EP4183922B1 - Adaptation de régulateur de nivellement par analyse du profil de plancher - Google Patents

Adaptation de régulateur de nivellement par analyse du profil de plancher Download PDF

Info

Publication number
EP4183922B1
EP4183922B1 EP21209122.7A EP21209122A EP4183922B1 EP 4183922 B1 EP4183922 B1 EP 4183922B1 EP 21209122 A EP21209122 A EP 21209122A EP 4183922 B1 EP4183922 B1 EP 4183922B1
Authority
EP
European Patent Office
Prior art keywords
soil profile
levelling
finishing machine
road finishing
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21209122.7A
Other languages
German (de)
English (en)
Other versions
EP4183922A1 (fr
Inventor
Christian Pawlik
Martin Buschmann
Ralf Weiser
Philipp Stumpf
Stefan Simon
Tobias Noll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP21209122.7A priority Critical patent/EP4183922B1/fr
Priority to JP2022183572A priority patent/JP2023075064A/ja
Priority to BR102022023400-0A priority patent/BR102022023400A2/pt
Priority to CN202223070625.4U priority patent/CN219992116U/zh
Priority to US17/990,336 priority patent/US20230193571A1/en
Priority to CN202211451165.1A priority patent/CN116136073A/zh
Publication of EP4183922A1 publication Critical patent/EP4183922A1/fr
Application granted granted Critical
Publication of EP4183922B1 publication Critical patent/EP4183922B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/42Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/07Apparatus combining measurement of the surface configuration of paving with application of material in proportion to the measured irregularities

Definitions

  • the present invention relates to a method for adapting a leveling control of a road paver and to a road paver.
  • a road paver comprises a tractor and a screed, whereby the screed is connected to the tractor by means of a screed beam.
  • the traction point i.e. the place where the screed beam is connected to the tractor, is height-adjustable.
  • the traction point height can be used to compensate for unevenness and adjust layer thicknesses. It is known that the traction point height, i.e. the leveling control, can be set automatically based on recorded measurements. For example, the height of the surface of the subgrade to be asphalted can be recorded using a mechanical probe or an ultrasonic sensor in order to adjust the leveling control based on this. Height reference systems such as guide wires or rotating lasers can also be used for this purpose.
  • the object of the present invention is to provide a method for adapting a leveling control and a road paver in which the paving quality is further improved.
  • corrected soil profile data L1' using the displacement and rotation matrix M compensates for the inherent movement of the road finisher with the soil profile scanner attached to it.
  • the analysis area LA can extend over a desired section of the soil profile data Lges ⁇ and, for example, have a length of 2 to 15 meters.
  • the analysis area LA preferably has a length of 5 meters or 10 meters.
  • the analysis areas LA can then be connected to one another and each form the basis for a new calculation of the adjustment of the leveling control.
  • Adjusting the leveling control for the section of the analysis area LA means influencing or adjusting the leveling control or the leveling controller, i.e. their functionality, itself, and therefore represents a step prior to the leveling control.
  • the adjusted leveling control then carries out the installation of the corresponding section of the section.
  • the previously known and fixedly configured leveling controllers often created a waviness in the newly installed road surface when they detected an unevenness in the subgrade compared to a height reference, for example a guide wire. This waviness can now be reduced or even eliminated by adjusting the control behavior of the leveling control depending on the analyzed height changes.
  • the soil profile data can be recorded using a soil profile scanner which is arranged on the road finisher.
  • the area around the road finisher in which the soil profile data is recorded can be an area in front of the road finisher or to the side of the road finisher.
  • the soil profile data can be recorded using a scanner arranged on a feeder driving ahead. Soil profile scanner.
  • the displacement and rotation matrix M can be determined based on the overlap of the first and second soil profiles.
  • the displacement and rotation matrix M can map the entire movement of the road paver, i.e. translation and rotation in all three spatial directions.
  • the matrix M maps in particular the driving movement, as well as inclination movements around a longitudinal and/or transverse axis of the road paver.
  • the inclination movements can be caused, for example, by unevenness in the subgrade.
  • the analysis of the analysis area LA can in particular include the determination of heights of unevenness in comparison to a reference height.
  • the adjustment of the leveling control can include an adjustment of one or more parameters and/or the selection of input variables to be used, in particular sensor data.
  • the adjustment of the leveling control can also include the selection of subunits of the leveling control to be used, i.e. for example individual control elements, calculation blocks, algorithms or the like.
  • the first and second soil profiles are one- or two-dimensional and have at least one spatial direction parallel to the direction of travel of the road paver.
  • unevenness running transversely to the direction of travel which has a primary influence on the evenness of the road surface, can be recorded.
  • a line scan running parallel to the direction of travel can be carried out, for example using a laser scanner.
  • the line scan of the soil profile data L1 can then partially overlap the line scan of the soil profile data L0.
  • a corresponding overlap of the measurements can then be carried out for the soil profile data Ln and Ln-1, whereby the road paver has moved a certain distance in the direction of travel between the measurements.
  • the soil profile data is recorded, i.e.
  • the scan expediently takes place at a speed that is high compared to the speed of the road paver, so that the road paver does not have to stop for the measurement.
  • a three-dimensional soil profile recording of an area of the subgrade is also conceivable, for example using a stereo camera.
  • the successive three-dimensional surface images can also overlap in sections.
  • two line scans can be carried out by two soil profile scanners arranged next to each other. The two line scans then have a combined length, height and width (two data points next to each other) and thus already represent a three-dimensional data set.
