EP4181313B1 - Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne - Google Patents

Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne Download PDF

Info

Publication number
EP4181313B1
EP4181313B1 EP21208497.4A EP21208497A EP4181313B1 EP 4181313 B1 EP4181313 B1 EP 4181313B1 EP 21208497 A EP21208497 A EP 21208497A EP 4181313 B1 EP4181313 B1 EP 4181313B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
radio frequency
inner conductor
antenna
adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21208497.4A
Other languages
German (de)
English (en)
Other versions
EP4181313A1 (fr
Inventor
Roland Baur
Klaus Kienzle
Fritz Lenk
Johannes Falk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Priority to EP21208497.4A priority Critical patent/EP4181313B1/fr
Priority to CN202211328423.7A priority patent/CN116137376A/zh
Priority to US17/988,318 priority patent/US20230155278A1/en
Publication of EP4181313A1 publication Critical patent/EP4181313A1/fr
Application granted granted Critical
Publication of EP4181313B1 publication Critical patent/EP4181313B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/42Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches
    • H01R24/44Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches comprising impedance matching means

Definitions

  • the invention relates to a high-frequency adapter for connecting a high-frequency antenna to an antenna plug.
  • the invention further relates to a use of the high-frequency adapter and a method for producing a high-frequency adapter.
  • electromagnetic energy for example from a high-frequency generator
  • a high-frequency antenna for example a horn antenna
  • the high-frequency waves are conducted from the antenna to the adapter via a waveguide.
  • moisture can get into the high-frequency adapter and lead to a disruption in the function of the adapter, e.g. to a short circuit of conductive parts.
  • the publication CN 103 268 971 A relates to a device for connecting a coaxial cable to a circular waveguide.
  • the publication JP H02 128 503 A relates to a coaxial intermediate piece between an outer conductor connected to a waveguide and an antenna section.
  • the publication DE 31 27 693 A1 16 relates to a transition element between a waveguide and a microstrip line.
  • the high-frequency adapter can be set up in particular to transmit high-frequency waves in a range of radar waves. At least some specifics of the adapter can, for example, be set up for a part of the radar frequency range, e.g. for the so-called K-band, which extends over a frequency range of 18 to 27 GHz.
  • the adapter can be connected on one side, for example, to a horn antenna and/or another high-frequency antenna.
  • the adapter can be connected on another side, for example to an antenna connector in the form of a coaxial connector.
  • the high-frequency waves can be transmitted or forwarded to the antenna using a waveguide, which can have a hollow cylindrical shape.
  • the antenna can be arranged in an environment that can contain moisture in at least some cases.
  • the high-frequency waves are conducted from the antenna to the adapter via a waveguide.
  • an impedance matching element can be arranged within the waveguide, which is set up to match the impedance to the high-frequency antenna.
  • the impedances at the two ends of the adapter can differ from each other: In the coaxial area, for example, the impedance can be around 50 - 75 ohms, and in the area of the waveguide, the impedance can be in the range of around 700 ohms, for example.
  • the impedance matching element can, for example, be designed in a step-shaped manner and significantly narrower than an inner diameter of the waveguide.
  • the impedance matching element designed in this way is sometimes referred to as a fin.
  • the impedance matching element can have a different shape for other frequency ranges.
  • the impedance matching element can have electrical contact with the outer conductor of the coaxial system at at least one point in the area of the transition between the coaxial and waveguide system and on the base surface of the fin.
  • the impedance matching element is electrically and mechanically connected to a conductive inner conductor.
  • the inner conductor can be electrically connectable directly or indirectly to the antenna plug.
  • the inner conductor can be guided to the end of the adapter that is opposite the antenna connection, so that in this case the antenna plug can be plugged onto this end of the inner conductor.
  • at least one further conductive component can be arranged on the inner conductor.
  • the inner conductor extends along a central axis of the waveguide.
  • the high-frequency adapter also has a conductive hollow cylindrical jacket that connects to the waveguide.
  • the jacket can connect seamlessly and/or tightly to the waveguide.
  • the jacket can have a different material than the waveguide; For example, the jacket can have or consist of stainless steel, the waveguide can have or consist of copper.
  • Both the waveguide and the jacket can advantageously be conductive in order to ensure electrical shielding and/or contribute to a defined impedance of the adapter.
  • the jacket can be arranged parallel to the central axis of the waveguide.
  • the high-frequency adapter also has an electrically insulating hollow cylindrical spacer element which is arranged between the jacket and the inner conductor, and which thus isolates the inner conductor from the jacket and seals the waveguide in a fluid-tight manner.
