WO2012108688A2 - 스케줄링 정보 모니터링 방법 및 장치 - Google Patents

스케줄링 정보 모니터링 방법 및 장치 Download PDF

Info

Publication number
WO2012108688A2
WO2012108688A2 PCT/KR2012/000932 KR2012000932W WO2012108688A2 WO 2012108688 A2 WO2012108688 A2 WO 2012108688A2 KR 2012000932 W KR2012000932 W KR 2012000932W WO 2012108688 A2 WO2012108688 A2 WO 2012108688A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
scheduling information
scheduling
cell
monitoring
Prior art date
Application number
PCT/KR2012/000932
Other languages
English (en)
French (fr)
Other versions
WO2012108688A3 (ko
Inventor
양석철
김민규
안준기
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020137009564A priority Critical patent/KR101540869B1/ko
Priority to US13/881,340 priority patent/US9137796B2/en
Publication of WO2012108688A2 publication Critical patent/WO2012108688A2/ko
Publication of WO2012108688A3 publication Critical patent/WO2012108688A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • H04W36/385Reselection control by fixed network equipment of the core network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for monitoring scheduling information in a wireless communication system.
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • a physical channel is a downlink channel PDSCH (Physical). It can be divided into a downlink shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH downlink shared channel
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the PDCCH is a control channel carrying downlink resource allocation and uplink resource allocation. Blind decoding is used to receive the PDCCH.
  • the UE does not know when the PDCCH is received.
  • the UE monitors whether the PDCCH is received within a certain area and detects its own PDCCH.
  • 3GPP LTE-A (advanced) is an evolution of 3GPP LTE.
  • the technologies introduced in 3GPP LTE-A include carrier aggregation and multiple input multiple output (MIMO) supporting four or more antenna ports.
  • MIMO multiple input multiple output
  • Carrier aggregation and MIMO technology are for processing large amounts of data.
  • PDCCH currently used in 3GPP LTE may not be suitable for processing large data and newly introduced technologies.
  • An object of the present invention is to provide a method and apparatus for monitoring scheduling information in a wireless communication system.
  • a method of monitoring scheduling information in a wireless communication system may include: monitoring, by the terminal, a first physical downlink control channel (PDCCH) having first scheduling information; and monitoring, by the terminal, a second PDCCH having second scheduling information based on the first scheduling information. It includes.
  • the second scheduling information includes resource allocation for a plurality of serving cells.
  • the first PDCCH and the second PDCCH may be monitored in the same subframe of the same serving cell.
  • an apparatus for monitoring scheduling information in a wireless communication system includes a radio freqeuncy (RF) unit for transmitting and receiving a radio signal, and a processor connected to the RF unit, wherein the processor monitors a first physical downlink control channel (PDCCH) having first scheduling information; And monitoring a second PDCCH having second scheduling information based on the first scheduling information.
  • the second scheduling information includes resource allocation for a plurality of serving cells.
  • PDCCH blocking due to large traffic can be reduced.
  • the blind decoding burden of the PDCCH may be reduced, and battery consumption of the UE may be reduced.
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 is a block diagram showing the configuration of a PDCCH.
  • 3 is an exemplary diagram illustrating monitoring of a PDCCH.
  • FIG 5 illustrates monitoring of scheduling information according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • transmission of downlink data packets is performed by a pair of PDCCH and PDSCH.
  • Transmission of the uplink data packet is performed by a pair of PDCCH and PUSCH.
  • the terminal receives a downlink data packet on the PDSCH indicated by the PDCCH.
  • the UE monitors the PDCCH in the downlink subframe and receives the downlink resource allocation on the PDCCH.
  • the terminal receives a downlink data packet on the PDSCH indicated by the downlink resource allocation.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a radio network temporary identifier (RNTI)).
  • CRC cyclic redundancy check
  • RNTI radio network temporary identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • TPC-RNTI may be masked to the CRC to indicate a transmit power control (TPC) command for a plurality of terminals.
  • the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
  • the DCI to which the CRC is added is encoded to generate coded data (220).
  • Encoding includes channel encoding and rate matching.
  • the encoded data is modulated to generate modulation symbols (230).
  • the modulation symbols are mapped to a physical resource element (240). Each modulation symbol is mapped to an RE.
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of the PDDCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
  • 3 is an exemplary diagram illustrating monitoring of a PDCCH. This may be referred to in section 9 of 3GPP TS 36.213 V8.7.0 (2009-05).
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the UE monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space and a UE-specific search space.
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • Table 1 below shows the number of PDCCH candidates monitored by the UE.
  • the size of the search space is determined by Table 1, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary.
  • the terminal specific search space and the common search space may overlap.
  • the search space S (L) k is defined as a set of PDCCH candidates.
  • the CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
  • N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
  • the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
  • M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
  • variable Y k is defined as follows.
  • n s is a slot number in a radio frame.
  • a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
  • the following table shows an example of PDCCH monitoring configured with C-RNTI.
  • the uses of the DCI format are classified as shown in the following table.
  • DCI format 0 Used for PUSCH scheduling
  • DCI format 1 Used for scheduling one PDSCH codeword
  • DCI format 1A Used for compact scheduling and random access of one PDSCH codeword
  • DCI format 1B Used for simple scheduling of one PDSCH codeword with precoding information
  • DCI format 1C Used for very compact scheduling of one PDSCH codeword
  • DCI format 1D Used for simple scheduling of one PDSCH codeword with precoding and power offset information
  • DCI format 2 Used for PDSCH scheduling of terminals configured in closed loop spatial multiplexing mode
  • DCI format 2A Used for PDSCH scheduling of terminals configured in an open-loop spatial multiplexing mode
  • DCI format 3 Used to transmit TPC commands of PUCCH and PUSCH with 2-bit power adjustments
  • DCI format 3A Used to transmit TPC commands of PUCCH and PUSCH with 1-bit power adjustment
  • the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
  • Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • One DL CC or a pair of UL CC and DL CC may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of DL CCs receives a service from a plurality of serving cells.
  • the number of DL CCs and UL CCs is not limited.
  • PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
  • the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
  • the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
  • Each serving cell may be identified through a cell index (CI).
  • the CI may be unique within the cell or may be terminal-specific.
  • CI 0, 1, 2 is assigned to the first to third serving cells is shown.
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the CI of the primary cell can be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • the UE may monitor the PDCCH through a plurality of serving cells. However, even if there are N serving cells, the base station can be configured to monitor the PDCCH for M (M ⁇ N) serving cells. In addition, the base station may be configured to preferentially monitor the PDCCH for L (L ⁇ M ⁇ N) serving cells.
  • Two scheduling schemes are possible in a multi-carrier system.
  • PDSCH scheduling is performed only in each serving cell.
  • the PDCCH of the primary cell schedules the PDSCH of the primary cell
  • the PDCCH of the secondary cell schedules the PDSCH of the secondary cell.
  • the PDCCH-PDSCH structure of the existing 3GPP LTE can be used as it is.
  • the PDCCH of each serving cell may schedule not only its own PDDSCH but also PDSCH of another serving cell.
  • a serving cell in which a PDCCH is transmitted is called a scheduling cell
  • a serving cell in which a PDSCH scheduled through the PDCCH of the scheduling cell is transmitted is called a scheduled cell.
  • the scheduling cell may also be referred to as a scheduling CC
  • the scheduled cell may also be referred to as a scheduled CC.
  • per-CC scheduling the scheduling cell and the scheduled cell are the same.
  • cross-CC scheduling the scheduling cell and the scheduled cell may be the same or different.
  • a carrier indicator field (CIF) is introduced into DCI.
  • the CIF includes the CI of the cell with the PDSCH being scheduled.
  • CIF may also be referred to as a CI of a scheduled cell.
  • per-CC scheduling the CIF is not included in the DCI of the PDCCH.
  • cross-CC scheduling CIF is included in DCI of PDCCH.
  • the base station may configure per-CC scheduling or cross-CC scheduling cell-specifically or terminal-specifically. For example, the base station may set cross-CC scheduling to a specific terminal with a higher layer message such as an RRC message.
  • a higher layer message such as an RRC message.
  • the base station may allow the PDCCH to be monitored only in a specific serving cell.
  • a cell activated to monitor the PDCCH is called an activated cell (or monitoring cell).
  • the CCE corresponding to the PDCCH candidate m in the search space S (L) k may be given as follows.
  • n CI is the value given in CIF.
  • the other parameters are defined in the same manner as in the equations (1) and (2).
  • the terminal searches for a common search space in the primary cell.
  • a UE configured for per-CC scheduling may monitor a UE-specific search space for a PDCCH having no CIF in each activated serving cell.
  • a terminal configured for cross-CC scheduling may monitor a UE-specific search space for a PDCCH having a CIF in each activated serving cell. If another serving cell is configured to monitor the PDCCH having the CIF corresponding to the secondary cell, the UE may not monitor the PDCCH of the corresponding secondary cell.
  • one PDCCH schedules only one cell (ie, one PDSCH).
  • a search space of cells scheduled in the control region of the scheduling cell is defined for each scheduled cell. If the load of the PDCCH increases, such as sudden traffic increase or simultaneous scheduling of multiple terminals, PDCCH blocking that fails to transmit the PDCCH in a corresponding subframe due to overlap of search space for each terminal Can increase.
  • PDCCH blocking may increase due to PDCCH encoded at this unwanted high CCE aggregation level.
  • P-PDCCH primary PDCCH
  • S-PDCCH secondary PDCCH
  • FIG 5 illustrates monitoring of scheduling information according to an embodiment of the present invention.
  • the terminal first detects the P-PDCCH 510.
  • the S-PDCCH 520 corresponding to the P-PDCCH 510 is detected based on the information on the P-PDCCH 510.
  • the S-PDCCH 520 may include scheduling information for a plurality of serving cells.
  • the S-PDCCH 520 includes scheduling information about the PDSCH 530 of the first serving cell and the PDSCH 540 of the second serving cell, the S-PDCCH 520 is not limited in number. In addition, the S-PDCCH 520 may include UL scheduling information.
  • the P-PDCCH may be masked with the same RNTI (eg, C-RNTI) as the S-PDCCH.
  • the P-PDCCH may be masked with a primary RNTI and the S-PDCCH may be masked with a secondary RNTI.
  • the primary RNTI is a public, group-specific and / or terminal-specific RNTI defined for the P-PDCCH.
  • the secondary RNTI may be a UE-specific RNTI, for example, a C-RNTI.
  • the S-PDCCH may be encoded in the same manner as the existing PDCCH and transmitted in the control region of the subframe.
  • the S-PDCCH may be encoded in the same manner as the PDSCH (or the existing PDCCH) and transmitted in the data region of the subframe.
  • Whether two-step scheduling is applied may be configured cell-specifically or terminal-specifically.
  • the cell to which 2-step scheduling is applied may be all of a plurality of serving cells configured for the terminal or an activated cell.
  • the base station may inform the terminal of the cell to which 2-step scheduling is applied.
  • the S-PDCCH may carry scheduling information for a plurality of CCs, that is, DCIs for a plurality of serving cells.
  • the P-PDCCH may carry information related to the S-PDCCH, for example, information about a cell to be scheduled, a DCI format for each cell, a search space through which the S-PDCCH is transmitted, and a CCE aggregation level through which the S-PDCCH is transmitted.
  • the UE may attempt to detect the S-PDCCH after recognizing the payload size or transmitted position of the S-PDCCH corresponding to the P-PDCCH based on the information on the P-PDCCH. .
  • the UE may attempt to detect the corresponding S-PDCCH only when the P-PDCCH is successfully detected.
  • the UE may be configured to monitor the P-PDCCH in preference to the normal PDCCH.
  • the normal PDCCH refers to a PDCCH used for conventional one-step scheduling indicating itself as a PDSCH. If the UE succeeds in detecting the P-PDCCH, the regular PDCCH may not be monitored any more. That is, when the P-PDCCH is detected, the UE may stop monitoring the regular PDCCH for all or part of the plurality of serving cells. If the P-PDCCH is successfully detected, the UE does not monitor the regular PDCCH for the cell scheduled by the P-PDCCH and / or the S-PDCCH.
  • the DCI on the P-PDCCH may include at least one of the following.
  • Target field indicating a scheduling cell This may indicate an index or a bitmap of a serving cell scheduled by the S-PDCCH.
  • Indication field indicating a DCI format This may indicate information on a payload of a DCI format or an S-PDCCH scheduled in each serving cell.
  • Monitoring field for monitoring the S-PDCCH This may indicate a search space in which the S-PDCCH is transmitted, a CCE aggregation level, and a resource in which the S-PDDCH is transmitted.
  • the DCI on the S-PDCCH includes information scheduling PDSCH / PUSCH for one or more serving cells.
  • the scheduling information may include PDSCH / PUSCH allocation in order of cells corresponding to a target field and an indication field on the P-PDCCH.
  • PDSCH / PUSCH allocation of the S-PDCCH may omit the CIF, DL / UL flag, and padding bits included in the existing DCI format.
  • transmit power control TPC
  • ACK / NACK resource indicator ARI
  • DL-DAI downlink assignment index
  • a channel quality indicator (CQI) request In S-PDCCH having UL resource allocation, a channel quality indicator (CQI) request, a cyclic shift of a demodulation reference signal (DMRS), and a UL-DAI may be defined as one value as common information of each scheduling cell. If aperiodic CQI is triggered by the CQI request, the UE may feed back the CQI in a cell having the lowest CC index.
  • CQI channel quality indicator
  • DMRS demodulation reference signal
  • the P-PDCCH / S-PDCCH may be limited to be transmitted only in a specific serving cell.
  • the P-PDCCH / S-PDCCH may be monitored only in the activated cell or monitored only in the primary cell.
  • P-PDCCH / S-PDCCH may be monitored in a serving cell in which system information is transmitted and / or in a serving cell capable of PUCCH transmission.
  • PUCCH resources for ACK / NACK transmission may be determined based on the index of the CCE used for the P-PDCCH and / or S-PDCCH.
  • the UE may inform the base station whether the detection of the S-PDCCH has failed.
  • the UE may inform that S-PDCCH detection has failed through the PUCCH resource linked to the index of the CCE of the P-PDCCH.
  • the S-PDCCH detection failure may be transmitted using a 1-bit field or using on-off keying (ie, failure if a detection failure is transmitted, success if no detection failure is transmitted).
  • the S-PDCCH includes scheduling information for a plurality of serving cells, so that the payload size is larger than that of the P-PDCCH. Therefore, the size of the available CCE aggregation level of the S-PDCCH may be limited to a specific aggregation level. For example, the P-PDCCH uses a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ , but the S-PDCCH may use a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • a plurality of PUCCH resources linked to the indexes of a plurality of CCEs used by the S-PDCCH are used for ACK / NACK transmission for a plurality of PDSCHs (and other DL channels requiring other ACK / NACK transmissions) scheduled by the S-PDCCH. Can be.
  • P-PDCCH / S-PDCCH for DL scheduling for a plurality of serving cells and P-PDCCH / S-PDCCH for UL scheduling for a plurality of serving cells may exist separately.
  • the above-described two-step scheduling can be applied only to DL scheduling.
  • the serving cell to which 2-step scheduling is applied may be a serving cell set to the same bandwidth and / or the same transmission mode.
  • the DCI format for each serving cell in the S-PDCCH may be all limited in the same way.
  • the primary cell may be used for transmission of system information and semi-persistent scheduling (SPS) data
  • two-step scheduling may not be applied.
  • Two-step scheduling can be applied only for the secondary cell.
  • the first through sixth approaches described above may be implemented independently or in combination.
  • the existing DCI format used for the regular PDCCH may be reused.
  • a DCI format that can be used in common for all serving cells and transmission modes can be used for the P-PDCCH. This is called the P-DCI format.
  • the P-DCI format may include at least one of DCI format 0 and DCI format 1A.
  • the size of the CQI request field in DCI format 0 is 1 bit.
  • the size of the CQI request field in DCI format 0 is considered to be 2 bits in order to enable CQI requests for the plurality of serving cells.
  • padding bits may be added to DCI format 1A by the number of bits of the increased CQI request field (that is, 1 bit).
  • the following method may be considered.
  • a 1-bit flag in the P-DCI format may be added to identify whether a P-PDCCH or a regular PDCCH is present. If the flag indicates the P-PDCCH, the UE may recognize that the remaining fields are used for the P-PDCCH. If the flag indicates a regular PDCCH, the UE may recognize that the remaining fields are used for the regular PDCCH.
  • the padding bit may be used as a flag for identifying the P-DCI format. For example, if the padding bit is set to '1', the terminal may recognize that the received DCI format 1A is for the P-PDCCH.
  • the resource allocation field in DCI format 0 may be used as a flag for identifying the P-DCI format. For example, if all resource allocation fields are set to '1', the UE may recognize that the received DCI format 0 is for the P-PDCCH.
  • FIG. 6 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the embodiment of FIG. 5, the operation of the base station may be implemented by the processor 51.
  • the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the embodiment of FIG. 5, the operation of the terminal may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 스케줄링 정보를 모니터링하는 방법 및 장치가 제공된다. 단말은 제1 스케줄링 정보를 갖는 제1 PDCCH(Physical Downlink Control Channel)를 모니터링고, 상기 제1 스케줄링 정보를 기반으로 제2 스케줄링 정보를 갖는 제2 PDCCH를 모니터링한다. 상기 제2 스케줄링 정보는 복수의 서빙 셀에 대한 자원 할당을 포함한다.

Description

스케줄링 정보 모니터링 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 스케줄링 정보를 모니터링하는 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, 3GPP LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
PDCCH는 하향링크 자원 할당 및 상향링크 자원 할당을 나르는 제어채널이다. PDCCH를 수신하기 위해 블라인드 디코딩이 사용된다. 단말은 PDCCH가 언제 수신되는지 여부를 알지 못한다. 단말은 일정 영역 내에서 PDCCH가 수신되는지 여부를 모니터링하여, 자신의 PDCCH를 검출한다.
한편, 3GPP LTE의 진화인 3GPP LTE-A(advanced)가 진행되고 있다. 3GPP LTE-A에 도입되는 기술로는 반송파 집성(carrier aggregation)과 4개 이상의 안테나 포트를 지원하는 MIMO(multiple input multiple output)가 있다. 반송파 집성과 MIMO 기술은 대용량 데이터의 처리를 위한 것이다.
현재 3GPP LTE에서 사용되는 PDCCH의 구조는 대용량 데이터의 처리와 새로이 도입되는 기술에 적합하지 못할 수 있다.
본 발명이 이루고자 하는 기술적 과제는 무선 통신 시스템에서 스케줄링 정보를 모니터링하는 방법 및 장치를 제공하는 데 있다.
일 양태에서, 무선 통신 시스템에서 스케줄링 정보 모니터링 방법이 제공된다. 상기 방법은 단말이 제1 스케줄링 정보를 갖는 제1 PDCCH(Physical Downlink Control Channel)를 모니터링하는 단계, 및 상기 단말이 상기 제1 스케줄링 정보를 기반으로 제2 스케줄링 정보를 갖는 제2 PDCCH를 모니터링하는 단계를 포함한다. 상기 제2 스케줄링 정보는 복수의 서빙 셀에 대한 자원 할당을 포함한다.
상기 제1 PDCCH 및 상기 제2 PDCCH는 동일한 서빙 셀의 동일한 서브프레임에서 모니터링될 수 있다.
다른 양태에서, 무선 통신 시스템에서 스케줄링 정보를 모니터링하는 장치가 제공된다. 상기 장치는 무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 스케줄링 정보를 갖는 제1 PDCCH(Physical Downlink Control Channel)를 모니터링하고, 상기 제1 스케줄링 정보를 기반으로 제2 스케줄링 정보를 갖는 제2 PDCCH를 모니터링한다. 상기 제2 스케줄링 정보는 복수의 서빙 셀에 대한 자원 할당을 포함한다.
대용량 트래픽으로 인한 PDCCH 블록킹이 발생하는 것을 줄일 수 있다. PDCCH의 블라인드 디코딩 부담을 줄이고, 단말의 배터리 소모를 줄일 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 PDCCH의 구성을 나타낸 블록도이다.
도 3은 PDCCH의 모니터링을 나타낸 예시도이다.
도 4는 다중 반송파의 일 예를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 스케줄링 정보의 모니터링을 나타낸다.
도 6은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서 하향링크 데이터 패킷의 전송은 PDCCH와 PDSCH의 쌍으로 수행된다. 상향링크 데이터 패킷의 전송은 PDCCH와 PUSCH의 쌍으로 수행된다. 예를 들어, 단말은 PDCCH에 의해 지시되는 PDSCH 상으로 하향링크 데이터 패킷을 수신한다. 단말은 하향링크 서브프레임에서 PDCCH를 모니터링하여, 하향링크 자원 할당를 PDCCH 상으로 수신한다. 단말은 상기 하향링크 자원 할당이 가리키는 PDSCH 상으로 하향링크 데이터 패킷을 수신한다.
도 2는 PDCCH의 구성을 나타낸 블록도이다. 기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다(210).
특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. 복수의 단말에 대한 TPC(transmit power control) 명령을 지시하기 위해 TPC-RNTI가 CRC에 마스킹될 수 있다.
C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어정보(이를 단말 특정(UE-specific) 제어정보라 함)를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 단말이 수신하는 공용(common) 제어정보를 나른다.
CRC가 부가된 DCI를 인코딩하여 부호화된 데이터(coded data)를 생성한다(220). 인코딩은 채널 인코딩과 레이트 매칭(rate matching)을 포함한다.
부호화된 데이터는 변조되어 변조 심벌들이 생성된다(230).
변조심벌들은 물리적인 RE(resource element)에 맵핑된다(240). 변조심벌 각각은 RE에 맵핑된다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDDCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
도 3은 PDCCH의 모니터링을 나타낸 예시도이다. 이는 3GPP TS 36.213 V8.7.0 (2009-05)의 9절을 참조할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 PDCCH 후보(candidate)라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 단말은 자신의 PDCCH가 제어영역내에서 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알지 못한다.
하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간내에서 PDCCH를 모니터링한다.
검색 공간은 공용 검색 공간(common search space)과 단말 특정 검색 공간(UE-specific search space)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.
다음 표 1은 단말에 의해 모니터링되는 PDCCH 후보의 개수를 나타낸다.
표 1
Search Space Type Aggregation level L Size [in CCEs] Number of PDCCH candidates DCI formats
UE-specific 1 6 6 0, 1, 1A,1B,1D, 2, 2A
2 12 6
4 8 2
8 16 2
Common 4 16 4 0, 1A, 1C, 3/3A
8 16 2
검색 공간의 크기는 상기 표 1에 의해 정해지고, 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집합 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다.
집합 레벨 L∈{1,2,3,4}에서 검색 공간 S(L) k는 PDCCH 후보의 집합으로 정의된다. 검색 공간 S(L) k의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어진다.
수학식 1
Figure PCTKR2012000932-appb-M000001
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어영역내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집합 레벨 L에서 PDCCH 후보의 개수이다.
공용 검색 공간에서, Yk는 2개의 집합 레벨, L=4 및 L=8에 대해 0으로 셋팅된다.
집합 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.
수학식 2
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다.
단말이 C-RNTI를 이용하여 PDCCH를 모니터링할 때, PDSCH의 전송 모드(transmission mode)에 따라 모니터링할 DCI 포맷과 검색 공간이 결정된다. 다음 표는 C-RNTI가 설정된 PDCCH 모니터링의 예를 나타낸다.
표 2
전송 모드 DCI 포맷 검색 공간 PDCCH에 따른 PDSCH의 전송모드
모드 1 DCI 포맷 1A 공용 및 단말 특정 싱글 안테나 포트, 포트 0
DCI 포맷 1 단말 특정 싱글 안테나 포트, 포트 0
모드 2 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티(transmit diversity)
DCI 포맷 1 단말 특정 전송 다이버시티
모드 3 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2A 단말 특정 CDD(Cyclic Delay Diversity) 또는 전송 다이버시티
모드 4 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2 단말 특정 폐루프 공간 다중화(closed-loop spatial multiplexing)
모드 5 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1D 단말 특정 MU-MIMO(Multi-user Multiple Input Multiple Output)
모드 6 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1B 단말 특정 폐루프 공간 다중화
모드 7 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 1 단말 특정 싱글 안테나 포트, 포트 5
모드 8 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 2B 단말 특정 이중 계층(dual layer) 전송(포트 7 또는 8), 또는 싱 글 안테나 포트, 포트 7 또는 8
DCI 포맷의 용도는 다음 표와 같이 구분된다.
표 3
DCI 포맷 내 용
DCI 포맷 0 PUSCH 스케줄링에 사용
DCI 포맷 1 하나의 PDSCH 코드워드(codeword)의 스케줄링에 사용
DCI 포맷 1A 하나의 PDSCH 코드워드의 간단(compact) 스케줄링 및 랜덤 액세스 과정에 사용
DCI 포맷 1B 프리코딩 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 1C 하나의 PDSCH 코드워드(codeword)의 매우 간단(very compact) 스케줄링에 사용
DCI 포맷 1D 프리코딩 및 파워 오프셋(pwwer offset) 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 2 폐루프 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 2A 개루프(open-loop) 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 3 2비트 파워 조정(power adjustments)을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
DCI 포맷 3A 1비트 파워 조정을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)는 하나의 셀에 대응될 수 있다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 4는 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #1과 UL CC #1의 쌍이 제1 서빙 셀이 되고, DL CC #2과 UL CC #2의 쌍이 제2 서빙 셀이 되고, DL CC #3이 제3 서빙 셀이 된다고 하자. 각 서빙 셀은 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다. 여기서는, 제1 내지 제3 서빙셀에 CI=0, 1, 2가 부여된 예를 보여준다.
서빙 셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
단말은 복수의 서빙셀을 통해 PDCCH를 모니터링할 수 있다. 하지만, N개의 서빙 셀이 있더라도, 기지국으로 M (M≤N)개의 서빙 셀에 대해 PDCCH를 모니터링하도록 설정할 수 있다. 또한, 기지국은 L (L≤M≤N)개의 서빙 셀에 대해 우선적으로 PDCCH를 모니터링하도록 설정할 수 있다
다중 반송파 시스템에서 2가지의 스케줄링 방식이 가능하다.
첫번째인 per-CC 스케줄링에 의하면, 각 서빙 셀내에서만 PDSCH 스케줄링이 수행된다. 1차 셀의 PDCCH는 1차 셀의 PDSCH를 스케줄링하고, 2차 셀의 PDCCH는 2차 셀의 PDSCH를 스케줄링한다. 이에 의하면 기존 3GPP LTE의 PDCCH-PDSCH 구조를 그대로 사용할 수 있다.
두번째인 cross-CC 스케줄링에 의하면, 각 서빙 셀의 PDCCH은 자신의 PDDSCH를 스케줄링할 뿐 아니라 다른 서빙 셀의 PDSCH를 스케줄링할 수 있다.
PDCCH가 전송되는 서빙 셀을 스케줄링 셀(scheduling cell), 스케줄링 셀의 PDCCH를 통해 스케줄링되는 PDSCH가 전송되는 서빙 셀을 스케줄링된 셀(scheduled cell)이라고 한다. 스케줄링 셀은 스케줄링 CC라고도 하고, 스케줄링된 셀은 스케줄링된 CC라고도 할 수 있다. per-CC 스케줄링에 의하면, 스케줄링 셀과 스케줄링된 셀은 동일하다. cross-CC 스케줄링에 의하면, 스케줄링 셀과 스케줄링된 셀은 동일할 수도 다를 수도 있다.
cross-CC 스케줄링을 위해, CIF(carrier indicator field)가 DCI에 도입되고 있다. CIF는 스케줄링되는 PDSCH를 갖는 셀의 CI를 포함한다. CIF는 스케줄링된 셀의 CI를 가리킨다고도 할 수 있다. per-CC 스케줄링에 의하면 PDCCH의 DCI에 CIF가 포함되지 않는다. cross-CC 스케줄링에 의하면 PDCCH의 DCI에 CIF가 포함된다
기지국은 per-CC 스케줄링 또는 cross-CC 스케줄링을 셀-특정적 또는 단말-특정적으로 설정할 수 있다. 예를 들어, 기지국은 RRC 메시지와 같은 상위 계층 메시지로 특정 단말에게 cross-CC 스케줄링을 설정할 수 있다.
복수의 서빙 셀이 있더라도, 블라인드 디코딩으로 인한 부담을 줄이기 위해 기지국은 특정 서빙 셀에서만 PDCCH를 모니터링하도록 할 수 있다. PDCCH를 모니티링하도록 활성화된 셀을 활성화된(activated) 셀(또는 모니터링 셀)이라고 한다.
각 서빙 셀에 대해, 검색 공간 S(L) k의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어질 수 있다.
수학식 3
Figure PCTKR2012000932-appb-M000003
여기서, m'=m+M(L)nCI, nCI는 CIF에서 주어진 값이다. 다른 파라미터는 수학식 1 및 2와 동일하게 정의된다.
단말은 1차셀에서 공용 검색 공간을 검색한다.
per-CC 스케줄링으로 설정된 단말은 각 활성화된 서빙 셀에서 CIF를 갖지 않는 PDCCH에 대해 단말-특정 검색 공간을 모니터링할 수 있다.
cross-CC 스케줄링으로 설정된 단말은 각 활성화된 서빙 셀에서 CIF를 갖는 PDCCH에 대해 단말-특정 검색 공간을 모니터링할 수 있다. 다른 서빙 셀에서 2차셀에 대응하는 CIF를 갖는 PDCCH를 모니터링하도록 설정되면, 단말은 해당되는 2차 셀의 PDCCH를 모니터링하지 않을 수 있다.
per-CC 스케줄링 또는 cross-CC 스케줄링에 상관없이, 하나의 PDCCH는 하나의 셀(즉, 하나의 PDSCH)만을 스케줄링한다. 그리고, 스케줄링 셀의 제어 영역 내에서 스케줄링된 셀의 검색 공간이 각 스케줄링된 셀 별로 정의된다. 만약, 갑작스러운 트래픽 증가 또는 다수 단말에 대한 동시 스케줄링 등 PDCCH의 부하가 증가하면, 각 단말에 대한 검색 공간의 중복(overlap) 등으로 인해 해당 서브프레임에서 PDCCH를 전송하지 못하는 PDCCH 블록킹(blocking)이 증가할 수 있다.
예를 들어, 특정 단말의 PDCCH가 CCE 집합 레벨 1 또는 2로 전송 가능한데, 다른 단말들의 PDCCH를 위한 검색 공간과의 중복으로 인해, 상기 특정 단말의 PDCCH를 CCE 집합 레벨 4 또는 8로 전송해야 하는 경우가 발생할 수 있다. 이러한 원치않는 높은 CCE 집합 레벨로 인코딩되는 PDCCH로 인해 PDCCH 블록킹이 증가할 수 있다.
본 발명에 의하면, 1차(Primary) PDCCH(P-PDCCH)와 2차(Secondary) PDCCH (S-PDCCH)를 기반으로 하는 2-스텝 스케줄링을 제안한다.
도 5는 본 발명의 일 실시예에 따른 스케줄링 정보의 모니터링을 나타낸다.
단말은 먼저 P-PDCCH(510)를 검출한다. 그리고, P-PDCCH(510) 상의 정보를 기반으로 P-PDCCH(510)에 대응하는 S-PDCCH(520)를 검출한다. S-PDCCH(520)는 복수의 서빙 셀에 대한 스케줄링 정보를 포함할 수 있다.
S-PDCCH(520)는 제1 서빙 셀의 PDSCH(530) 및 제2 서빙 셀의 PDSCH(540)에 대한 스케줄링 정보를 포함하는 것을 예시하고 있으나, 스케줄링되는 셀의 수에 제한이 있는 것은 아니다. 또한, S-PDCCH(520)는 UL 스케줄링 정보를 포함할 수도 있다.
이제 P-PDCCH와 S-PDCCH을 이용한 2-스텝 스케줄링에 대해 보다 구체적으로 기술한다.
P-PDCCH는 S-PDCCH와 동일한 RNTI(예, C-RNTI)로 마스킹될 수 있다. 또는, P-PDCCH는 1차 RNTI로 마스킹되고, S-PDCCH는 2차 RNTI로 마스킹될 수 있다. 1차 RNTI는 P-PDCCH를 위해 정의된 공용, 그룹-특정 및/또는 단말-특정 RNTI이다. 2차 RNTI는 단말-특정 RNTI로 예를 들어, C-RNTI일 수 있다.
S-PDCCH는 기존 PDCCH와 동일한 방식으로 인코딩되어 서브프레임의 제어영역에서 전송될 수 있다. 또는 S-PDCCH는 PDSCH(또는 기존 PDCCH)와 동일한 방식으로 인코딩되어 서브프레임의 데이터영역에서 전송될 수 있다.
2-스텝 스케줄링의 적용 여부(또는 S-PDCCH의 사용 여부)는 셀-특정적 또는 단말-특정적으로 설정될 수 있다.
2-스텝 스케줄링이 적용되는 셀은 단말에게 설정된 복수의 서빙 셀 모두이거나 활성화된 셀일 수 있다. 기지국은 단말에게 2-스텝 스케줄링이 적용되는 셀을 알려줄 수 있다.
S-PDCCH는 복수의 CC에 대한 스케줄링 정보, 즉 복수의 서빙셀에 대한 DCI를 나를 수 있다. P-PDCCH는 S-PDCCH에 관련된 정보, 예를 들어 스케줄링되는 셀, 셀 별 DCI 포맷, S-PDCCH가 전송되는 검색 공간, S-PDCCH가 전송되는 CCE 집합 레벨 등에 관한 정보를 나를 수 있다.
단말은 P-PDCCH를 검출한 후, P-PDCCH 상의 정보를 기반으로 P-PDCCH에 대응되는 S-PDCCH의 페이로드 사이즈 또는 전송된 위치 등을 인식한 후 S-PDCCH의 검출을 시도할 수 있다.
단말은 P-PDCCH의 검출에 성공한 경우에만 대응되는 S-PDCCH 검출을 시도할 수 있다. 단말은 정규(normal) PDCCH에 우선하여 P-PDCCH의 모니터링하도록 설정될 수 있다. 여기서, 정규 PDCCH는 그 자체로 PDSCH를 지시하는 통상적인 1-스텝 스케줄링에 사용되는 PDCCH를 말한다. 단말은 P-PDCCH의 검출에 성공한 경우 정규 PDCCH는 더이상 모니터링하지 않을 수 있다. 즉, P-PDCCH가 검출되면 단말은 복수의 서빙 셀 모두 또는 일부에 대한 정규 PDCCH의 모니터링을 중지할 수 있다. P-PDCCH의 검출에 성공한 경우, 단말은 P-PDCCH 및/또는 S-PDCCH에 의해 스케줄링되는 셀에 대한 정규 PDCCH는 모니터링하지 않는다.
P-PDCCH 상의 DCI는 다음 중 적어도 어느 하나를 포함할 수 있다.
(1) 스케줄링 셀을 알려주는 대상 필드: S-PDCCH에 의해 스케줄링되는 서빙 셀의 인덱스 또는 비트맵을 나타낼 수 있다.
(2) DCI 포맷을 알려주는 지시 필드: 각 서빙 셀에서 스케줄링되는 DCI 포맷 또는 S-PDCCH의 페이로드에 관한 정보를 나타낼 수 있다..
(3) S-PDCCH의 모니터링을 위한 모니터링 필드: S-PDCCH가 전송되는 검색 공간, CCE 집합 레벨, S-PDDCH가 전송되는 자원 등을 나타낼 수 있다.
S-PDCCH 상의 DCI는 하나 또는 그 이상의 서빙 셀에 대한 PDSCH/PUSCH를 스케줄링하는 정보를 포함한다. 스케줄링 정보는 P-PDCCH 상의 대상 필드와 지시 필드에 대응되는 셀의 순서대로 PDSCH/PUSCH 할당을 포함할 수 있다.
S-PDCCH의 PDSCH/PUSCH 할당은 기존 DCI 포맷에 포함되는 CIF, DL/UL 플래그, 패딩 비트를 생략할 수 있다.
DL 자원 할당을 갖는 S-PDCCH에서 TPC(Transmit Power Control), ARI(ACK/NACK resource indicator) 및 DL-DAI(Downlink Assignment Index)는 각 스케줄링 셀의 공통되는 정보로 하나의 값으로 정의될 수 있다. DL-DAI는 할당된 PDSCH 전송을 갖는 PDCCH의 축적된 개수를 지시한다. 다만, DL-DAI는 각 스케줄링 셀마다 각각 주어질 수 있다.
UL 자원 할당을 갖는 S-PDCCH에서 CQI(channel quality indicator) 요청, DMRS(demodualtion reference signal)의 순환 쉬프트 및 UL-DAI는 각 스케줄링 셀의 공통되는 정보로 하나의 값으로 정의될 수 있다. 상기 CQI 요청으로 비주기적 CQI가 트리거링되면, 단말은 가장 낮은 CC 인덱스를 갖는 셀에서 CQI를 피드백할 수 있다.
CCE 낭비 및 PDCCH 블록킹을 줄이고, P-PDCCH/S-PDCCH를 구성하는 페이로드 크기 및 블라인디 디코딩의 횟수를 줄이기 위하여 다음과 같은 방안을 고려할 수 있다.
첫째, cross-CC 스케줄링으로 동작하는 경우, 하나의 단말에 대해 복수의 검색 공간의 중복으로 인해 CCE 낭비 및 PDCCH 블록킹이 증가될 가능성이 높다. 따라서, cross-CC 스케줄링이 설정된 경우에만 전술한 2-스텝 스케줄링을 적용하도록 설정될 수 있다.
둘째, P-PDCCH/S-PDCCH가 특정 서빙셀에서만 전송되도록 제한할 수 있다. P-PDCCH/S-PDCCH는 활성화된 셀에서만 모니터링되거나, 1차 셀에서만 모니터링될 수 있다. P-PDCCH/S-PDCCH는 시스템 정보가 전송되는 서빙셀 및/또는 PUCCH 전송이 가능한 서빙셀에서 모니터링될 수 있다.
ACK/NACK 전송을 위한 PUCCH 자원은 P-PDCCH 및/또는 S-PDCCH에 사용되는 CCE의 인덱스를 기반으로 결정될 수 있다.
P-PDCCH 검출만 성공하고 S-PDCCH 검출에 실패할때, 단말은 S-PDCCH의 검출 실패 여부를 기지국에게 알려줄 수 있다. 단말은 P-PDCCH의 CCE의 인덱스에 링크된 PUCCH 자원을 통해 S-PDCCH 검출에 실패했음을 알릴 수 있다. S-PDCCH 검출 실패는 1비트 필드를 사용하거나, on-off keying(즉, 검출 실패가 전송되면 실패, 검출 실패가 전송되지 않으면 성공)을 이용하여 전송될 수 있다.
셋째, S-PDCCH의 경우 복수의 서빙 셀들에 대한 스케줄링 정보를 포함하게 되어 페이로드 크기가 P-PDCCH보다 더 크다. 따라서, S-PDCCH의 사용가능한 CCE 집합 레벨의 크기는 특정 집합 레벨로 제한될 수 있다. 예를 들어, P-PDCCH는 {1, 2, 4, 8}의 CCE 집합 레벨을 사용하지만, S-PDCCH는 {4, 8}의 CCE 집합 레벨을 사용할 수 있다.
S-PDCCH가 사용하는 복수의 CCE 들의 인덱스들에 링크되는 복수의 PUCCH 자원들을 S-PDCCH가 스케줄링하는 복수의 PDSCH (및 그 외의 ACK/NACK 전송이 필요한 DL 채널)에 대한 ACK/NACK 전송에 사용할 수 있다.
넷째, 복수 서빙 셀에 대한 DL 스케줄링을 위한 P-PDCCH/S-PDCCH 및 복수 서빙 셀에 대한 UL 스케줄링을 위한 P-PDCCH/S-PDCCH가 별도로 존재할 수 있다. 또는, 대용량 데이터 트래픽은 주로 DL 트래픽에 한해 발생하므로, 전술한 2-스텝 스케줄링은 DL 스케줄링에만 적용될 수 있다.
다섯째, 2-스텝 스케줄링이 적용되는 서빙 셀은 동일한 대역폭 및/또는 동일한 전송 모드로 설정된 서빙 셀일 수 있다. S-PDCCH 내의 각 서빙 셀별 DCI 포맷은 모두 동일하게 제한될 수 있다.
여섯째, 1차 셀은 시스템 정보 및 SPS(semi-persistent scheduling) 데이터의 전송에 사용될 수 있으므로, 2-스텝 스케줄링이 적용되지 않을 수 있다. 2-스텝 스케줄링은 2차셀에 대해서만 적용될 수 있다.
전술한 첫째 내지 여섯째 방안은 독립적으로 구현될 수 있고, 또는 조합되어 구현될 수 있다.
P-PDCCH/S-PDCCH의 이중 검출로 인한 블라인드 디코딩 부담을 줄이기 위해, 정규 PDCCH에 사용되는 기존 DCI 포맷을 재사용할 수 있다. 모든 서빙 셀 및 전송 모드에 공통적으로 사용될 수 있는 DCI 포맷을 P-PDCCH에 사용할 수 있다. 이를 P-DCI 포맷이라 한다. P-DCI 포맷은 DCI 포맷 0 및 DCI 포맷 1A 중 적어도 어느 하나를 포함할 수 있다.
참고로, 기존 3GPP LTE에서는 하나의 단말에 대해 하나의 서빙 셀만 존재하므로, DCI 포맷 0 내의 CQI 요청 필드의 크기는 1비트이다. 하지만, 복수의 서빙 셀이 도입됨에 따라, 복수의 서빙 셀에 대한 CQI 요청이 가능하도록 하기 위해 DCI 포맷 0 내의 CQI 요청 필드의 크기를 2비트로 하는 것이 고려되고 있다. 다만 DCI 포맷 0과 DCI 포맷 1A의 페이로드 크기를 동일하게 하기 위해, DCI 포맷 1A에 증가된 CQI 요청 필드의 비트 수 만큼 (즉, 1비트) 패딩 비트가 추가될 수 있다.
단말이 수신한 DCI가 정규 PDCCH를 위한 것인지 또는 P-PDCCH를 위한 것인지를 구분할 수 있게 하기 위해 다음과 같은 방법을 고려할 수 있다.
첫째, P-DCI 포맷 내 1 비트 플래그(flag)를 추가하여, P-PDCCH인지 정규 PDCCH 인지를 식별할 수 있도록 할 수 있다. 상기 플래그가 P-PDCCH를 지시하면, 단말은 나머지 필드들이 P-PDCCH에 사용되는 것으로 인식할 수 있다. 상기 플래그가 정규 PDCCH를 지시하면, 단말은 나머지 필드들이 정규 PDCCH에 사용되는 것으로 인식할 수 있다.
둘째, DCI 포맷 1A가 P-DCI 포맷으로 사용될 때, 상기 패딩 비트를 P-DCI 포맷을 식별하기 위한 플래그로 사용할 수 있다. 예를 들어, 상기 패딩 비트가 '1'로 설정되면, 단말은 수신된 DCI 포맷 1A가 P-PDCCH를 위한 것으로 인식할 수 있다.
셋째, DCI 포맷 0가 P-DCI 포맷으로 사용될 때, DCI 포맷 0 내의 자원 할당 필드를 P-DCI 포맷을 식별하기 위한 플래그로 사용할 수 있다. 예를 들어, 자원 할당 필드가 모두 '1'로 설정되면, 단말은 수신된 DCI 포맷 0가 P-PDCCH를 위한 것으로 인식할 수 있다.
도 6은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 5의 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 5의 실시예에서 단말의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 무선 통신 시스템에서 스케줄링 정보 모니터링 방법에 있어서,
    단말이 제1 스케줄링 정보를 갖는 제1 PDCCH(Physical Downlink Control Channel)를 모니터링하는 단계; 및
    상기 단말이 상기 제1 스케줄링 정보를 기반으로 제2 스케줄링 정보를 갖는 제2 PDCCH를 모니터링하는 단계를 포함하되,
    상기 제2 스케줄링 정보는 복수의 서빙 셀에 대한 자원 할당을 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  2. 제 1 항에 있어서, 상기 제1 PDCCH 및 상기 제2 PDCCH는 동일한 서빙 셀의 동일한 서브프레임에서 모니터링되는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  3. 제 1 항에 있어서, 상기 제1 스케줄링 정보는 상기 복수의 서빙 셀을 가리키는 정보를 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  4. 제 1 항에 있어서, 상기 제1 스케줄링 정보는 상기 제2 스케줄링 정보의 페이로드 크기에 관한 정보를 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  5. 제 1 항에 있어서, 상기 제1 스케줄링 정보는 상기 제2 PDCCH의 모니터링을 위한 정보를 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  6. 제 5 항에 있어서, 상기 제1 스케줄링 정보는 상기 제2 PDCCH가 할당된 무선 자원을 지시하는 정보를 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  7. 제 1 항에 있어서, 상기 제1 스케줄링 정보의 CRC(Cyclic Redundancy Check)와 상기 제2 스케줄링 정보의 CRC는 서로 다른 식별자로 마스킹되는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  8. 제 1 항에 있어서, 상기 제2 스케줄링 정보 내의 자원 할당은 복수의 서빙 셀에 대한 복수의 PDSCH(Physical Downlink Shared Channel)를 위한 자원 할당을 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  9. 제 1 항에 있어서, 상기 제2 스케줄링 정보 내의 자원 할당은 복수의 서빙 셀에 대한 복수의 PUSCH(Physical Uplink Shared Channel)를 위한 자원 할당을 포함하는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  10. 제 1 항에 있어서, 상기 제1 PDCCH 및 상기 제2 PDCCH는 1차 셀에서 모니터링되는 것을 특징으로 하는 스케줄링 정보 모니터링 방법.
  11. 무선 통신 시스템에서 스케줄링 정보를 모니터링하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    제1 스케줄링 정보를 갖는 제1 PDCCH(Physical Downlink Control Channel)를 모니터링하고;
    상기 제1 스케줄링 정보를 기반으로 제2 스케줄링 정보를 갖는 제2 PDCCH를 모니터링하되,
    상기 제2 스케줄링 정보는 복수의 서빙 셀에 대한 자원 할당을 포함하는 것을 특징으로 하는 장치.
  12. 제 11 항에 있어서, 상기 제1 PDCCH 및 상기 제2 PDCCH는 동일한 서빙 셀의 동일한 서브프레임에서 모니터링되는 것을 특징으로 하는 장치.
  13. 제 11 항에 있어서, 상기 제1 스케줄링 정보는 상기 복수의 서빙 셀을 가리키는 정보를 포함하는 것을 특징으로 하는 장치.
  14. 제 11 항에 있어서, 상기 제1 스케줄링 정보는 상기 제2 스케줄링 정보의 페이로드 크기에 관한 정보를 포함하는 것을 특징으로 하는 장치.
  15. 제 11 항에 있어서, 상기 제1 스케줄링 정보는 상기 제2 PDCCH의 모니터링을 위한 정보를 포함하는 것을 특징으로 하는 장치.
PCT/KR2012/000932 2011-02-10 2012-02-08 스케줄링 정보 모니터링 방법 및 장치 WO2012108688A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137009564A KR101540869B1 (ko) 2011-02-10 2012-02-08 스케줄링 정보 모니터링 방법 및 장치
US13/881,340 US9137796B2 (en) 2011-02-10 2012-02-08 Method and apparatus for monitoring scheduling information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161441614P 2011-02-10 2011-02-10
US61/441,614 2011-02-10

Publications (2)

Publication Number Publication Date
WO2012108688A2 true WO2012108688A2 (ko) 2012-08-16
WO2012108688A3 WO2012108688A3 (ko) 2012-10-11

Family

ID=46639060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000932 WO2012108688A2 (ko) 2011-02-10 2012-02-08 스케줄링 정보 모니터링 방법 및 장치

Country Status (3)

Country Link
US (1) US9137796B2 (ko)
KR (1) KR101540869B1 (ko)
WO (1) WO2012108688A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089119A1 (ko) * 2014-12-04 2016-06-09 엘지전자 주식회사 복수의 요소 반송파 그룹에 대한 제어 정보 수신 방법 및 이를 위한 장치
WO2016099101A1 (ko) * 2014-12-15 2016-06-23 엘지전자 주식회사 상향링크 전송 파워 제어 방법 및 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644199B2 (en) * 2010-03-31 2014-02-04 Samsung Electronics Co., Ltd Indexing resources for transmission of acknowledgement signals in multi-cell TDD communication systems
JP5961853B2 (ja) * 2011-04-27 2016-08-02 シャープ株式会社 端末、基地局、通信システムおよび通信方法
US8792924B2 (en) * 2011-05-06 2014-07-29 Futurewei Technologies, Inc. System and method for multi-cell access
US20130114572A1 (en) * 2011-11-04 2013-05-09 Mo-Han Fong Uplink synchronization with multiple timing advances in a wireless communication environment
WO2014175919A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Shared spectrum reassignment in a spectrum sharing context
US9930589B2 (en) * 2013-09-09 2018-03-27 Nokia Technologies Oy Detection and recovery from loss of small cell connection
US9414335B2 (en) * 2014-02-06 2016-08-09 Electronics And Telecommunications Research Instit Method and apparatus for transmitting uplink signal or uplink channel
US11452121B2 (en) * 2014-05-19 2022-09-20 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US11019620B2 (en) 2014-05-19 2021-05-25 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
US10070478B2 (en) * 2015-01-22 2018-09-04 Intel IP Corporation Devices and methods for EPDCCH monitoring in wireless communication systems
US11419110B2 (en) * 2015-11-03 2022-08-16 Apple Inc. Short transmission time interval (TTI)
US11129152B2 (en) * 2016-02-04 2021-09-21 Lg Electronics Inc. Method and user equipment for receiving dowlink control information, and method and base station for transmitting dowlink control information
EP3454488B1 (en) * 2016-06-23 2023-08-02 LG Electronics Inc. Method and device for monitoring control channel
US10932247B2 (en) * 2016-11-03 2021-02-23 Lg Electronics Inc. Method for configuring downlink control region in wireless communication system and device for same
US10542528B2 (en) * 2017-01-09 2020-01-21 Motorola Mobility Llc Method and apparatus for a physical uplink channel in resource blocks
US20210314997A1 (en) * 2018-08-10 2021-10-07 Lg Electronics Inc. Method for monitoring scheduling information in wireless communication system, and device using method
WO2023205293A1 (en) * 2022-04-22 2023-10-26 Intel Corporation Physical downlink control channel (pdcch) transmission with multi-cell scheduling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100078232A (ko) * 2008-12-30 2010-07-08 삼성전자주식회사 무선 통신 시스템의 제어 채널 송수신 방법 및 장치
KR20100120607A (ko) * 2009-05-06 2010-11-16 삼성전자주식회사 무선 통신 시스템에서 백홀 서브프레임 채널 송수신 방법 및 이를 위한 장치
KR20100121434A (ko) * 2009-05-08 2010-11-17 엘지전자 주식회사 이동통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
KR20100137357A (ko) * 2009-06-22 2010-12-30 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111822A2 (en) * 2007-03-15 2008-09-18 Lg Electronics Inc. A method for transmitting/receiving data in a mobile communication system
KR20100014091A (ko) * 2008-08-01 2010-02-10 엘지전자 주식회사 다중 반송파 시스템에서 데이터 전송 방법
US8441996B2 (en) * 2009-04-02 2013-05-14 Lg Electronics Inc. Method and apparatus for monitoring control channel in multiple carrier system
US8767846B2 (en) * 2009-04-30 2014-07-01 Qualcomm Incorporated Joint layer 3 signalling coding for multicarrier operation
EP2481180B1 (en) * 2009-09-25 2018-11-07 BlackBerry Limited Channel scrambling in multi-carrier communications networks
CN102549944B (zh) * 2009-09-28 2014-11-26 三星电子株式会社 扩展物理下行链路控制信道

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100078232A (ko) * 2008-12-30 2010-07-08 삼성전자주식회사 무선 통신 시스템의 제어 채널 송수신 방법 및 장치
KR20100120607A (ko) * 2009-05-06 2010-11-16 삼성전자주식회사 무선 통신 시스템에서 백홀 서브프레임 채널 송수신 방법 및 이를 위한 장치
KR20100121434A (ko) * 2009-05-08 2010-11-17 엘지전자 주식회사 이동통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
KR20100137357A (ko) * 2009-06-22 2010-12-30 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089119A1 (ko) * 2014-12-04 2016-06-09 엘지전자 주식회사 복수의 요소 반송파 그룹에 대한 제어 정보 수신 방법 및 이를 위한 장치
US10397936B2 (en) 2014-12-04 2019-08-27 Lg Electronics Inc. Method for receiving control information for multiple component carrier groups and device therefor
WO2016099101A1 (ko) * 2014-12-15 2016-06-23 엘지전자 주식회사 상향링크 전송 파워 제어 방법 및 장치
US10292110B2 (en) 2014-12-15 2019-05-14 Lg Electronics Inc. Uplink transmission power control method and apparatus
US10440658B2 (en) 2014-12-15 2019-10-08 Lg Electronics Inc. Uplink transmission power control method and apparatus
US10764834B2 (en) 2014-12-15 2020-09-01 Lg Electronics Inc. Uplink transmission power control method and apparatus

Also Published As

Publication number Publication date
KR101540869B1 (ko) 2015-07-30
WO2012108688A3 (ko) 2012-10-11
US20130215875A1 (en) 2013-08-22
KR20130064804A (ko) 2013-06-18
US9137796B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
WO2012108688A2 (ko) 스케줄링 정보 모니터링 방법 및 장치
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2010095913A2 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2013066083A2 (ko) 제어채널 모니터링 방법 및 무선기기
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2009116824A1 (en) Monitoring control channel in wireless communication system
WO2013025009A2 (ko) 랜덤 액세스 과정을 수행하는 방법 및 이를 이용한 무선기기
WO2010101410A2 (en) Method and apparatus for supporting multiple carriers
WO2013009089A2 (en) Method for transmitting or receiving pdcch and user equipment or base station for the method
WO2013141546A1 (ko) 데이터 패킷 전송 방법 및 무선기기
WO2011013968A2 (ko) 무선 통신 시스템에서 수신 확인 수신 방법 및 장치
WO2010101409A2 (ko) 다중 반송파 시스템에서 채널 상태 보고 방법 및 장치
WO2010044564A2 (ko) 다중 반송파 시스템에서 harq 수행 방법
WO2010013970A2 (en) Method and apparatus for transmitting data in multiple carrier system
WO2011074868A2 (ko) 무선 통신 시스템에서 제어 채널 모니터링 방법 및 장치
WO2013002562A2 (ko) Tdd 시스템에서 통신 방법 및 장치
WO2010011104A2 (en) Method and apparatus of receiving data in wireless communication system
WO2011139064A2 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2010044632A2 (ko) 다중 반송파 시스템에서 통신 방법 및 장치
WO2012057578A2 (ko) 사운딩 참조 신호 전송 방법 및 장치
WO2013012212A1 (ko) 채널 상태 보고 방법 및 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2013077677A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744451

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137009564

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744451

Country of ref document: EP

Kind code of ref document: A2