  • the leveling control comprises at least one of the following controllers: a robust controller, an H-infinity controller, a model predictive control and/or a PID controller (proportional, integral, differential controller).
  • the controllers can be suitable for being optimized with respect to a specific wavelength.
  • the leveling control comprises a PID controller (proportional, integral, differential controller) and the adjustment of the leveling control comprises setting the P parameter and/or the I parameter and/or the D parameter of the PID controller or selecting a PID parameter set.
  • PID controller proportional, integral, differential controller
  • the adjustment of the leveling control comprises setting the P parameter and/or the I parameter and/or the D parameter of the PID controller or selecting a PID parameter set.
  • PID parameter set i.e. a fixed P, I and D component
  • Corresponding assignments of the analysis results to the parameters can be stored in tables or stored in a memory of a digital control system by means of an analytical context, in particular mathematical assignment by means of an equation or formula.
  • adjusting the leveling control includes selecting one or more leveling sensors that are arranged at different positions in the longitudinal direction of the road paver.
  • Leveling sensors measure a height to the subgrade or to a height reference, such as a guide wire.
  • Leveling sensors can be ultrasonic sensors or mechanical probes.
  • Several leveling sensors can be attached to the side of the road paver along a longitudinal axis.
  • the leveling sensors can be attached to a plank beam.
  • Leveling sensors can also be attached to the chassis or material hopper of the road paver.
  • the leveling sensors can be arranged on a support to the side of the road paver, the support being connected to the road paver.
  • the support can have a length of 5 meters to 15 meters, in particular a length of 13 meters.
  • a front ultrasonic sensor in the direction of travel can be arranged at a distance of essentially 15 meters, in particular 13 meters, from a rear ultrasonic sensor.
  • the control quality of the leveling control i.e. in particular the evenness of the paving, can be dependent on the wavelength of the unevenness in the subgrade and also on the sensor position. Medium wavelengths can be smoothed better with a sensor position closer to the paving screed and long wavelengths can be smoothed better with a leveling sensor position closer to the traction point of the paving screed.
  • the leveling sensor By selecting the leveling sensor accordingly according to its position and the measured wavelength, the evenness of the paving surface can be further improved.
  • Two or more leveling sensors can also be selected and an average value calculated from whose measured values are formed. If an unevenness in the form of a step is detected, a leveling sensor of a specific position can also be selected.
  • the leveling control is adjusted taking into account a wavelength spectrum of elevation changes in the subgrade determined during the analysis of the analysis area LA and/or determined amplitudes of elevation changes. In this way, predominant characteristics of recurring unevenness and also singular unevenness, such as steps, can be taken into account for the adjustment of the leveling control.
  • the leveling control is adjusted based on a selective weighting of wavelengths of recorded height changes.
  • the predominant wavelength of a wavelength spectrum can be identified and this can be used, for example, as a basis for selecting the leveling control parameters. It can also be used as a basis for selecting the leveling sensor.
  • the amplitudes of the recorded height changes can also be weighted. This makes it possible to filter out unevenness so that not all unevenness has the same effect on the leveling behavior.
  • the leveling control can be adjusted so that short unevenness only has a minimal effect on a controller, for example by reducing the D component in the PID controller. In the case of longer unevenness, it is also possible to increase the controller sensitivity to support the self-leveling behavior of the road paver.
  • the displacement and rotation matrix M is preferably determined using a scan matching algorithm.
  • a scan matching algorithm is a method for finding a spatial transformation in order to align two sets of data points or two point clouds.
  • the data points of the second soil profile data L1 which correspond to the part of the second soil profile that overlaps the first soil profile can be used for the scan matching algorithm and aligned with the corresponding data points of the first soil profile data L0 in order to determine the displacement and rotation matrix M.
  • the scan matching algorithm can be carried out successively for two successively determined soil profile data Ln and Ln-1.
  • the displacement and rotation matrix M can be determined using an iterative algorithm.
  • the displacement and rotation matrix M can be determined using an iterative closest point algorithm (ICP).
  • the determination of the displacement and rotation matrix M comprises the processing of position data determined by means of a GNSS module (Global Navigation Satellite System) and/or the processing of drive data and/or the processing of a location-based georeferencing.
  • GNSS Global Navigation Satellite System
  • the horizontal displacement of the road paver can be determined with it.
  • Position data received with GPS can be processed.
  • the movement and therefore position of the road paver can be determined based on the recorded driving speed of the road paver.
  • Steering deflections can also be detected and processed.
  • Sensors can be present on the drive and/or steering of the road paver for this purpose.
  • a location-based georeferencing system can be laser-based and can record the position of the road paver in relation to pre-installed reference points.
  • An inertial navigation system can also be used.
  • the analysis of the analysis area LA includes a fast Fourier transformation and/or a discontinuity detection, in particular difference formation.
  • the fast Fourier transformation is used in particular to analyze the frequency spectrum of the unevenness, i.e. recurring types of unevenness. In this way, a wavelength spectrum and the individual wavelengths of the unevenness can be recognized.
  • the discontinuity detection can also detect steps, holes, milling edges and similar unevenness that occur sporadically in the analysis area LA.
  • the layer thickness of the already installed surface is measured and the leveling control is adjusted taking the measured layer thickness into account. This allows the installation result to be monitored and, as feedback, further improves the adjustment of the leveling control. It is also possible for the layer thickness of the installed surface to act directly on the leveling control as feedback.
  • the method is carried out for two or more measuring sections arranged next to each other using two or more soil profile scanners arranged on the road paver.
  • This allows the paving quality to be further improved because a larger database is available.
  • the leveling control can be adjusted based on an average of the soil profile data obtained from the two measuring sections lying next to each other.
  • the soil profile data from the two measuring sections can also be used completely or at least partially separately to adjust the leveling control of the right and left traction points of the paving screed separately.
  • a road finisher comprises a screed and a chassis, wherein the screed is connected to the chassis by means of a screed beam via a traction point.
  • the traction point height is adjustable by means of a leveling cylinder.
  • the road finisher further comprises a leveling sensor and a soil profile scanner.
  • the road finisher comprises a control system with a leveling controller or leveling control for controlling the Pull point height taking into account the data from the leveling sensor.
  • the control system is configured to parameterize the leveling controller based on the data recorded with the soil profile scanner.
  • the screed can be conveniently hinged to a left and right side of the chassis by means of a left and a right screed beam via a pull point. Accordingly, a left and a right leveling cylinder are present.
  • the control system can include a component for data storage, a component for data processing and an interface for data input and data output.
  • the leveling sensor can be an ultrasonic sensor, a laser sensor or a mechanical touch sensor.
  • the road paver preferably comprises two or more leveling sensors arranged along a longitudinal direction of the road paver, the control system being configured to select one or more leveling sensors for use with the leveling controller based on the data acquired with the soil profile scanner. Depending on the measured unevenness, the leveling sensor or sensors that achieve the best paving result for these unevennesses can be selected.
  • One or more leveling sensors can be arranged on the left and right sides of the road paver.
  • the leveling sensors can be attached to a plank beam.
  • Leveling sensors can also be attached to the chassis or material hopper of the road paver.
  • the leveling sensors can be arranged on a support on the side of the road paver, the support being connected to the road paver.
  • the support can have a length of 5 meters to 15 meters, in particular a length of 13 meters.
  • Three to five ultrasonic sensors can be arranged on the support.
  • a front ultrasonic sensor in the direction of travel can be arranged at a distance of substantially 15 metres, in particular 13 metres, from a rear ultrasonic sensor.
  • the soil profile scanner is a laser scanner.
  • the soil profile scanner can be a line scanner that collects soil profile data of a soil profile along a line. This line scan can extend parallel to the direction of travel of the road paver.
  • the soil profile scanner can be arranged in the middle or on the side of the road paver.
  • the soil profile scanner can be arranged on the side of the road paver so that the line scan is not obstructed by a truck loading the material hopper of the road paver, but extends to the side of it.
  • the road paver includes two or more soil profile scanners. This allows soil profile data from two or more parallel soil profiles to be recorded. These can then be combined for further improved adjustment of the leveling control.
  • the data can also be used for separate adjustment
  • the leveling control of a right and a left traction point of the screed can be used separately.
  • the road paver according to the invention is suitable for carrying out the method according to the invention for adapting a leveling control.
  • Figure 1 shows a road paver 1 with a screed 3, a chassis 5, a material hopper 7 and a soil profile scanner 9.
  • the screed 3 is articulated to the chassis 5 by means of a screed beam 11 via a traction point 13.
  • the traction point 13 is height-adjustable by means of a leveling cylinder 15 and has a height H relative to a height reference, for example a guide wire or a subgrade 17.
  • Three leveling sensors 19 are arranged on the screed beam 11 at different positions in a longitudinal direction F of the road paver 1.
  • the road paver 1 also has a control system 21, suitable for sending, receiving and processing data, and an antenna 23 for sending and/or receiving data, for example a GNSS signal.
  • the antenna 23 can be connected to a GNSS module 24, which in turn is connected to the control system 21.
  • the soil profile scanner 9 records a soil profile of the subgrade 17 on which the road paver 1 moves in the direction of travel x and uses the paving screed 3 to lay paving material 25 to form a new surface 27 with a layer thickness S.
  • the soil profile scanner 9 of the embodiment shown is a laser scanner and scans the surface of the subgrade 17 with a laser beam 29.
  • the laser beam 29 can be pivoted about an axis transverse to the direction of travel x in order to record soil profile data along the direction of travel x by means of a line scan.
  • the soil profile data serve as a basis for parameterizing a leveling controller 31, which can be part of the control system 21.
  • Figure 2 shows a rear view of a road paver 1 with screed 3, chassis 5, antenna 23 and two soil profile scanners 9. With this arrangement of two soil profile scanners 9, two soil profiles parallel in the direction of travel x can be recorded.
  • Figure 3 shows a schematic view of a soil profile detection at time t0, with the road paver 1 located at a position x0.
  • a laser beam 29 emitted by the soil profile scanner 9 successively scans a first soil profile B0 of the subgrade 17 parallel to the direction of travel x.
  • the laser beam 29 can be pivoted about a y-axis transverse to the direction of travel x, which is shown here by several lines for the temporal progression of the position of the laser beam 29.
  • the first soil profile B0 is detected by a line scan, with the soil profile scanner 9 located at a specific position y.
  • the y-axis extends transverse to the direction of travel x.
  • the first data points 33 generated together form the first soil profile data L0 of the first soil profile B0, which can be stored and processed, in particular by the control system 21.
  • Figure 4 shows a side schematic view of a first soil profile acquisition at time t0 according to Figure 3 and a second soil profile acquisition at time t1.
  • first data points 33 generated at time t0 which together form the first soil profile data L0
  • second data points 35 generated at time t1 which together form the second soil profile data L1
  • the first soil profile data L0 and the second soil profile data L1 overlap in an overlap area T.
  • the road paver 1 has moved according to the vector V and has performed a rotation, for example tilting, due to the unevenness of the ground, as shown by the coordinate systems shown.
  • the overlap area T is the starting point for determining the displacement and rotation matrix M, which maps the movement of the road paver 1 from time t0 to time t1.
  • the displacement and rotation matrix M can be determined using a scan matching algorithm, in particular using an iterative closest point algorithm (ICP) based on the first data points 33 and second data points 35.
  • ICP iterative closest point algorithm
  • a suitable analysis area LA is selected, the height changes of which are analyzed.
  • the analysis area LA can include data points 33, 35 of the first soil profile data L0 and the second soil profile data L1.
  • the analysis area LA can have a length of 5 meters.
  • Figure 5 shows a schematic top view of a soil profile acquisition at time t0 and a soil profile acquisition at time t1, whereby two parallel line scans are carried out at positions y1 and y2 using two soil profile scanners 9.
  • the overlap area T is shown, in which the first data points 33 of the first soil profile data L0 and the second data points 35 of the second soil profile data L1 overlap.
  • the left line scan at position y1 and the right line scan at position y2 can be combined, for example by averaging, to adjust a leveling control. However, the left line scan and the right line scan can also be used separately to adjust a separate leveling control of a left and a right traction point 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Road Paving Machines (AREA)