  • the waveguide and/or the jacket can have a rectangular, in particular square, shape.
  • the rectangular shape can affect the outer contour and/or the inner walls.
  • the inner and/or outer corners can be rounded.
  • the high-frequency adapter not only has a defined impedance in the area of the coaxial system, but is also robust against diffused and then condensing moisture because the spacer element reduces or even prevents moisture from penetrating into fault-prone parts of a high-frequency adapter can prevent, and in particular can prevent a short circuit between the jacket and the inner conductor. A possible condensation point can therefore be moved to an area that is less sensitive to high-frequency waves.
  • the spacer element can simplify the assembly of the high-frequency adapter, e.g. serve as an insertion aid during assembly and thereby contribute to preventing incorrect assembly.
  • the adapter has proven to be particularly robust in experiments, especially with regard to vibrations, and has increased longevity, for example due to the additional support of the inner conductor of the coaxial system.
  • a first inside diameter of the jacket is smaller than a second inside diameter of the waveguide, so that a step is formed in the area of the connection between the waveguide and the jacket.
  • the spacer element is at least partially arranged in the waveguide and forms a collar in the waveguide. This can lead to better mechanical cohesion of the adapter as well contribute to a better seal against diffused moisture. In addition, this collar can prevent condensate from accumulating in the cavity.
  • the spacer element has or consists of materials such as polytetrafluoroethylene, PTFE, polyetheretherketone, PEEK, polyethylene, PE, or polyvinylidene fluoride, PVDF, which are suitable for HF technology. These materials not only have dielectric properties, but also a certain toughness and elasticity, so that the spacer element nestles particularly tightly between the adjacent components of the adapter and in this way fills the technically necessary gap between the fin and the coaxial feed.
  • the hole for the inner conductor also creates a guide for assembly in production, to which the relatively low friction - also during assembly - can contribute.
  • at least some of the usable materials can be temperature-resistant and/or hydrophobic.
  • the spacer element can be realized as a plastic turned part.
  • PTFE for example, can be used as a plastic. This type of production allows the spacer element to be manufactured particularly precisely.
  • the radio frequency adapter further comprises a process isolation disposed within the jacket and through which a conductive element is passed that is electrically connected to the inner conductor.
  • the process separation can be designed, for example, as a glass feedthrough. It should be noted that - thanks to the spacer element - moisture can no longer condense on the process separation, in particular because the spacer element creates a seal against the waveguide and other parts of the adapter.
  • the conductive element is designed in one piece with the inner conductor. This can contribute to particularly simple production. This embodiment can be implemented with and without process separation.
  • the conductive element has a similar coefficient of expansion as the process separation.
  • the conductive element remains advantageously arranged in the process separation in a robust and long-term manner, even in the event of large fluctuations in temperature.
  • the process separation comprises glass and/or ceramic, and/or the conductive element comprises a nickel alloy, or these elements may be made of these materials.
  • the conductive element is set up for direct connection to the antenna plug.
  • the conductive element can be designed to be particularly robust and/or have a particularly conductive and/or corrosion-resistant coating at the connection points, such as gold.
  • the spacer element can serve particularly advantageously as an insertion aid during assembly and thereby contribute to preventing incorrect assembly.
  • the method includes the further step: arranging a process separation in the jacket, wherein a conductive element is guided through the process separation and is set up for an electrical connection to the inner conductor.
  • the high-frequency adapter can be particularly suitable for level measurement, topology determination and/or limit level determination, because it can be used, for example, to implement a feedthrough between an antenna in a container and a high-frequency generator outside the container.
  • the container can also be a process tank, for example, which is designed in particular for high temperatures and/or pressures.
  • embodiments with process separation can further increase the robustness of the high-frequency adapter.
  • Fig. 1 shows schematically a high-frequency adapter 12 according to the prior art in a longitudinal section.
  • the high-frequency adapter 12 has a hollow cylindrical waveguide 20, which is set up to transmit high-frequency waves from and to a high-frequency antenna 80 (not shown).
  • a conductive jacket 50 adjoins the waveguide 20.
  • a conductive inner conductor 40 is arranged at least partially within the jacket 50 and is electrically and mechanically connected to an impedance matching element 30.
  • the inner conductor 40 is separated from the jacket 50 by a cavity 18.
  • the cavity 18 can be designed as a rotationally symmetrical cavity, for example in the case of a round high-frequency adapter; For other shapes of the high-frequency adapter - e.g. rectangular, hexagonal, etc. - adapted accordingly or also cylindrical. In at least some cases, moisture can penetrate into the cavity 18. This can significantly worsen the functionality of the high-frequency adapter, even causing the adapter to fail.
  • Fig. 2 schematically shows a high-frequency adapter 10 according to one embodiment in a longitudinal section.
  • the high-frequency adapter 10 is set up to connect a high-frequency antenna 80 (left side, not shown) with an antenna plug 90 (right side, not shown).
  • the high-frequency adapter 10 has a hollow cylindrical waveguide 20, which is set up to transmit high-frequency waves from and to the high-frequency antenna 80 - which is arranged to the left of the waveguide 20.
  • a step-shaped impedance matching element 30 is arranged within the waveguide 20 and is set up to match the impedance to the high-frequency antenna 80.
  • the high-frequency adapter 10 also has a conductive inner conductor 40, which is electrically and mechanically connected to the impedance matching element 30, the inner conductor 40 being connected electrically indirectly - namely via a conductive element 45 - to the antenna plug 90.
  • a conductive hollow cylindrical jacket 50 adjoins the waveguide 20.
  • the joint between the waveguide 20 and the jacket 50 can be tight, but in at least some cases it can also be faulty and / or due to long-term Loads allow moisture to penetrate. In at least some embodiments, the joint can be dispensed with.
  • the high-frequency adapter 10 also has an electrically insulating hollow cylindrical spacer element 60, which is arranged between the jacket 50 and the inner conductor 40 and thus isolates the inner conductor 40 from the jacket 50 and seals the waveguide 20 in a fluid-tight manner.
  • the spacer 60 may also not be designed to be fluid-tight.
  • the spacer element 60 can be designed so that it "occupies" the space where condensate could form and in this way can displace the condensate or reduce or prevent the formation of condensate. In this way, a malfunction of the high-frequency adapter 10 can advantageously be avoided even in the event of moisture penetration.
  • the high-frequency adapter 10 also has a process separation 70 to further increase the robustness of the high-frequency adapter.
  • the conductive element 45 is guided through the process separation 70.
  • the conductive element 45 is electrically connected to the inner conductor 40 on one side.
  • the conductive element 45 is set up for a connection to an antenna plug 90 (right side, not shown), via the end protruding from the process separation 70 and from a casing 55 on the right.
  • Fig. 3 shows schematically a high-frequency adapter 10 according to one embodiment in a further longitudinal section.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • This shows Fig. 3 It is particularly clear how the spacer element 60 isolates the inner conductor 40 from the jacket 50 and - with the cooperation of a collar 62 - also creates a seal against the wall 50.
  • the conductive element 45 is realized with pointed ends in order to further simplify assembly.
  • Fig. 4 schematically shows a high-frequency adapter 10 according to one embodiment in a perspective external view.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • the design of the impedance matching element 30 becomes clear, which in this exemplary embodiment is designed to be step-shaped and significantly narrower than an inner diameter of the waveguide. This way designed impedance matching element 30 is sometimes referred to as a fin. This design can be particularly suitable for lower-frequency radar bands, for example for the K-band. For other frequency ranges, the impedance matching element - and/or other components of the high-frequency adapter 10 - can be designed at least slightly differently.
  • Fig. 5 shows schematically a high-frequency adapter 10 according to a further embodiment in a longitudinal section.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • This embodiment does not have a process separation 70.
  • the conductive element 45 is designed in one piece with the inner conductor (40), so that an antenna plug 90 (right, not shown) is electrically connected directly to the antenna plug 90.
  • a first inner diameter 52 of the jacket 50 (such as in Fig. 2 ) is smaller than a second inner diameter 22 of the waveguide 20, so that a step 25 is formed in the area of the connection between the waveguide and the jacket.
  • Fig. 6 shows a flowchart 100 with a manufacturing process for a high-frequency adapter 10 (see e.g Fig. 2 to Fig. 5 ) according to one embodiment.
  • a process separation 70 is arranged in the jacket 50, with a conductive element 45 being guided through the process separation 70, which is set up for an electrical connection to the inner conductor 40.
  • an electrically insulating spacer element 60 is arranged in a conductive jacket 50.
  • a conductive inner conductor 40 is inserted into the spacer element 60.
  • a waveguide 20 is connected, with an impedance matching element 30 which is arranged within the waveguide 20.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Claims (10)

  1. Adaptateur haute fréquence (10) pour relier une antenne haute fréquence (80) à un connecteur d'antenne (90), l'adaptateur haute fréquence (10) présentant :
    un guide d'ondes (20) qui est conçu pour transmettre des ondes haute fréquence depuis et vers l'antenne haute fréquence (80) ;
    un élément d'adaptation d'impédance (30) qui est disposé à l'intérieur du guide d'ondes (20) et qui est conçu pour adapter l'impédance à l'antenne haute fréquence (80) ;
    un guide intérieur conducteur (40) qui est relié électriquement et mécaniquement à l'élément d'adaptation d'impédance (30), le guide intérieur (40) pouvant être relié électriquement directement ou indirectement au connecteur d'antenne (90), le guide intérieur (40) s'étendant le long d'un axe central (15) du guide d'ondes (20) ;
    une enveloppe conductrice (50) qui se raccorde au guide d'ondes (20) ; et
    un élément d'écartement électriquement isolant (60) qui est disposé entre l'enveloppe (50) et le guide intérieur (40) et isole ainsi le guide intérieur (40) de l'enveloppe (50) et ferme le guide d'ondes (20) de manière étanche aux fluides,
    dans lequel un premier diamètre intérieur de l'enveloppe (50) est inférieur à un deuxième diamètre intérieur du guide d'ondes (20), de sorte qu'un gradin est formé dans la zone de raccordement entre le guide d'ondes (20) et l'enveloppe (50), et
    dans lequel l'élément d'écartement (60) est disposé au moins partiellement dans le guide d'ondes (20) et
    caractérisé en ce que l'élément d'écartement forme une collerette (62) dans le guide d'ondes (20).
  2. Adaptateur haute fréquence (10) selon la revendication 1, dans lequel l'élément d'écartement (60) présente ou est constitué de polytétrafluoroéthylène, PTFE, de polyétheréthercétone, PEEK, de polyéthylène, PE, ou de polyfluorure de vinylidène, PVDF.
  3. Adaptateur haute fréquence (10) selon l'une des revendications précédentes, présentant en outre :
    un élément conducteur (45), et
    une séparation de processus (70) qui est disposée à l'intérieur de l'enveloppe (50) et à travers laquelle est passé l'élément conducteur (45) qui est relié électriquement au guide intérieur (40).
  4. Adaptateur haute fréquence (10) selon la revendication 3, dans lequel l'élément conducteur (45) est réalisé d'un seul tenant avec le guide intérieur (40).
  5. Adaptateur haute fréquence (10) selon la revendication 3 ou 4,
    dans lequel l'élément conducteur (45) présente un coefficient de dilatation similaire à celui de la séparation de processus (70).
  6. Adaptateur haute fréquence (10) selon l'une des revendications 4 ou 5,
    dans lequel la séparation de processus (70) présente ou est constituée de verre et/ou de céramique, et/ou l'élément conducteur (45) présente ou est constitué d'un alliage de nickel.
  7. Adaptateur haute fréquence (10) selon l'une des revendications 3 à 6,
    dans lequel l'élément conducteur (45) est conçu pour le raccordement direct au connecteur d'antenne (90).
  8. Procédé de fabrication d'un adaptateur haute fréquence (10), comprenant les étapes de :
    disposer un élément d'écartement cylindrique creux électriquement isolant (60) dans une enveloppe cylindrique creuse conductrice (50) ;
    insérer un guide intérieur conducteur (40) dans l'élément d'écartement (60) ;
    raccorder un guide d'ondes (20) à un élément d'adaptation d'impédance (30) disposé à l'intérieur du guide d'ondes (20), dans lequel le guide intérieur (40) s'étend le long d'un axe central (15) du guide d'ondes (20),
    dans lequel un premier diamètre intérieur de l'enveloppe (50) est inférieur à un deuxième diamètre intérieur du guide d'ondes (20), de sorte qu'un gradin est formé dans la zone de raccordement entre le guide d'ondes (20) et l'enveloppe (50), et
    dans lequel l'élément d'écartement (60) est disposé au moins partiellement dans le guide d'ondes (20) et
    caractérisé en ce que l'élément d'écartement (60) forme une collerette (62) dans le guide d'ondes (20).
  9. Procédé selon la revendication 8, comportant l'étape supplémentaire de :
    disposer une séparation de processus (70) dans l'enveloppe (50), dans lequel un élément conducteur (45) est passé à travers la séparation de processus (70), lequel est conçu pour une liaison électrique avec le guide intérieur (40).
  10. Utilisation d'un adaptateur haute fréquence (10) selon l'une des revendications 1 à 7 pour la liaison d'une antenne haute fréquence (80) à un connecteur d'antenne (90).
EP21208497.4A 2021-11-16 2021-11-16 Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne Active EP4181313B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21208497.4A EP4181313B1 (fr) 2021-11-16 2021-11-16 Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne
CN202211328423.7A CN116137376A (zh) 2021-11-16 2022-10-26 用于将高频天线与天线连接器连接的高频适配器
US17/988,318 US20230155278A1 (en) 2021-11-16 2022-11-16 High frequency adapter for connecting a high frequency antenna with an antenna connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21208497.4A EP4181313B1 (fr) 2021-11-16 2021-11-16 Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne

Publications (2)

Publication Number Publication Date
EP4181313A1 EP4181313A1 (fr) 2023-05-17
EP4181313B1 true EP4181313B1 (fr) 2024-03-20

Family

ID=78676341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21208497.4A Active EP4181313B1 (fr) 2021-11-16 2021-11-16 Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne

Country Status (3)

Country Link
US (1) US20230155278A1 (fr)
EP (1) EP4181313B1 (fr)
CN (1) CN116137376A (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127693A1 (de) * 1981-07-14 1983-05-26 AEG-Telefunken Nachrichtentechnik GmbH, 7150 Backnang "uebergangselement zwischen einem hohlleiter und einer mikrostreifenleitung"
JPH02128503A (ja) * 1988-11-08 1990-05-16 Nec Yamagata Ltd 同軸導波管変換器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268971A (zh) * 2013-04-28 2013-08-28 中国电子科技集团公司第三十八研究所 小型化端馈式同轴线到圆形波导的转换器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127693A1 (de) * 1981-07-14 1983-05-26 AEG-Telefunken Nachrichtentechnik GmbH, 7150 Backnang "uebergangselement zwischen einem hohlleiter und einer mikrostreifenleitung"
JPH02128503A (ja) * 1988-11-08 1990-05-16 Nec Yamagata Ltd 同軸導波管変換器

Also Published As

Publication number Publication date
US20230155278A1 (en) 2023-05-18
EP4181313A1 (fr) 2023-05-17
CN116137376A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
DE102016100227B4 (de) Hochfrequenz-Miniaturverbinder mit Canted-Coil-Federn und zugehörige Verfahren
EP2569828B1 (fr) Connecteur coaxial haute fréquence
EP3387710B1 (fr) Agencement de conducteur extérieur pour fiche coaxiale
EP3091613B1 (fr) Dispositif de raccordement pour un conducteur hf, en particulier pour un câble coaxial et procédé de fabrication dudit dispositif de raccordement
WO2007039269A1 (fr) Connecteur coaxial
EP3403296A1 (fr) Agencement de conducteur extérieur pour fiche coaxiale
EP3126852B1 (fr) Système de mise en contact, en particulier pointe de mesure hf
EP2374182B1 (fr) Ensemble filtre
DE112016002241T5 (de) Koaxial-Mikrostreifenleitung-Wandlerschaltung
DE102018102564A1 (de) Elektrische Ferrule, elektrische Verbindungseinrichtung, sowie Verfahren zum Konfektionieren eines elektrischen Kabels
EP3029782B1 (fr) Production de signal haute fréquence
DE102004045707A1 (de) Antenne
EP3483569B1 (fr) Appareil de mesure de niveau de remplissage avec séparation galvanique dans le guide d'ondes
EP3482465B1 (fr) Élément de contact à conducteur interne, sollicité par un ressort
EP4181313B1 (fr) Adaptateur haute fréquence destiné à la connexion d'une antenne haute fréquence à un connecteur d'antenne
EP2489095B1 (fr) Coupleur d'antenne
EP3837741B1 (fr) Ensemble de câble
DE102018115389B3 (de) Sonde zur Messung von Plasmaparametern
DE102021112505A1 (de) Crimpkontakt, Crimpverbindung und Verfahren zur Herstellung einer Crimpverbindung
EP3686567A1 (fr) Guide d'ondes diélectrique métallisé
EP4297182A1 (fr) Guide d'ondes pourvu de deux pièces partielles de guide d'ondes
DE102019111479B4 (de) Hochfrequenz-Verbinderpärchen
DE112017007001T5 (de) Basisplatinenmodul
EP3001515B1 (fr) Boitier hf avec connecteur a fiches hf coaxial
EP3018768A1 (fr) Connecteur a fiches electrique comprenant une section de raccordement etanche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20220916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240208

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003032

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP