget LM Ericsson (publ) Search area based control channel monitoring
US9344230B2 (en) * 2011-05-04 2016-05-17 Lg Electronics Inc. Method for searching for enhanced PDCCH area
US8873489B2 (en) * 2011-05-05 2014-10-28 Mediatek Inc. Signaling methods for UE-specific dynamic downlink scheduler in OFDMA systems
CN102202415B (zh) * 2011-05-18 2019-01-22 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统
CN102202324B (zh) * 2011-05-19 2013-07-10 电信科学技术研究院 资源位置指示及信道盲检的方法、系统和装置
US9455809B2 (en) * 2011-05-25 2016-09-27 Lg Electronics Inc. Method for transceiving downlink control information in a wireless access system and apparatus therefor
US9419763B2 (en) * 2011-05-31 2016-08-16 Lg Electronics Inc. Method for searching for enhanced physical downlink control channel region
US9706536B2 (en) * 2011-06-07 2017-07-11 Lg Electronics Inc. Method for transmitting/receiving control information and apparatus for transmitting/receiving
EP2720392B1 (en) * 2011-06-07 2019-09-18 Electronics and Telecommunications Research Institute Method for transmitting and receiving control information of a mobile communication system
KR101525723B1 (ko) * 2011-06-15 2015-06-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101547052B1 (ko) * 2011-06-15 2015-08-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
PL2721792T3 (pl) * 2011-06-15 2020-01-31 Samsung Electronics Co., Ltd. Rozszerzenie sygnalizacji sterowania fizycznego łącza pobierania w systemie łączności
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
US9246656B2 (en) 2011-06-24 2016-01-26 Lg Electronics Inc. Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
US9544790B2 (en) 2011-06-28 2017-01-10 Lg Electronics Inc. Method for monitoring downlink control information (DCI) and a user equipment using the same
KR102067060B1 (ko) 2011-06-29 2020-02-11 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR20130007250A (ko) * 2011-06-30 2013-01-18 주식회사 팬택 무선통신 시스템에서 제어채널의 전송 장치 및 방법
US8537862B2 (en) 2011-06-30 2013-09-17 Blackberry Limited Transmit downlink control information with higher order modulation
US20130003604A1 (en) * 2011-06-30 2013-01-03 Research In Motion Limited Method and Apparatus for Enhancing Downlink Control Information Transmission
US20140119317A1 (en) * 2011-06-30 2014-05-01 Lg Electronics Inc. Method and apparatus for allocating a downlink control channel in a wireless communication system
US8879667B2 (en) 2011-07-01 2014-11-04 Intel Corporation Layer shifting in open loop multiple-input, multiple-output communications
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
WO2013006379A1 (en) * 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US9246652B2 (en) 2011-07-03 2016-01-26 Lg Electronics Inc. Control channel monitoring method and device
CN103597891B (zh) * 2011-07-05 2018-05-25 Hmd全球公司 用于无线通信中的资源聚合的方法和装置
CN102256358B (zh) * 2011-07-08 2013-11-20 电信科学技术研究院 一种数据传输和接收方法、装置及系统
WO2013009088A2 (en) * 2011-07-12 2013-01-17 Lg Electronics Inc. Method of user equipment searching for control information in multi-node system and apparatus using the same
US9755804B2 (en) * 2011-07-12 2017-09-05 Lg Electronics Inc. Method of user equipment monitoring control information in a multiple node system and user equipment using the method
JP5719087B2 (ja) * 2011-07-14 2015-05-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてリソースを割り当てる方法及びそのための装置
JP5898874B2 (ja) * 2011-07-15 2016-04-06 株式会社Nttドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
US9439135B2 (en) 2011-07-18 2016-09-06 Lg Electronics Inc. Method and wireless device for monitoring control channel
US9515798B2 (en) 2011-07-20 2016-12-06 Lg Electronics Inc. Method and apparatus for allocating enhanced physical downlink control channel in wireless access system
JP5895388B2 (ja) 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
JP5811443B2 (ja) * 2011-07-22 2015-11-11 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
KR101486705B1 (ko) 2011-07-24 2015-01-26 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치
WO2013015517A1 (ko) * 2011-07-26 2013-01-31 엘지전자 주식회사 무선 통신 시스템에서 기지국이 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2013015632A2 (ko) * 2011-07-26 2013-01-31 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
JP2014529208A (ja) * 2011-07-27 2014-10-30 富士通株式会社 下りリンク制御情報送信及び受信方法並びに基地局及び移動端末
KR101578012B1 (ko) * 2011-07-28 2015-12-28 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어정보 송수신 방법 및 이를 위한 단말
JP5884152B2 (ja) * 2011-07-29 2016-03-15 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN102271031B (zh) * 2011-08-09 2018-02-06 中兴通讯股份有限公司 一种信道信息反馈的方法和系统
CN102355338B (zh) * 2011-08-11 2014-04-02 电信科学技术研究院 一种信道信息发送方法及装置
US20130201926A1 (en) * 2011-08-11 2013-08-08 Samsung Electronics Co., Ltd. System and method for physical downlink control and hybrid-arq indicator channels in lte-a systems
CN102932907B (zh) 2011-08-11 2016-03-09 华为技术有限公司 一种获取同步的处理方法以及设备
JP5927661B2 (ja) * 2011-08-12 2016-06-01 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN102263616B (zh) * 2011-08-15 2018-07-20 中兴通讯股份有限公司 指示控制信道的方法及装置
CN102263584B (zh) * 2011-08-19 2014-05-07 电信科学技术研究院 一种信道状态信息非周期性反馈方法及装置
JP5883930B2 (ja) * 2011-08-19 2016-03-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて基地局が下りリンク制御チャネルを送信する方法及びそのための装置
CN102958184B (zh) * 2011-08-25 2017-02-22 华为技术有限公司 下行控制信道传输方法、装置和系统
JP2013055393A (ja) * 2011-09-01 2013-03-21 Sony Corp 通信装置、通信方法、通信システムおよび基地局
US8842628B2 (en) * 2011-09-12 2014-09-23 Blackberry Limited Enhanced PDCCH with transmit diversity in LTE systems
CN102316522B (zh) * 2011-09-21 2017-02-08 中兴通讯股份有限公司 一种控制信令传输资源位置的通知方法及一种终端
CN106793141B (zh) * 2011-09-29 2020-03-31 华为技术有限公司 增强的物理下行控制信道e-pdcch的传输方法及设备
US20130083746A1 (en) 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Method and apparatus for allocating resources for an enhanced physical hybrid automatic repeat request indicator channel
WO2013051856A1 (ko) * 2011-10-04 2013-04-11 엘지전자 주식회사 무선 접속 시스템에서 번들링 스케줄링 방법 및 이를 위한 장치
US8774848B2 (en) 2011-10-11 2014-07-08 Fujitsu Limited System and method for enhancing cell-edge performance in a wireless communication network
EP2769519B1 (en) * 2011-10-18 2019-02-27 LG Electronics Inc. -1- Method and apparatus of primary cell indication for enhanced control channel demodulation
EP2774294B1 (en) 2011-11-04 2017-10-04 Intel Corporation Search space determination
WO2013066122A1 (ko) * 2011-11-04 2013-05-10 엘지전자 주식회사 무선 통신 시스템에서 단말의 제어 채널 검색 방법 및 장치
EP2590350A1 (en) 2011-11-07 2013-05-08 Panasonic Corporation Enhanced PDCCH overlapping with the PDCCH region
JP2013098946A (ja) * 2011-11-07 2013-05-20 Sharp Corp 端末、基地局、通信システムおよび通信方法
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
WO2013069956A1 (ko) * 2011-11-11 2013-05-16 엘지전자 주식회사 무선통신시스템에서 제어정보 획득 및 수신 방법 및 장치
KR20130054896A (ko) * 2011-11-17 2013-05-27 삼성전자주식회사 시분할 이중화 통신 시스템에서 물리채널 송수신의 제어 방법 및 장치
WO2013077657A1 (ko) * 2011-11-23 2013-05-30 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 장치
KR20130058565A (ko) * 2011-11-25 2013-06-04 주식회사 팬택 송수신 포인트, 송수신 포인트의 제어 정보 전송 방법, 단말, 및 단말의 제어 정보 수신 방법
WO2013077517A1 (ko) * 2011-11-25 2013-05-30 엘지전자 주식회사 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 전송하는 방법 및 이를 위한 장치
AU2012346827B2 (en) * 2011-12-02 2015-05-28 Lg Electronics Inc. Method for receiving downlink control channel by means of a terminal in a wireless channel system and apparatus for same
US8427976B1 (en) 2011-12-04 2013-04-23 Ofinno Technology, LLC Carrier information exchange between base stations
WO2013085336A1 (ko) * 2011-12-07 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치
US9572148B2 (en) 2011-12-07 2017-02-14 Lg Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system
CN103988561B (zh) * 2011-12-12 2018-01-23 夏普株式会社 移动站装置、基站装置、通信方法以及集成电路
CN102611524B (zh) * 2011-12-19 2015-02-04 电信科学技术研究院 一种传输信息的方法、系统及设备
US9084252B2 (en) * 2011-12-29 2015-07-14 Qualcomm Incorporated Processing enhanced PDCCH (ePDCCH) in LTE
CN109274476B (zh) * 2012-01-09 2023-09-26 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
US8606286B2 (en) * 2012-01-16 2013-12-10 Blackberry Limited E-PDCCH design for reducing blind decoding
CN107613509B (zh) * 2012-01-19 2021-04-06 三星电子株式会社 用于增强的物理下行链路控制信道的导频加扰的装置和方法
US9119120B2 (en) * 2012-01-23 2015-08-25 Intel Corporation Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
US20130195019A1 (en) * 2012-01-27 2013-08-01 Nokia Corporation Initial access in cells without common reference signals
JP5832914B2 (ja) * 2012-01-27 2015-12-16 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
KR102094050B1 (ko) 2012-01-27 2020-03-27 인터디지탈 패튼 홀딩스, 인크 다중 캐리어 기반형 및/또는 의사 조합형 네트워크에서 epdcch를 제공하는 시스템 및/또는 방법
BR112014018550A8 (pt) 2012-01-30 2017-07-11 Alcatel Lucent Aparelhos, métodos e programas de computador para um transmissor móvel e para um transmissor de estação base
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
US9635658B2 (en) 2012-02-27 2017-04-25 Samsung Electronics Co., Ltd. Adaptation of control signaling transmissions to variations in respective resources
EP2637344B1 (en) * 2012-03-05 2022-01-12 Samsung Electronics Co., Ltd. HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types
US9215058B2 (en) 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
US9924498B2 (en) 2012-03-12 2018-03-20 Qualcomm Incorporated Selecting a cell identifier based on a downlink control information
US9654260B2 (en) * 2012-03-15 2017-05-16 Lg Electronics Inc. Method for setting start symbol of downlink channel in wireless communication system and apparatus for same
CN104221437B (zh) 2012-03-16 2018-04-13 联发科技股份有限公司 Ofdm/ofdma系统中增强物理下行链路控制信道的物理结构以及参考信号利用
SG11201405622XA (en) * 2012-03-16 2014-10-30 Nokia Solutions & Networks Oy Blind decoding
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
CN103326841B (zh) * 2012-03-19 2019-08-09 北京三星通信技术研究有限公司 一种配置下行控制信道的搜索空间的方法及设备
CN103327617B (zh) * 2012-03-20 2016-08-17 上海贝尔股份有限公司 一种资源调度方法和设备
CN103327521B (zh) 2012-03-20 2016-12-14 上海贝尔股份有限公司 用于分配和检测下行链路控制信道资源的方法以及设备
US9445409B2 (en) 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
KR102047698B1 (ko) 2012-04-13 2019-12-04 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 검색 영역을 설정하는 방법 및 이를 위한 장치
US9538502B2 (en) * 2012-05-01 2017-01-03 Qualcomm Incorporated Methods and apparatus for managing control and data transmissions for low cost user equipments
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
JP5726819B2 (ja) * 2012-05-11 2015-06-03 株式会社Nttドコモ 復号方法、無線基地局、ユーザ端末及び無線通信システム
EP2847917B1 (en) * 2012-05-11 2018-10-31 Telefonaktiebolaget LM Ericsson (publ) Apparatus and method for downlink scheduling
JP2013243460A (ja) * 2012-05-18 2013-12-05 Sharp Corp 端末、基地局、通信システムおよび通信方法
CN110247731B (zh) 2012-06-30 2021-06-01 华为技术有限公司 下行控制信息传输方法及基站、终端
CN104322121B (zh) * 2012-07-24 2018-05-04 华为技术有限公司 下行控制信息的发送、接收方法、服务节点及用户设备
US9723602B2 (en) * 2012-08-03 2017-08-01 Qualcomm Incorporated Interaction between EPCFICH and EPDCCH in LTE
KR101584751B1 (ko) * 2012-08-16 2016-01-12 주식회사 케이티 송수신 포인트의 상향링크 제어채널 자원 설정 방법, 그 송수신 포인트, 단말의 상향링크 제어채널 자원 매핑방법 및 그 단말
ES2711337T3 (es) * 2012-08-15 2019-05-03 Huawei Tech Co Ltd Método de envío y recepción de señal de detección, estación base y equipo de usuario
CN103686858B (zh) * 2012-08-31 2018-02-06 华为技术有限公司 上行控制信息的反馈方法、基站及用户设备
KR102096927B1 (ko) * 2012-09-04 2020-04-06 삼성전자주식회사 제어 채널 엘리먼트들에 대한 어그리게이션 레벨들 개수 조정 장치 및 방법
CN109586888B (zh) 2012-09-27 2021-08-20 华为技术有限公司 一种控制信道候选的分配方法及装置
CN104756536B (zh) * 2012-10-23 2019-04-19 Lg电子株式会社 用于在无线通信系统中接收控制信息的方法及装置
CN103812602B (zh) * 2012-11-09 2019-05-28 北京三星通信技术研究有限公司 盲检公共搜索空间和ue特定搜索空间的方法及设备
CN104704903A (zh) * 2012-11-09 2015-06-10 富士通株式会社 信息配置方法、信息发送方法、检测方法及其装置、系统
US10477557B2 (en) * 2012-12-03 2019-11-12 Sony Corporation Transmission of control information to reduced bandwidth terminals
US9036578B2 (en) * 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
US9832717B2 (en) 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
GB201300186D0 (en) * 2013-01-07 2013-02-20 Renesas Mobile Corp Method and apparatus for extending control signalling in an LTE network
EP2947937B1 (en) * 2013-01-16 2018-01-31 Fujitsu Limited Base station device, communi cation method, and terminal device
WO2014112833A1 (ko) * 2013-01-17 2014-07-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 장치
EP2955943B1 (en) 2013-03-19 2018-03-07 Huawei Technologies Co., Ltd. Control information indication method and device
CN104104636B (zh) * 2013-04-02 2017-08-25 上海贝尔股份有限公司 为基于dm‑rs解调的pbch配置物理资源的方法
US10448351B2 (en) * 2013-04-02 2019-10-15 Qualcomm Incorporated Employing neighboring cell assistance information for interference mitigation
WO2014165678A2 (en) 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Epdcch common search space design for one or more carrier types
US20160119940A1 (en) * 2013-05-15 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Method and bs for identifying ue transmits sr, and method and ue for transmitting sr to bs
US9414384B2 (en) * 2013-09-17 2016-08-09 Telefonaktiebolaget Lm Ericsson (Publ) State-driven secondary cell activation and deactivation
CN110635885B (zh) * 2014-01-29 2024-01-26 北京璟石知识产权管理有限公司 数据传输方法和装置
US11153875B2 (en) 2014-05-19 2021-10-19 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
US11432305B2 (en) * 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
EP3192204B8 (en) * 2014-09-10 2020-02-19 Telefonaktiebolaget LM Ericsson (publ) Radio access node, communication terminal and methods performed therein
US10264564B2 (en) * 2015-01-30 2019-04-16 Futurewei Technologies, Inc. System and method for resource allocation for massive carrier aggregation
US11362759B2 (en) * 2015-04-06 2022-06-14 Samsung Electronics Co., Ltd. Transmission power control for an uplink control channel
US10491328B2 (en) * 2015-08-28 2019-11-26 Intel IP Corporation Beamformed physical downlink control channels (BPDCCHs) for narrow beam based wireless communication
US10757637B2 (en) * 2015-09-01 2020-08-25 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
US10903939B2 (en) * 2016-02-03 2021-01-26 Sony Corporation Terminal device, base station device, and communication method for setting TTI channel
KR20170093068A (ko) * 2016-02-04 2017-08-14 한국전자통신연구원 통신 네트워크에서 상향링크 전송의 스케쥴링 방법
GB201602150D0 (en) * 2016-02-05 2016-03-23 Nec Corp Communication system
WO2018031111A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Control channel transmission in new radio access technologies using common search space
US10231228B2 (en) * 2016-09-23 2019-03-12 Mediatek Inc. Methods of two-stage scheduling in downlink control channel
WO2018058453A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 通信方法、终端设备和基站
EP3515144A4 (en) * 2016-09-29 2019-09-11 Ntt Docomo, Inc. USER DEVICE AND WIRELESS COMMUNICATION PROCESS
CN117500060A (zh) * 2016-12-30 2024-02-02 华为技术有限公司 控制信道的资源指示方法、用户设备和网络设备
WO2018141091A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
EP3602943A1 (en) * 2017-03-24 2020-02-05 Intel IP Corporation Techniques to enable physical downlink control channel communications
GB2560770A (en) * 2017-03-24 2018-09-26 Nec Corp Communication system
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
US11470616B2 (en) 2017-05-04 2022-10-11 Samsung Electronics Co., Ltd. Bandwidth part configurations for single carrier wideband operations
CN109218002B (zh) * 2017-07-09 2021-01-05 宏达国际电子股份有限公司 在频宽部分中执行数据传输的装置及方法
BR112019026422A2 (pt) 2017-09-07 2020-07-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método para transmissão de informações, dispositivo de rede e terminal
CN110351739B (zh) * 2018-04-04 2022-03-25 展讯通信(上海)有限公司 监测pdcch的方法、装置、基站及用户设备
US10966231B2 (en) * 2018-09-28 2021-03-30 Qualcomm Incorporated Configuring aggregation level and physical downlink control channel candidates at a user equipment
CN113115593B (zh) * 2018-11-12 2023-05-09 Oppo广东移动通信有限公司 装置及用于装置的非连续接收的方法
US10797832B2 (en) 2019-02-14 2020-10-06 Qualcomm Incorporated Dynamic hybrid automatic repeat request (HARQ) codebook for multi-transmit receive point (TRP) communication
US11800518B2 (en) * 2020-01-22 2023-10-24 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
CN111316741B (zh) * 2020-02-10 2023-10-31 北京小米移动软件有限公司 传输调度方法、装置、通信设备及存储介质
US11523377B2 (en) * 2020-02-14 2022-12-06 T-Mobile Usa, Inc. LTE resource allocation controller
CN115119212A (zh) * 2021-03-17 2022-09-27 中兴通讯股份有限公司 一种频谱共享信道资源分配方法、系统和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2205512C1 (ru) * 2002-04-25 2003-05-27 Приходько Виктор Владимирович Система подвижной радиосвязи
RU2005138495A (ru) * 2003-05-12 2006-06-27 Квэлкомм Инкорпорейтед (US) Способ и устройство для использования в системе связи
EP1708421A2 (en) * 2005-03-31 2006-10-04 NEC Corporation Controller and method for relieving competition between downlink RRC message and inter-cell movement of user equipment
EP1773075A2 (en) * 2005-10-05 2007-04-11 Samsung Electronics Co., Ltd. Fast cell selection method and apparatus for high speed downlink packet access system
KR20080086317A (ko) * 2007-03-21 2008-09-25 삼성전자주식회사 무선통신시스템의 물리하향제어채널의 자원 매핑 방법 및매핑된 물리하향제어채널의 송/수신 장치
KR20090017450A (ko) * 2007-08-14 2009-02-18 엘지전자 주식회사 Phich 전송 자원 영역 정보 획득 방법 및 이를 이용한pdcch 수신 방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040023874A1 (en) * 2002-03-15 2004-02-05 Burgess Catherine E. Therapeutic polypeptides, nucleic acids encoding same, and methods of use
KR100949969B1 (ko) * 2005-08-24 2010-03-29 엘지전자 주식회사 스케쥴링을 위한 제어 정보 전송방법
US7672667B2 (en) * 2006-01-17 2010-03-02 Telefonaktiebolaget L M Ericsson (Publ) Broadcast-centric cellular communication system
WO2008115020A1 (en) * 2007-03-21 2008-09-25 Samsung Electronics Co., Ltd. Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
CN101296140B (zh) * 2007-04-26 2011-08-24 华为技术有限公司 消息传输方法及装置、消息处理方法及装置
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
KR100976383B1 (ko) * 2007-07-05 2010-08-18 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중계국이 구성한 브로드캐스트 메시지의 전송정보를 처리하기 위한 장치 및 방법
KR101407136B1 (ko) * 2007-08-06 2014-06-13 엘지전자 주식회사 Tdd 무선 통신 시스템에서의 데이터 전송 방법
KR101448309B1 (ko) * 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
AR069102A1 (es) 2007-10-29 2009-12-30 Interdigital Patent Holdings Metodo y aparato para el manejo de las respuestas del canal de acceso aleatorio
US8787181B2 (en) * 2008-01-14 2014-07-22 Qualcomm Incorporated Resource allocation randomization
CN101494892B (zh) * 2008-01-23 2010-09-22 大唐移动通信设备有限公司 高速下行共享物理信道调制方式的指示、确定方法与装置
US8094701B2 (en) * 2008-01-31 2012-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation for high data rate transmission using multiple control channels
US8483107B2 (en) * 2008-03-16 2013-07-09 Lg Electronics Inc. Method and apparatus for acquiring resource allocation of control channel
KR101487553B1 (ko) * 2008-03-20 2015-01-30 엘지전자 주식회사 무선 통신 시스템에서 제어채널 모니터링 방법
US8503460B2 (en) * 2008-03-24 2013-08-06 Qualcomm Incorporated Dynamic home network assignment
CN101252783B (zh) * 2008-03-27 2012-09-05 中兴通讯股份有限公司 一种资源分配方法
US8326292B2 (en) * 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
KR101089838B1 (ko) 2008-08-13 2011-12-05 한국전자통신연구원 캐리어 집성을 사용하는 통신 시스템 및 상기 통신 시스템에 속하는 기지국 및 단말
CN101404526B (zh) * 2008-11-03 2013-05-01 中兴通讯股份有限公司 下行控制信息处理方法
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
KR101513042B1 (ko) 2008-12-02 2015-04-17 엘지전자 주식회사 신호 전송 방법 및 전송 장치
CN101478808B (zh) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
CN101505498B (zh) * 2009-03-17 2014-02-05 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
US8995358B2 (en) * 2009-04-30 2015-03-31 Qualcomm Incorporated False detection reduction during multi-carrier operation
US8340676B2 (en) * 2009-06-25 2012-12-25 Motorola Mobility Llc Control and data signaling in heterogeneous wireless communication networks
CN101998509B (zh) 2009-08-28 2013-01-23 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
CN102594537B (zh) 2009-08-28 2013-08-14 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
US9351293B2 (en) * 2009-09-11 2016-05-24 Qualcomm Incorporated Multiple carrier indication and downlink control information interaction
US9763197B2 (en) * 2009-10-05 2017-09-12 Qualcomm Incorporated Component carrier power control in multi-carrier wireless network
US20120113827A1 (en) 2010-11-08 2012-05-10 Sharp Laboratories Of America, Inc. Dynamic simultaneous pucch and pusch switching for lte-a

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2205512C1 (ru) * 2002-04-25 2003-05-27 Приходько Виктор Владимирович Система подвижной радиосвязи
RU2005138495A (ru) * 2003-05-12 2006-06-27 Квэлкомм Инкорпорейтед (US) Способ и устройство для использования в системе связи
EP1708421A2 (en) * 2005-03-31 2006-10-04 NEC Corporation Controller and method for relieving competition between downlink RRC message and inter-cell movement of user equipment
EP1773075A2 (en) * 2005-10-05 2007-04-11 Samsung Electronics Co., Ltd. Fast cell selection method and apparatus for high speed downlink packet access system
KR20080086317A (ko) * 2007-03-21 2008-09-25 삼성전자주식회사 무선통신시스템의 물리하향제어채널의 자원 매핑 방법 및매핑된 물리하향제어채널의 송/수신 장치
KR20090017450A (ko) * 2007-08-14 2009-02-18 엘지전자 주식회사 Phich 전송 자원 영역 정보 획득 방법 및 이를 이용한pdcch 수신 방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015820B2 (en) 2014-08-11 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for cell configuration
RU2663220C1 (ru) * 2014-08-11 2018-08-02 Телефонактиеболагет Лм Эрикссон (Пабл) Беспроводное устройство, первый сетевой узел и способы в них
US10212733B2 (en) 2014-08-11 2019-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for cell configuration
RU2694586C1 (ru) * 2015-08-25 2019-07-16 Идак Холдингз, Инк. Кадрирование, диспетчеризация и синхронизация в системах беспроводной связи
US11528701B2 (en) 2015-08-25 2022-12-13 Idac Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
US11729753B2 (en) 2015-08-25 2023-08-15 Interdigital Patent Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
US11778598B2 (en) 2015-08-25 2023-10-03 Interdigital Patent Holdings, Inc. Framing, scheduling, and synchronization in wireless systems

Also Published As

Publication number Publication date
EP4221044A3 (en) 2023-08-16
CA2771150C (en) 2017-02-14
EP2302830A3 (en) 2014-08-06
US20190387513A1 (en) 2019-12-19
US11412493B2 (en) 2022-08-09
US10973017B2 (en) 2021-04-06
EP4221042A2 (en) 2023-08-02
RU2617999C2 (ru) 2017-05-02
US20190387511A1 (en) 2019-12-19
US20200322934A1 (en) 2020-10-08
CN102549944A (zh) 2012-07-04
CN102549944B (zh) 2014-11-26
CA2771150A1 (en) 2011-03-31
JP5511105B2 (ja) 2014-06-04
KR102095721B1 (ko) 2020-04-02
KR20120085273A (ko) 2012-07-31
CN104270237A (zh) 2015-01-07
US9295043B2 (en) 2016-03-22
KR102017735B1 (ko) 2019-09-03
KR20190103485A (ko) 2019-09-04
US11076395B2 (en) 2021-07-27
US11147050B2 (en) 2021-10-12
EP4221044A2 (en) 2023-08-02
EP4221043A3 (en) 2023-08-16
US20220386344A1 (en) 2022-12-01
EP3731451B1 (en) 2023-01-25
US11206649B2 (en) 2021-12-21
EP3731451A1 (en) 2020-10-28
EP2302830B1 (en) 2020-06-17
AU2010298857A1 (en) 2012-03-08
KR102113066B1 (ko) 2020-05-21
CN104270237B (zh) 2019-09-27
JP2014003724A (ja) 2014-01-09
JP5722977B2 (ja) 2015-05-27
BR112012006948A2 (pt) 2016-12-06
WO2011037439A2 (en) 2011-03-31
US20200015207A1 (en) 2020-01-09
KR20180098693A (ko) 2018-09-04
KR20190104239A (ko) 2019-09-06
US20190387510A1 (en) 2019-12-19
US10952205B2 (en) 2021-03-16
US20190387512A1 (en) 2019-12-19
KR20190103484A (ko) 2019-09-04
US20140036828A1 (en) 2014-02-06
KR101783064B1 (ko) 2017-09-28
US20180014287A1 (en) 2018-01-11
AU2010298857B2 (en) 2013-11-28
RU2013137464A (ru) 2015-02-20
BR112012006948B1 (pt) 2021-04-27
CA2881659A1 (en) 2011-03-31
WO2011037439A3 (en) 2011-09-15
KR20170110735A (ko) 2017-10-11
KR102095724B1 (ko) 2020-04-02
RU2012117748A (ru) 2013-11-10
US20110075624A1 (en) 2011-03-31
US11191067B2 (en) 2021-11-30
CA2881659C (en) 2017-01-03
EP2302830A2 (en) 2011-03-30
EP4221042A3 (en) 2023-08-16
KR101893460B1 (ko) 2018-08-31
US9883495B2 (en) 2018-01-30
JP2013506376A (ja) 2013-02-21
EP4221043A2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
US10952205B2 (en) Extending physical downlink control channels
AU2013251187C1 (en) Extending physical downlink control channels