Claims (15)

  1. Procédé (100) permettant d'ajuster une régulation de nivellement (31) d'un finisseur routier (1), comprenant les étapes consistant à :
    - (101) détecter des premières données de profil de sol L0 d'un premier profil de sol B0 d'une assiette de chaussée (17) dans un environnement du finisseur routier (1) à l'instant t0, dans lequel le finisseur routier (1) se trouve au niveau de la position x0 ;
    - (103) détecter des deuxièmes données de profil de sol L1 d'un deuxième profil de sol B1 de l'assiette de chaussée (17) dans un environnement du finisseur routier (1) à l'instant t1, dans lequel le finisseur (1) se trouve au niveau de la position x1, et dans lequel le deuxième profil de sol B1 recouvre partiellement le premier profil de sol B0 ;
    - (105) déterminer une matrice de déplacement et de rotation M, qui représente un mouvement du finisseur routier (1) dans l'espace depuis l'instant t0 jusqu'à l'instant t1 ;
    - (109) créer des données de profil de sol corrigées L1' à partir des données de profil de sol L1 à l'aide de la matrice M ;
    - (111) définir une plage d'analyse LA comprenant au moins une partie des données de profil de sol L0 et/ou une partie des données de profil de sol corrigées L1' ;
    - (113) analyser la plage d'analyse LA, en particulier déterminer des variations de hauteur ;
    - (115) ajuster la régulation de nivellement (31) pour la voie correspondant à la plage d'analyse LA à l'aide des données obtenues lors de l'analyse.
  2. Procédé selon la revendication 1, caractérisé en ce que le premier profil de sol B0 et le deuxième profil de sol B1 sont unidimensionnels ou bidimensionnels et présentent au moins une direction spatiale parallèle à la direction de déplacement (x) du finisseur routier (1).
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la régulation de nivellement (31) comprend au moins un parmi les dispositifs de régulation ci-dessous : une régulation robuste, une régulation hinfini, une commande prédictive et/ou un régulateur PID.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ajustement de la régulation de nivellement (31) comprend une étape consistant à sélectionner un ou plusieurs capteur(s) de nivellement (19) qui sont agencés au niveau de positions différentes dans le sens longitudinal F du finisseur routier (1).
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ajustement de la régulation de nivellement (31) est mis en oeuvre en tenant compte d'un spectre de longueurs d'onde, déterminé lors de l'analyse de la plage d'analyse LA, des variations de hauteur de l'assiette de chaussée (17) et/ou des amplitudes des variations de hauteur.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ajustement de la régulation de nivellement (31) est mis en oeuvre en se basant sur une pondération sélective des longueurs d'onde des variations de hauteur détectées.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de la matrice de déplacement et de rotation M est mise en oeuvre à l'aide d'un algorithme de correspondance de balayage, en particulier à l'aide d'un algorithme itératif.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de la matrice de déplacement et de rotation M comprend une étape consistant à traiter des données de position déterminées au moyen d'un module GNSS (24) et/ou à traiter des données de mécanisme de translation et/ou à traiter un géoréférencement basé sur la localisation.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'analyse de la plage d'analyse LA comprend une étape consistant à calculer une transformée de Fourier rapide et/ou à identifier une discontinuité, en particulier à former une différence.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur de couche (S) du revêtement (27) déjà installé est mesurée et l'ajustement de la régulation de nivellement (31) est mis en oeuvre en tenant compte de l'épaisseur de couche (S) mesurée.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est mis en oeuvre au moyen de deux ou plus de deux scanners de profil de sol (9) agencés sur le finisseur routier (1) pour deux ou plus de deux voies de mesure y1, y2 agencées côte à côte.
  12. Finisseur routier (1) comprenant une table de réglage (3) et un châssis (5), dans lequel la table de réglage (3) est articulée au niveau du châssis (5) au moyen d'un longeron de table (11) par l'intermédiaire d'un point de traction (13) et une hauteur de point de traction (H) est réglable en hauteur au moyen d'un vérin de nivellement (15), dans lequel le finisseur routier (1) comprend en outre un capteur de nivellement (19) et un scanner de profil de sol (9), et dans lequel le finisseur routier (1) comprend un système de commande (21) avec un régulateur de nivellement (31) permettant de commander la hauteur de point de traction (H) en tenant compte des données du capteur de nivellement (19), caractérisé en ce que le système de commande (21) est configuré pour paramétrer le régulateur de nivellement (31) en se basant sur les données détectées par le scanner de profil de sol (9).
  13. Finisseur routier selon la revendication 12, caractérisé par deux ou plus de deux capteurs de nivellement (19) qui sont agencés le long d'un sens longitudinal (F) du finisseur routier (1), dans lequel le système de commande (21) est configuré pour sélectionner un ou plusieurs capteur(s) de niveau (19) à utiliser avec le régulateur de nivellement (31) en se basant sur les données enregistrées par le scanner de profil de sol (9).
  14. Finisseur routier selon l'une quelconque des revendications 12 ou 13, caractérisé en ce que le scanner de profil de sol (9) est un scanner laser.
  15. Finisseur routier selon l'une quelconque des revendications 12 à 14, caractérisé par deux ou plus de deux scanners de profil de sol (9).
EP21209122.7A 2021-11-18 2021-11-18 Adaptation de régulateur de nivellement par analyse du profil de plancher Active EP4183922B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21209122.7A EP4183922B1 (fr) 2021-11-18 2021-11-18 Adaptation de régulateur de nivellement par analyse du profil de plancher
JP2022183572A JP2023075064A (ja) 2021-11-18 2022-11-16 地面プロファイル解析によるレベリングコントローラの適合
BR102022023400-0A BR102022023400A2 (pt) 2021-11-18 2022-11-17 Método para adaptar um controle de nivelamento de uma máquina de acabamento de rodovia e máquina de acabamento de rodovia
CN202223070625.4U CN219992116U (zh) 2021-11-18 2022-11-18 道路整修机
US17/990,336 US20230193571A1 (en) 2021-11-18 2022-11-18 Leveling controller adaption by ground profile analysis
CN202211451165.1A CN116136073A (zh) 2021-11-18 2022-11-18 通过地面轮廓分析的调平控制器的适配

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21209122.7A EP4183922B1 (fr) 2021-11-18 2021-11-18 Adaptation de régulateur de nivellement par analyse du profil de plancher

Publications (2)

Publication Number Publication Date
EP4183922A1 EP4183922A1 (fr) 2023-05-24
EP4183922B1 true EP4183922B1 (fr) 2024-07-31

Family

ID=78695638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21209122.7A Active EP4183922B1 (fr) 2021-11-18 2021-11-18 Adaptation de régulateur de nivellement par analyse du profil de plancher

Country Status (5)

Country Link
US (1) US20230193571A1 (fr)
EP (1) EP4183922B1 (fr)
JP (1) JP2023075064A (fr)
CN (2) CN116136073A (fr)
BR (1) BR102022023400A2 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129152A1 (en) * 2008-11-25 2010-05-27 Trimble Navigation Limited Method of covering an area with a layer of compressible material
PL2535456T3 (pl) * 2011-06-15 2014-05-30 Joseph Voegele Ag Wykańczarka z urządzeniem do pomiaru grubości warstwy
PL2562309T3 (pl) 2011-08-22 2014-09-30 Joseph Voegele Ag Wykańczarka z urządzeniem pomiarowym
PL3892777T3 (pl) * 2020-04-08 2024-02-26 Joseph Vögele AG Układarka drogowa i sposób z kontrolą profilu poprzecznego

Also Published As

Publication number Publication date
US20230193571A1 (en) 2023-06-22
CN219992116U (zh) 2023-11-10
CN116136073A (zh) 2023-05-19
JP2023075064A (ja) 2023-05-30
EP4183922A1 (fr) 2023-05-24
BR102022023400A2 (pt) 2023-10-17

Similar Documents

Publication Publication Date Title
EP2562309B1 (fr) Finisseuse de route dotée d'un dispositif de mesure
EP3406799B1 (fr) Train de machines composé d'une fraiseuse routière et d'une finisseuse de route et procédé de fonctionnement d'une fraiseuse routière et d'une finisseuse de route
EP1339920B1 (fr) Dispositif de reglage de hauteur au laser pour un engin de chantier
DE69716671T2 (de) Steuervorrichtung für Baumaschinen
US7946787B2 (en) Paving system and method
EP1825064B1 (fr) Procede et systeme pour controler un engin de travaux routiers
DE69910571T2 (de) Vorrichtungzum bestimmen der kontur einer strassenoberfläche
EP2921588B1 (fr) Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau déposée
DE112009001767B4 (de) Straßenfertigungsmaschinen-Steuerung und Verfahren
DE102012101927B4 (de) System für Maschinensteuerung
DE9214769U1 (de) Ultraschallsensor-Regeleinrichtung für einen Straßenfertiger
EP1118713B1 (fr) Procédé de commande d'une machine de chantier ou finisseuse et finisseuse
EP3130939A1 (fr) Finisseuse de route dotée d'un dispositif d'égalisation par radar et procédé de commande
DE102016207841B4 (de) Schichtdickenmessvorrichtung und Verfahren zur Schichtdickenmessung
DE102016225502B4 (de) Messsystem zur Schichtdickenerfassung
DE102020128820A1 (de) System zur messung der bodenmaterialdichte
WO2019076812A1 (fr) Procédé de classification radar de la surface routière
EP4183922B1 (fr) Adaptation de régulateur de nivellement par analyse du profil de plancher
EP4056760A1 (fr) Finisseuse de routes à régulation en cascade de nivellement
EP3981918A1 (fr) Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur
DE102022201294A1 (de) Nivelliersystem für eine Baumaschine
DE3444623A1 (de) Mess- und steuersystem zur aufnahme und wiedergabe von hoehenprofilen, insbesondere im strassenbau
WO2022157042A1 (fr) Détection de l'extrémité latérale d'une chaussée
DE102022005083A1 (de) Selbstfahrende Bodenbearbeitungsmaschine
DE102019201865A1 (de) Ein autonomes fahrzeugsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021004566

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN